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INTRODUCTION

The anatomy of Octopus vulgaris (Cuvier, 
1817) and that of at least one species from 
each order of the Coleoidea has been 
described, but these accounts differ widely, 
both in scope and detail (Table 1) (Mangold, 
Bidder, & PortMann, 1989a). The main 
features of Sepia officinalis (Decapodiformes, 
Sepiida), are shown later (see Fig. 5). The 
microscopic anatomy of many organs, struc-
tures, and tissues was given by BudelMann, 
SChiPP, and von Boletzky (1997), and this 
review also includes a survey of the external 
and gross anatomy of cephalopods.

FORM, ORIENTATION, AND 
SIZE RANGE

Recent coleoids differ widely in shape and 
form, as a glance through the illustrations 
of Chun (1910a, 1915); roPer, young, 
and voSS (1969); neSiS (1982); and roPer, 
Sweeney, and nauen (1984) indicates. They 
range from elongated, streamlined squids 
to somewhat rounded octopods, with many 
variations in between (Fig. 1–2).

It is often difficult to determine the orien-
tation of coleoids. hoyle (1886) used the 
position of the body adopted by squids when 
swimming horizontally to define the head as 
anterior and the apex of the visceral mass as 
posterior, with the funnel being ventral (Fig. 
3.1). This terminology remains in general 
use for describing living cephalopods and 
for morphometric studies (roBSon, 1929; 
Mangold-wirz, 1963; roPer & voSS, 
1983; roPer, Sweeney, & nauen, 1984; 
Sweeney & others, 1992). 

The size of living coleoids is generally 
expressed as the mantle length. Occasionally, 
the length of the gladius or the cuttlebone 
is used for teuthids and sepiids respectively. 
The mantle extends from the anteriormost 
point of the mantle to its posterior apex 

or to the tip of the fins if they are united, 
whichever is the longest (roPer & voSS, 
1983) (Fig. 3). The measurement is made 
on the dorsal surface: in Decapodiformes, 
from the posterior apex of the mantle to 
its anterior edge, and in Octopodiformes, 
anteriorly to the midpoint of the horizontal 
diameter of the eye (Fig. 3.4). The general 
use of mantle length is due to the difficulty 
of measuring these soft-bodied animals, and 
the lengths of the head, arms, and tentacles 
are often omitted. In many species, these 
structures form a major portion of the length 
of the whole animal; furthermore, changes 
may take place during ontogeny in the rela-
tionship between the lengths of different 
parts of the animal. Thus, in addition to 
the mantle length, the total length, head 
length, arm lengths, and tentacle lengths 
should be measured, and the animal should 
be weighed.

Recent coleoids range from about 20 mm 
to 2 m or more in mantle length, and from 
some 0.5 gm in the small sepiolid Idiosepius 
(JaCkSon, 1989) to 1,000–2,000 kg in the 
giant squid Architeuthis (roPer & BoSS, 
1982). Records of the latter are understand-
ably inaccurate, as complete animals are 
rare, and its large size and rather soft tissues 
make it difficult to measure. The sizes of 
the remaining coleoids lie between these 
two extremes.

MANTLE, FUNNEL, AND FINS
The shape and form of the mantle of cole-

oids results largely from the presence of an 
internal support in the mantle, although this 
is absent from some. The support takes the 
form of an internal, chambered shell in Spir-
ulida; a cuttlebone or sepion in Sepiida; a 
shell, gladius, or pen in squids; a dorsal carti-
lage termed an internal shell, shell vestige, or 
fin support in Vampyromorpha and Cirrata; 
and a pair of stylets in some Octopoda 
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(Fig. 6–7). These structures are calcareous 
(aragonite or calcite) or composed of chitin, 
cartilage, or a combination of both organic 
and inorganic materials (aPPellöf, 1893; 
grégoire, 1972; thoMaS & BinghaM, 
1972; hunt & nixon, 1981; BirChall 

& thoMaS, 1983). They provide sites for 
the attachment of muscles (Fig. 6) (wellS, 
1988; Mangold, Bidder, & PortMann, 
1989a). In coleoids, muscles take on the 
role of support in structures that are largely 
devoid of hard tissues (kier, 1988).

The mantle may be conical, spherical, 
or saclike; in cross section, it ranges from 
round to dorsoventrally flattened. Some 
members of the Sepiolidae, Sepiadariidae, 
Idiosepiidae, and all Octopoda have the 
ventral part of the visceral mass connected 
by a longitudinal, muscular septum to the 
inner surface of the ventral mantle wall. 
In Vampyromorpha and Octopodiformes, 
the mantle is fused with the head but not 
with the funnel. The mantle is muscular 
and encloses the viscera, which includes 
the respiratory, digestive, excretory, and 
reproductive organs. The inner wall of the 
mantle is continuous with the outer wall of 
the visceral sac, and the space between these 
two walls forms the mantle cavity. This lies 
ventrally and protects the paired gills and 
the openings of the digestive, excretory, 
and reproductive systems. The anterior 
edge of the mantle is free ventrally, and so 
it forms the mantle aperture, the entrance 
to the mantle cavity. The mantle opening is 
divided into three parts by the head dorsally 
and by the locking cartilages laterally. A 
cartilaginous ridge, knob, or swelling on 
each side of the mantle locks into the funnel 
component of the mantle-locking device 
(Fig. 4.2) (roPer, young, & voSS, 1969). 
The funnel-locking cartilage takes the form 
of a groove, pit, pocket, or depression on 
each ventrolateral surface of the posterior 
part of the funnel (Fig. 4–5). Together these 
structures ensure that all exhalant water is 
expelled through the funnel. The pelagic 
octopod Ocythoe tuberculata is different in 
that the mantle aperture is converted to form 
accessory funnels, so that the propulsive 
system consists of three jets instead of the 
usual one, giving improved thrust (PaCkard 
& wurtz, 1994). The other locking mecha-
nism, the nuchal cartilage, is a cartilaginous 
plate on the posterodorsal surface of the 

taBle 1. Sources for descriptions of mor-
phology and/or anatomy of several Recent 

coleoids.

Order Family and Source
 species  

Spirulida Spirulidae 
 Spirula spirula Owen, 1848;
  Huxley &  
  Pelseneer, 1895;
  Chun, 1910b,  
  1915; Kerr, 1931

Sepiida Sepiidae  
 Sepia officinalis Tompsett, 1939

Sepiolida Sepiolidae 
 Sepiola robusta Fioroni, 1981

Myopsida Loliginidae 
 Loligo pealei Williams, 1909

Oegopsida Histioteuthidae Chun, 1910a, 1915
 Ommastrephidae
 Todarodes 
     sagittatus Posselt, 1891
 Cranchiidae  Chun, 1910a, 1915

Vampyromorpha Vampyroteuthidae
 Vampyromorpha 
     infernalis Pickford, 1949a;
  Young, 1964
Cirrata Cirroteuthidae
 Cirroteuthis 
     umbellata Ebersbach, 1915
 Cirrothauma 
     murrayi Aldred, Nixon, &  
  Young, 1983
 Stauroteuthidae
 Stauroteuthis sp. Ebersbach, 1915
 Opisthoteuthidae
 Opisthoteuthis 
     depressa Meyer, 1906a,  
  1906b
Incirrata Bolitaenidae
 Bolitaena Chun, 1910a, 1915
 Eledonella Chun, 1910a, 1915
 Octopodidae
 Octopus vulgaris Cuvier, 1817;  
  Wells, 1978
 Eledone cirrhosa Isgrove, 1909
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head that articulates with a complementary 
structure on the mantle but is absent from 
some coleoids.

The funnel, or hyponome, is a conical 
tube (Fig. 4–7), wide posteriorly but narrow 
anteriorly. In cuttlefishes and squids, the 
funnel lies in a depression on the ventral 
side of the head and is free over most of its 
length, but in octopods, it may be partly or 
largely sunk in the tissue of the head. A rect-
angular or triangular funnel valve lies inside 
the funnel of cuttlefishes, most squids, and 
in Vampyromorpha, but it is absent from 
octopods and from some slowly moving 
squids (neSiS, 1982).

Fins are present in all Recent coleoids 
except the Octopoda (Mangold & Bidder, 
1989). They may be attached along part 
or all of the length of the mantle (fig. 1). 
The fins range widely in shape and may be 
marginal, fringing, ribbed, or rayed and 
rhomboid, heart shaped, rounded, kidney-
shaped, or tonguelike (Fig. 1–2). In Vampy-
roteuthis (Vampyromorpha), two pairs of 
fins develop; the first pair are present in the 
paralarva and are resorbed after the juvenile 
pair develops (PiCkford, 1949a). The shape 
of the fins of many coleoids changes during 
ontogeny, often quite markedly (see Treatise 
Online, Part M, Chapter 5, Fig. 11, 12, 14) 
(Sweeney & others, 1992).

HEAD, EYES, AND 
OLFACTORY ORGANS

The head is usually well defined in 
Decapodiformes but less so in Vampyro-
morpha and many Octopodiformes, in 
which there is often little external indica-
tion of division from the body (Fig. 1–2). 
It may be narrower, equal to, or wider than 
the diameter of the mantle. The shape of 
the head is determined mainly by the buccal 
mass, the cranial cartilage, when present, 
and the eyes, which together form the major 
portion of the head, especially at hatching 
and in the early juvenile.

The eyes are conspicuous and are usually 
sited laterally. In sepiids, sepiolids, and 
one group of squids (the myopsids), the 

eyes are covered by a very thin, transparent 
skin. The oegopsid squids have eyes that 
are open to sea water (Fig. 4.1). Vision 
is important for the coleoids inhabiting 
the photic zone and also for those living 
in depths where they encounter biolumi-
nescent organisms. The eyes of coleoids 
comprise all the major components of a 
complex vertebrate eye (BudelMann, SChiPP, 
& von Boletzky, 1997). A lens is present, 
although absent from the cirrate octopod 
Cirrothauma murrayi (aldred, nixon, & 
young, 1983). It is a spherical, relatively 
firm structure that may possess growth lines; 
it is formed of α-, β-, γ-, and δ-crystallin 
(Bon, dohrn, & Batink, 1967; nixon, 
1998a). The lens is suspended by ciliary 
muscles that allow some accommodation for 
near vision. Decapodiformes have additional 
eye muscles that are involved in convergent 
eye movement for binocular vision (Budel-
Mann & young, 1993). In most coleoids, 
the eyes are nearly spherical, although in a 
few species they are tubular (Chun, 1910a, 
1915; J. z. young, 1991a; land, 1992). An 
orbital cartilage, which supports the eye, is 
present in many coleoids. In one genus of 
oegopsid squid, Histioteuthis, the left eye is 
considerably larger than the right and the 
absorption properties differ (wentworth 
& Muntz, 1989). The giant squid, Archit-
euthis, possesses the largest eyes found in the 
animal kingdom, each with a diameter of 25 
cm in an animal 10 m in total length (roPer 
& BoSS, 1982). Proportionally, the eye of 
Vampyroteuthis is larger, and one specimen 
with a mantle length of 63 mm had an 
eye with a diameter of 25 mm (PiCkford, 
1949a). The eyes of paralarvae are often 
larger in relation to the mantle length than 
in the adult (Sweeney & others, 1992). 
Several species have eyes borne at the end 
of stalks, notably among Cranchiidae (J. z. 
young, 1970; n. a. voSS, 1980; Sweeney & 
others, 1992), but with growth, they become 
incorporated into the head. The relationship 
between eye diameter and mantle length 
often changes during ontogeny (dilly & 
nixon, 1976a). Numerous species have 
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fig. 1. Recent Coleoidea. 1, Spirula spirula, Spirulida; 2, Sepia officinalis, Sepiida; 3, Sthenoteuthis pteropus, Oegop-
sida; 4, Sepiola atlantica, Sepiolida (Guerra, 1992).
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fig. 2. Recent Coleoidea. 1, Vampyroteuthis infernalis, Vampyromorpha; 2, Opisthoteuthis agassizii, Cirrata; 
3, Octopus vulgaris, Incirrata (Guerra, 1992).
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photophores or light organs associated with 
their eyes (herring, 1977). 

The head bears a pair of olfactory organs, 
which usually lie behind the eyes (naef, 
1923). These are small pits with cilia lining 
their walls (woodhaMS & MeSSenger, 1974).

ARMS AND TENTACLES: 
SUCKERS, HOOKS, AND CIRRI

A fossil coleoid, Jeletzkya douglassae, 
found in the shale of Mazon Creek (Upper 
Carboniferous) has clear imprints of ten 
arms (SaunderS & riChardSon, 1979). 
The Lower Jurassic coleoids Phragmoteuthis 
conocauda (riegraf, werner, & lörCher, 
1984) and Ostenoteuthis siroi (garaSSino 

& donovan, 2000) also possess ten arms. 
Among Recent coleoids, ten appendages are 
present in Decapodiformes: four pairs of 
arms and a pair of tentacles, the latter lying 
between the third and fourth pair of arms. 
Vampyroteuthis has a pair of slender filaments 
that lie between the first and second pair of 
arms (Fig. 1–2). Recent Octopodiformes 
have just four pair of arms. 

The arms of Recent coleoids are elon-
gated and taper distally, and their bases 
surround the mouth. The most dorsal pair 
are arms I, the dorsolateral pair arms II, 
the ventrolateral pair arms III, and the 
ventral pair arms IV (Fig. 4.1); the arms are 
further designated as right or left (roBSon, 

1

2 43

ventral

posterioranterior

ML

ML

ML

fig. 3. Orientation of coleoid body for descriptive purposes is that adopted by a muscular squid when swimming 
horizontally (1); the size of Recent coleoids is usually given as mantle length (ML), but anteriormost point between 
which this is measured differs between 2,3, Decapodiformes and 4, Octopodiformes; in Octobrachia, it is taken as 

a line from center of eyes (Mangold-Wirz, 1963; Roper & Voss, 1983).
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1
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suckers

buccal 
membrane

keel

funnel groove

oegopsid eye 
(orbital pore)

funnel

funnel-mantle fusion
funnel locking cartilage
mantle locking cartilage

mantle

photopores

fin
(posteriorly 
concave)

fin lobe

tail

dactylus

manus

carpus
(fixing apparatus)

tentacle

myopsid 
eye

sheathed 
hooks

fig. 4. Composite diagram showing characteristic features of 1, extant myopsid and oegopsid squids; arm I is dorsal 
and arm IV is ventral (ventral view) (Roper, Young, & Voss, 1969); and 2, basic types of funnel-locking cartilage 

(Roper, Sweeney, & Nauen, 1984).

I II III
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A1 A2 A4

A3

SU

BF

F

OP

LP

SG

RH

BL

MC
RFU

CM PVRM

MCA

BH
PGL

PMV
PMA

VN

L

RES

IS

FI

FC

CEV

AN

REP
MD

AGS
RE

B

AMV
MRB

PAO
MAV

PMC 

PRO

fig. 5. Main internal features of Sepia officinalis, seen from ventral surface. A1–A4, arms I–IV; AGS, opening of genital 
sac into mantle cavity; AMV, anterior mantle vein; AN, anus; B, branchia; BF, buccal funnel; BH, branchial heart; 
BL, branchial membrane and ligament; CEV, cephalic vein; CM, cut wall of mantle; F, funnel; FC, funnel cartilage; 
FI, fin; IS, ink sac; L, digestive gland; LP, lateral pocket or valve funnel; MAV, median mantle artery and vein; MC, 
mantle cartilage; MCA, mantle cavity; MD, male genital duct; MRB, marginal part of retractor muscle of branchia; 
OP, olfactory pit; PAO, posterior aorta; PGL, pericardial gland; PMA, posterior mantle artery; PMC, posterior elastic 
boundary of mantle cavity; PMV, posterior mantle vein; PRO, position of rostrum of shell; PVRM, posterior vein to 
retractor muscles of head and funnel; RE, rectum; REP, renal papilla; RES, renal sac; RFU, retractor muscle of funnel; 

RH, retractor muscle of head; SG, stellate ganglion; SU, sucker; VN, visceral nerve (Tompsett, 1939).
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1929; roPer, young, & voSS, 1969). The 
lengths of the arms usually differ and can be 
expressed in a formula, each pair being given 
in order of decreasing length; for example 
IV>III>II>I, where arms IV are the longest. 
Modification of one or two arms or a pair of 
arms of the male results in a hectocotylus in 
many species. The hectocotylus is involved 
in the transportation of spermatophores to 
the female. It is absent in some species. The 
spirulid, Spirula spirula, has a most distinc-
tive hectocotylus, as both arms IV are modi-
fied, and their distal tips are morphologically 
quite different (kerr, 1931). Histioteuthid 
squids have both arms I hectocotylized, and 
the sepiolid Heteroteuthis dispar has both 
arms III hectocotylized, but in most only 
one arm is so modified (Mangold, 1989b). 

The newly hatched young of numerous 
species of coleoids have small, short arms, 
often barely visible, especially in planktonic 
forms. Other species have relatively long, 
well-developed arms, and this is usually 
found among those that adopt benthic 
habits immediately after hatching (see 
Treatise Online, Part M, Chapter 5, Fig. 8) 
(Sweeney & others, 1992). The relation-
ship between the lengths of the arms and 
the mantle changes considerably during 
ontogeny in many species. In cross section, 
the arms may be almost square, triangular, or 
nearly round; but the inner, sucker-bearing 
surface is usually somewhat flattened. A 
keel or swimming membrane, represented 
by a ridge or a triangular protuberance on 
the outer, aboral side of the arm, is found 
in many squids. The oral side of the arm 
may be bordered laterally by thin, protective 
membranes, and this fold of integument is 
supported by muscular rods or trabeculae 
(Sweeney & others, 1992).

The paired tentacles of Decapodiformes 
lie between arms III and IV. Each tentacle 
consists of a long stalk with a club at the 
distal end, bearing longitudinal rows of 
suckers (or hooks in some species) on the 
oral surface (Fig. 4.1) (roPer, young, & 
voSS, 1969). When the club is wide, it may 
have a keel and protective membranes. The 

tentacles are retractile or partially retractile 
into pockets or sheaths on the head. In the 
so-called eight-armed squids [(Gonatopsis 
(Gonatidae), Chaunoteuthis (Onychoteu-
thidae), Lepidoteuthis (Lepidoteuthidae), 
and Octopoteuthidae)], the tentacles are 
resorbed or remain as rudimentary stumps. 
The tentacles of Chaunoteuthis mollis are 
reduced to short stumps, 1 to 2 cm long, 
when the mantle reaches about 40 cm in 
length (okutani & ida, 1986), and in Octo-
poteuthidae, only rudiments remain when 
the mantle is 4 to 4.5 cm long (neSiS, 1982).

Vampyroteuthis infernalis (Vampyro-
morpha) possesses a pair of long, slim fila-
ments entirely without armature that lie 
between arms I and II. Each filament is 
mobile and extensile for a considerable 
distance (PiCkford, 1949a) and is retractile 
into a pocket on the aboral surface of the 
web (Fig. 2).

The suckers are a distinctive feature of all 
living Coleoidea (girod, 1884; nixon & 
dilly, 1977) and are unique derivatives of 
the skin (PaCkard, 1988). They are usually 
arranged along the arms in one, two, or 
four longitudinal rows, rarely more. The 
suckers range from being numerous and 
closely arranged to few and well separated. In 

stylet

funnel
adductor 
muscles

gladius

head
retractor 
muscle

funnel
retractor 
muscle

pallial
adductor 
muscle

funnel
retractor 
muscle

head
retractor 
muscle

funnel
adductor 
muscles

median 
pallial

adductor 
muscle

1

2

fig. 6. Major muscles of mantle of 1, Loligo, with gla-
dius, and 2, Octopus with stylet, or shell vestige (new).
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1

2

3

gladius buccal mass

funnelink sacmantle muscle
1 mm

mantle 
muscle

ink sac

statocyst subesophageal 
brain

funnel

supraesophageal 
brain

buccal mass

upper beakcraniumcuttlebone

0.5 mm

subesophageal 
brain cranium

supraesophageal 
brain

upper beak

shell
mantle muscle

statocyst
funnel

0.5 mm

fig. 7. Recent Decapodiformes. 1, Hemisection of Sepia officinalis (Sepiida), juvenile specimen, showing cuttle-
bone and other main features; 2, hemisection of Spirula spirula (Spirulida); 3, hemisection of Alloteuthis subulata 

(Myopsida) (new). 
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Decapodiformes, the sucker has a chamber 
or acetabulum with a wall lined with a stiff 
chitinous inner ring, which may bear teeth 
around its outer perimeter (Fig. 8.1). The 
inner ring is surrounded by the infun-
dibulum, a cuticular covering bearing 
polygonal processes, each with a projecting 
peg. The suckers of Octopodiformes lack 
a cuticular inner ring, and the pegs of the 
infundibulum are much less conspicuous 
than those of the Decapodiformes (Fig. 
8.2). The arrangement of the suckers has 
been preserved in some fossil coleoids. 
The arms of Rhomboteuthis lehmani had 
two longitudinal rows of suckers, and 
the tentacular club of Gramadella pive-
teaui had five rows of suckers (fiSCher 
& riou, 1982). The suckers of the fossil 
coleoid Belemnoteutis antiquus may have 
had chitinous rings (donovan & Crane, 
1992). During embryonic development of 
Recent coleoids, the suckers appear first as 
protuberances of the skin (fioroni, 1982a; 
nolte & fioroni, 1983). With growth, 
changes may be seen in the infundibulum 
and the inner ring of suckers, and there is 
usually an increasing complexity of this 
surface (dilly & nixon, 1976a).

Hooks have been found isolated but 
associated with the remains of belemnitids 
(engeSer & Clarke, 1988). The Lower 
Jurassic Paraglycerites, perhaps the oldest 
belemnite, possessed hooks, as do the cole-
oids Phragmoteuthis conocauda (riegraf, 
1996) and Ostenoteuthis siroi (garaSSino & 
donovan, 2000). The last two species both 
have ten arms, all bearing hooks. 

The tentacles of Recent Decapodiformes 
have clubs that bear suckers, and some-
times hooks; their number and arrangement 
varies (roPer, young, & voSS, 1969). 
Hooks are present on the tentacles or arms of 
Onychoteuthidae (Fig. 9), Enoploteuthidae, 
Octopoteuthidae, Gonatidae, and Cranchi-
idae; and the armature may be present in 
all or only some species of these families. 
Onychoteuthids have 12 to 38 hooks in 
two longitudinal rows on the tentacle club, 
those of the most dorsal row being much 
longer than those in the other row; the 

arrangement is similar in all species of this 
family. Enoploteuthidae have hooks on the 
arms and tentacles, except in one species in 
which they are absent from the tentacles. 
Gonatidae have a few large, central hooks on 
the tentacular club and two medial rows of 
hooks on arms I to III. The hooks develop 
by modification of the inner ring in Gonatus 

1

2

fig. 8. Scanning electron micrographs of arm suckers of 
1, Mastigoteuthis sp. (Oegopsida), showing dentition of 
chitinous inner ring and infundibulum with polygonal 
processes, the majority of which have a peg projecting 
from the surface (field width, 1203 µm); 2, small Oc-
topus vulgaris (Incirrata) showing rim encircling infun-
dibulum, the surface of which is covered with small pegs 
(field width, 500 µm); hil, hillock; inf, infundibulum; 
peg, projecting peg of polygonal process; rim, encircles 

infundibulum (Nixon & Dilly, 1977). 
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(kriStenSen, 1977). Octopoteuthidae have 
biserial hooks along the arms, and some 
Cranchiidae have hooks on their tentacles 
(n. a. voSS, 1980; neSiS, 1982). The shape, 
form, development, and mode of attachment 
of hooks in Recent and fossil coleoids were 
described by engeSer and Clarke (1988). 

Cirri are a characteristic feature of Cirrata 
and Vampyromorpha. They are slender, 
tapered, and arranged in pairs along the 
arms, alternating with the suckers. Cirro-
thauma murrayi has long cirri, and they are 
especially elongated in young animals (Fig. 
10) (aldred, nixon, & young, 1983). In 
the deep sea, these coleoids hold the cirri 
erect and away from the arms (roPer & 
Brundage, 1972; P. J. herring, personal 
communication, 1979). 

THE SKIN: DERMAL 
STRUCTURES, 

CHROMATOPHORES, 
LEUCOPHORES, IRIDOCYTES, 

AND PHOTOCYTES

The skin is a barrier, as well as an interface 
at which selective exchange can take place 
between the animal and the external envi-
ronment. In addition, it has developed into 

an organ for concealment and behavioral 
expression (PaCkard, 1988). Epithelial, 
glandular, and sensory cells are present 
in the skin, as well as various specialized 
dermal tissues and structures, including 
papillae, Kölliker’s tufts, adhesive pads, 
dermal cushions, tubercles, chromatophores, 
iridophores, and photophores, and suckers, 
hooks, and cirri (Mangold, Bidder, & 
PortMann, 1989b; BudelMann, SChiPP, & 
von Boletzky, 1997).

Papillae are often temporary and mostly 
serve for concealment. They are raised by 
the actions of muscles lying below the skin. 
Kölliker’s organs, tuft- or bristle-like struc-
tures about 50 μm in height, are present in 
hatchlings of Incirrata. They are transitory 
and small and not readily seen unless greatly 
magnified (von Boletzky, 1973; Budel-
Mann, SChiPP, & von Boletzky, 1997).

An unusual adhesive pad is present on 
the posterodorsal region of the mantle of 
the smallest coleoid, Idiosepius pygmaeus, 
enabling it to attach itself to algal fronds 
in the coastal waters (SaSaki, 1923). The 
small sepiolid Euprymna scolopes has an 
area of specialized epithelial cells on the 
dorsal surface of the mantle to which small 
particles adhere, providing the animal with 
camouflage (Singley, 1982).

Dermal cushions are a characteristic feature 
of the skin of the scaled squids Lepidoteuthis 
grimaldi and Pholidoteuthis adami. In the 
former, they are diamond shaped and overlap 
rather like roof tiles, but in the latter they do 
not overlap (Clarke & Maul, 1962; roPer 
& lu, 1990). Tubercles occur on the mantle 
of many Cranchiidae; in Cranchia scabra, they 
are cartilaginous and develop from a simple 
nodule into a complex Maltese-cross form 
(Fig. 11) (PerSon, 1969; dilly & nixon, 
1976b). Tubercles of cartilage, elastic carti-
lage, or fibrocartilage are found in other 
families; their shapes range from simple cones 
to complex forms (roPer & lu, 1990).

A vertical section through the skin shows 
that the chromatophores are superficial, with 
tiny iridophores and leucophores below, the 
last being deepest of all (PaCkard, 1988). 

2 mm

fig. 9. Largest ventral tentacular hook of onychoteuthid 
squid Moroteuthis knipovitchi (Clarke, 1980).
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Each chromatophore is a thin, cytoelastic 
sac containing granules of pigment, with 
muscles radiating around the periphery 
of the sac. When the muscles contract, 
the sac expands so the pigment spreads 
and becomes conspicuous (florey, 1969). 
Relaxation of the muscles results in contrac-
tion of the sac. Chromatophores range 
from about 0.3 mm to 1.5 mm in diam-
eter (hanlon & MeSSenger, 1996). The 
contained pigments are ommochromes 
(linzen, 1967) with traces of calcium, 
nickel, and sulphur (froeSCh & PaCkard, 
1979). Chromatophores are present in all 
coleoids but one, although those of Vampy-
roteuthis lack muscles (J. z. young, 1977). 
The exception is Cirrothauma murrayi, in 
which there is pigment in the skin but no 
chromatophores (aldred, nixon, & young, 
1983). Iridophores comprise multilayered 
stacks of thin plates or iridosomes separated 
by cytoplasm (Mirow, 1972); the platelets 
are 75 nm thick (froeSCh & MeSSenger, 
1979). In Octopus and Sepia, leucophores 
are branched structures with many ovoid, 
stalked clubs over their surface (froeSCh & 
MeSSenger, 1979).

Light organs or photophores occur 
sporadically, and one or more genera 
possessing them are found in most orders of 
the Coleoidea. The greatest development of 
photophores is among the oceanic oegopsid 
squids (herring, 1977, 1988; r. e. young, 
1983; r. e. young & Bennett, 1988). 
Photophores can be discrete or take the 
form of minute photogenic spots that may 
be organized into strips or bands or may be 
scattered. Photophores display great variety 
in their structure, from simple to morpho-
logically and optically complex, and one or 
more types of photophore can occur in the 
same animal. 

CENTRAL NERVOUS SYSTEM 
AND MAJOR RECEPTORS

The nervous system of  Coleoidea, 
formed from a system of nerve cords, has 
become centralized and consists of a mass 
of tissue closely surrounding the esophagus 

(BoyCot t, 1961; J.  z. young, 1971; 
Mangold, 1989a). The brain of numerous 
Coleoidea and Nautilus has been described 
(nixon & young, 2003). It is protected 
by a cranium of cartilage in most cole-
oids (Nixon, 1998a) (see Fig. 25) but not 

10 mm

fig. 10. Young specimen of Cirrothauma murrayi, 
Cirrata, showing long cirri arranged on either side 
of suckers on arms (Aldred, Nixon, & Young, 1983).

fig. 11. Scanning electron micrograph of cartilaginous 
tubercles on mantle of cranchiid squid, Cranchia scabra 

(field width, 900 µm) (Dilly & Nixon, 1976b).
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in Cirrata (J. z. young, 1977; aldred, 
nixon, & young, 1983; nixon, 1998b). 
The brain is compact and consists of sub- 
and supraesophageal masses (Fig. 7.1) and 
a periesophageal lobe. The subesophageal 
mass has three main portions: the anterior 
(prebrachial and brachial lobes), middle 
(pedal lobe), and posterior (palliovisceral) 
lobes. The supraesophageal mass is divided 
into numerous lobes, some forming higher 
centers. The periesophageal or magnocellular 
lobes lie far laterally, around the sides of the 
brain (J. Z. young, 1939). In addition, the 
optic lobes on each side of the brain can 
be regarded as special developments of the 
central brain, to which they are joined by 
the optic tracts.

A considerable part of the nervous system 
lies outside of the main central brain. This 
is especially apparent in the coastal-living 
Octopus vulgaris (Octopoda), as the nerve 
cords in the eight arms contain nearly 350 
million cells, whereas the two optic lobes 
together have 130 million cells and the 
brain itself 40 million cells (young, 1963). 
There is a complex system of nerve fibers 

serving all parts of the animal (iSgrove, 
1909; williaMS, 1909; Chun, 1910a, 1915; 
toMPSett, 1939; J. z. young, 1971, 1977; 
aldred, nixon, & young, 1983).

Coleo ids  pos se s s  e l abora te  motor 
and receptor centers and sense organs 
(williaMSon, 1995; BudelMann, SChiPP, 
& von Boletzky, 1997).  

Balance and orientation are provided 
by the statocysts, which can also detect 
vibrations. Paired statocysts are usually 
attached to the cephalic cartilage (Fig. 7), 
but in Cirrata and Vampyromorpha, they 
take the form of large sacs that lie behind 
and below the brain itself (J. z. young, 
1977; aldred, nixon, & young, 1983). 
The shape and form of the statocysts vary 
widely among the coleoids (J. z. young, 
1989). Each statocyst is fluid filled with 
a calcareous statolith suspended in the 
cavity and has special sensory areas to 
detect gravity and angular acceleration 
(BudelMann, 1994). The statolith is a 
hard, calcified (aragonite) structure, and its 
form is useful in Recent forms for generic 
and even specific identification (Clarke & 
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MaddoCk, 1988b) and in fossil coleoids 
to the generic level (Clarke & MaddoCk, 
1988a).

A system capable of detecting local water 
movements has been described for young 
Sepia (williaMSon, 1995) and is probably 
present in other coleoids. Chemical signals 
are received via ciliated cells in the lips and 
the suckers of the arms (wellS, 1978). 
Olfactory signals are received by the olfac-
tory organs (williaMSon, 1995).

BUCCAL MASS, BEAK, AND 
RADULA

The buccal mass of living Coleoidea is 
spherical and lies in a hollow formed by 
the bases of the arms (Fig. 7). Its antero-
posterior length can range from 60 percent 
of the mantle length in a late embryo to 4 
percent in an adult (Fig. 12) (nixon, 1969; 
Morton & nixon, 1987; nixon, 1988a, 
1988b). Much of the beak is enclosed by 
the mandibular muscles, leaving only the tip 
exposed anteriorly within the encircling lips; 
the rostrum of the upper beak passes inside 
the lower (Fig. 13–14) (nixon, 1988a; kear, 
1994).

verrill  (1882) described the main 
features of the upper and lower beaks. The 
beaks show wide variation in shape and form 
(Fig. 14) (Clarke, 1986; nixon, 1988a). 
The lower beak possesses characteristic 
features, and Clarke (1962, 1986) modi-
fied and supplemented the terminology to 
describe them (Fig. 15). The size of the lower 
beak ranges widely, from a rostral length of 
19.0 mm in the giant squid Architeuthis to 
only 0.35 mm in the small coastal squid 
Pickfordiateuthis (Clarke, 1986). The beak 
can be almost black, brown, or pale and 
translucent amber; in some species, only the 
exposed tips are tanned. The beak is a chitin-
protein complex (hunt & nixon, 1981) 
secreted by a single layer of columnar epithe-
lial cells, or beccublasts, that also attach the 
mandibular muscles to the beak (see Fig. 26) 
(dilly & nixon, 1976c). Within the cell 
layer, there are three types of cells. The most 
numerous contain cell-long fibrils; these cells 
are closely associated with the mandibular 
muscles and may have contractile properties. 
The second group of cells contains masses of 
endoplasmic reticulum and dense granules; 
these cells are probably the major source of 
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the hard tissue of the beak. The third group 
of cells contains a mixture of secretory tissue 
and fibrils. The surface of the beak has 
aligned polygonal imprints of the beccublast 
cells (Fig. 16). Distinct lines are discernible 
to the naked eye on the surface of the beak, 
and an attempt was made to correlate the 
lines with growth (Clarke, 1965). An upper 
beak was preserved in a fossil, Plesioteuthis 
prisca, and naef (1922) commented that 
it was of typical decapodiformean form. It 
occupied a relatively small portion of the 
animal, as is true of the adults of many 
living squids.

The radula consists of a long ribbon 
bearing numerous rows of teeth with a regular 
arrangement (nixon, 1995). The ribbon runs 
from the back of the buccal mass forward, 
over the bending plane, to end below and 
just posterior to the anteriormost tip of the 
radula (Fig. 13). Each transverse row consists 

of a central rhachidian tooth, with lateral 
and marginal teeth and a marginal plate on 
either side (Fig. 17), except in a few species 
in which the teeth or the marginal plates 
are reduced in number or are absent. Some 
gonatid squids have only five teeth in each 
transverse row. In Cirrata, the radula is vesti-
gial, and it is absent in Spirula. On either 
side of the rhachidian tooth, the teeth show 
differentiation in shape and form across each 
transverse row. Decapodiformes tend to have 
few lateral cusps on their teeth compared 
with Octopoda; a few members of the latter 
have teeth with numerous cusps (Fig. 14, 
17). The teeth are secreted by odontoblast 
cells, which line the radula sac at the back 
of the buccal complex (Fig. 13). The most 
recently formed teeth move forward from 
the sac, and new ones develop behind them. 
The newest are always larger than those 
formed earlier (nixon, 1969). The old and 
often worn teeth are lost after passing over 
the bending plane. The teeth increase in 
size between hatching and the adult stage. 
This is most notable between the first and 
last formed of the rhachidian teeth (nixon, 
1973). In Teuthowenia megalops, an oegopsid 
squid (Fig. 18), the teeth are small and simple 
in the smallest specimens, as they lack cusps 
that are present on the teeth of the nearly 
mature animals (dilly & nixon, 1976a). A 
survey of radulae has revealed something of 
their variety and complexity among living 
Cephalopoda (Nixon, 1998b; and see Trea-
tise Online, Part M, Chapter 12). The radula 
from a fossil, Jeletzkya douglassae, is preserved 
and has a small, triangular, rhachidian tooth 
and triangular lateral teeth 1 and 2. The 
marginal tooth is crescentic and elongate, 
and the marginal plate is wide (SaunderS 
& riChardSon, 1979). The affinities of this 
fossil have been variously interpreted. The 
radular apparatus of several coleoids has been 
described (MeSSenger & young, 1999).

Lateral buccal palps lie on either side 
of the radula. They are relatively large and 
mobile and can extend far forward and 
then sweep back toward the esophagus (Fig. 
13.2). They have a chitinous covering that 
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fig. 14. Anterior part of beaks and radulae of some 
Recent Coleoidea; tips of beaks are seen in profile, 
upper being largely enclosed by lower; to right is part 
of a single transverse row of teeth, including central 
rhachidian tooth with lateral and marginal teeth and 
marginal plate of left side only; 1, Spirula spirula; 2, 
Sepia officinalis; 3, Loligo vulagaris; 4, Vampyroteuthis 
infernalis; 5, Cirrothauma murrayi; 6, Octopus vulgaris; 

7, Argonauta argo (new).
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often has small, backward-pointing teeth 
that may be thin, delicate, and small, or 
stout and large. The spirulid, Spirula spirula, 
lacks a radula but has large, robust teeth on 
these palps (kerr, 1931).

A papilla lies below the radula and carries 
the single duct from the posterior salivary 
glands (Fig. 13.2). This papilla has small 
teeth on its anterior face, and in at least 
two coastal-living, incirrate octopods, it is 
involved in some stages of the excavation 
of small cavities in mollusk shells and the 
carapaces of crustaceans, aided by secretions 
from the posterior salivary glands (nixon & 
MaConnaChie, 1988).

The structures of the buccal complex, 
lying within the buccal cavity, have a cutic-
ular covering, with the exception of the 
glandular tissues. This cuticle is continuous 
from the buccal cavity into the digestive tract 
(hunt & nixon, 1981).

DIGESTIVE SYSTEM
Living coleoids are active predators, 

feeding mainly on crustaceans, fish, and 
other mollusks and capturing prey with 
their tentacles or arms (nixon, 1987, 1988b; 
Clarke, 1996). The food to be ingested 
has to be in pieces small enough to pass 
along the esophagus without damage to the 
surrounding brain.

The organs of the digestive tract consist 
of the buccal mass, the salivary glands, 
the esophagus, the stomach, the caecum, 
the intestine, the digestive gland, and the 
appendages of its duct (Mangold & young, 
1998). The esophagus runs directly to the 
stomach in sepiids, squids, and cirrate octo-
pods; but incirrates have a pocketlike diver-
ticulum or crop before the stomach (Fig. 19) 
(Bidder, 1950, 1966; aldred, nixon, & 
young, 1983; BouCher-rodoni, BouCaud-
CaMou, & Mangold, 1987). The digestive 
tract, from the buccal mass to the stomach, 
including the esophagus and crop, with the 
exception of the glandular areas, is lined with 
a chitin-protein complex in coleoids (hunt 
& nixon, 1981). The stomach (or crop) has 
been found preserved with contained prey in 

some ammonite fossils (lehMann, 1976). 
The midgut region is formed of stomach, 
caecum, intestine, and digestive gland (Fig. 
19). The intestine runs into a short rectum. 
The ink sac opens into the rectum, which 
runs forward, and the anus lies just posterior 
of the funnel.

CIRCULATORY, RESPIRATORY, 
AND EXCRETORY SYSTEMS
The morphology of these systems has been 

described for the common cuttlefish Sepia 
officinalis (toMPSett, 1939); an oegopsid 
squid, Todarodes sagittatus (PoSSelt, 1891); 
a myopsid squid, Loligo pealei (williaMS, 
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fig. 15. Lower beak of loliginid squid (Loligo forbesi, 
241 mm mantle length), with terms used to describe 
most important features; 1, in profile; 2, view of ventral 

surface (Clarke, 1977).
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1909); and for the incirrates Eledone cirrhosa 
(iSgrove, 1909), Octopus dofleini, and O. 
vulgaris (harriSon & Martin, 1965; wellS, 
1978, 1988).

Coleoids possess one median systemic and 
two branchial hearts (Fig. 20). The systemic 
heart has a pair of auricles and a muscular 
ventricle. Two major vessels, the anterior and 
posterior aortae, originate from the heart, 
and these two arterial vessels with their 

numerous branches provide the tissues with 
oxygenated blood (Fig. 20). Blood returns 
via the venous system to two vena cavae and 
to the two branchial hearts. The branchial 
hearts lie laterally, and each has a single 
chamber, the muscular action of which 
propels blood into an afferent branchial 
vessel to be oxygenated during its passage 
through the gills (Fig. 5). The branchial 
hearts exert a pressure to force an ultrafiltrate 
of the blood through the branchial heart 
appendages into a pericardium. The filtrate 
passes through a duct to the kidney sac, 
where it comes into contact with the renal 
appendages, before the urine is discharged 
through the renal papilla into the mantle 
cavity (wellS, 1978, 1988).

The gills are paired and lie on either side 
of the visceral mass in the mantle cavity, 
each attached to the visceral mass and the 
mantle (Fig. 5). Each gill is a long, pinnate 
structure with numerous gill leaflets or 
lamellae, a branchial artery, and vein (Fig. 
20). Each leaflet is attached to the core 
of the gill by a triangular sheet of tissue, 
whose free edge is stiffened by delicate, 
curved rods of hard tissue [chitin in Loligo 
(williaMS, 1909), cartilage in Sepia (toMP-
Sett, 1939)]. The blood passing through 
the gill leaflets is separated by only a thin, 
delicate membrane from the oxygenated and 
constantly changing water in the mantle 
cavity. The gills of deep-water forms and 
of some shallow-water inhabitants may be 
reduced in overall size or in the number of 
leaflets (G. L. voSS, 1988b). An x-ray of 
a Lower Jurassic coleoid, Phragmoteuthis 
conocauda, shows the outline of the support 
for the two gills (reitner & Mehl, 1989; 
Mehl, 1990). 

REPRODUCTIVE SYSTEM
The female genital tract consists of ovary, 

oviduct(s), and oviducal and nidamental 
glands (arnold & williaMS-arnold, 
1977; wellS & wellS, 1977; Mangold, 
1989b). The ovary is single and lies in the 
posterior part of the mantle; it is conical 
in squids and hemispherical and saclike 

fig. 16. Scanning electron micrograph of surface of 
crest region of the upper beak of the myopsid squid, 
Alloteuthis subulata, showing aligned polygonal imprints 
of beccublast cells; scale bar, 10 μm (Dilly & Nixon, 

1976c).
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fig. 17. Transverse row of teeth from radula of 1, 
Vitreledonella richardi and 2, Eledonella. Both are Incirra-
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in sepiids and octopods (Fig. 21–22). The 
ovary increases in size with maturation and 
comes to occupy most of the mantle cavity, 
pushing the remaining organs anteriorly. 
Ovarian eggs may be uniform or of various 
sizes (see Treatise Online, Part M, Chapter 
5). In the oceanic, pelagic incirrate Ocythoe 
tuberculata, the fertilized ova complete their 
development in the long oviduct, and the 
young are born alive (ovoviviparity) (Steen-
StruP, 1880; naef, 1923). The oviduct may 
be single or paired, and the oviducal gland 
corresponds in number. Secretion from the 
oviducal gland(s) contributes to the envelope 
around the egg. A pair of nidamental glands 
is present in sepiids, sepiolids, and oegopsid 
squids, with the exception of the Enoplo-
teuthidae; and small, accessory nidamental 
glands are present in cuttlefish and myopsid 
squids (neSiS, 1982).

The male reproductive tract consists of a 
testis, seminal vesicle (vas deferens), sper-
matophoric organ (vas efferens), accessory 
gland, spermatophoric sac (Needham’s sac), 
and penis (Fig. 22.2) (Mangold, 1989b; 
norMan, hoChBerg, & lu, 1997). In 
most coleoids, the male genital organs 
are unpaired and lie in the left half of 
the mantle. The mature testis is a median 
structure and lies in the posterior apex 
of the mantle; it is spherical in octopods 
and is elongated and flattened against the 
gladius in squids and sepiids. From the 
testis, sperm pass into the seminal duct, 
which joins the spermatophoric organ. This 
organ is a complex of glandular tissue and 
laminae where the sperm are formed into a 
spiral mass and coated with a tough, elastic 
membrane to form the spermatophore 
(Mann, Martin, & thierSCh, 1970). Each 
spermatophore is tubular and consists of 
two parts, one largely filled with compacted 
sperms and the other an invaginated, folded 
tube forming the ejaculatory apparatus. 
Extending from the anterior extremity is 
the cap thread (Fig. 23) (auStin, lutwak-
Mann, & Mann, 1964). Spermatophores 
are transferred singly into the spermato-
phoric sac for storage until copulation 

takes place, when it passes to the female 
(Fig. 22). Each spermatophore has a brittle 
outer coat and a complicated internal struc-
ture; the features of spermatophores are of 
taxonomic value (Mangold, 1989b). The 
spermatophores range in size from 16 to 
18 mm in length in Sepia officinalis and 
Loligo vulgaris of 300 to 400 mm mantle 
length, to 65 mm in Octopus vulgaris of 200 
mm mantle length, to more than 1 m in 
Octopus dofleini of about 1.5 m total length 
(Mangold-wirz, 1963; Mann, Martin, & 
thierSCh, 1970). The spermatozoa, within 
the spermatophore, have complex features, 
and their morphology has been found to 
support the accepted taxonomic divisions 
of the subclass (healy, 1995).

CARTILAGE AND CHITIN
Cephalopods have several structures 

consisting entirely or partly of hard tissue 
that are referred to as cartilaginous or 
chitinous. Only a few have been described 
when isolated from the animal or analyzed 
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fig. 18. Central rhachidian tooth, with lateral and 
marginal teeth and marginal plate of right side only of 
radula of Teuthowenia megalops, showing change in size 
of teeth, with growth of animal from 9 mm to 134 mm, 

dorsal mantle length (Dilly & Nixon, 1976a).
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chemically. Notably, some have been found 
preserved in fossil cephalopods. The supports 
of the gill lamellae have been revealed by 
x-rays in the fossil coleoid Phragmoteuthis 
conocauda (reitner & Mehl, 1989; Mehl, 
1990). The hooks of the arms or tentacles of 
teuthids survive both the digestive process 
and fossilization, since some have been 
found in the gastric contents of predators 
(engeSer & Clarke, 1988). Both radula 
and beaks, sometimes together, have been 
found in fossil cephalopods, including some 
ammonoids (nixon, 1996) and at the center 
of the arm crown of the coleoid Jeletzkya 
douglassae (SaunderS & riChardSon, 1979), 
although the affinities of this species are 
uncertain.

owen (1832, p. 16) noted of the cranium 
of Nautilus, “Like that of the Dibranchiate 
Cephalopods, this skeleton is cartilagi-
nous . . . and in texture and semitransparency 
closely resembles the cartilage which consti-
tutes the skeleton of the skate.” The apparent 
similarity of cartilage in cephalopods and 

vertebrates was accepted until around the 
end of the 19th century when it began to 
be questioned. Doubt continued until the 
1960s, when several experimental and struc-
tural studies indicated that the earlier belief 
was correct and that cephalopods possess 
true cartilage, although differing in some 
respects from vertebrate cartilage. Criteria 
established for the latter were found to apply 
to invertebrate cartilages and led to the 
modification of the definition of cartilage to 
“an animal tissue, usually endoskeletal, but 
also exoskeletal. . . . Physically, cartilages are 
gristle-like, relatively rigid, and resistant to 
forces of compression, shearing, and tension” 
(PerSon, 1983, p. 33).

The cartilage cell is the basic and constant 
component of cartilage, and it is surrounded 
by a territorial matrix it has itself secreted. 
Cartilage is a form of connective tissue with 
polymorphic cells suspended in a matrix 
(Fig. 24.1) and chemically includes chon-
droitin sulphate, keratosulphate, and hyal-
uronic acid (BudelMann, SChiPP, & von 
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Boletzky, 1997; nixon, 1998b). The poly-
morphic cartilage cells, the chondrocytes, 
reside in lacunae. Each lacuna may contain 
one, two, or more chondrocytes. Within 
one cartilage alone (the nuchal cartilage of 
Lolliguncula brevis), the chondrocytes may 
vary from ovoid with fine processes in an 
abundant matrix to amoeboid with irregular 
processes in less abundant matrix (Budel-
Mann, SChiPP, & von Boletzky, 1997). This 
type is called hyaline cartilage. A second type 
is found in some coleoids and is reticulate 
or lacelike (Fig. 24.2) (Clarke, denton, & 
gilPin-Brown, 1979). 

The structural features of cephalopods said 
to be cartilaginous are mostly internal and 
may include all or several of the following: 
the cephalic or cranial cartilage, the postce-
phalic cartilage, the brachial cartilage, the 
nuchal cartilage and dorsal cartilage, the 
funnel- and mantle-locking cartilages, the 
branchial cartilages, and the fin cartilages, 
the number varying between taxa. The gross 
morphology and the microanatomy of these 
cartilaginous structures is known for only a 
very small number of species. Cartilage also 
occurs in dermal structures such as cushions 
(e.g., in Lepidoteuthis) and tubercles (e.g., 
Cranchia, Mastigoteuthis) (nixon, 1998a). 
The tubercles of Cranchia scabra have been 

shown by structural and chemical studies 
to be of cartilage that is in the more usual 
hyaline form (Fig. 24.1). 

Most notable of these structures, and 
usually the largest, is the cephalic or cranial 
cartilage. It is present in most, but not all, 
Recent coleoids. The gross morphology of 
the cephalic cartilage of a few coleoids has 
been described, the most detailed descrip-
tion available being that for Sepia officinalis 
by toMPSett (1939). The cephalic cartilage 
is symmetrical and has a complex form, with 
major anterior and posterior openings for 
the esophagus, as well as numerous orifices 
for the passage of nerves and blood vessels 
(Fig. 25). It serves for the attachment of the 
head-retractor and funnel-adductor muscles 
and the arm and tentacular muscles. The 
shape and form of the cephalic cartilage 
tends to follow that of the central nervous 
system. The numerous lobes of the brain 
show differences in size and shape between 
genera and even species (J. z. young, 1971; 
MaddoCk & young, 1987), and these 
differences may be reflected in the cephalic 
cartilage. Histological sections of numerous 
coleoid species reveal the cephalic carti-
lage to be hyaline or reticulate (Fig. 24.2) 
(nixon, 1998b), although the significance 
of the difference is not known. In some cole-
oids, such as Chtenopteryx and most espe-
cially Architeuthis (Oegopsida), the cephalic 
cartilage is extremely thick; this contrasts 
with many in which it is relatively thin. 

A brachial cartilage, if present, lies antero-
ventral to the cephalic cartilage (Fig. 25). It 
is small, closely associated with the complex 
muscles of the bases of the arms, and may 
be of hyaline cartilage. On either side of the 
cephalic cartilage are posterolateral expansions 
with winglike extensions forming the orbital 
cartilages (Fig. 25). The statocysts are usually 
enclosed within cartilage and lie at the back of 
the cranium. Two cartilages are found in the 
neck region, the nuchal and the dorsal carti-
lages, which together form a locking device. 

Best known of all the cartilaginous struc-
tures in coleoids is the funnel-locking carti-
lage, because it has features of taxonomic 

funnel

bursa copulatrix
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nidamental
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light organ

fig. 21. Pallial cavity of mature female Sepiola rondeleti 
(Sepiolida) after mating, opened to show ovary, nida-
mental glands, and enlarged bursa copulatrix and its 

extension to inner side of mantle (Naef, 1923). 
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value (roPer, young, & voSS, 1969). One 
cartilage is sited on either side of the ventro-
lateral side of the funnel (Fig. 4–5). This is 
a cartilaginous pad with variously shaped 
depressions of grooves, pits, or pockets. The 
following types of funnel cartilage structure 
are known: a simple (straight) cartilage; 
triangular; oval; earlike; cup shaped; and an 

inverted T-shape (Fig. 4.2). This component 
locks into a corresponding cartilage on either 
side of the ventrolateral internal surface 
of the mantle, the mantle-locking carti-
lage (neSiS, 1982). This is a cartilaginous 
ridge, knob, or swelling that, by locking into 
that of the funnel, locks funnel and mantle 
together during locomotion. 
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fig. 22. Reproductive system of Benthoctopus karubar (Octopoda); 1, nearly mature female (97 mm mantle length) 
and 2, mature male (60 mm mantle length) (Norman, Hochberg, & Lu, 1997).
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Cartilaginous tissue may be present along 
the base of the fins, for example, in sepiids 
and in Vampyroteuthis (Vampyromorpha) 
and in the strange fins of Chtenopteryx 
(Oegopsida) (J. Z. young, 1991b).

The gills have numerous leaflets or 
lamellae, and each is attached by means 
of a small, hard tissue structure, which is 

composed of cartilage in Sepia (toMPSett, 
1939) and chitin in Loligo (williaMS, 1909). 

Several structures have been termed 
chitinous in cephalopods. A few have been 
analyzed and found to be chitin-protein 
complexes. These include the gladius, beak, 
radula, and the sucker discs of octopods 
(hunt & nixon, 1981; hunt & huCkerBy, 

1 2

3

fig. 23. Diagrams of spermatophores of 1, Sepia officinalis (Sepiida), 2, Loligo pealei (Myposida), and 3, Eledone cir-
rhosa (Incirrata); sperm mass occupies most of internal space, ejaculatory apparatus lies anterior to this and consists 
of globular cement body and ejaculatory tube, beyond which extends the cap thread (Fort, 1937; Tompsett, 1939; 

Austin, Lutwak-Mann, & Mann, 1964). 
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1987). In squids, the gladius is the largest 
of these structures. The beak, radula, and 
esophageal lining have survived in fossil 
ammonites (nixon, 1996). The hooks of 
the arms or tentacles of oegopsids are of 
tough tissue that, like the beaks, can survive 
both digestive and fossilization processes 
(engeSer & Clarke, 1988; garaSSino & 
donovan, 2000), although the chemical 
composition is not known. Chitin is difficult 
to section for histological examination, as it 
often fractures. 

The gladius varies greatly in shape, size, 
and complexity. It has been described in 
Vampyroteuthis, three cirrates, and eight incir-
rates by Bizikov (2004). One of the sepiolids 
has the smallest gladius, as it extends over 
only the anterior half of the mantle. The 
loliginid and some oegopsid squids have 
broad gladii that are almost the length of the 
mantle. The gladius of other oegopsid squids 
is slender with longitudinal ribs and a cone-
shaped posterior end, so that it resembles 
the conotheca of fossil squids (BudelMann, 
SChiPP, & von Boletzky, 1997; see Treatise 
Online, Part M, Chapter 10). The composi-
tion of the gladius, or shell, is little known. In 
the myopsid Loligo, it is a chitin-proteoglycan 
structure (hunt & nixon, 1981), and trans-
mission electron micrographs reveal layers of 
striated material interspersed with diffusely 
banded or unstriated layers, suggestive of 
plywood (hunt & el Sherief, 1990). The 
vampyromorph Vampyroteuthis infernalis 
and the cirrates have chitinous supporting 
structures, and in some incirrates, a much 
reduced pair of stylets.

Successful histological sections of the 
beak show few features, except some indica-
tion of layers as the chitin is laid down by 
the tall, columnar, epithelial, beccublast 
cells (Fig. 26). These cells leave aligned 
polygonal outlines on the outer surface of 
the beak that are readily seen with the scan-
ning electron microscope (Fig. 16) (dilly 
& nixon, 1976c). The outer surface of 
the beak shows lines of development, but 
their value in aging has not be determined 
(Clarke, 1965).

The radula and its teeth are secreted by 
the tall odontoblast cells that lie within the 
radula sac. The teeth form and develop in the 
radular sac and move forward to the front of 
the mouth (nixon, 1988a). The radula has a 
support on either side, and these are usually 
said to be cartilaginous. These are, however, 
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fig. 24. 1, Skin with two tubercles seen in histological 
section, showing hyaline cartilage, with chondrocytes, 
some dividing, in matrix; scale bar, 100 μm; 2, sagit-
tal section through head of Mastigoteuthis (Teuthida) 
showing cranium of reticulate cartilage above brain; 

scale bar, 0.5 mm (new).
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fig. 25. Cephalic cartilage of Sepia officinalis; ventral 
surface showing orbital and trochlear cartilages; cb, 
brachial cartilage; co, orbital cartilage; cow, wing of 
orbital cartilage; cs, statocyst cartilage; ct, trochlear 
cartilage; fafu, foramen of posterior funnel nerve; fol, 
foramen of olfactory nerve; fpfu, foramen of posterior 
funnel nerve; fv, foramen for vein of olfactory nerve 

(Tompsett, 1939).



26 Treatise Online, number 17

muscular hydrostats and are devoid of carti-
laginous tissue (MeSSenger & young, 1999). 

The sucker discs of incirrate octopods also 
consist of chitin-protein complexes (hunt 
& nixon, 1981; hunt & huCkerBy, 1987). 

MUSCLES

Cuvier (1802), in his sixth lecture on 
comparative anatomy entitled “Organs 
of motion in Mollusca Cephalopoda,” 
described the muscles of the body, feet, 
and suckers. As there is little hard or skel-
etal tissue in many coleoids, this is formed 
largely of  muscles  that function as a 
muscular-hydrostat support system (kier, 
1988). The muscles are usually a complex, 
dense, tightly packed, three-dimensional 
array of fibers. Changes in the dimension 
of the muscle fibers transmit the force 
of muscular contraction into movement 
and muscular antagonism (kier, 1988). 
The major muscles of Loligo pealei have 
been described by williaMS (1909) and of 
Sepia officinalis by toMPSett (1939); those 
involved in locomotion and jet propulsion 
by ward and wainwright (1972) and 
Bone, PulSford, and ChuBB (1981); those 
of the arms and tentacles and their suckers 
by guérin (1908), kier (1982, 1985), kier 
and SMith (1990); of the mantle by wellS 

(1988); and of the fins by kier (1989). An 
overview of the muscular system was given 
by Mangold and Bidder (1989) and that 
of the ultrastructure by BudelMann, SChiPP, 
and von Boletzky (1997). Muscle tissues 
have been found preserved in some fossil 
coleoids (donovan, 1995; kear, BriggS, & 
donovan, 1995).

The mantle is supported by a chambered 
internal shell (Spirulida) (grégoire, 1961; 
thoMaS & BinghaM, 1972), a calcified 
cuttlebone (Sepiida) (grégoire, 1972; 
BirChall & thoMaS, 1983), an organic, 
chitinous gladius, shell, or pen, or paired 
stylets (Fig. 6–7) (aPPellöf, 1893; hunt & 
nixon, 1981), and the muscles are attached 
to a layer of connective tissue covering the 
support. They have been described in a 
number of coleoids by Bizikov (2004).

The paired head-retractor muscles are 
large and have their origin at the edge of 
the cuttlebone of Sepia, about halfway along 
its length (toMPSett, 1939). Anteriorly, 
the head retractor muscles are added to 
by fibers originating on the whole of the 
ventral surface of the nuchal cartilage. These 
muscles become fused into a continuous 
muscle sheath on the dorsal surface of the 
cartilage. Dorsally, these muscles are partly 
continuous with the bases of the arms, and 
ventrally, they are inserted partly on to the 
orbital and cranial cartilages and partly 
on the posterior surface of the brachial 
cartilages, where the right and left retractor 
muscles of the head fuse together. The head-
retractor muscles of Loligo are relatively very 
large, and these muscles, together with the 
funnel-retractor muscles, are attached to 
the lower surface of the gladius (Fig. 6.1) 
(williaMS, 1909). In Octopus, the head-
retractor muscles, also large, are attached 
to the pair of small chitinous stylets buried 
laterally in the muscle of the mantle wall; 
the funnel-retractor muscles are smaller and 
lie below; and there is a pallial adductor 
muscle, which is not present in squids (Fig. 
6.2) (wellS, 1978, 1988).

The mantle muscle of Sepia officinalis 
(Sepioidea) has its origin along the horny 

fig. 26. Histological section through chitin-protein 
tissue of beak of Alloteuthis (Myopsida) secreted by 
tall, columnar, beccublast cells; exposed surface of beak 
showing fractures resulting from section cutting; scale 

bar, 10 μm (new). 
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margin of the cuttlebone and consists of a 
thick sheet of muscle (toMPSett, 1939). 
The muscles of the mantle of Loligo (Myop-
sida) are attached to the upper surface of the 
gladius, and the large funnel-, nuchal-, and 
head-retractor muscles to the lower surface 
of the gladius (Fig. 6.1). The loliginid squids 
have circular muscle bands that extend 
from one side of the gladius around the 
mantle cavity to the opposite side or pass 
outside of the gladius and so encircle the 
body completely. The mantle is attached to 
the visceral mass by a pair of ligaments that 
arise near the middle of the visceral mass 
and extend over the edge of the gladius to 
the mantle (williaMS, 1909). The large and 
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fig. 27. Mantle of Myopsida; 1a, diagram of mantle of Lolliguncula (120 mm mantle length) showing thick muscle 
layer between inner and outer tunics; 1b, longitudinal radial section showing relative thickness of its parts (Ward 
& Wainwright, 1972); 2, disposition of connective tissue fibers in mantle of Alloteuthis; skin at bottom of figure; 
bv, blood vessels; cc, connective tissue fibers; ch, chromatophore; ifz, inner fiber zone; nb, nerve bundle; ns, nerves 

to skin; ofz, outer fiber zone; ot, outer tunic (Bone, Pulsford, & Chubb, 1981).

powerful retractor muscles of the funnel 
are fused at their origin with those of the 
head-retractor muscles and the walls of the 
mantle. They run forward on either side, 
expanding gradually over the ventral surface 
of the digestive gland to merge into the walls 
of the exhalant siphon. The ventral part of 
the mantle is concerned with respiration 
and with the expulsion of water during 
locomotion; it has elastic properties provided 
by collagen fibers (goSline & ShadwiCk, 
1983).

The circular muscle fibers of the mantle 
are divided, more or less regularly, by thin 
partitions of radial muscle fibers. In addi-
tion, there are muscle fibers running along 
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fig. 28. 1, Scanning electron micrographs of a section through mantle of fossil coleoid, Mastigophora brevipinnis 
(Callovian, Jurassic), showing muscle and inner tunic, and muscle forming sheath around digestive gland (scale 

bar, 40 mm); 2, diagrammatic representation of section (Kear, Briggs, & Donovan, 1995).
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the long axis of the animal. The longitu-
dinal fibers lie superficially just inside the 
connective tissue and epithelial layer lining 
the mantle cavity (ward & wainwright, 
1972) (Fig. 27). The partitions of radial 
fibers also contain connective tissue fibrils 
(Bone, PulSford, & ChuBB, 1981). The 
inner and outer surfaces are covered by layers 
of collagen, called the tunics (goSline & 
deMont, 1985), and there is a complex 
network of connective tissue fibers (Bone, 
PulSford, & ChuBB, 1981) (Fig. 27.2). Two 
incirrate octopods, Eledone and Pteroctopus, 
have circular and radial muscle fibers in 
the mantle (Mangold & Bidder, 1989). 
Squids such as Lepidoteuthis (Clarke & 
Maul, 1962) and Mastigoteuthis (dilly, 
nixon, & young, 1977) have layers of 
muscle separated by vacuolated or reticu-
late tissues in the mantle; whereas others, 
such as the cirrate octopod Cirrothauma 
(aldred, nixon, & young, 1983), have 
muscles interspersed among loose tissues. 
Such reticulate or loose tissue may contain 
fluids of a lower density than seawater and so 
contribute to neutral buoyancy in coleoids 
(Clarke, denton, & gilPin-Brown, 1979).

The mantles of the Jurassic coleoids 
Phragmoteuthis (donovan, 2006), Geopeltis, 
Loligosepia, Belemnoteutis, Mastigophora, and 
Plesioteuthis have radial and circular muscles. 
In addition, the last three genera have longi-
tudinal muscles, the fibers of which are 
associated with the gladius in Mastigophora 
(Fig. 28) and Plesioteuthis (kear, BriggS, & 
donovan, 1995). 

The tentacles of Decapodiformes have 
dense and variously oriented muscles 
surrounding the axial nerve cord (Fig. 29.1) 
(kier, 1988). From the muscle mass, groups 
of fibers or trabeculae radiate between 
bundles of peripherally arranged, longitu-
dinal muscle fibers. Surrounding the layer 
of circular muscle are two thin layers of 
helically oriented muscle fibers, and these, 
in turn, are covered with a layer of longitu-
dinal muscle (kier, 1982). The transverse 
muscles produce rapid extension of the 
tentacles, which are ejected from the sac and 

elongated to capture prey in as little as 15 
msec (MeSSenger, 1968; kier, 1982). These 
muscles differ in their ultrastructure from all 
other cephalopod muscles (kier, 1991), and 
their specialized fibers have cross striations, 
short sarcomeres, and thick filaments (kier 
& SChaChat, 1992). 

1 mm

1

2

aboral

SLM
HM

HMCM
TR

LM

AN

AR
TM

LM TV
IN oral

DCT

EP

1 mm

DCT
SKTM

SKLMIN
SLM

ACT
TR

LM

LM OCT
SU

BV

PM

EPOM

AN

AR TM

oral

aboral

fig. 29. 1, Tentacular stalk (left) and 2, arm (left) of 
loliginid squid in cross section; ACT, aboral connective 
tissue; AN, axial nerve cord; AR, artery; BV, brachial 
vein; CM, circular muscle; DCT, dermal connective tis-
sue; EP, epithelium; HM, helical muscle; IN, intramus-
cular nerve cord; LM, longitudinal muscle; OCT, oral 
connective tissue; OM, oblique muscle; PM, protective 
membrane; SKLM, swimming keel longitudinal muscle; 
SKTM, swimming keel transverse muscle; SLM, super-
ficial longitudinal muscle; SU, suckers; TR, trabeculae; 
TM, transverse muscle; TV, superficial tentacular vein 

(Kier, 1982).
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The eight arms are similarly organized. 
Each has an axial nerve cord surrounded by 
obliquely striated, transverse muscle fibers 
(Fig. 29.2) (kier, 1985), which extend 
peripherally as trabeculae, to insert on 
fibrous connective tissue sheets on the oral 
and aboral sides of the arms, and laterally, 
on oblique muscles (Fig. 29.2). Bundles 
of longitudinal muscle fibers lie between 
the trabeculae. In octopods, the transverse 
muscle mass is deepest aborally, thinnest 
orally, and intermediate laterally, and there 
are three sets of oblique muscles: internal, 
median, and external. Histological staining 
shows the tissues of the arms of a number 
of coleoids to have little organization, for 
example, Cirrothauma (aldred, nixon, & 
young, 1983) and Vampyroteuthis; and in 
some, the tissue is reticulate or lacelike, for 
example, Mastigoteuthis (Fig. 30) (dilly, 
nixon, & young, 1977) and Histioteuthis 
(Clarke, denton, & gilPin-Brown, 1979). 
The arms or tentacles of a Jurassic coleoid, 
Belemnoteutis, have longitudinal muscle 
fibers throughout; fibers with other orienta-
tions were not observed (kear, BriggS, & 
donovan, 1995).

The musculature of the suckers was 
first described by girod (1884), and more 
recently by kier and SMith (1990). There 
are radial, circular, and meridional muscles. 
The suckers of Decapodiformes and many 
Octopodiformes possess a sphincter muscle 
(guérin, 1908; kier & SMith, 1990), but 
in those of Vampyromorpha and some Octo-
podiformes, this is absent, so the chamber 
is simple (Fig. 31) (nixon & dilly, 1977). 
The peduncle or stalk of the sucker is usually 
muscular, but in Cirrothauma (aldred, 
nixon, & young, 1983), Argonauta (nixon 
& dilly, 1977), and a few other coleoids, 
there is reticulate or loosely organized tissue.

The muscles of the fins of Sepia offici-
nalis and of two loliginids have been shown 
at the ultrastructural level to consist of 
highly organized, tightly packed, obliquely 
striated fibers arranged in three mutually 
perpendicular planes (Fig. 32) (kier, 1989). 
Different arrangements occur in the fins of 
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fig. 30. 1, Transverse section of arm of Mastigoteuthis 
(Oegopsida) showing reticulate tissues (Nixon & Dilly, 
1977); 2, sucker and peduncle of Cirrothauma murrayi 
(Cirrata), drawn from a histological section showing 
loose tissues and thin band of muscle; amct, acid-
mucopolysaccharide–containing tissue; ocsp, outer core 
of sucker peduncle (Aldred, Nixon, & Young, 1983).
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other coleoids. The strange fin of the dorso-
ventrally flattened oceanic oegopsid squid 
Chtenopteryx (Ctenopteryx) has so-called fin 
rays. These consist almost entirely of muscles 
and connective tissue forming muscular-
hydrostat supports (kier, 1988) and serving 
both for support and movement; the fin 
muscles are attached to small, toothlike 
supports of hyaline cartilage at their base 
and a double web of membranous sheets (J. 
Z. young, 1991b). The arrangement of the 
muscles of the fin of an Upper Jurassic fossil 

fig. 31. Sagittal sections through suckers of arms of 1, Teuthowenia megalops (Oegopsida), showing muscles, 
acetabulum, infundibulum, and inner chitinous ring; 2, Octopus vulgaris (Incirrata) showing sphincter muscle 
between acetabulum and infundibulum; 3, Vampyroteuthis infernalis (Vampyromorpha) showing its relative sim-
plicity; ac, acetabulum; hil, hillock; inf, infundibulum; inr, inner ring; ped, peduncle; peg, projecting process of 
infundibulum; sph, sphincter; rim, surface of small sucker with tiny hillocks superimposed on many of the radially 

arranged cushions (Nixon & Dilly, 1977).
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coleoid, Trachyteuthis (donovan, 1995), is 
similar to that found in extant Vampyroteu-
this, Cirrata, and Decapodiformes (r. e. 
young & M. veCChione, personal commu-
nication. 1995).

INK SAC AND INK
ariStotle (384–322 BCE; see translation 

by thoMPSon, 1910) recorded that the ink 
sac is largest and the ink most abundant in 
the cuttlefish, and that the animal discharges 
the ink when frightened. In some countries, 
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the common name for the cuttlefish is 
derived from the word for ink, for example, 
Tintenfische (German) and Inktvis (Nether-
lands), and yet there is a paucity of informa-
tion about the ink sac. SChneider (1784), 
in an early classification, used the term 
Blakfisch for the cephalopods, presumably 
from their capacity to expel ink. Although 
included in many descriptions, the ink sac 
is usually noted as being present or absent 
with rarely any further comment. This over-
sight is particularly unfortunate, as the ink 
sac can survive fossilization (for example, 
CriCk, 1897; naef, 1922; donovan, 1977; 
and Treatise Online, Part M, Chapter 21D).

An ink sac or ink reservoir is present in 
most living Decapodiformes and Octopoda 
(except very deep-living species) but is 
absent from Cirrata (G. L. voSS, 1988b) 
and Vampyromorpha (J. Z. young, 1977). 
The ink sac is one part of the ink-gland 

complex, the others being the ink gland and 
the ink-sac duct. The complex usually lies 
ventral to the visceral mass, the duct running 
anteriorly along the right side of the rectum, 
which it enters on the dorsal side, close to 
the anus. During ontogeny, the ink-gland 
complex of Sepia officinalis is displaced from 
its typical position above the hind intestine 
to the right and grows toward the posterior 
end of the mantle sac, into which the ink sac 
fits in more mature animals (Fig. 5) (toMP-
Sett, 1939). S. officinalis has an ink sac 30 
to 40 mm in diameter, with a capacity of 20 
to 30 cl and a duct 8 to 15 mm in length. 
Those of Loligo vulgaris and Octopus vulgaris 
are 8 to 12 mm and 12 to 17 mm in diam-
eter respectively; unfortunately, the sizes 
of the animals were not recorded (girod, 
1882). The ink sac is partially embedded in 
the digestive gland in some species; and in a 
few, for example, Cycloteuthis, photophores 
are associated with the ventral side of the ink 
sac (herring, 1977).

Among extant coleoids, the position of 
the ink sac varies between the anterior and 
the posterior end of the mantle; its shape 
ranges from being round and saclike to pear 
shaped. It may be large or small, relative to 
the size of the animal and appears to differ 
between genera and perhaps even species 
(Chun, 1910a, 1915; naef, 1922, 1923), 
but no studies have been made as to its 
possible value as a characteristic feature. 
The ink sac is well preserved in a number 
of fossil coleoids, and illustrations show 
variations in its position, shape, and size 
but also similarities among various speci-
mens of the same species. One example is 
Plesioteuthis prisca (naef, 1922; donovan, 
1977; Mehl, 1990), in which the ink sac 
is small relative to the mantle length and is 
round and saclike. It is somewhat similar in 
Mastigophora brevipinnis (donovan, 1983). 
The ink sac of Lioteuthis is an elongated pear 
shape (naef, 1922). It is similarly shaped 
in the belemnite Belemnoteutis antiquus and 
is moderately large in relation to the whole 
animal; it is situated immediately anterior 
to the phragmocone (approximately halfway 

fig. 32. Schematic diagram showing microanatomy of 
fin of Sepia officinalis; D, dermis; DF, dorsal fascia; D-V, 
dorsoventral muscle; E, epidermis; FC, fin cartilage; L, 
longitudinal muscle; MF, median fascia; N, fin nerve; 
T, transverse muscle; V, blood vessel; VF, ventral fascia 

(Kier, 1989).
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along the mantle) (donovan & Crane, 
1992).

The morphology of the ink sac of several 
living coleoids was described by girod 
(1882) and the ultrastructure in Loligo pealei 
by vogel and MCgregor (1964). The 
dorsal glandular portion of the ink complex 
consists of membranous trabeculae and a 
glandular epithelium, which secretes the ink; 
a large conical reservoir for the ink; and a 
duct leading from the reservoir to the anal 
chamber (Fig. 33). The epithelium consists 
of two types of cells. One predominates 
in the central region of the gland and is 
responsible for the production of granules 
of the pigment melanin. The distal end 
of the duct of the ink sac may have valves 
or be surrounded by a sphincter. The wall 
of the sac is formed of an inner sheet of 
epithelium, a muscular layer, and an outer 
sheet of connective tissue (williaMS, 1909). 
Circular muscle fibers can be seen in the 
wall of the ink sac of Plesioteuthis (D. T. 
donovan, personal communication, 1998). 
In translucent or semitranslucent coleoids, 
the reservoir portion of the ink sac has an 
additional thick layer formed of iridophores, 
giving it a silvery sheen so that the darkly 
pigmented ink within the sac is obscured 
(Mangold, Bidder, & PortMann, 1989a).

The ink is a suspension of nearly pure 
melanin; it is usually black and serves as a 
visual cloaking device as it hangs suspended 
like a cloud in the water after ejection as 
a plume. In some loliginids, it also acts as 
a defensive olfactory or alarm substance 
(luCero, farrington, & gilly, 1994). The 
ink of the cuttlefish, Sepia officinalis, consists 
of uniformly spherical granules of melanin, 
56 to 161 nm in diameter (flood, deiBel, 
& MorriS, 1990). An ink sac found in the 
phragmocone of an unnamed coleoid of 
the Middle Pennsylvanian is divided into 
compartments. The substance within the sac 
has a globular ultrastructure that is identical 
to the dried ink of a Recent loliginid squid, 
Loligo forbesi (doguzhaeva, MaPeS, & 
Mutvei, 2010). The infrared spectra of the 
ink sacs from a fossil, Loligosepia (Geotheutis) 

bollensis (180 Ma), and from a Recent Sepia 
officinalis, indicate that the fossil ink is 
unchanged melanin (BeyerMan & haSen-
Maier, 1973). Ultrastructural studies of the 
ink sac of Loligo pealei show that melanogen-
esis is heralded by the aggregation of cyto-
plasmic granules forming melanin spheres 
that range from 40 to 50 nm (BudelMann, 
SChiPP, & von Boletzky, 1997); these 
group into packets to be expelled into the 
ink reservoir (vogel & MCgregor, 1964). 
Spherical granules of several sorts, differing 
in size and electron density, are present in 
the ink sac of Heteroteuthis dispar (dilly & 
herring, 1978). The melanins of coleoid 

anus

rectum

reservoir

ink gland

sphincter

sphincter

fig. 33. Ink sac of Sepia officinalis (Girod, 1882).
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ink have a high molecular weight and no 
exact stoichiometric chemical structure or 
corresponding assignable formula (fox, 
1966, 1983). The amino acids tyrosine and 
DOPA (3,4-dihydroxyphenylalanine) are 
involved and are converted by enzymes to 
melanin in the ink sac (waite, 1992). The 
enzyme tyrosinase is present in the ink sac 
(Prota & others, 1981). The highest absor-
bance spectrum of the ink of Sepia officinalis 
is 230 to 270 nm (PauliJ & others, 1991). 
The ink is relatively opaque to infrared rays 
(MitChell, 1937) and x-ray (W. StürMer, 
personal communication, 1981).

Ink made from Sepia was referred to by 
Romans in classical texts (MitChell, 1937). 
BuCkland (1836) commented that georgeS 
Cuvier (1817) drew his illustrations of 
extant Sepia with ink extracted from its own 
ink sac. BuCkland (1836), too, used the ink 
extracted from fossil specimens to draw the 
remains of extinct species, including Loli-
gosepia from the lower Lias of Lyme Regis, 
Dorset.
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