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Abstract: The genus Sedum, with about 470 recognized species, is classified in the family Crassulaceae
of the order Saxifragales. Phylogenetic relationships within the Saxifragales are still unresolved
and controversial. In this study, the plastome of S. plumbizincicola was firstly presented, with
a focus on the structural analysis of rrn operon and phylogenetic implications within the order
Saxifragaceae. The assembled complete plastome of S. plumbizincicola is 149,397 bp in size, with a
typical circular, double-stranded, and quadripartite structure of angiosperms. It contains 133 genes,
including 85 protein-coding genes (PCGs), 36 tRNA genes, 8 rRNA genes, and four pseudogenes
(one ycf1, one rps19, and two ycf15). The predicted secondary structure of S. plumbizincicola 16S rRNA
includes three main domains organized in 74 helices. Further, our results confirm that 4.5S rRNA of
higher plants is associated with fragmentation of 23S rRNA progenitor. Notably, we also found the
sequence of putative rrn5 promoter has some evolutionary implications within the order Saxifragales.
Moreover, our phylogenetic analyses suggested that S. plumbizincicola had a closer relationship with
S. sarmentosum than S. oryzifolium, and supported the taxonomic revision of Phedimus. Our findings of
the present study will be useful for further investigation of the evolution of plastid rRNA operon and
phylogenetic relationships within Saxifragales.
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1. Introduction

The genus Sedum comprises more than 420 recognized species, which is the most species-rich
member of the family Crassulaceae [1,2]. Some species, formerly classified as Sedum, are now assigned
to the segregate genera Hylotelephium and Rhodiola [3–6]. The family Crassulaceae, together with 14
other family members, has been classified in the order Saxifragales. Recently, increasing research
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efforts have been focused on the evolution of Saxifragales, however, phylogenetic relationships within
the order are still unresolved due apparently to a rapid, ancient radiation [7–12].

Extensive genes were transferred from plastids to the nucleus during evolution. In most land
plants, the plastid genome (plastome) is a circular biological macromolecule with a typical quadripartite
structure [13–15]. In higher plants, compared with hundreds or thousands of tandem repeats in nuclear
ribosomal RNA genes [16–18], typical plastid rRNA genes are characterized by a pair of inverted rrn
operons, which show the gene order of rrn16, rrn23, rrn4.5, and rrn5 [19]. With the rapid development of
next generation genome sequencing, more and more complete plastid genomes (plastomes) have been
deposited in a public database. Recently, a total of over 3000 reference sequences of plastomes were
available in GenBank. The plastomes have been widely accepted as a popular tool for phylogenetic
studies [7,20–26].

Thus far, 43 plastomes have been obtained in Saxifragales, as shown in Table 1. Currently, there
is no report of a plastome for S. plumbizincicola, a well-known Zn/Cd hyperaccumulator, which was
newly discovered from lead and zinc mining areas in Zhejiang province, China [27]. In this paper,
we sequenced the plastome of this species using next-generation genome sequencing. Together
with the public sequences, we performed a comparative analysis of plastomes within Saxifragales.
Consequently, the aims of this research were (1) to investigate general features of the S. plumbizincicola
plastome, (2) to examine the structural evolution of the plastid ribosomal RNA operon, and (3) to
clarify phylogenetic relationships within the order Saxifragales.

2. Materials and Methods

2.1. Sample Collection and DNA Extraction

The fresh leaf samples of S. plumbizincicola (code AHNU-KPBK001) were collected from Panjiacun
(29◦35′16′′ N, 118◦35′19′′ E) in Zhejiang Province, east China. Genomic DNA extraction was conducted
using the Plant Genomic DNA kit (Tiangen, Beijing, China), following the manufacturer’s instructions.
The library was constructed using a TruSeq DNA PCR-Free Library Prep Kit (Illumina, San Diego, CA,
USA) and sequenced on the Illumina Hiseq X Ten (Illumina, San Diego, CA, USA) with the strategy of
150 paired-ends and an insert size of 350 bp.

2.2. Genome Assembly, Gene Annotation, and Sequence Analyses

The paired-end reads were first checked with Fastqc [28] and then trimmed for quality using
Trimmomatic 0.39 [29]. After that, obtained clean reads were filtered and assembled with GetOrganelle
1.5.2 [30] using the chloroplast genome of S. sarmentosum [7] as reference. The chloroplast genome
was annotated with GeSeq [31]. The secondary cloverleaf structures of tRNAs were identified using
tRNA-scan SE web server [32]. The secondary structures of rRNAs were predicted by comparison
with those of other plant species [33].

2.3. Phylogenetic Analysis

To resolve the phylogenetic relationships among Saxifragales species, two phylogenetic approaches
were applied: the maximum likelihood (ML) method in RAxML GUI 1.5b2 [34], as well as the
Bayesian inference (BI) method in MrBayes 3.2.7a [35]. With exclusion of the termination codons,
79 protein-coding genes (PCGs) and 4 rRNAs of 37 Saxifragales species were used to construct an
evolutionary tree. A phylogenomic study by Yang et al. [36] revealed a sister group relationship
between Saxifragales and Rosids. We selected therefore two Vitales species within Rosids (Vitis
heyneana, NC_039796; V. vinifera, NC_007957) as outgroups.
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Table 1. Species of plastomes examined in this study.

Family Species Accession No. Reference

Altingiaceae Liquidambar formosana NC_023092.1 [7]
Cercidiphyllaceae Cercidiphyllum japonicum NC_037940.1 [37]

Crassulaceae Phedimus kamtschaticus NC_037946.1 [38]
Crassulaceae Phedimus takesimensis NC_026065.1 Unpublished
Crassulaceae Rhodiola rosea NC_041671.1 [39]
Crassulaceae Sedum oryzifolium NC_027837.1 Unpublished
Crassulaceae Sedum plumbizincicola MN185459.1 This study
Crassulaceae Sedum sarmentosum NC_023085.1 [7]

Daphniphyllaceae Daphniphyllum oldhamii NC_037883.1 [8]
Grossulariaceae Ribes fasciculatum MH191388.1 [8]
Haloragaceae Myriophyllum spicatum NC_037885.1 [8]

Hamamelidaceae Chunia bucklandioides NC_041163.1 [40]
Hamamelidaceae Corylopsis coreana NC_040141.1 [41]
Hamamelidaceae Fortunearia sinensis NC_041487.1 [42]
Hamamelidaceae Hamamelis mollis NC_037881.1 [8]
Hamamelidaceae Loropetalum subcordatum NC_037694.1 [43]
Hamamelidaceae Parrotia subaequalis NC_037243.1 Unpublished
Hamamelidaceae Sinowilsonia henryi NC_036069.1 Unpublished

Paeoniaceae Paeonia brownii NC_037880.1 [8]
Paeoniaceae Paeonia decomposita NC_039425.1 [44]
Paeoniaceae Paeonia delavayi NC_035718.1 [45]
Paeoniaceae Paeonia jishanensis MG991935.1 [46]
Paeoniaceae Paeonia lactiflora NC_040983.1 [47]
Paeoniaceae Paeonia ludlowii NC_035623.1 [45]
Paeoniaceae Paeonia obovata NC_026076.1 Unpublished
Paeoniaceae Paeonia ostii NC_036834.1 Unpublished
Paeoniaceae Paeonia rockii NC_037772.1 [48]
Paeoniaceae Paeonia suffruticosa NC_037879.1 [8]
Paeoniaceae Paeonia veitchii NC_032401.1 Unpublished

Penthoraceae Penthorum chinense NC_023086.1 [7]
Iteaceae Itea chinensis NC_037884.1 [8]

Saxifragaceae Bergenia scopulosa NC_036061.1 [49]

Saxifragaceae Chrysosplenium
aureobracteatum NC_039740.1 [50]

Saxifragaceae Heuchera parviflora KR478645.1 [51]
Saxifragaceae Heuchera richardsonii NC_042923.1 Unpublished
Saxifragaceae Heuchera villosa NC_042924.1 Unpublished
Saxifragaceae Mitella diphylla NC_042925.1 Unpublished
Saxifragaceae Mitella formosana NC_042926.1 Unpublished
Saxifragaceae Mukdenia rossii NC_037495.1 Unpublished
Saxifragaceae Oresitrophe rupifraga NC_037514.1 [52]
Saxifragaceae Saxifraga stolonifera NC_037882.1 [8]
Saxifragaceae Tiarella cordifolia NC_042927.1 Unpublished
Saxifragaceae Tiarella polyphylla NC_042928.1 Unpublished
Saxifragaceae Tiarella trifoliata NC_042929.1 Unpublished

For ML analyses, we performed analyses with thorough bootstrap for ten runs and 1000 replicates
under the GTRCAT model using RAxML GUI. For BI analyses, the best-fit models for 83 genes
were first selected based on Bayesian information criterion (BIC) values in ModelGenerator 0.85 [53],
then two simultaneous runs with eight independent Markov chains were run for 10,000,000 generations
(sampling every 1000 generations).
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3. Results and Discussion

3.1. General Features of S. plumbizincicola Plastome

Based on Bowtie2 mapping, in total 19,610,999 reads (21.5% of total reads) were mapped to the
reference genome (S. sarmentosum, NC_023085), with a 1969×mean coverage (min, 1286×, max, 3664×,
standard deviation, 71). The assembled complete plastome of S. plumbizincicola (accession number:
MN185459.1) is 149,397 bp in size, with a typical circular, double-stranded, and quadripartite structure
of angiosperms. The plastome has two identical inverted repeats (IRs, 25,565 bp) separated by a
small single copy (SSC, 16,669 bp) and a large single copy (LSC, 81,598 bp), as shown in Figure 1.
Approximately 52.0%, 4.3%, and 1.83% of the genome encodes for proteins, rRNAs, and tRNAs,
respectively. Whereas, the remaining 41.87% are non-coding regions, including introns, intergenic
spaces, and pseudogenes.
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are transcribed in a clockwise direction, whereas genes inside are transcribed in a counterclockwise
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the inner circle denote G + C and A + T contents of chloroplast genome, respectively. LSC, SSC, and
IRs mean long single copy, small single copy, and inverted repeat regions, respectively.

Along with new data from this study, we comparatively investigated the structures and properties
of plastomes from 44 species, representing 11 families in Saxifragales, as shown in Table 1. The size of
plastomes of Saxifragales ranges from 147,048 bp (Phedimus kamtschaticus) to 160,410 bp (Liquidambar
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formosana), as shown in Table S1, and the total of G + C content varies from 36.40% (Myriophyllum
spicatum) to 38.55% (Paeonia brownii).

The plastome of S. plumbizincicola contains 133 genes, including 85 protein-coding genes (PCGs),
36 tRNA genes, 8 rRNA genes, and four pseudogenes (one ycf1, one rps19, and two ycf15). Dong
et al. [8] reported that infA and rpl32 have been lost from three species of Paeonia plastome (Paeonia
brownii, P. suffruticosa, and P. obovata). In this study, comparative analysis showed that these two
gene loss events occurred in all eleven plastomes of Paeoniaceae. A possible explanation is that the
two functional genes have been transferred to the nucleus [8,47,54–60]. Furthermore, Dong et al. [8]
observed that the intron of rpl2 was completely lost in Saxifraga stolonifera. There are currently about
640 species in 33 genera recognized within the family Saxifragaceae [61]. Interestingly, in the current
study, the intron of rpl2 was detected in all families in Saxifragales, except for 13 species from the
examined 8 genera representing the major lineages of Saxifragaceae, as shown in Table S1, which
indicates an early loss of this intron within this lineage. Besides Saxifragaceae, nine other independent
losses of rpl2 intron were reported in dicotyledons [62–75]. The two most probable mechanisms of loss
of the rpl2 intron are homologous recombination and gene conversion [64,76,77].

3.2. Structure Analyses of Plastid Ribosomal RNA Operon

3.2.1. Structure of 16S rRNA

Similar to most other plants, the size of S. plumbizincicola rrn16 is 1490 bp. In all Saxifragales
species examined, the sizes of rrn16s are the same as that of S. plumbizincicola, except for the family
Paeoniaceae, with an insertion (U) between positions 576 and 577 nts. As shown in Table S2, the G + C
content of the rrn16s of Saxifragales ranges from 56.5% (Rhodiola rosea) to 56.9% (Fortunearia sinensis,
and Sinowilsonia henryi). The average G + C content for typical land plants is 56%, whereas this
value falls from 52% to 28% for holoparasitic angiosperms, with an increasingly greater number of
mutations [78].

We next examined the predicted secondary structure of 16S rRNA in S. plumbizincicola. The structure
is similar to the models proposed for other plants [78–80], including three main domains organized
in 74 helices. In total, 72 mismatched pairs have been detected, and most of them (58/72) are G-U
wobble pairs, as shown in Figure 2. Furthermore, we also detected that the position 123 nt of 16S
rRNA is cytosine (123-C), whereas other Saxifragales species examined are uracil. To avoid a potential
sequencing error, we confirmed the mutation U123C by transcriptomic data of S. plumbizincicola
(accession number: SRR5118122-SRR5118124). For further analysis, the 16S rRNAs from 3125 reference
plastomes of land plants deposited in GenBank were investigated. The survey results indicated that
only 13 species had the special 123-C, including two hyperaccumulator plants, Alpinia oxyphylla and
Curcuma longa [81,82]. In contrast with non-canonical base pairing (G-U), we particularly observed
that the mutation U123C of 16S rRNA can form stabilized base pairing (C-G) in helices H120, as shown
in Figure 2. However, the underlying biological mechanisms of the mutation U123C of 16S rRNA are
still unknown.
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3.2.2. Structure of 23S rRNA and 4.5S rRNA

As can be seen from Table S2, the size of rrn23 spans from 2089 bp (Sedum) to 2857 bp (Paeonia
suffruticosa), and the G + C content ranges from 55.0 (Corylopsis coreana, Loropetalum subcordatum, and
Chrysosplenium aureobracteatum) to 55.4% (M. spicatum), with an average value of 55.1%. In contrast to
rrn23, the rrn4.5 of Saxifragales is remarkably conserved in size (103 bp), with a mean G + C content
of 56.7%. The rrn4.5 and rrn23 genes are separated by 98–99 bp intergenic spacers (IGd), with G + C
content between 57.1% and 60.2%, as shown in Table S2.
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The predicted secondary structure of 23S rRNA in S. plumbizincicola is similar to the models of
Gutell [80,83], containing 149 helices and six domains, as shown in Figure 3. Moreover, a total of 135
mismatched pairs with 101 G-U wobble pairs were found in the structure. We then comparatively
analyzed 23S rRNA secondary structures of all investigated taxa in Saxifragales. Remarkably, as
shown in Figure 4, the hairpin loops near helix H550 were more divergent than others, including
nucleotide substitutions and indels. In particular, these divergent hairpin loops may have potential
phylogenetic implications. For instance, all species of Crassulaceae are characterized by six nucleotides
(5’-CACUGG-3’) in these hairpin loops. In addition, in contrast to S. plumbizincicola, P. suffruticosa
had an extra 46 nts insertion between the helices H1684 and H2037 of 23S rRNA. Our study further
shows that the extra insertion may form two additional helices, as shown in Figure 5. Notably, 4.5S
rRNA is a unique component of plastid ribosomes from nonvascular (bryophytes) to vascular plants
(pteridophytes, gymnosperms, and angiosperms), which is located on the large subunit. Several
previous studies of 4.5S rRNA have failed to find known homologues in other types of ribosomes [84–86].
In ongoing follow-up research, 4.5S rRNA has been identified as structurally homologous to the 3’
terminus of bacterial, cyanobacterial, and green algal 23S rRNA [19,84,87–90]. Based on sequence
identity analysis, 4.5S rRNA of S. plumbizincicola and 3’ terminus of Escherichia coli 23S rRNA (accession
number: J01695) share 62.9% nucleotide identity. Interestingly, despite a considerable amount of
nucleotide substitutions and indels between these two regions, their secondary structures exhibited
similar topology, as shown in Figure 6. This finding confirms once again that 4.5S rRNA of higher
plants is associated with fragmentation of 23S rRNA progenitor.
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3.2.3. Structure of 5S rRNA and Evolutionary Implications of Its Putative Promoter

Structurally, 5S rRNA is the smallest RNA component of the large ribosomal subunit in all known
organisms [91]. In the S. plumbizincicola plastome, rrn5 and rrn4.5 are physically linked by the intergenic
region (IGe), with the size 219 bp, as shown in Table S2. Besides, the predicted secondary structure of
S. plumbizincicola 5S rRNA is similar to that of other published studies [92,93], harboring five helices, as
shown in Figure 7. Furthermore, our comparative sequence analysis identified a perfectly conserved
121-bp rrn5 among Saxifragales, with medium G + C content (about 52%), as shown in Table S2. In this
study, we also used the 5SRNAdb (http://combio.pl/rrna/) to survey the G + C content of plastomic rrn5.
A total of 839 sequences were downloaded and analyzed. The mean G + C content is 50.73%, with the
lowest in Euglena viridis (32.26%) and the highest in Staurastrum punctulatum (59.84%). The survey
shows that there is a great variability in G + C content of rrn5 for photosynthetic euglenoid and
green algae.

Based on similarity of nucleotide sequences, Audren et al. [94] found that a prokaryotic type
promoter, which is closely related to the bacterial consensus, was located upstream of the rrn5 and
downstream of the stem-loop structure from spinach. However, the putative promoter is inactive both
in vivo and in vitro, likely due to the high GC content of the sextama box (TTGGGG) [94,95]. A number
of studies have demonstrated that the 5S rRNA gene is transcribed with the other ribosomal genes
within the same operon [19,94,96,97]. Notably, the spinach putative promoter was also detected in the
similar region from all 44 Saxifragales species. As shown in Figure 8, it contains a sextama box (−35
region, T100T100G100G100G100G100) and a pribnow box (−10 region, C57A100A100T100A100T86) separated
by 8–29 bp within Saxifragales, as shown in Figure 8. Interestingly, we found the sequence of putative
rrn5 promoters have some evolutionary implications. For example, all spacers between -35 and -10
boxes from 44 investigated species share the 16 common nucleotides (CCTCACAATCACTAGC),
except for Liquidambar formosana (CCTCTAGC). Due to nucleotide insertion, deletion, and substitution,
the ancestral sequence was then further evolved to different apomorphies in diversified lineages
within Saxifragales.

http://combio.pl/rrna/
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3.3. Phylogenetic Implications

To investigate the evolutionary relationships among the order Saxifragales, we performed
phylogenetic analyses using 83 plastid genes of 44 species. Two species of Vitaceae (V. heyneana and
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V. vinifera) were employed as outgroups. After alignment, the concatenated sequences are 74,751 bp
long. The trees derived from ML and BI analyses display the same topology, as shown in Figure 9.
According to the Angiosperm Phylogeny Group (APG) system IV [98], the order Saxifragales comprises
15 families, 11 of which were chosen for the phylogenetic analyses. The order Saxifragales can be
generally divided into two clades: core Saxifragales clade (maximum likelihood bootstrap [BS] =

100 and bayesian posterior probability [PP] = 1.0) and Paeoniaceae plus the woody clade ([BS] = 89
and [PP] = 1.0). The former clade is subdivided into two subclades: one containing Crassulaceae,
Haloragaceae, and Penthoraceae, and the other comprising three families of Saxifragaceae alliance
(Grossulariaceae, Saxifragaceae, and Iteaceae). The latter clade includes Paeoniaceae, Altingiaceae,
Cercidiphyllaceae, Daphniphyllaceae, and Hamamelidaceae. In general, the framework of relationships
within Saxifragales generated from this study agrees with those reported by Jian et al. [11], Moore
et al. [99], and Soltis et al. [12].
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The bootstrap percentages < 50% and posterior probabilities < 0.5 were omitted.

In the present study, we found that S. plumbizincicola had a closer relationship with S. sarmentosum
than S. oryzifolium. Furthermore, Sedum is sister to (Phedimus + Rhodiola). Species of Phedimus,
previously treated as members of Sedum, have been classified as a separate genus [100,101]. Our data
support this taxonomic revision of Phedimus.

Within Saxifragaceae alliance, Iteaceae is sister to (Grossulariaceae + Saxifragaceae), with strongly
supported nodes ([BS] = 100 and [PP] = 1.0). Furtherly, Saxifragaceae can be divided into two subclades:
heucheroid and saxifragoid [61,101]. Within the heucheroid, two genera, Heuchera and Tiarella, have been
suggested as polyphyletic by several chloroplast markers [102,103]. Our present study based on nearly
whole plastome sequence data supported this view. However, both morphology and nuclear internal
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transcribed spacers (ITS) data have indicated that the two genera are monophyletic [102,104,105]. This
incongruence between chloroplast and nuclear gene trees may be due to chloroplast capture [105–110].

Our results also accepted the monophyly of the woody clade, which is sister to the family
Paeoniaceae. It is noteworthy that deep-level relationships within Hamamelidaceae are strongly
supported. Nevertheless, the closest relatives of this family and relationships among these woody
families are still unresolved in our analysis. This might partially be attributed to an ancient, rapid
radiation [11]. Therefore, further detailed analyses need be conducted to evaluate the relationships
within the woody clade.

4. Conclusions

In the present study, we first sequenced and analyzed the plastome of S. plumbizincicola.
The genome structure and gene order were revealed, including 85 PCGs, 36 tRNA genes, 8 rRNA genes,
and four pseudogenes. Next, we focused on the analyses of the primary and secondary structures of
plastid rRNA genes. Notably, we found the sequence of putative rrn5 promoter has some evolutionary
implications within the order Saxifragales. Based on the 83 plastid genes from 44 species, phylogenetic
analyses demonstrated that S. plumbizincicola had a closer relationship with S. sarmentosum than
S. oryzifolium. Our findings reported here shed light on the structural evolution of plastid rRNA operon
and phylogenetic relationships within Saxifragales.

Supplementary Materials: The following are available online at http://www.mdpi.com/2223-7747/8/10/386/s1,
Table S1: Genomic characteristics of 44 complete Saxifragales plastomes, Table S2: A comparison of sizes, G + C
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