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Abstract

Codonopsis pilosula subsp. tangshen is one of the most important medicinal herbs used in

traditional Chinese medicine. Correct identification of materials from C. pilosula subsp. tang-

shen is critical to ensure the efficacy and safety of the associated medicines. Traditional

DNA molecular markers could distinguish Codonopsis species well, so we need to develop

super or specific molecular markers. In this study, we reported the plastome of Codonopsis

pilosula subsp. tangshen (Oliv.) D.Y. Hong conducted phylogenomic and comparative anal-

yses in the Codonopsis genus for the first time. The entire length of the Codonopsis pilosula

subsp. tangshen plastome was 170,672 bp. There were 108 genes in the plastome, includ-

ing 76 protein-coding genes, 28 transfer RNA (tRNA), and four ribosomal RNA (rRNA)

genes. Comparative analysis indicated that Codonopsis pilosula subsp. tangshen had an

unusual large inversion in the large single-copy (LSC) region compared with the other three

Codonopsis species. And there were two dispersed repeat sequences at both ends of the

inverted regions, which might mediate the generation of this inversion. We found five hyper-

variable regions among the four Codonopsis species. PCR amplification and Sanger

sequencing experiments demonstrated that two hypervariable regions could distinguish

three medicinal Codonopsis species. Results obtained from this study will support taxo-

nomic classification, discrimination, and molecular evolutionary studies of Codonopsis

species.

1. Introduction

The Campanulaceae family contains 50 genera and approximately 1046 species, mainly found

in the north and south temperate regions [1]. Codonopsis is a genus of perennial herbs in the

family Campanulaceae. It includes 42 species primarily distributed in East, Central, and South

Asia. Among them, 40 are found in China [2].
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Several Codonopsis species had been used as traditional Chinese medicines for one thou-

sand years. Among them, the Codonopsis pilosula subsp. tangshen is one of the most used [3].

For example, Chuan Dan-Shen was the dried root of C. pilosula subsp. tangshen is produced in

the Sichuan province of China. It has been regularly used to strengthen the spleen and tonify

the lung, regulate blood sugar, lower blood pressure, strengthen the body’s immune system,

and so on [4, 5]. Because of its high medicinal value and low price, Chuan Dan-Shen is some-

times used as a substitute for ginseng [6]. In addition, C. pilosula subsp. tangshen were used as

food materials in southern China and Southeast Asia, such as tea, wine, soup, plaster, porridge,

etc. [5].

Another species, C. lanceolata was used as a traditional medicinal plant and vegetable [7].

Previous research has reported that C. lanceolata has immune-modulatory, antimicrobial,

antioxidant, and anti-inflammatory effects [8–10]. A third species, C. tsinlingensis has been

used to lower blood pressure and treat poor appetite for a long time [2]. Materials from these

species might be substituted for each other in traditional medicines, leading to potential prob-

lems in their efficacy and safety. As a result, understanding their phylogenetic relationship and

developing molecular markers for these four species is urgently needed.

The application of DNA molecular markers in studying the genetic variation in Codonopsis
has been reported [11] and showed that Codonopsis species were difficult to classify and dis-

criminate using conventional markers. Previous studies have used nuclear internal transcribed

spacer (nrITS) [12], microsatellite polymorphic loci [13], simple sequence repeats (SSRs) [14],

inter simple sequence repeats (ISSR), random amplified polymorphic DNA (RAPD) [15],

amplified fragment length polymorphism (AFLP), sequencing-based markers (SNP) to dis-

criminate Codonopsis species. In particular, Hwang et al. used the genetic information from

the plastomes of Codonopsis lanceolata and Platycodon grandiflorus for molecular marker

development. Three chloroplast DNA (cp-DNA) based markers were developed from ndhF

and rpoA genes using the linearity test of the Quantitative Real-time PCR (qRT-PCR) assay.

And these three cp-DNA markers helped distinguish specific plant species between C. lanceo-
lata, P. grandiflorus, and Panax ginseng in commercial mixed-flour products [16]. These stud-

ies suggest that the Codonopsis genus has a rich and complex species composition, highly

similar morphological characteristics, dynamic evolutionary history, and extensive rearrange-

ments of the plastomes during diversification. Therefore, high-resolution or specific molecular

markers are needed to distinguish Codonopsis species [17–19].

Recent studies have compared the universal, super and specific DNA barcodes [20, 21]. The

universal DNA barcodes include three chloroplast regions (matK, psbA-trnH, and rbcL) and

one nuclear region (ITS) [22, 23]. However, universal DNA barcodes do not work in the case

of extremely closely related species or only slightly diverged “species” from a recent radiation

event [24]. The super barcode includes a complete genome or parts of a genome containing

enough information to discriminate between the species of interest [25]. The phylogenetic tree

constructed based on complete plastomes has a higher supporting rate and discrimination

power [26]. The specific barcode often uses hypervariable regions of the genome. One or a

combination of several hypervariable regions can distinguish these more related species. How-

ever, super DNA barcodes are generally not recommended if commonly used universal or spe-

cific DNA barcodes can be accurately identified. It is a useful complement to current

molecular identification [25]. Because a very large proportion of the plastome does not con-

tribute much to species discrimination, the most variable regions could substitute the whole

genome [20].

Among the 42 Codonopsis species, the complete plastomes of only three species have been

published, including Codonopsis lanceolata (MH018574.1) [27] and Codonopsis minima
(NC_036311.1) [28], and Codonopsis tsinlingensis (MN122102.1) [29]. In the current study, we
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sequenced the complete plastomes of Codonopsis pilosula subsp. tangshen, to identify super or

specific barcode for the discrimination of closely related medicinal Codonopsis species We char-

acterized the genomic features. Then we compared the plastomes from the four Codonopsis spe-

cies. Lastly, we developed and validated a set of molecular markers to distinguish the four

species. The results obtained from this study laid a solid foundation for future taxonomic classifi-

cation and marker development studies for Codonopsis species. In the following text, Codonopsis
pilosula subsp. tangshen and “tangshen” are interchangeable for the sake of easy reading.

2. Materials and methods

2.1 Plant material, DNA extraction, and sequencing

To obtain the complete plastome, we collected the fresh leaves of a young tangshen plant from

the Huazhong Medicinal Botanical Garden (109˚76’ E, 30˚18’ N), Enshi, Hubei, China. To val-

idate molecular markers of Codonopsis species, we collected fresh leaves of tangshen, C. lanceo-
lata, and C. tsinlingensis from the Huazhong Medicinal Botanical Garden, Qichun Country,

and the Qinling mountain, respectively. The detailed sample information used for sequencing

and molecular marker validation is in the S1 Table in S1 File. All samples were collected with

permission from the authorities.

Then we extracted the genomic DNA with the plant genomic DNA kit (Tiangen Biotech,

China). The purity of total DNA was assessed by 1.0% agarose gel electrophoresis. And the

concentrations were measured using a Nanodrop Spectrophotometer 2000 (Thermo Fisher

Scientific Inc., Waltham, MA, USA). We used the library preparation kit (New England Bio-

Labs, America) to construct the DNA library with 1ug DNA. For paired-end library construc-

tion, the total DNA was sheared into fragments at approximately 500 bp long. Finally, we

sequenced the genomic DNA with a Hiseq 2500 platform (Illumina, San Diego, CA). The

remaining sample and DNA were stored in the Institute of Medicinal Plant Development

(IMPLAD, accession number: Implad201808044).

2.2 Genome assembly and annotation

After obtaining the raw data, we removed the low-quality sequences using Trimmomatic soft-

ware [30] to get clean data. These low-quality sequences meet the following conditions: (1) hav-

ing the adaptor sequences; (2) the sequences with more than 50% bases having quality values of

Q< 19; and (3) with more than 5% bases being "N." With the development of next-generation

sequencing technologies, generating organelle genome assemblies from whole-genome sequenc-

ing (WGS) data would be the most accurate and labor-saving method. The plastome of tangshen

was de novo assembled using NOVOplasty (v4.0) [31] with the parameter "-t 15, -R 30". We vali-

dated the correctness of the assembly by mapping all raw reads to the assembly using BWA [32]

with the default settings. The annotation of the plastome was conducted initially using the

CPGAVAS2 [33] webserver. The annotation problems were edited by Apollo [34] manually.

Then we updated the annotation results by using the "UpdateAnno" module in CPGAVAS2.

The cis-splicing and trans-splicing genes of the tangshen plastome were created using CPGview-

RSG (http://www.herbalgenomics.org/cpgview). The content of GC was calculated using Editseq

from the DNASTAR Lasergene package (v9) [35]. Finally, we submitted the genome sequence

and annotations to GenBank and obtained the accession number MW415426.

2.3 Repeat and IR regions boundary analysis

Microsatellites are repeating DNA sequences consisting of 1–6 nucleotides (tandem arrays). It

is commonly found in the genomes of all prokaryotes and eukaryotes and is called motifs [36].
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The microsatellite sequence was analyzed using MISA software [37]. The search parameters

were "1–10 2–6 3–5 4–5 5–5 6–5". The numbers before and after the "-" represent the unit size

and minimal numbers of repeats, respectively. Then, we analyzed the tandem repeats with

Tandem Repeats Finder (TRF) software [38] with the size of the repeat unit� 7. The parame-

ters were "2 7 7 80 10 50 500 -f -d -m". 2,7,7 means weights for the match, mismatch, and

indels, respectively; 80 and 10 mean detection parameters, matching probability Pm = 80 and

indel probability Pi = 10; 50 means minimum alignment score; 500 represents maximum

period size. Last, the dispersed repeats were analyzed using VMATCH software [39]. The

search parameters for dispersed repeats were “-f -p -h 3 -l 30”. The short explanation: -f: com-

pute maximal forward repeats; -p compute maximal palindromes; -h search for repeats up to

the given Hamming distance; -l: specify that repeats must have the given length.

Then we used the online tool IRSCOPE (https://irscope.shinyapps.io/irapp/) to compare

the genes on the boundaries of the junction sites of the four plastomes from Codonopsis and

four plastomes from closely related species. IRSCOPE is a generic local genomic visualizer tool

designed to reflect the scaled genetic structure of plastome sequences over their respective four

regions [40]. The size variation of angiosperm plastomes is primarily due to the expansion and

contraction of the IR and SSC boundary regions. This analysis provides insight into the evolu-

tionary differences among species in the Codonopsis genus.

2.4 Phylogenetic analysis of Codonopsis genus

The whole plastome sequences of 18 species from the Campanulaceae family were used for

phylogenetic analysis, including Adenophora divaricate (NC_036221.1) [41], Adenophora
stricta (NC_036223.1) [41], Adenophora triphylla (NC_040857.1) [42], Campanula punctata
(NC_033337.1) [43], Campanula takesimana (KP006497.1) [44], Campanula zangezura
(NC_057269.1) [45], Codonopsis lanceolata (MH018574.1) [27], Codonopsis minima
(NC_036311.1) [28], Codonopsis tsinlingensis (NC_056284.1) [29], Cyphia angustiloba
(NC_036086.1) [19], Cyphia banksiana (NC_036087.1) [19], Cyphia belfastica (NC_036088.1)

[19], Leptocodon hirsutus (NC_049093.1) [46], Lobelia chinensis (NC_035370.1) [47], Lobelia
erinus (NC_036098.1) [19], Lobelia galpinii (NC_036071.1) [19], Carpodetus serratus
(NC_036084.1) [19]. Carpodetus serratus was selected as the outgroup. Firstly, we extracted

the common genes’ protein-coding sequence (CDS) by phyloSuit [48]. Then the CDS of a total

of 68 common genes (atpA, atpB, atpE, atpF, atpH, atpI, ccsA, cemA, matK, ndhA, ndhC,

ndhD, ndhE, ndhF, ndhG, ndhH, ndhI, ndhJ, petA, petB, petD, petG, petL, petN, psaB, psaC,

psaI, psaJ, psbA, psbB, psbC, psbD, psbE, psbF, psbH, psbI, psbJ, psbK, psbL, psbM, psbN, psbT,

psbZ, rbcL, rpl2, rpl14, rpl16, rpl20, rpl33, rpl36, rpoA, rpoB, rpoC1, rpoC2, rps2, rps3, rps4,

rps7, rps8, rps11, rps12, rps14, rps15, rps16, rps18, rps19, ycf1, ycf2) were aligned with MAFFT

software [49]. We used two methods to construct the phylogenetic tree: the Maximum-likeli-

hood method and the Bayesian Inference method. The Maximum-likelihood tree was built

using IQ-TREE [50] and visualized using iTOL (https://itol.embl.de/) [51]. The bootstrap anal-

ysis was performed with 1000 replicates using UBBoot [50]. According to the scores of BIC

(Bayesian Information Criterion), the best model was TVM+F+R3 for phylogenetic analysis.

Bayesian inferences (BI) analysis was performed using MrBayes (v3.2.7) [52], and the best

model was chosen using jModelTest (v2.1.0) [53]. The Bayesian inferences (BI) tree was visual-

ized using iTOL.

2.5 Comparative analysis of Codonopsis plastome structure

We created Dot plots of the plastome sequences of tangshen and Arabidopsis thaliana
(NC_000932.1) [54], C. lanceolata (MH018574.1) [27], C. minima (NC_036311.1) [28] and C.
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tsinlingensis (NC_056284.1) [29], respectively, to identify possible structure variation using the

Gepard software [55]. The Mauve [56] software was used to align the sequences to identify

intermolecular recombination events of the Codonopsis genus, and C. lanceolata was selected

as the reference. The default values were used for all the parameters. To reveal genomic varia-

tions, we aligned the four Codonopsis plastomes using the mVISTA program with Shuffle-

LAGAN mode [57]. Initially, we did this analysis directly with the plastomes we assembled

and the other three Codonopsis species. We found an inversion in the large single-copy (LSC)

region from the Mauve results, so we inverted this region of the tangshen plastome and used it

as the reference for further analysis.

Through analyzing the Dotplot and Mauve results, we found two repeat sequences at both

ends of the inversion. We first extracted the sequences, including the inversion and its flanking

repeat sequences, using extractseq [58]. Then we obtained the reverse complemented sequence

of one repeat sequence using revseq [58]. Finally, we aligned these two sequences using

MAFFT [49]. GeneDoc [59] was used to visualize the results. To determine whether the repeat

sequences are also present in the plastomes of the other three Codonopsis species, we used

Gepard to get the approximate location of the repeat sequence and then determine its exact

locations by BLASTn [60]. Then we extracted the sequences enclosed in these repeat sequences

using extractseq [58] and aligned them with MAFFT.

2.6 Hypervariable region analysis

To identify the hypervariable regions among the four Codonopsis species, we firstly

reversed the inversion region in the tangshen plastome. We wrote a custom script to

extract the intergenic spacer regions (IGS) from the GenBank files of the four plastomes.

We manually removed those IGS loaded across the boundary and in the inverted region

and extracted the IGS sequences using extractseq. Then we aligned the extracted sequences

using clustalw2 [61] with options “-type = DNA -gapopen = 10 -gapext = 2”. Finally, we

calculated the genetic distance of the intergenic regions using the K2p evolution model

implemented in the distmat program from the EMBOSS package [58] with the parameters

"-nucmethod 2". The threshold value for mapping is 5. It means to visualize the top five

results in Fig 7. These five hypervariable regions can be used as molecular markers to dis-

tinguish the four Codonopsis species.

2.7 Identification and validation of molecular markers for species

discrimination

C. minima is a species endemic to Korea [28], and we have not been able to find its cultivation

in China. As a result, we could only collect samples from the other three Codonopsis species for

molecular marker validation. We designed the primers for the five hypervariable regions using

the Primer3 program (http://bioinfo.ut.ee/primer3-0.4.0/). The sequences used to design

primers are shown in the S11 and S12 Figs in S1 File. PCR amplifications were performed in a

final volume of 50 μL with 25 μL 2 Taq PCR Master Mix, 1 μM of each primer, 1 μL template

DNA, and 22 μL ddH2O. All amplifications were carried out in a Pro-Flex PCR system

(Applied Biosystems, Waltham, MA, USA) under the following conditions: denaturation at

94˚C for 2 min, followed by 35 cycles of 94˚C for 30 s, at specific annealing temperature (Tm)

for 30 s, 72˚C for 60 s and 72˚C for 2 min as the final extension. PCR amplicons were visual-

ized on 1.2% agarose gels and then subjected to Sanger sequencing on an ABI 3730XL instru-

ment (Applied Biosystems, USA) using the same primers used for PCR amplification.
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3. Results

3.1 General features of the plastome

The tangshen plastome was a circular sequence, showing a typical quadripartite structure. It

was 170,672 bp long in length and consisted of an 86,108 bp large single-copy (LSC) region, a

7,654 bp small single-copy (SSC) region, and a pair of 38,455 bp long identical inverted repeats

(IRs) (Fig 1). There are 108 genes in the tangshen plastome, including 76 protein-coding

genes, 28 tRNA genes, and four rRNA genes (Table 1). Among these genes, there are 14 genes

(trnK-UUU, trnL-UAA, trnV-UAC, atpF, petB, petD, rpl2, ycf2, rpl16, rps19, ndhB, trnI-GAU,

trnA-UGC, ndhA) containing one intron, three genes (ycf3, clpP, ycf1) containing two introns

(S2 Table in S1 File). There are ten cis-splicing genes (trnK-UUU, ycf3, rpoC1, atpF,

trnL-UAA, petD, rpl16, rpl2, trnE-UUC, trnE-UUC) in the tangshen plastome (S1 Fig in S1

File), including six protein-coding genes and three tRNA genes. Except that the ycf3 gene has

two introns and three exons, other genes have one intron and two exons. Two trnE-UUC

genes are cis-spliced. Only the rps12 gene is trans-spliced. There are two copies of the rps12

gene. Each copy has three exons (S2 Fig in S1 File).

The length of the protein-coding sequence (CDS) in the tangshen plastome is 89,442 bp,

representing 52.41% of the entire length. In contrast, the size of rRNA is 9,063 bp, and tRNA is

2,769 bp, representing 5.31% and 1.62% of the total length of the tangshen plastome sequence,

respectively. The GC content analysis showed that the overall GC content is 38.15%, whereas

GC contents for the CDS, rRNA, and tRNA genes are 38.40%, 54.76%, and 52.87%, respec-

tively. In contrast, the GC contents for the LSC, SSC, and IRs are 36.75%, 32.07%, and 40.31%,

respectively. Moreover, a total of 50,591 codons were identified in the tangshen plastome. In

total, 64 codons encode 20 amino acids and three termination codons. Among these codons,

5,325 codons encode leucine, and 656 codes encode cysteine, representing the most and least

abundant coded amino acids in the tangshen plastome (S3 Table in S1 File).

The IRs are the most conserved regions of the plastome, and their boundary often under-

goes contraction and expansion. As shown in Fig 2, the length of LSC, SSC, and IRs differ

among the four Codonopsis plastomes. The sizes of IRs in the Codonopsis plastomes range

from 37,875 to 38,455 bp. There are eleven genes (rpl22, rps19, rpl2, ndhG, ndhF, psaC, ndhE,

ndhG, rpl2, trnH, psbA) at the four junctions: JLB (LSC/IRb), JSB (IRb/SSC), JSA (SSC/IRa)

and JLA (IRa/LSC). The JLB junction of the four Codonopsis plastomes was located between

the genes rps19 and rpl2. However, the gene rps19 in C. tsinlingensis was further away from the

JLB junction compared with those of the other three Codonopsis species.

The ndhE was found in both JSA and JSB junctions. In both C. lanceolata and C. minima, 156

bp of the ndhE gene locates in the SSC, and 147 bp locates in the IRa. In both tangshen and C.

tsinlingensis, 145 bp of ndhE genes were located in the SSC, and 158 bp of the genes were located

in the IRa. The JLA junctions were located to the right of the rpl2 and the left of the trnH in the

four Codonopsis plastomes. The trnH in C. tsinlingensis is further away from the junction.

3.2 Repeat analysis

We analyzed three kinds of repeat sequences (microsatellite repeats, tandem repeats, and dis-

persed repeats) in the tangshen plastome. We identified 30 microsatellite repeats (S4 Table in S1

File), including 19 mononucleotides (A/T), eight dinucleotides (AT/AT), and three trinucleotide

repeats (2 AGG/CCT, and 1 AAG/CTT). Among them, 14 microsatellite repeats in the protein-

coding regions (rpoC1, rpoC2, cemA, clpP, ycf1, ndhA). There are 40 tandem repeats in the tang-

shen plastome (S5 Table in S1 File), meeting the two conditions that the length of the repeat unit

is more than 30 bp and the similarity among the repeat unit sequences is more than 90%. The
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lengths of repeat units range from 30 bp to 315 bp. For the dispersed repeats, 49 were identified,

containing 27 palindromic repeats and 22 direct repeats (S6 Table in S1 File). The longest and

shortest dispersed repeat units are 540 bp and 148 bp, respectively.

3.3 Phylogenetic analysis

To construct the phylogenetic tree, we selected 19 plastome sequences from the genera of Adeno-
phora, Campanula, Codonopsis, Leptocodon, and Platycodon, Cyphia, Lobelia, and Carpodetus
(Fig 3). The Carpodetus serratus was selected as the outgroup taxa. The phylogenetic trees were

constructed using the maximum likelihood (ML) method and Bayesian Inference (BI) method.

The results of both methods had the same topological structure. The 15 species were divided into

two main clades. In particular, the Cyphia and Lobelia species formed one clade, and the other

12 species formed another clade. Then Adenophora and Campanula species formed a clade, four

Fig 1. The schematic representation of the plastome of C. pilosula subsp. tangshen created by CPGAVAS2. The

map contains four rings. From the center to outward, the first circle represents the forward and reverse repeats

indicated by red and green arcs, respectively. The second circle represents the tandem repeats marked with short bars.

And the third circle shows the microsatellite sequences identified using MISA. The fourth circle shows the gene

structure on the plastome. The genes were colored based on their functional categories, which are shown in the left

corner.

https://doi.org/10.1371/journal.pone.0271813.g001
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Codonopsis species, one Platycodon species, and one Leptocodon species formed another clade.

Interestingly, Leptocodon hirsutus is more closely related to the other three Codonopsis species

than Codonopsis tsinlingensis. Therefore, the most closely related species is Leptocodon hirsutus
in this phylogenetic tree. The bootstrap support scores for all branches were more than 96 in the

tree built by the maximum likelihood (ML) method. The Bayesian inference (BI) posterior prob-

abilities for all branches are 1, showing the high reliability of this tree.

3.4 Structure variation of tangshen plastome

The tangshen plastome was compared with those of A. thaliana, C. lanceolata, C. minima, and C.

tsinlingensis for structural variations. The Dotplot results showed a high degree of collinearity

between the Codonopsis and A. thaliana plastomes (S3-S7 Figs in S1 File). Mauve alignment of

plastomes indicated that the tangshen plastome has an unusually large inversion in the LSC region

than the other three Codonopsis plastomes (Fig 4). Then we compared the genes in the inversion

region of the four Codonopsis species. We found the genes from atpH to rps2 are inverted in the

tangshen plastome. The exact positions of this inversion are from 37,849 to 75,896.

Compared with the dispersed repeats shown in S7 Table in S1 File, we found one pair of

dispersed repeat sequences flanking the inversion with a length of 164 bp. The alignment of

these two repeat sequences is shown in Fig 5A. These two repeat sequences are reverse comple-

mentary, forming a palindromic repeat. The repeat unit on the 5’ end is from 37,685 to 37,848.

Table 1. Gene compositions of the Codonopsis pilosula subsp. tangshen plastome.

Category of genes Group of genes Name of genes

rRNA rrn4.5S (×2), rrn5S (×2), rrn16S (×2), rrn23S (×2)

tRNA trnA-UGC (×2), trnC-GCA, trnD-GUC, trnE-UUC,

trnF-GAA, trnG-GCC, trnH-GUG, trnI-CAU (×2),

trnI-GAU (×2), trnK-UUU, trnL-CAA, trnL-UAA,

trnL-UAG, trnM-CAU(x3), trnN-GUU(x2), trnP-UGG,

trnQ-UUG, trnR-UCU, trnR-ACG(x2), trnS-GCU,

trnS-GGA, trnS-UGA, trnT-GGU, trnT-UGU (×2),

trnV-GAC(x2), trnV-UAC, trnW-CCA trnY-GUA

photosynthesis Subunits of ATP synthase

Subunits of photosystem II

atpA, atpB, atpE, atpF, atpH, atpI

psbA, psbB, psbC, psbD, psbE, psbF, psbI, psbJ, psbK, psbL,

psbM, psbN, psbT, psbZ, ycf3
Subunits of cytochrome b/f

complex

petA, petB, petD, petG, petL, petN

Subunits of photosystem I psaA, psaB, psaC, psaI, psaJ

Subunit of rubisco rbcL
Subunits of NADH-

dehydrogenase

ndhA(×2), ndhB(×2), ndhC, ndhD, ndhE(×2), ndhF, ndhG

(×2), ndhH(×2), ndhI(×2), ndhJ, ndhK

Self-replication

Other genes

Large subunit of ribosome rpl14, rpl16, rpl2(×2), rpl20, rpl22, rpl23(×3), rpl32, rpl33,

rpl36

DNA dependent RNA

polymerase

rpoA, rpoB, rpoC1, rpoC2

Small subunit of ribosome rps11, rps12(×2), rps14, rps15(×2), rps16, rps18, rps19, rps2,

rps3, rps4, rps7(×2), rps8
c-type cytochrome synthesis

gene

ccsA

Envelop membrane protein cemA

Protease clpP

Maturase matK
Unknown Conserves open reading frames ycf1(×2), ycf2(×2), ycf4, ycf15(×2)

https://doi.org/10.1371/journal.pone.0271813.t001
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And the repeat unit on the 3’ end is from 75,897 to 76,060. We further checked whether this

repeat sequence was also present in the other three Codonopsis species. We found this repeat

sequence also exists in the C. lanceolata plastome, but the length of 132 bp is shorter (Fig 5B).

We did not find any repeat sequences in the plastomes of C. minima and C. tsinlingensis at

similar positions. The repeat sequence in the tangshen plastome is likely to be involved in the

genesis of the large inversion. However, the repeat sequence did not generate any inversion in

the C. lanceolata plastome.

We manually inverted the inversion to compare the sequences and used the inverted tangshen

plastome as the reference. (Fig 6). The IRs of the four plastomes showed relatively lower sequence

similarity than the LSC and SSC regions. Among the four different functional regions: exon,

intron, gene, and conserved non-coding sequences (CNS), the CNS regions showed the highest

variations. The exon regions of the four plastomes generally exhibited relatively higher conserva-

tion than the CNS and intron regions. Still, the two copies of the ycf1 gene showed a higher degree

of variations among the four plastomes. In the IRs regions, the rrn23 gene with two copies exhib-

ited the highest similarity among the four plastomes. Overall, the tangshen sequences exhibited

relatively higher levels of sequence divergence among the Codonopsis species.

3.5 Analysis of hypervariable regions

Five hypervariable regions having the highest variations were shown in Fig 7. The five regions:

rpl36-rps8, rpl14-rpl16, trnL-UAG-ccsA, rps16-trnT-UGU, and clpP-rpoA had the K2p values

29.74, 13.75, 8.83, 5.87, and 5.49, respectively. And these five hypervariable regions can be

used as the potential molecular markers to distinguish these four Codonopsis species.

Fig 2. Comparison of LSC, IR, and SSC border among the complete plastomes of 4 Codonopsis species, 2 Campanula species,

Leptocodon hirsutus, and Platycodon grandiflorus. The JLB, JSB, JSA, and JLA represent junction sites of LSC/IRb, IRb/SSC,

SSC/IRa, IRa/LSC, respectively. Different colors represent different regions. The blue represents LSC, the orange represents IRs,

and the green represents SSC. The number on the arrow indicates the distance between the gene and the boundary. The genes

shown in Fig are the genes closest to the boundary.

https://doi.org/10.1371/journal.pone.0271813.g002
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3.6 Development of molecular markers from the plastomes

To discriminate the available three Codonopsis species, we named the DNA marker from the

five hypervariable regions rpl36-rps8, rpl14-rpl16, trnL-UAG-ccsA, rps16-trnT-UGU, and

Fig 3. The phylogenetic tree of species from Codonopsis and other genus constructed based on the nucleotide sequences of

68 conserved plastid protein-coding genes using the maximum likelihood (ML) method and Bayesian Inference (BI)

method. The number next to each node represents the corresponding bootstrap value and the BI posterior probabilities,

respectively. The GenBank accession number are shown after the Latin name of the species. The sequence obtained from this

study was highlighted in Bold. The length of the branch corresponds to the frequency of base substitutions.

https://doi.org/10.1371/journal.pone.0271813.g003

Fig 4. Structure variation in C. pilosula subsp. tangshen. A comparison of tangshen plastome from this study and C.

lanceolata, C. minima, and C. tsinglingensis from NCBI revealed similarities and differences in syntenic blocks. The box in

purple indicates the correspondence of the region in different species. The C. pilosula subsp. tangshen was used as the

reference. An inversion was found in C. pilosula subsp. tangshen was shown in purple.

https://doi.org/10.1371/journal.pone.0271813.g004
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clpP-rpoA as Codonopsis marker 1–5, and Com1, Com2, Com3, Com4, and Com5, in short,

respectively. The PCR primers used to amplify these five markers are shown in the S7 Table in

S1 File. The Com2 and Com5 failed for PCR amplification. The Com3 sequences amplified

from the three species had only one SNP and could not distinguish the three species. The three

markers will not be discussed any further.

The product sizes of PCR amplification of Com1, Com3, and Com4 markers from the three

Codonopsis species were similar to expected (S8 Fig in S1 File). The DNA fragments were

extracted from each band and then subjected to Sanger sequencing. The sequencing results for

the PCR products of Com1 and Com4 were identical to the expected sequences (S9 and S10 Figs

in S1 File). The marker Com1, derived from the rpl36-rps8 region, has seven specific SNP loci.

The first SNP loci shown in red squares can be used to differentiate two of the three Codonopsis
species, except C. lanceolata. The second SNP loci, which are shown in red squares, can be used

to differentiate tangshen and C. tsinlingensis (Fig 8A, S9 Fig in S1 File). The marker Com4 is

derived from the rps16-trnT-UGU IGS region. It has five SNP loci and two Indel loci. Combined

with the SNP and Indel loci shown in red squares can be used to distinguish the three Codonopsis
species (Fig 8B, S10 Fig in S1 File). We also have tested the new primers on all four available

Fig 5. Alignment of two repeat sequences at both ends of the inversion in C. pilosula subsp. tangshen. (a) The schematic

representation of the inversion region and the two repeat sequences. The black shaded area represents the inversion region. Grey

areas links repeat sequences at both ends. The yellow areas represent the sequences at both ends of the repeat sequences. rpoC2 and

clpP represent the genes closest to the inversion region. The direction was from 5’ to 3’. The number on the arrows represents the

starting and ending positions of the two repeat sequences, respectively. The dash in the middle of the sequences represents the

omitted sequence. (b) Alignment of the repeat sequences in C. pilosula subsp. tangshen and C. lanceolata. The black shading

represents the two repeat unit sequences. The two repeat units are palindromic. The red box in the middle represents the omitted

sequences between the two repeat units. The numbers pointed by the red arrows represent the start and end positions of the two

repeat units in C. pilosula subsp. tangshen and C. lanceolata. The repeat sequence in C. pilosula subsp. tangshen is longer than that

in C. lanceolata. The code for the species was listed below this Fig.

https://doi.org/10.1371/journal.pone.0271813.g005
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Codonopsis plastomes obtained from NCBI and this study. These markers can discriminate all

four species based on the SNP and Indel loci from Com1 and Com4 (S11 and S12 Figs in S1 File).

4. Discussion

In this study, we first reported the complete plastome of Codonopsis pilosula subsp. tangshen
and then made a systematic comparative analysis of the Codonopsis plastomes. Notably, we

have (1) sequenced and assembled the tangshen plastome; (2) compared the four Codonopsis
plastomes and found an unusually large inversion having two repeat sequences at both ends of

the inversion in the tangshen plastome; (3) identified the top five hypervariable regions for the

development of potential molecular markers and validated two of them successfully; (4) car-

ried out the phylogenetic analysis of Codonopsis and its relative genus.

Fig 6. Comparison of the four Codonopsis plastomes by mVISTA. The vertical scale on the right indicates the percentage of

identity, ranging from 50 to 100%. The horizontal axis shows the coordinates within the plastome. Gray arrows indicate the

genes above the alignments. Different colors represent different regions. The dark blue, light blue, and pink represent exon,

tRNAs, or rRNAs and conserved non-coding sequences. The reference is the C. pilosula subsp. tangshen, with its inversion

region inverted for comparison. The number code for the species was shown below the picture.

https://doi.org/10.1371/journal.pone.0271813.g006
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Accurate identification of herbal medicines helps ensure the safe and effective use of herbal

medicines. DNA-based markers are suitable for the discrimination of different medicinal

plants [62]. Three kinds of DNA barcode markers are of importance: conventional, super, and

specific markers. The conventional markers are universal and are applied to all medicinal

plants, including ITS2, psbA-trnH, rbcL, and matK. This group of markers can be used as the

first line of tools to discriminate samples.

The success of species discrimination of these universal markers is mostly for distantly

related species. It generally lacks the discrimination powers for closely related species. In these

Fig 7. The hypervariable regions between the Codonopsis genus. The horizontal direction represents the intergenic

spacer regions that are highly variable among the four Codonopsis species. The vertical direction is the arbitrary K2P

distance of these regions. The square in the middle of each line represents the main distance of each intergenic spacer

region.

https://doi.org/10.1371/journal.pone.0271813.g007

Fig 8. The alignment of the sequencing chromatogram of the PCR products was amplified using the primers of Com1 and

Com4. The ID of each sequence is shown on the left side of each panel. The composition of the ID in turn includes the

abbreviation of the species name, plant individual id, and primer name. The figure of alignment represents the individuals 1–5 of

three species. The sequencing chromatogram of the PCR products amplified takes individual 1 of three species as an example.

The red squares represent the SNP and Indel regions, which can distinguish the three species. The nucleotides identical across all

plastomes are shaded in black, whereas those conserved in 60% of the sequences are shaded in gray. lan: Codonopsis lanceolata;

tan: Codonopsis pilosula subsp. tangshen; tsi: Codonopsis tsinlingensis. Arabic numerals represent the individual 1.

https://doi.org/10.1371/journal.pone.0271813.g008
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cases, universal markers with higher-resolution or taxon-specific markers are needed. The

complete plastomes have been acclaimed as a super barcode to distinguish related species,

especially for taxonomically difficult taxa [26]. The super barcodes demonstrated high discrim-

inative power and sufficient reliability in the previous study.

However, its use may be limited due to the insufficient amount of available DNA to assem-

ble the complete genome, expensive sequencing costs to generate enough raw data to assemble

the complete genome, and the complexity of data analysis. Therefore, searching for specific

barcodes from hypervariable regions is important as a trade-off between universal and super

DNA barcodes [21].

Several successful examples have been reported to develop taxon-specific markers [63]. In

the present study, the universal makers have not been successful in discriminating the medici-

nal Codonopsis species. As a result, we sequence the plastome sequences and developed taxa-

specific makers for the discrimination.

In addition to serving as the source of specific DNA barcodes, the plastomes can also be

used to understand the phylogenetic relationship of closely related species. The phylogenetic

relationship identified in this study is similar to those described previously. Classifications

analyses among Codonopsis were previously reported based on four chloroplast gene regions:

rbcL, matK, trnH-psbA, and the nuclear internal transcribed spacer (nrITS) [12].

Another application of the complete plastome is the identification of unusual structures

that reflect the evolutionary history of the study subject. This study performed an in-depth

comparative analysis of the four Codonopsis plastomes. We found a large inversion in the LSC

region in the tangshen plastome. Interestingly, we found a pair of palindromic repeat

sequences flanking this inversion. A similar repeat sequence was also present in the plastome

of C. lanceolata, but the repeat length was 32 bp shorter. Similar repeat sequences were not

found in the other two Codonopsis species’ plastomes at similar locations. And no inversions

were found in the other three Codonopsis plastomes.

We proposed two models for the genesis of the inversion in tangshen plastome. The first

evolutionary model is that the repeat sequence found in the four Codonopsis plastomes was

acquired before the speciation of the Codonopsis genus. During the differentiation of Codonop-
sis species, repeat sequences were further differentiated. The tangshen repeat sequence remains

active, leading to rearrangement. However, the repeat sequences experience partial or com-

plete deletion in the other three Codonopsis species, preventing the formation of the palin-

dromic structure and the generation of the inversion. The second model is that the repeat

sequence was acquired after the Codonopsis speciation independently. From a parsimonious

point of view, the second model is less likely to be true. Another interesting question is

whether or not the inversion occurred a long time ago. With the availability of more plastomes,

we can calculate the percentage of plastomes having and not having the inversions, which

might help answer this question.

Inversions mediated by palindromic repeat are not rare in the plastome [64]. The Campa-

nulaceae species mainly consist of perennial herbs and have the most plastome structural vari-

ants based on previous studies on enzymatic loci, gene localization, and genome sequencing

[2–5]. For example, previous studies have found numerous structural changes in the Adeno-
phora and Trachelium species [4, 6]. Therefore, studying the plastome structure is essential to

understanding the phylogenetic relationships and evolutionary history among Campanulaceae

species [7].

Previous studies have reported that genomic rearrangements occur due to incorrect recom-

bination of repeat sequences and mispairing of sliding strands [65, 66]. So the repeat sequences

play a crucial role in plastome rearrangement [67]. For example, the psbA-trnH intergenic

region is well known to have a small inversion [68]. This region is frequently used for DNA
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barcode analysis to distinguish different species [69]. It is generally thought that the palin-

dromic repeat can form a stem-loop structure. Some exonucleases will cut the single-stranded

DNA. When the DNA repair system is coming to repair the incised single-stranded DNA, it

might connect the wrong DNA strand, forming an inversion (Fig 5A).

One limitation of the current study is the small number of Codonsopsis plastomes analyzed.

The plastomes of only four of 42 Codonopsis species have been reported. Consequently, the

results obtained from this study will only apply to the four Codonopsis species. Unfortunately,

we could collect samples from three of the four species. The C. minima was an endemic species

to Korea [28] and could not be found in China. Therefore, the molecular markers validated in

this study might only help discriminate between these three species. More plastomes of Codo-
nopsis species are needed in the future to elucidate the taxonomic classification and evolution-

ary history of the Codonopsis species. It should be pointed out that the three species we have

analyzed have medicinal values and are most likely to be used indiscriminately.

5. Conclusions

We sequenced and analyzed the plastome of tangshen. Based on the four Codonopsis plas-

tomes, we identified and validated two molecular markers using PCR amplification and Sanger

sequencing experiments. Comparative analysis showed that the four Conodopsis plastomes

have a lower level of genetic diversity. The tangshen plastome has a unique inversion, likely to

be formed by repeat-mediated rearrangement.
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