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Abstract: In order to prevent any further spread of Dendroctonus armandi (Coleoptera: Curculionidae:
Scolytidae), it is important to clarify its geographic distribution in China. Species Distribution Models
were used to identify the variables influencing the distribution of D. armandi in China, and to create
maps of its distribution. D. armandi almost exclusively attacked Pinus armandi Franch (IP (frequency
of its incidence) = 98.2%), and its distribution is focused on the Qinling Mountains and the Ta-pa
Mountains. The current distribution of P. armandi does not limit the distribution of D. armandi, despite
the host occurring in in northern and southwestern China. Temperature and precipitation limit
the current distribution of this beetle. The mean temperature of coldest quarter (−5 ◦C) does not
guarantee that D. armandi larvae can overwinter in northern China, and the precipitation of wettest
quarter plays an important role in the dispersal and colonization of D. armandi adults in southwestern
China. Therefore, the ecological niche of this beetle is relatively narrow when it comes to these
environmental variables. The climatic conditions where this beetle inhabit are different from the
prevalent climate in the Qinling Mountains and the Ta-pa Mountains. At the meso- and micro-scale
levels, terrain variables create habitat selection preferences for D. armandi. D. armandi predominately
colonizes trees on the southern slopes of valleys and canyons with elevations between 1300 m a.s.l
and 2400 m a.s.l.
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1. Introduction

Geographic distribution is of great importance in the study of population dynamics, which involve
exogenous and endogenous factors [1,2]. Together, these factors constitute the population ecology
processes, which limits the abundance and geographic distribution of species [3–5]. Generally, the
studies of species distribution only used basic information from museums, scientific collections, and
related literatures [6,7]. Combining this basic information with additional data on climate, biology,
and topography is important in fully understanding the geographic distributions of species [8,9].

Species distribution models (SDMs) have been widely used in the prediction of species distribution.
An increasing availability of spatial data, as well as high resolution bioclimatic data, have continuously
enhanced the prerequisites that are needed for successful SDMs and the assessment of factors affecting
the magnitude and extent of a potential invasion [10]. Furthermore, SDMs have evolved along with the
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increasing variety and availability of the statistical methods, digital biological, and environmental data
with which they are built in a geographic information system [11]. SDMs has the strong advantage
of improving the utility and reliability in the analysis of the potential distribution of species with a
relatively broad range distribution and little knowledge of biology and ecology [12,13]. Besides, SDMs
have become an important and widely used decision-making tool for a variety of biogeographical
applications, such as studying the effects of climate change, identifying potential protected areas,
determining the locations that are potentially susceptible to invasion, and mapping vector-borne disease
spread and risk [14]. SDMs, including Bioclimatic analysis (BIOCLIM), Genetic Algorithm for Rule-set
Prediction (GARP), Ecological Niche Factor Analysis (ENFA), Maximum Entropy (MaxEnt), and
CLIMEX [15–17], have been widely used in many different applications. Srivastava et al. (2018) [10]
used Ensemble modelling, which includes BIOCLIM, GARP, and MaxEnt to map the potential
distribution of the Yushania maling (Gamble) in the Darjeeling Himalayas. Giusti et al. (2017) [16]
employed ENFA to characterize ecological niche and map the potential distribution of Viminella
flagellum (Alcyonacea: Ellisellidae) in southeastern Sardinian waters. Van Gils et al. (2014) [18] applied
MaxEnt to predict the year-round and seasonal bear distribution in Majella National Park, Italy. Huang
et al. (2019) [19] used the CLIMEX to predict the current and future potential distributions of the
Eucalyptus pest Leptocybe invasa (Hymenoptera: Eulophidae) in China. While integrating the diverse
data on biology, climate, and topography, SDMs has developed the more credible potential distribution
and species responses to past and future climatic conditions [8].

Dendroctonus armandi Tsai and Li (Coleoptera: Curculionidae: Scolytidae) is a cryptic herbivore
that completes its life cycle under the bark of the conifer, except during a brief dispersal period,
when the adults search for new host trees. Voltinism varies with elevation in the Qinling Mountains.
Typically, there are two generations per year at elevations lower than 1700 m a.s.l, three generations
within two years between 1700 and 2150 m a.s.l., and one generation per year above 2150 m a.s.l.
As a pioneer species, it unites blue-stain fungus Leptographium qinlingensis to invade healthy Pinus
armandi Franch more than 30 years and triggers the secondary bark beetles to attack the infected or
withered host trees [20]. Females are always the first to bore through the bark of the host and then
attract males with aggregation pheromones for colonization and reproduction [21]. Outbreaks of this
bark beetle have constantly occurred over the past 30 years in the Qinling Mountains and the Ta-pa
Mountains, where the zone has distinctive geomorphic and geologic or tectonic features to differentiate
it from neighboring zones, which causes landscape-level mortality to the healthy P. armandi, a native
conifer that is primarily distributed along the Qinling Mountains and Ta-pa Mountains [22]. P. armandi
plays an important ecological role by reducing soil erosion and it is an important element of regional
socioeconomic development. The Qinling Mountains gradually decline from west to east, which is
the most important north-south boundary line in China’s geography. The rivers that run through the
mountains are mostly cross-cutting or oblique, which result in many canyons with steep terrain in the
upper and middle reaches of the rivers. The Ta-pa Mountains range from northwest to southeast. They
also have many valleys and steep canyons that were cut by a river [23].

Although Dendroctonus armandi (Coleoptera: Curculionidae: Scolytidae) is significant as a
forest pest, its biology, ecology, and geographic distribution are relatively poorly understood. As
such, a detailed knowledge regarding the population distribution of D. aramndi is required for pest
management. SDMs have also been widely applied to the potential management of bark beetles.
For example, Duque-Lazo et al. (2017) [24] used the Andalusian forest health monitoring network
(SEDA Network) to assess the current distribution of the xylophage beetles, while using the Kernel
Density Estimation approach, and the current and future distributions using ensemble SDMs. Buse
et al. (2007) [25] used species distribution modelling based on datasets from Central Europe to
understand the species–habitat relationships and find the environmental variables that are responsible
for habitat selection of the longhorn beetle Cerambyx cerdo L. (Coleoptera, Cerambycidae). Lausch et al.
(2011) [26] used ENFA to quantitatively analyse the factors affecting the spatio-temporal dispersion of
Ips typographus (L.) in Bavarian Forest National Park. In this study, we used BIOCLIM, ENFA, and
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MaxEnt to model the potential distribution of D. armandi in China. We aimed to use SDMs to analyze
the main factors influencing the distribution of D. armandi, and ultimately provide critical information
to cope with the further range expansion of D. armandi.

2. Materials and Methods

2.1. Study Area

We used a proxy study area that covered the natural distribution of P. armandi, which was located
between 24◦ N and 36◦ N and between 98◦ E and 111◦ E, and it included multiple climate type zones
(Figure 1). In order to better understand the climatic environment of D. armandi, the distribution profile
of the host is as follows (Table 1) [27,28].

Forests 2019, 10, x FOR PEER REVIEW 3 of 17 

 

typographus (L.) in Bavarian Forest National Park. In this study, we used BIOCLIM, ENFA, and 
MaxEnt to model the potential distribution of D. armandi in China. We aimed to use SDMs to analyze 
the main factors influencing the distribution of D. armandi, and ultimately provide critical 
information to cope with the further range expansion of D. armandi. 

2. Materials and Methods 

2.1. Study Area 

We used a proxy study area that covered the natural distribution of P. armandi, which was 
located between 24° N and 36° N and between 98° E and 111° E, and it included multiple climate type 
zones (Figure 1). In order to better understand the climatic environment of D. armandi, the 
distribution profile of the host is as follows (Table 1) [27,28]. 

 

Figure 1. Present distribution of Pinus armandi Franch in China. The area where Dendroctonus armandi 
(Coleoptera: Curculionidae: Scolytidae) is located in the red box. 

Table 1. Profile of the natural distribution of Pinus armandi Franch. 

Climate Type Longitude/Latitude Environmental Overview Distribution Range 

North subtropical 
evergreen 

deciduous broad-
leaved mixed 

forest belt 

29° N–33° N 
105° E–111° E 

The annual average temperature is 7–16 °C, 
the extreme minimum temperature is −5 to 
−22 °C, the extreme maximum temperature 
is 29–41 °C, the accumulated temperature 

of ≥10 °C is 2300–4500 °C, the annual 
precipitation is 1000–1400 mm. 

The junction of Shannxi, Sichuan, 
Gansu, Hubei, Chongqing and Henan 

provinces in southern the Qinling 
Mountains, including Ta-ba Mountains, 

Micang Mountains and Wushan 
Mountains.  

Central 
subtropical 

evergreen broad-
leaved forest belt 

24° N–29° N 
98° E–105° E 

The annual average temperature is 10.5–
18.3 °C, the extreme minimum temperature 
is −1.7 to −13.8 °C, the extreme maximum 
temperature is 33.8 °C, the accumulated 
temperature of ≥10 ℃ is 4500 to 5500 °C, 
the annual precipitation is 500–1400 mm. 

Northeast and Northwest Yunnan, 
western Guizhou, and southwestern 

Sichuan. 

Warm temperate 
deciduous broad-
leaved forest belt 

33° N–36° N 
105° E–113° E 

The annual average temperature is 6–13 °C, 
the extreme minimum temperature is −18 

to −24 °C, the extreme maximum 
temperature is 30–38 ℃, the accumulated 
temperature of ≥10 °C is 2000–4000 °C, the 

annual precipitation is 70–1000 mm. 

All the distribution in northern the 
Qinling Mountains, include the 

southern the Zhongtiao Mountains in 
Shanxi, the Liupan Mountains in 

Ningxia, the Longshan in Gansu, the 
Funiu Mountains in Henan. 

Figure 1. Present distribution of Pinus armandi Franch in China. The area where Dendroctonus armandi
(Coleoptera: Curculionidae: Scolytidae) is located in the red box.

Table 1. Profile of the natural distribution of Pinus armandi Franch.

Climate Type Longitude/Latitude Environmental Overview Distribution Range

North subtropical
evergreen deciduous
broad-leaved mixed

forest belt

29◦ N–33◦ N
105◦ E–111◦ E

The annual average temperature is 7–16 ◦C,
the extreme minimum temperature is −5 to
−22 ◦C, the extreme maximum temperature
is 29–41 ◦C, the accumulated temperature

of ≥10 ◦C is 2300–4500 ◦C, the annual
precipitation is 1000–1400 mm.

The junction of Shannxi,
Sichuan, Gansu, Hubei,
Chongqing and Henan

provinces in southern the
Qinling Mountains, including

Ta-ba Mountains, Micang
Mountains and Wushan

Mountains.

Central subtropical
evergreen broad-leaved

forest belt

24◦ N–29◦ N
98◦ E–105◦ E

The annual average temperature is
10.5–18.3 ◦C, the extreme minimum
temperature is −1.7 to −13.8 ◦C, the

extreme maximum temperature is 33.8 ◦C,
the accumulated temperature of ≥10 °C is
4500 to 5500 ◦C, the annual precipitation is

500–1400 mm.

Northeast and Northwest
Yunnan, western Guizhou, and

southwestern Sichuan.

Warm temperate
deciduous broad-leaved

forest belt

33◦ N–36◦ N
105◦ E–113◦ E

The annual average temperature is 6–13 ◦C,
the extreme minimum temperature is −18

to −24 ◦C, the extreme maximum
temperature is 30–38 °C, the accumulated

temperature of ≥10 ◦C is 2000–4000 ◦C, the
annual precipitation is 70–1000 mm.

All the distribution in northern
the Qinling Mountains, include

the southern the Zhongtiao
Mountains in Shanxi, the Liupan

Mountains in Ningxia, the
Longshan in Gansu, the Funiu

Mountains in Henan.
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2.2. Data

2.2.1. Ecogeographical Variables Layers

We used ecogeographical variables layers as the main input to create the potential distribution
of D. armandi according to its bioclimatic requirements [29]. Bioclimatic variables were downloaded
from the WorldClim open climate data for SDMs and Arc-GIS v.10.2 (Environmental System Research
Institute Inc., Redlands, CA, USA) [30]. WorldClim is a set of global climate layers (gridded climate
data) with a spatial resolution of 5-arc min., which is available at www.worldclim.org, including
19 default bioclimatic variables. Terrain layers were freely downloaded from edcdaac.usgs.gov/

gtopo30/gtopo30.html, which is a digital elevation model for the world, as developed by United States
Geological Survey (USGS). It is split into 33 tiles that were stored in the USGS digital elevation model
(DEM) file format. The layers contain a number of raster grids, each of which variable layer must all
have the same geographic bounds and cell size.

To reduce the multi-collinearity among the 19 bioclimatic variables, we used MaxEnt v.3.3.1
(www.cs.princeton.edu/~{}schapire/maxent) to select significant factors according to their level
of contribution [31]. Variables with higher maximum entropy gains were retained. Examining
multi-collinearity carried out further exclusion of the variables, and highly correlated variables (r ≥
0.85 Pearson correlation coefficient) were eliminated [32]. The results of the reduction of bioclimatic
variables are as follows (Table 2). In addition, principal component analysis (PCA) is also used as a
complement to variables selection. This result can be found in Table 3.

Table 2. Contribution of each of 8 selected variables in MaxEnt for D. armandi.

Code Bioclimatic Variables % Contribution

Bio11 Mean temp of coldest quarter (◦C) 25.6
Bio9 Mean temp of driest quarter (◦C) 15.3
Bio6 Minimum temp of coldest month (◦C) 14.1
Bio1 Annual mean temp (◦C) 11.5

Bio16 Precipitation of wettest quarter (mm) 10.8
Bio18 Precipitation of warmest quarter (mm) 9.7
Bio13 Precipitation of wettest month (mm) 8.6
Bio12 Annual precipitation (mm) 4.5

Table 3. Principal component analysis (PCA) of Bioclim climatic variables in relation to the occurrence
of D. armandi.

Title 1 Climatic Variables
Eigenvalues

Component 1 Component 2 Component 3

Bio1 a Annual mean temp (◦C) 0.70 0.71 −0.05
Bio2 a Mean diurnal range (◦C) −0.58 0.42 0.56
Bio3 Isothermality −0.62 −0.19 0.25
Bio4 Temperature seasonality −0.16 0.76 0.51
Bio5 Maximum temp of warmest month (◦C) 0.51 0.83 0.20

Bio6 a Minimum temp of coldest month (◦C) 0.84 0.40 −0.30
Bio7 Temperature annual range −0.34 0.67 0.61
Bio8 Mean temp of wettest quarter (◦C) 0.63 0.77 0.05

Bio9 a Mean temp of driest quarter (◦C) 0.78 0.54 −0.22
Bio10 Mean temp of warmest quarter (◦C) 0.59 0.80 0.03

Bio11 a Mean temp of coldest quarter (◦C) 0.78 0.54 −0.02
Bio12 a Annual precipitation (mm) 0.83 −0.53 0.14
Bio13 a precipitation of wettest month (mm) 0.86 −0.34 −0.11
Bio14 a precipitation of driest month (mm) 0.75 0.42 0.49
Bio15 precipitation seasonality (mm) −0.41 0.35 −0.73

Bio16 a precipitation of wettest quarter (mm) 0.82 −0.47 −0.17
Bio17 precipitation of driest quarter (mm) 0.75 −0.42 0.51

Bio18 a precipitation of warmest quarter (mm) 0.84 −0.46 −0.07
Bio19 precipitation of coldest quarter (mm) 0.75 −0.42 0.51

% Explained variance 45.1 29.4 13.1
a Most relevant variables according to histograms analysis.

www.worldclim.org
edcdaac.usgs.gov/gtopo30/gtopo30.html
edcdaac.usgs.gov/gtopo30/gtopo30.html
www.cs.princeton.edu/~{}schapire/maxent
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2.2.2. D. armandi Distribution Data and Geographic Layer

The distribution data for D. armandi were obtained from relevant literature and field observations
records of the Department of Forestry Protection. Table 4 illustrates the results of the records. In addition,
we collected records via field investigation of D. aramndi from May to September 2012–2018. Name,
longitude, latitude, and altitude were recorded for each occurrence. We divided the provinces into
the largest survey units and then used the county forestry departments as the smallest survey units
according to the infected districts. The route of investigation is carried out in order from west to east in
China. The distance between the survey points is generally not less than 30 km. The sorted data were
saved in the required format of BIOCLIM, ENFA, and MaxEnt. However, due to some occurrences
being hardly explored, these records within the allowable range of error represent a credible data
of the geographical distribution of D. armandi. These records were georeferenced on 1:4,000,000
administrative division map of China that was downloaded from the National Basic Geographic
Information System (http://www.ngcc.cn).

Table 4. Occurrence records of D. armandi.

Province Title 2 Records (County & Forestry Bureau)

Shaanxi 74

Chang’an District, Huyi District, Zhouzhi, Zhashui, Zhen’an,
Ningshan, Shiquan, Langao, Zhenping, Ziyang, Hanying,

Foping, Liuba, Mian, Xixiang, Zhenba, Nanzheng, Ningqiang,
Taibai, Feng, Mei, Ningxi Forestry Bureau, Ningdong Forestry
Bureau, Changqing Forestry Bureau, Hanxi Forestry Bureau,

Longcaoping Forestry Bureau, etc.

Gansu 21 Hui, Liangdang, Wen, Cheng, Kang, Xiaolongshan Forestry
Experiment Bureau, etc.

Henan 26 Lingbao, Lushi, Luoning, Luanchuan, Songshan, Lushan,
Nanzhao, Xixia, Xichuan, Neixiang, etc.

Sichuan 17 Chaotian District, Lizhou District, Wangcang, Jiange,
Nanjiang, Tongjiang, Wanyuan City, etc.

Chongqing Municipality 12 Chengkou, Kaizhou District, Wuxi, Fengjie, Wushan, etc.

Hubei 16 Zhuxi, Zhushan, Yunxi, Baokang, Badong, Shennongjia Nature
Reserve, etc.

2.2.3. P. armandi Distribution Data

The Global Biodiversity Information Facility (GBIF) was used to gather information on P. armandi
distribution. The GBIF contained 1088 records for P. armandi; only 646 records are from China. However,
some records only differed minimally in their geographic coordinates and several contained incomplete
data. Thus, 410 records were eliminated. In addition, P. armandi distribution data were also collected
from records of each province’s forestry bureau. The final known distribution of P. armandi included
236 records. Subsequently, the potential distribution of P. aramndi used MaxEnt was added into the
analysis as a variable.

2.3. Bioclimatic Profile of D. armandi

A raw data of 167 records was gathered to identify the terrain preference of D. armandi, where it
was most frequently found and the host preference that D. armandi attack with the highest frequency.
The frequency of its incidence (IP) on different hosts was used as a measure standard with the degree
of occurrence [33]. Before the potential distribution of D. armandi using SDMs, 48 records with
minimally differences in geographic coordinates and elevation were discarded from data. Therefore,
119 presence-only records were composed D. armandi distribution data.

A bioclimatic profile of D. armandi was obtained from BIOCLIM in the DIVA-GIS v.7.5 (http:
//www.diva-gis.org/) (Table 5). The profile describes the habitat conditions where D. armandi has been
found. Meanwhile, it is used to identify other locations where D. armandi may inhabit. The mean,

http://www.ngcc.cn
http://www.diva-gis.org/
http://www.diva-gis.org/
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standard deviation, and minimum and maximum tolerance were applied to characterize the suitability
limits of this beetle.

Table 5. Bioclimatic profile of D. armandi for each location (obtained using BIOCLIM).

Environmental Variables Min. Max. Mean SD 5% 10% 50% 90% 95%

Annual mean temp (◦C) 5.6 17.1 11.6 2.7 7 7.5 12 15 15.3
Mean diurnal range (◦C) 7 12 9.2 0.9 8 8 9 10 11

Isothermality 24 32 29.8 1.6 27 28 30 31 32
Temperature seasonality 718 970 792.8 55.6 728.9 735.8 782 885 902.3

Maximum temp of warmest month (◦C) 21 33 26.4 3.1 22 22 26 31 32
Minimum temp of coldest month (◦C) −11 2 −4.6 2.8 −10 −9 −4 −1 −1

Temperature annual range 28 38 31 2.3 29 29 30 34 36
Mean temp of wettest quarter (◦C) 14 26 20.3 3.0 16 16 20 24 25
Mean temp of driest quarter (◦C) −5 7 1.5 2.7 −3.1 −2.2 2 4 5

Mean temp of warmest quarter (◦C) 15 27 21.2 3.1 16 17 21 25 26
Mean temp of coldest quarter (◦C) −5 7 1.5 2.7 −3.1 −2.2 2 4 5

Annual precipitation (mm) 579 1286 910 181.9 671.8 695.8 878 1195.2 1248.8
precipitation of wettest month (mm) 118 232 165.8 28.1 127.9 132 159 204.4 211
precipitation of driest month (mm) 3 22 9.6 4.7 4 4 8 17 19

precipitation seasonality (mm) 63 94 72.2 6.7 64 65 72 81 83
precipitation of wettest quarter (mm) 301 564 436.2 66 348 362.8 423 524 544.6
precipitation of driest quarter (mm) 12 74 35.3 15.8 15 17 31 59 67

precipitation of warmest quarter (mm) 269 552 405.6 73.7 317.9 323 381 510 535.7
precipitation of coldest quarter (mm) 12 74 35.3 15.8 15 17 31 59 67

Altitude (m a.s.l.) 1323.5 2333.9 1815.9 213.9 1490 1559 1807 2114 2200

2.4. Current Potential Distribution (SDMs)

2.4.1. Potential Distribution of D. armandi Using BIOCLIM

D. armandi distribution data and the screened bioclimatic variables were imported into DIVA-GIS
v.7.5 (http://www.diva-gis.org/), where all of the data were processed and analyzed using BIOCLIM.
The potential distribution map of D. armandi was obtained from layer processing in ArcGIS v.10.2. The
possibility was divided into four categories: null (Occurrence Probability = 0), low (0 < Occurrence
Probability ≤ 2.5 percentile), moderate (2.5 < Occurrence Probability ≤ 7 percentile), and high
(7 < Occurrence Probability ≤ 100 percentile).

The model was trained and validated using cross-validation. The D. armandi distribution points
were randomly divided into two subsets. The model was trained using 75% of the data, and the
remaining data were independently evaluated. The model was evaluated using the area under the
receiver operating characteristic curve (AUC), Kappa, and the True Skills Statistic (TSS) [34]. The AUC
is a threshold independent measure of accuracy that compares the rate of true and false positives of
validation data across all of the available habitat suitability thresholds, where values that are close
to 1 indicate perfect discrimination capacity, values close to 0 indicate poor discrimination capacity,
and values close to 0.5 indicate discrimination capacity no greater than random [35]. We generated
100 pseudo absence points using ArcMap by randomly generating points [36].

2.4.2. Potential Distribution of D. armandi Using ENFA

All of the layers were transformed into Idrisi Grid format, and subsequent analyses were conducted
while using the ENFA algorithm available in BioMapper v.4.0 (http://www.unil.ch/biomapper). The
relationship between the EGVs was determined, and the combination of the variables tested was
established and then transformed into two types of uncorrelated factors with equal numbers, forming
a multidimensional environmental gradient space for calculating habitat suitability. Thus, the screened
variables and the distribution of P. armandi were both added to the analysis.

The marginality and the specialization can characterize the habitat suitability (HS). The marginality
(M) is defined as the absolute difference between the global mean (average value of the global
distribution, mG) and the mean of the species (mS), divided by 1.96 standard deviations (σG) the
global distribution. The specialization (S) is defined as the ratio of the standard deviation of global

http://www.diva-gis.org/
http://www.unil.ch/biomapper
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distribution and the standard deviation of the studied species [37]. The HS grades were divided into
four ranks: null (0–10), low (11–30), moderate (31–60), and high (61–100).

The robustness of the model was evaluated in BioMapper v.4.0 (http://www.unil.ch/biomapper)
by using k-fold jackknife-type cross-validation. The D. armandi distribution points were randomly
divided into k (k = 4) parts. The model was calibrated by using the k-1 part, and the remaining parts
were validated. After k repetitions, the model was judged while using the Boyce’s continuous index.
The grading threshold of HS is determined based on the relationship between the observed and the
expected values [38]. The closer the value of the index is to 1, the higher the accuracy of the model
being evaluated.

2.4.3. Potential Distribution of D. armandi Using MaxEnt

All of the layers were converted to raster format via ArcTools in Arc-GIS v.10.2 (Environmental
System Research Institute Inc., Redlands, CA, USA). Subsequently, the screened variables and the
distribution of P. armandi were analyzed while using MaxEnt. Eventually, the potential distribution of
D. armandi was obtained by using the “extraction analysis” function in Arc-GIS v.10.2. During model
running, 75% of the points were used for model training, whereas the remaining points were used for
the model test. The output format was in a logistic format, and the remaining parameters selected the
default value of the model. The probability (0–1) of species presence was displayed on the distribution
map and the probability values were divided into four grades: null (0–0.1), low (0.11–0.3), moderate
(0.31–0.6), and high (0.61–1). The model accuracy was assessed using AUC, Kappa, and the TSS.

3. Results

3.1. Bioclimatic Profile of D. armandi

The preferential altitudinal range for D. armandi varied between 1300 m a.s.l and 2350 m a.s.l.
The slope ranges were mostly from 25◦ to 35◦, and the southern aspect obviously occupied a large
proportion (Figure 2). The percentage of incidence showed 98.21% frequency attacks by this beetle on
P. armandi (Table 6).

Table 6. Incidence (%) of D. armandi in China.

Pinus Species Incidence (%)

P. armandi Franch 98.21
P. tabulaeformis Carr. (Pinaceae) 1.79

P. massoniana Lamb. 0
P. bungeana Zucc. ex Endl. 0

Larix principis-rupprechtii Mayr 0

Bioclimatic profile of D. armandi (Table 5) suggests that the areas where this beetle exists support
the following temperatures: annual mean temperatures of 5.5–17 ◦C, mean diurnal range of 7–12 ◦C,
temperature annual range of 28–38 ◦C, maximum temperature of warmest month range of 21–33 ◦C,
minimum temperature of coldest month range of−11–2 ◦C, and mean temperatures of the driest quarter
and mean temperatures of the coldest quarter being consistent, with −5–7 ◦C. In terms of precipitation,
the habitats have the following characteristics: annual rainfalls of 579–1286 mm, wettest-month rainfalls
of 118–232 mm, driest-month rainfalls of 3–22 mm, wettest-quarter rainfalls of 301–564 mm, and
warmest-quarter rainfalls of 269–552 mm, and precipitation of driest quarter and precipitation of
coldest quarter had the same result, 12–74 mm.

http://www.unil.ch/biomapper
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Figure 2. The frequency histogram of terrain variables. (a) altitude; (b) aspect. The aspect is measured
counterclockwise in degrees, ranging from 0 degrees (true north) to 360 degrees (still true north, one
cycle); and, (c) slope. According to the Geomorphological Survey and Geomorphologic Mapping
Committee of the International Geographical Union, the grades of slopes are classified, as follows:
0◦–0.5◦ for plains, 0.5◦–2◦ for micro-slopes, 2◦–5◦ is a gentle slope, 5◦–15◦ is a slope, 15◦–35◦ is a steep
slope, 35◦–55◦ is a steep slope, and 55◦–90◦ is a vertical wall.

3.2. Variables Selection

Eight predictor bioclimatic variables were selected. Temperature variables Bio1, Bio6, Bio9, and
Bio11 and precipitation variables Bio12, Bio13, Bio16, and Bio18. The responses of the bioclimate
variables that influenced the potential geographical distribution of D. armandi are shown in response
curves (Figure 3). These response curves show changes in the logistic prediction when each
environmental variable changes by keeping all the other environment variables at their average
value. In addition, altitude, aspect, slope, and the distribution of the host were also added in
the analysis.
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3.3. Potential Distribution of D. armandi Using SDMs

The D. armandi distribution map that was generated using BIOCLIM showed a continuous and
high suitable environment that involved six provinces, along the entire range of the Qinling Mountains
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and the Ta-pa Mountains (Figure 4). Particularly, the high area showed a situation where the center
radiated outward. The AUC value was 0.809, which reached the “good” standard, indicating that
the results could be used to study the suitability division of D. aramndi. The Kappa was 0.505 and
TSS was 0.523. The habitat suitability map showed that the potential distribution of D. armandi was
focused on the Qinling Mountains and the Ta-pa Mountains (Figure 5). The high HS areas can be
found along the entire the Qinling Mountains and the Ta-pa Mountains, scattering discontinuous
patches scattered. The areas of moderate suitability are embedded in these plaques. It is worth noting
that the model had better definition than BIOCLIM and the biological significance of the variables is
clearer. The global marginality factor was 2.168, which suggests that the regions where D. armandi exist
support climatic conditions that differ from the prevalent conditions in the Qinling Mountains and the
Ta-pa Mountains. The global tolerance was 0.213 (tolerance = 1/specialization), which suggests that
D. armandi has low tolerance to environmental changes, namely the ecological niche of this beetle is
relatively narrow when it comes to some variables in the Qinling Mountains and the Ta-pa Mountains.
The first four factors explained 91.6% of the total variation (Table 7). In terms of the marginality
factor, the preference of D. armandi is closely related to the mean temperature of the coldest quarter
(−0.377), mean temperature of driest quarter (−0.314), precipitation of wettest quarter (0.301), minimum
temperature of coldest (−0.300), annual mean temperature (−0.269), precipitation of wettest month
(0.234), annual precipitation (0.211), altitude (0.201), aspect (0.176), P. armandi distribution (0.171), and
slope (0.153). The tolerance factors indicate that D. armandi is associated with annual precipitation
(−0.309), mean temperature of coldest quarter (−0.210), mean temp of driest quarter (−0.206), and
precipitation of wettest quarter (−0.157). Boyce’s continuous index is 0.853, which indicated that the
model is adequately robust. The potential distribution map that was obtained from MaxEnt displayed
that D. armandi was concentrated in the Qinling Mountains and the Ta-pa Mountains (Figure 6). Almost
all of the Qinling Mountains and the Ta-pa Mountains appear to be moderate and high suitability areas,
which are geographically connected. The potential distribution for D. armandi obtained the results
corresponding to the relative contributions of the variables that were employed for modeling, where
the MaxEnt assigns the increase in gain to the environmental variables that are occupied, making a
conversion to a percentage. The limited factors of potential distribution of D. armandi had a mean
temperature of coldest quarter (29.1%), mean temperature of driest quarter (15.1%), minimum temp of
coldest month (14.8%), altitude (12.6%), precipitation of wettest quarter (9.7%), annual mean temp
(6.9%), and precipitation of warmest quarter (5.5%) (Table 8). AUC, Kappa, and TSS analyzed the
model performance, which gave a very accurate result. The AUC was 0.934, Kappa was 0.560, and TSS
was 0.595.
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Table 7. The first four factors and coefficients of Ecogeographic Variables (EGVs) to factors generated
by Ecological Niche Factor Analysis (ENFA).

Category Ecogeographic Variable (EGVs)
D. armandi

MF (100%)
SF1 (28%)

SF2
(47.9%)

SF3
(9.4%)

SF4
(6.3%)

Climate

Annual mean temp −0.269 * −0.018 −0.070 −0.011
Minimum temp of coldest month −0.300 * 0.027 0.015 0.000

Mean temp of driest quarter −0.314 * 0.084 0.206 * 0.043
Mean temp of coldest quarter −0.377 * 0.177 * −0.200 * −0.210 *

Annual precipitation 0.211 * 0.101 −0.080 −0.309 *
Precipitation of wettest month 0.234 * 0.011 0.004 0.000
Precipitation of wettest quarter 0.301 * 0.036 0.157 * 0.004

Precipitation of warmest quarter 0.133 0.032 0.079 0.023

Terrain
Altitude 0.201 * 0.001 0.001 0.000
Aspect 0.176 * 0.000 0.001 0.000
Slope 0.153 * 0.000 0.000 0.000

Host P. armandi distribution 0.171 * −0.036 −0.027 0.000

MF: marginality factors, SF: specialization factors. The EGVs marking the largest contribution (≤−0.15 or ≥0.15) to
each factor are represented with asterisk. For the first factor, positive and negative signs indicate the preference by
the species for values above and below the mean for each EGV, respectively. For the remaining factors, the signs
have no ecological relevance.
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Table 8. Percentage of estimated contribution for EGVs by using MaxEnt.

Ecogeographic Variables % Contribution

Mean temp of coldest quarter 29.3
Mean temp of driest quarter 15.1

Minimum temp of coldest month 14.8
Altitude 12.6

Precipitation of wettest quarter 9.7
Annual mean temp 6.9

Precipitation of warmest quarter 5.5
Precipitation of wettest month 2.8

Annual precipitation 1.4
Aspect 1.1
Slope 0.8

Host distribution 0.1

4. Discussion

The potential geographical distribution of insects and the formation of infestations are closely
related to the ecological environment [39]. SDMs can be employed to identify the bioclimatic profile of a
species and determine the potential distribution while integrating occurrence data with environmental
variables [13,40]. Therefore, the potential distribution of species can explain the species that exist in one
area but not in another [41]. It is worth noting that, for specialist herbivorous insects, the distribution
of the host is generally taken as the decisive factor that determines their range.

The results of this study showed that the potential geographical distribution of D. armandi was
concentrated in the Qinling Mountains. In other words, D. armandi was limited to specific regions
within the Qinling Mountains and the Ta-pa Mountains, despite hosts occurring in northern and
southwestern China. Conversely, many studies suggest that host distribution at the macro-scale level
determines the distribution of bark beetles. However, our results indicate that the distribution of
D. armandi is limited by temperature and precipitation rather than the geographical distribution of
P. armandi. For example, Carroll et al. (2004) [42] considered that the latitudinal and elevational range
of mountain pine beetle, Dendroctonus ponderosae, is not limited by available hosts. Instead, it is limited
by minimum temperature in western Canada. Accordingly, its potential to expand north and east has
been restricted by climatic conditions that are unfavorable for brood development. Ma et al. (2011) [43]
reported that the maximum temperature isotherms limit the geographical distribution of Dendroctonus
rhizophagus in the Sierra Madre Occidental, Mexico. Ungerer et al. (1999) [44] deemed that the dispersal
of Dendroctonus frontalis into more northerly areas of the United States was limited by the isotherm for
minimum annual temperature. However, Bentz et al. (2010) [45] used the available population models
and climate forecasts to explore the responses of Dendroctonus rufipennis and Dendroctonus ponderosae
in western North America. The results suggested a movement of temperature suitability to higher
latitudes and elevations that is based on projected warming. A 1.79% incidence by this beetle on P.
tabulaeformis remains. In rare cases, it may also attack P. tabulaeformis [20]. Therefore, it is an important
influencing factor for D. armandi, which P. tabulaeformis can be used as an alternative host in the future
climate change.

The tolerance and marginality coefficients that were obtained from ENFA suggest that the
ecological niche of D. armandi is relatively narrow when it comes to temperature and precipitation.
Temperature is the most important climatic factor that affects two different aspects of insect biology that
subsequently affect distribution: flight and larval development. However, it is important to note that
temperature or other climatic factors may have different effects during different population phases of
bark beetles [46]. The cold tolerance that is possessed by insects is a key factor in their adapting to the
geographical environment. D. armandi overwinters primarily as larvae, and some pupae and adults also
overwinter. Overwintering larvae begin pupate in early April and peak in the peak in May. The adults
begin to fly in mid-April and reach the peak in mid-June. The spawning period begins in late April,
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and in July, the first generation of adults begins to fly out, and some larvae directly enter the wintering
stage [47]. Larval mortality is strongly temperature dependent, with winter being the most critical
time [48]. The survival rate of an insect population at low temperatures in winter is directly related
to its reproductive success [49]. The ENFA and the MaxEnt suggested that the mean temperature of
coldest quarter/driest quarter played a considerable role in limiting the distribution of D. armandi.
Wang et al. indicated that the supercooling point of D. armandi larvae reached −7.49 ± 0.21 ◦C in the
coldest quarter [50]. However, the average temperature that northern China can attain is −10 ◦C, which
far exceeds the average temperature of the coldest quarter (−5 ◦C) in the D. armandi occurrence zone.
However, the precipitation of wettest quarter could be the main factor limiting the distribution of D.
armandi in the Yunnan–Guizhou Plateau of southwest China. Precipitation changes the humidity of the
environment, which in turn affects insect flight and reproduction [51]. The intermittent precipitation
of the wettest quarter not only delayed D. armandi development time, but it also caused the death
of D. armandi larvae. In addition, the flight diffusion activity for D. armandi was closely related to
temperature [52]. The peak of the flight spread of D. armandi was concentrated during 14:00–16:30.
The distribution of D. armandi on the trunk is firstly concentrated on the south and west, because the
illumination time in the south and west of host trees is much longer than in the north and east. The
climatic conditions where this beetle inhabit are different from the prevalent climate in the Qinling
Mountains and the Ta-pa Mountains. In fact, the actual occurrences of this beetle in the unique climate
of the Qinling Mountains and the Ta-pa Mountains also adequately explain that D. armandi would not
advance into the northern and southwestern China at present.

In terms of terrain, the landscape where has interactions between the meso-scale atmospheric
currents and the terrain can play an important role in governing the spread and impact of the dispersal
capabilities for herbivores insect in forest ecosystems [53,54]. The influence of elevation on the
distribution of D. armandi is not clear. However, the results from ENFA and MaxEnt both suggest
that this factor is important. The temperature likely affects the altitudinal distribution of D. armandi.
In addition, the preference elevation range of D. armandi is correlated with the dominant altitudinal
distribution of P. armandi. The results of our study suggest that the preference of selection for slope and
other aspects of the dispersal of D. armandi were important. The dominant terrain features in the region
included valleys and canyons, which were shaped similar to a “U” or a “V”. The majority of D. armandi
infestations were found on the southern slope, in valleys and canyons, where the topography could
act as a conduit for further dispersal. At those locations, dispersing D. armandi may behave like
inert particles, causing terrain-induced tropospheric convective and advective currents that influence
population dispersal and establishment [55]. Thus, there was a significant difference in the extent
of tree mortality that was attributed to D. armandi between the southern and northern slopes. There
are at least two reasons to explain the tendency of D. armandi to invade a region. On one hand, the
hosts may be more susceptible on drier and sun-exposed south slopes. [56]. The effects of drought on
herbivorous insect outbreaks in the U.S. suggested a non-linear relationship between drought intensity
and outbreaks of aggressive bark beetle species (i.e., those that are capable of causing extensive levels of
tree mortality), where moderate droughts reduce bark beetle population performance and subsequent
tree mortality, whereas intense droughts, which frequently occur in the western U.S., increase bark
beetle performance and tree mortality [57]. On the other hand, insects established on southern slopes
may enjoy higher reproductive rates due to higher ambient temperatures than insects on shaded
slopes [58].

The potential distributions of D. armandi not only clarify the factors influencing its distribution,
but also can be used to prioritize treatments for potential management in the future. When considering
that it plays an important role in the meso- and micro-levels, we should explore the variables, such as
temperature, humidity, and topography, which directly affect the development of the life cycle and
population dynamics of this bark beetle. For example, the changes of habitats of D. armandi under
climate change conditions and predicting the potential spread of new infestations based on landscape
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features in concert with new landscape scale spread modeling approaches, and so on, may need to be
further studied.

5. Conclusions

In this study, we used SDMs to clarify the potential distribution of D. armandi in China and identify
the factors influencing its distribution. We found that D. armandi almost exclusively attacked P. armandi
and the distribution of D. armandi is plaque-like along the Qinling Mountains and the Ta-pa Mountains.
The ecological niche of D. armandi is relatively narrow when it comes to these environmental variables,
such as temperature and precipitation. D. armandi also has a narrow ecological niche with respect to the
host distribution. The factors limiting the distribution of D. armandi include the mean temperature of
the coldest quarter and precipitation of the wettest quarter. The mean temperature of the coldest quarter
does not guarantee that D. armandi larvae can overwinter in northern China, and the precipitation of
the wettest quarter plays an important role in the dispersal and colonization of D. armandi adults in
southwestern China. With respect to the host, the distribution of P. armandi is not a limiting factor in
the distribution of D. armandi. In regards to terrain variables, they create habitat selection preferences
for D. armandi. D. armandi predominately colonizes trees on the southern slopes of valleys and canyons
with elevations between 1300 m a.s.l and 2400 m a.s.l.
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