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Abstract: Paphiopedilum delenatii is a native orchid of Vietnam with highly attractive floral traits.
Unfortunately, it is now listed as a critically endangered species with a few hundred individuals
remaining in nature. In this study, we performed next-generation sequencing of P. delenatii and
assembled its complete chloroplast genome. The whole chloroplast genome of P. delenatii was 160,955
bp in size, 35.6% of which was GC content, and exhibited typical quadripartite structure of plastid
genomes with four distinct regions, including the large and small single-copy regions and a pair
of inverted repeat regions. There were, in total, 130 genes annotated in the genome: 77 coding
genes, 39 tRNA genes, 8 rRNA genes, and 6 pseudogenes. The loss of ndh genes and variation in
inverted repeat (IR) boundaries as well as data of simple sequence repeats (SSRs) and divergent
hotspots provided useful information for identification applications and phylogenetic studies of
Paphiopedilum species. Whole chloroplast genomes could be used as an effective super barcode for
species identification or for developing other identification markers, which subsequently serves the
conservation of Paphiopedilum species.
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1. Introduction

The sequence of chloroplast (cp) genomes can provide information for studying genetic
relationships, gene transfer, cloning, and domestication of species [1]. Much research has shown the
role of plastomes in practice. The project of chloroplast genome sequencing and barcoding Fritillaria [2]
helped identify Fritillaria species for medical use. The sequencing of the chloroplast genome of the
rice variety Nagina-22 [3] enriched genetic resources to support the breeding and crossbreeding of
next-generation rice varieties. Na Tian et al. (2018) sequenced and analyzed the chloroplast genome of
Epipremum aureum that contributed to the propagation and support of gene transfer of this medicinal
plant [4]. Shuai Guo et al. (2018) successfully sequenced the chloroplast genome of Paeonia ostii which
enhanced the productivity of this medicinal herb [5]. In orchids, the sequencing and analysis of cp
genomes helped explain phylogenetic relationships and the evolutionary path of Orchidaceae [6,7].
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Currently in Vietnam, only Panax vietnamesis (Ngoc Linh Ginseng), a valuable endemic Vietnamese
ginseng, has had the chloroplast genome sequenced based on four species (two of Panax vietnamensis,
one of P. bipinnatifidus, and one of P. stipuleanatus). From then, the study analyzed phylogenetic species
and identified four potential indicators for molecular barcode for classification of this target group [8].

Paphiopedilum are the favorite ornamental plants in the world including in Vietnam. Due to its
natural and specific beauty, Paphiopedilum is hunted and traded in large numbers, leading to danger
of extinction. Vietnam is the country with the largest number of Paphiopedilum species in the world.
However, according to IUCN (International Union for Conservation of Nature) statistics, of nearly
24 species of Vietnamese Paphiopedilum, 23 species are on the list of threatened with extinction [9].
Paphiopedilum delenatii (Cypripedioideae, Orchidaceae) is usually found at the elevations of 300–750 m
and is distributed mostly in the southern region of Vietnam. P. delenatii has important ornamental
value and is being subjected to overexploitation and habitat destruction. According to the IUCN,
P. delenatii is now a critically endangered (CR) species with approximately 200 mature individuals left.
Controlling over-exploitation and illegal trade is difficult, in which official protectors need to have basic
knowledge of identification techniques to distinguish valuable and common species. Paphiopedilum
species are easily recognized by their specific flower morphology. However, most illegal trades are with
immature, non-flowered plants, which leads to species misidentification. The situation of uncontrolled
exploitation and smuggling subsequently leads to the destruction of more Paphiopedilum species.
Timely identification and control helps to limit illegal collection and smuggling, reducing the risk
of extinction.

Identifying species using molecular techniques is considered to be the most effective because they
give high accuracy results and help to quickly and accurately identify species using a very small number
of samples from plant parts, such as roots, stems, leaves. Because of this, an understanding of genomics
plays a crucial role. Divergent and conserved regions in the genome provide useful information
to establish DNA-based [10–14] as well as PCR-based [13,15–20] identification markers, supporting
the protection and management of species. However, in Orchidaceae, most of the studies are of the
Epidendroideae subfamily. There were up to 99 complete chloroplast genomes of Epidendroideae
species in the RefSeq database (accessed on 8 August 2019). In contrast, there are 3 of Vanilloideae,
3 of Apostasioideae, 9 of Orchidoideae, and 7 of Cypripedioideae. Up to now, 4 cp genomes of
Paphiopedilum (belong to Cypripedioideae) have been sequenced and analyzed, i.e., P. tranlienianum [21],
P. dianthum [22], P. armeniacum, and P. niveum [23]. Hence, this study contributes to data resource of
chloroplast genomes of Cypripedioideae, in particular, and of Orchidaceae, in general.

For the above reasons, we carried out next-generation sequencing of P. delenatii (Figure 1),
an endemic species of Vietnam, and assembled its complete chloroplast genome. Our end goal was to
extend the genetic resources for the endangered P. delenatii and Paphiopedilum species, in general.

2. Results and Discussion

2.1. Chloroplast Genome of Paphiopedilum delenatii

The whole genome of P. delenatii was sequenced from total DNA and resulted in 11.6 million
high-quality paired-end reads with high read coverage of 800×. The complete chloroplast genome was
then assembled separately following the procedure of our previous study [24]. To verify the plastid
genome sequence, we independently compared it to four barcoded markers, i.e., matK, trnL-UAA,
rpoB, and rpoC1 (GenBank accessions MK792631, MK787353, MK876160, and MK792704, respectively),
belonging to the chloroplast genome of the same P. delenatii sample that was sequenced by the Sanger
method in our previous study [25]. The pairwise-alignment results, which showed 100% similarity
between single regions of the assembled genome, proved that the whole plastid genome sequence was
of P. delenatii. This complete plastome sequence was deposited in GenBank under accession MK463585.

The assembled chloroplast genome is 160,955 base pairs (bp) in length (Figure 1). It exhibits a
typical quadripartite structure of the large single-copy (LSC, 89,869 bp) and small single-copy (SSC,
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2694 bp) regions, separated by a pair of inverted repeat regions (IRs, 34,196 bp each). There are 107
unique genes that were annotated (Table 1), including 68 protein-coding genes, 30 transfer RNA genes,
4 ribosomal RNA genes, and 5 pseudogenes. In particular, there are 23 genes in double copies (Table 1).
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Figure 1. Gene map of the Paphiopedilum delenatii chloroplast genome. Annotated genes are colored
according to functional categories. Genes lying outside of the outer circle were transcribed clockwise,
while those inside the circle were transcribed counterclockwise. The innermost, darker gray corresponds
to GC content, while the lighter gray corresponds to AT content. IR, inverted repeat; LSC, large
single-copy region; SSC, small single-copy region; SSU, small subunit; LSU, large subunit; RNA,
ribonucleic acid; NADH, nicotinamide adenine dinucleotide (NAD) + hydrogen (H); ATP, Adenosine
Triphosphate; RubisCO, Ribulose-1,5-bisphosphate carboxylase/oxygenase.

The overall GC content of P. delenatii is 35.6%. The GC contents of the LSC, SSC, and IR regions
are 33.0%, 28.5%, and 39.3%, respectively (Table 2). The GC content in the IR region was higher
than both LSC and SSC regions in all examined Paphiopedilum plastomes. This result agreed with
previous studies [6,7,26,27]. The presence of four ribosomal RNA (rRNA) genes is considered to be
the reason for high GC contents in the IR regions [6,26]. However, another hypothesis proposed that
the higher GC content evolution in IR regions does not relate to natural selection but to GC-biased
gene conversion (gBGC) [7,27]. Accordingly, GC to AT mutations were unstable while AT to GC
ones were fixed after gBGC, and hence the gBGC process prefers repairing DNA mismatches in
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recombining DNA over evolutionary time [28]. Meanwhile, IRs are considered to be recombination
hotspots due to their identical inverted repeat structures, which increase the frequency of intraplastomic
recombination [29,30] and hence increase gBGC.

Table 1. List of annotated genes in the Paphiopedilum delenatii chloroplast genome.

Classification of Genes Name of Genes Number

RNA genes

Ribosomal RNAs rrn4.5(× 2), rrn5(× 2), rrn16(× 2), rrn23(× 2) 8

Transfer RNAs

trnA_UGC(× 2), trnC_GCA, trnD_GUC, trnE_UUC,
trnF_GAA, trnfM_CAU, trnG_GCC, trnG_UCC, trnH_GUG(×
2), trnI_CAU(× 2), trnI_GAU(× 2), trnK_UUU, trnL_CAA(× 2),

trnL_UAA, trnL_UAG(× 2), trnM_CAU, trnN_GUU(× 2),
trnP_UGG, trnQ_UUG, trnR_ACG(× 2), trnR_UCU,

trnS_GCU, trnS_GGA, trnS_UGA, trnT_GGU, trnT_UGU,
trnV_GAC(× 2), trnV_UAC, trnW_CCA, trnY_GUA

39

Protein-coding
genes

Photosystem I psaA, psaB, psaC, psaI, psaJ 5

Photosystem II psbA, psbB, psbC, psbD, psbE, psbF, psbH, psbI, psbJ, psbK, psbL,
psbM, psbN, psbT, psbZ 15

Cytochrome petA, petB, petD, petG, petL, petN 6

ATP synthase atpA, atpB, atpE, atpF, atpH, atpI 6

Rubisco rbcL 1

Ribosomal
proteins-small units

rps11, rps12(× 2), rps14, rps15(× 2), rps16, rps18, rps19(× 2), rps2,
rps3, rps4, rps7(× 2), rps8 16

Ribosomal proteins-
large units

rpl14, rpl16, rpl2(× 2), rpl20, rpl22, rpl23(× 2), rpl32(× 2),
rpl33, rpl36 12

RNA polymerase rpoA, rpoB, rpoC1, rpoC2 4

Miscellaneous accD, ccsA, cemA, clpP, inf A, matK 6

Hypothetical chloroplast
reading frames (ycf ) ycf 1(× 2), ycf 2(× 2), ycf 3, ycf 4 6

Pseudogenes NADH dehydrogenase ndhB(× 2), ndhC, ndhD, ndhJ, ndhK 6

Total 130

(× 2) refers to genes in double copies.

Table 2. Basic features of four Paphiopedilum chloroplast genomes.

Species Paphiopedilum
delenatii

Paphiopedilum
armeniacum

Paphiopedilum
niveum

Paphiopedilum
dianthum

Total length (bp) 160,955 162,682 159,108 154,699

IR length (bp) 34,196 33,641 31,978 32,711

LSC length (bp) 89,869 91,734 89,958 86,861

SSC length (bp) 2694 3666 5194 2416

Total gene number 130 129 126 130

Coding sequence (CDS) number 77 77 74 79

rRNA number 8 8 8 8

tRNA number 39 38 38 38

Pseudogene number 6 6 6 5

Overall GC content (%) 35.6 35.4 35.0 35.0

GC content of IR (%) 39.3 39.0 40.0 39.0

GC content of LSC (%) 33 32.6 32.0 33.0

GC content of SSC (%) 28.5 31.0 29.0 29.0

GenBank accession MK463585 NC_026779.1 NC_026776.1 NC_036958.1
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GC content has been reported to be different not only between different regions of a genome,
but also between different genomes of different species [31,32]. Overall GC content of some orchid
plastomes were recorded, e.g., Dendrobium moniliforme (37.54%), Goodyera schlechtendaliana (37.07%),
Vanilla aphylla (35.02%) [33], Cremastra appendiculata (37.2%), Calanthe davidii (36.9%), Epipactis mairei
(37.2%), and Platanthera japonica (37%) [6], with their plastome lengths ranging from 148,778 to 162,835
bp. GC content of the Paphiopedilum species in our study range from 35% to 35.6%, with genome
lengths of 154.699 to 162.682 bp, similar to other orchids. Hence, Paphiopedilum and Vanilla contain
lower a GC percent, which has been suggested to mean that the sequence variability was higher toward
the enrichment of AT nucleotides [33,34]. The difference in GC content of the nuclear genome has
been proposed as a useful value for identification of species [31]. Karimi et al. (2018) introduced
the GCSpeciesSorter tool for accurately and quickly determining GC content and, hence, classifying
species in a mix of DNA relationships for metagenomic studies [35]. Hence more studies on the GC
content of plant plastomes might provide a useful measurement for the identification of species.

The comparison of four Paphiopedilum plastomes showed that P. delenatii inherits a similar
conserved plastome structure to its Paphiopedilum sisters (Table 2). Some differences are that P. niveum
has the least total gene number and coding sequence (CDS) number and has no protein-coding gene
inf A. P. dianthum contains four genes, ycf 68(× 2) and orf 42(× 2), that are not observed in the other three
plastomes. P. delenatii is distinguished by double copies of trnL_UAG and rpl32 (Table S1).

In P. delenatii, there are six ndh genes, all of which are pseudogenes: ndhB(× 2), ndhC, ndhD, ndhJ,
and ndhK. ndhA, ndhE, ndhF, ndhG, ndhH, and ndhI are entirely absent from the P. delenatii cp genomes.
The same applies to P. armeniacum and P. niveum chloroplast genomes. As for P. dianthum, the RefSeq
annotation showed two pseudogenes: ndhB and ndhD. This result was consistent with the report of
Guo et al. (2012) [36]. However, we aligned the ndhC, ndhJ, and ndhK sequences of P. delenatii to the
three chloroplast genomes of Paphiopedilum and found a version of ndhJ present in the P. dianthum cp
genome (Figure S1).

Ndh genes code for the enzyme NADH dehydrogenase [37,38] that is responsible for electron
transport of chloroplasts. The loss and variation of ndh genes in IR boundaries in orchid species have
been the focus of multiple investigations [23,39,40]. Here, we compared the boundaries between
two inverted repeat regions, i.e IRa and IRb, and LSC and SSC regions of P. delenatii to those of 14
other orchid species from 5 subfamilies of Orchidaceae (Figure 2). All Cypripedioideae species with
high-resolution plastid genome annotations were included. P. delenatii exhibited a highly-conserved
pattern of IR boundaries to those of P. dianthum, P. armeniacum, as well as Vanilla poompona (Vanilloideae):
rpl22 at the IRb/LSC border, 2 copies of the ycf1 gene in IRs, and a pseudogenized rpl22 next to the
border of IRa/LSC. These 4 species possessed rather small SSCs (2037–3666 bp) compared to the
remaining 11 species (13,066–21,921 bp). Interestingly, in the other four Cypripedioideae species, which
were Phragmipedium longifolium, Cypripedium formosanum, Cypripedium japonicum, and Cypripedium
macranthos, ycf1 genes shifted to the borders of IRs and SSC, leaving one functional ycf1 at the SSC/IRa
junction and one pseudogene in IRb, next to the IRb/SSC. The three Cypripedium species had the ndhF
gene in the SSC region, which was absent in all Paphiopedilum. These Cypripedioideae had very
similar features in IR junctions to those of Orchidoideae and Apostasioideae. In Epidendroideae,
IR boundaries of the 4 examined species exhibited higher heterogeneity: ndhF is present in Calanthe
davidii and Neottia ovata, but not in Eulophia zollingerri and Cattleya crispate; ycf1 is mostly in the SSC
region but at the IRb/SSC border in Neottia ovata. In the case of P. niveum, the IR regions, which contain
six palindromic pairs instead of one (Table S2), were not determined. Hence, this species was not
included in Figure 2 and its plastome structure should be interpreted further.
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Figure 2. Schematic representation of the borders between inverted repeats (IRs) and large single-copy
(LSC) and small single-copy (SSC) of P. delenatii and other 15 species from all five subfamilies of
Orchidaceae. Ψ indicates a pseudogene.

The IR region is highly conserved and stable in the chloroplast genome. The expansion and
contraction of the IR region is a common characteristic of the chloroplast genome. Luo et al. (2014)
proposed four types of IR/SSC junction when they examined seven orchids [41]. In our study,
the IR pattern of Cypripedium and Orchidoideae and Apostasioideae species matched with type I;
Phragmipedium longifolium matched with type III; Eulophia zollingery and Cattleya crispata matched with
type IV. None of our examined species matched with Type II, which was the overlap of Ψycf 1 and
ndhF genes [41]. Instead, Vanilla pompona, Calanthe davidii, and Neottia ovata expressed entirely new IR
patterns (Figure 2). Together with the shift of the ycf 1 gene, the presence or absence of the ndhF gene
was one of the factors observed in different IR/SSC patterns. According to Guo et al. [36], among the
Cypripedioideae, Cypripedium species inherited the ndhF gene from their ancestors; this gene has been
lost from the other genera. ndhF gene loss was previously proposed to be correlated with the instability
of IR/SSC boundary [40]. More studies are required to better understand IR evolution. However, this
study emphasized the diversity of IR/SSC boundaries in orchids.

2.2. Repeat and Microsatellite Analysis

For Paphiopedilum delenatii, we found 645 repeats with lengths from 30 to 58 bp (Table S3).
The number of forward repeats were the most common (176/645), followed by palindromic repeats
(168/645), reverse repeats (167/645), and complement repeats (133/645). Most repeats were inside
intergenic spacers. Notably, 23 repeat sequences were entirely located in the ycf2 gene. There were
87 simple sequence repeats (SSRs) or microsatellite sequences identified in the P. delenatii chloroplast
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genome (Table S4). Fifty SSR loci were in intergenic regions, while 21 were in the coding areas (12 of
which were in ycf1 gene). Most SSR loci were mononucleotide repeats with AT motifs (57/87).

Repeats are units of DNA that are similar in the genome. There are short repeats and longer
repeats. SSR (simple sequence repeat), or microsatellite, is a type of low-complexity, short repeat with
1–6 nucleotides. Generally, microsatellite SSRs are widely distributed throughout the genome and have
a great effect on recombination and rearrangement of the genome [42,43]. In our study, there were no
tetranucleotide or longer repeats in the cp genome. This result was consistent with previous reports that
most SSRs include mono- and di-nucleotide repeats while tri-, tetra-, penta-, and hexa-nucleotide repeat
sequences were detected at much lower frequencies [6]. The longer repeat, known as a minisatellite,
contains 10–100 nucleotides. In term of direction and complementary, these repeats are divided into
four types: forward (direct) repeats, reverse repeats (also known as inverted repeat –IR), complement
repeats, and palindromic repeats (reverse complement repeat) [44]. Both microsatellite and minisatellite
repetitive sequences play significant roles in species identification. SSRs were used as DNA barcodes
to clear identify 5 genotypes of Solanum melongena L. by Chinnappareddy et al. [45]. In Orchidaceae,
SSR markers were developed and utilized as identification tools in various studies [18,46–48] due to
their high reproducibility and variability [45,49,50]. In particular, SSRs in the chloroplast genome were
reported to have a high level of polymorphism among species and loci [51]. Sets of cp SSRs were also
isolated and developed for recognizing valuable plants, serving conservation genetics, investigation
of chloroplast genetic structure, adaptive evolution, and population [52–57]. Even single loci, i.e.,
trnL and trnL-F, in chloroplast were used to develop specific primers for amplifying SSR sequences
for a population genetic study [58]. The longer repeat minisatellites were supposed to have specific
mechanisms of evolution and function, forming common, as well as unique, repeat patterns [44,59],
hence they are important tools for taxonomic and phylogenetic studies. Eight out of 13 species in the
Phoenix genus (Arecaceae) were unambiguously distinguished using minisatellites developed from a
700 bp region in the chloroplast spacer trnG (GCC)-trnfM (CAU) [60]. Our study provided primary
data of SSRs and minisatellite repeats for further research on identifying applications.

2.3. Phylogenetic and Species Resolution Analyses

We included chloroplast genomes of P. niveum and all the Orchidaceae species examined in the
above IR boundaries section to understand the phylogenetic relationship between P. delenatii and other
species across subfamilies (Figure 3). Artemisia argyi was set as the outgroup. Firstly, a whole-plastome
tree was constructed. As expected, P. delenatii along with other Paphiopedilum again showed a high
similarity and close phylogenetic relationship to each other. The 6 species of Cypripedioideae were
clustered together into one clade, excluding C. macranthos and C. formosanum. Although the IR boundary
analysis showed similar patterns between V. pompona and those of Paphiopedilum accessions, in term
of the whole plastome, V. pompona was more similar to Epidendroideae and Orchidoideae. Next,
we constructed phylogenetic trees based on two popular short barcodes: matK and rbcL. All three
phylogenetic trees presented a full separation of 16 species. This might be because the analysis consisted
of distinct species. In contrast to the plastome tree, Apostasia wallichii was now segregated in an
independent monophyletic branch, as expected, since it belongs to a different subfamily. Furthermore,
C. formosanum was grouped with the members of its genus. A dot plot similar analysis on the
whole-genome alignment of P. delenatii to other species (Figure S2) found that C. formosanum and
A. wallichii both had an inverse similarity fragments located in the LSC region, at the position of
10,000–80,000 bp. This led to greater genetic similarities between C. formosanum and A. wallichii, which
grouped them into one clade in the whole-plastome tree. C. macranthos was closer to its sisters of
Cyprideoideae in terms of nucleotide polymorphism (Figures S3 and S4), but differed in terms of
amino acid variations, which explains the separation of this species in the phylogenetic trees.
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The chloroplast genome was proposed to be used as meta-barcode by some previous studies [61–64].
Hence, two universal mini-barcodes, matK and rbcL, were established in order to compare the effects of
species resolution under the tree-based method. From the above analyses, using the whole genome for
phylogenetic relationship analysis might not be practical due to the unexpected problem of inversion.
However, for barcoding, the species separation, but not relationship, is of first concern. In this respect,
using the whole plastome as a super-barcode is effective. Besides, we also analyzed genetic distance
matrices among species using plastome, matK and rbcL, data independently (Table S5). The average,
minimum, and maximum of distances were calculated. Except for rbcL with a low average value
(0.034), the average genetic distance by matK (0.122) and by plastome (0.112) were all high. Although
the average values were not much different between plastomic and matK data, the minimum value of
matK (0.005) was much lower than that of the plastome (0.012). While some previous studies showed
that matK was not able to identify all species in some close taxonomic groups [65,66], our result suggests
that the entire cp genome could do better than matK in identifying closely related species.

2.4. Divergence of Hotspot Regions

We calculated the nucleotide variability in the chloroplast genomes of the four analyzed species:
Paphiopedilum delenatii, Paphiopedilum armeniacum, Paphiopedilum niveum, and Paphiopedilum dianthum.
The P. delenatii plastome was highly conserved compared to other cp genomes of Paphiopedilum species.
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The number of single nucleotide polymorphism (SNP) was 24,211 out of 170,423 bp of the alignment.
The values of nucleotide diversity (pi) ranged from 0 to 0.34889 and the diversity threshold was 0.079.
However, the diversity threshold decreased at 0.0377 when the SSC regions were excluded from the
analysis. At this threshold, 11 highly-variable regions were suggested as potential markers in species
identification and phylogeny study of the Paphiopedilum genus (Figure 4). These 11 highly-variable
regions included 1 protein-coding gene (clpP) and 8 intergenic spacers (matK-rps16, trnR_UCU-atpA,
psbM-trnD_GUC, trnE_UUC-trnT_GGU, accD-psaI, psbE-petL, trnP_UGG-psaJ, and rpl23-trnL_CAU)
in the LSC region; 1 intergenic spacer (ycf 1-rps15) in the repeat region IRb; and 1 intergenic spacer
(ccsA-psaC) in the SSC region (Table S6).
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In the study of Bi et al. (2018), nucleotide diversity of eight Fritillaria species ranged from 0 to
0.02583 [67]. The pi value was from 0 to 0.05872 for the nine cp genomes of Eragrostis species in the
study of Somaratne et al. (2019) [68]. In comparison with those studies, the pi value (0–0.34889) in our
study was much higher. The reason was that there were two fragments with extremely high divergence
within the SSC region that were not present in the mentioned studies. Therefore, we tried another
analysis in which the SSC region was removed. The threshold was significantly decreased, at 0.0377
instead of 0.079, for the whole cp genomes. The high divergence of SSC was also reported recently by
Cui et al. (2019). A comparison of 10 ginger species showed an average value of nucleotide variability
of 0.0187, while it was only 0.0075 when comparing 4 species of the same family [69]. Therefore,
SSC seemed to rapidly evolve compared to LSC. The two inverted regions, IRa and IRb, were quite
conserved, with low nucleotide diversity. In addition, the narrow endemism is also a prominent
feature of Paphiopedilum species. Of the known species, 72% are narrowly endemic with very limited
distribution [70]. The local distribution and ecological separation might be the reason for considerable
genetic differences between species in the same genus and might clarify the high nucleotide diversity
of Paphiopedilum species in our study.

Using short sequences for the identification of a species is still the current universal method due
to its simple and time-saving traits. Indeed, the average divergence of matK (0.122) was even higher
than that of the plastome (0.112) in our study. The reason for this is that the plastome contains both
diverse and conserved regions while matK is a selected, high-variable locus [71]. This result proved the
species separation capability of this mini-barcode in comparison with the super one. Common markers,
such as the internal transcribed spacer (ITS) in the nucleus and cp loci rbcL, matK, ycf 1, trnL, trnL-F,
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atpF-atpH, trnH-psbA, etc., were the most used. However, as no single locus can resolve the entire
plant species [72,73], new variable sites are still being sought [6,10,12,74,75]. In the chloroplast genome,
SNPs were not random but clustered as “hotspots” [76], which were defined as highly-variable loci [77].
A series of new findings for species-specific barcodes was developed recently. Protein-coding gene
clpP and intergenic spacer rps15-ycf 1 from our proposal were also recommended previously [76,78–80].
The hot region of trnE-trnT was matched with the study of Zhao et al. (2018) [77]. Although rps16 and
its intergenic spacer with trnQ were suggested in much research [10,11,26,74,81], our study introduced
a new intergenic spacer of this gene, i.e., rps16-matK. However, searching for new variable sites as
candidate barcodes is just the first step. Primer designing and amplification success are also required
for barcoding effects [10,25,74].

Besides barcoding applications, hot region information is also used for developing other
PCR-based identification techniques. rDNA-ITS (internal transcribed spacer) sequences were used to
design species-specific SCAR (sequence characterized amplified regions) markers, in which 3 primer
pairs—SCAR-600armF/Pap-ITS2R, SCAR-300delF/Pap-ITS2R, and SCAR-700micF/Pap-ITS2R—were
effectively used to amplify and recognize three Paphiopedilum species (P. armeniacum, P. micranthum,
and P. delenatii) and their hybrids [17]. Similarly, two DNA sequences, rpoC2 and atpF-atpH, were
reported to contain species-specific SNPs, insertions, and deletions. This information was utilized to
develop 3 species-specific primers for quickly identifying species: Cypripedium guttatum var. koreanum,
C. japonicum, and C. formosanum of the Korean Cypripedium genus. This ARMS (amplification refractory
mutation system) method was also based on electrophoresis technique without a sequencing step [15].
In another study (2014), the divergent nucleotide sequence of the ITS region and 3 cpDNA fragments
were amplified and subsequently cut with several restriction enzymes to create species-specific types
of DNA patterns. The PCR-restriction fragment length polymorphism (PCR-RFLP) approach was
successful in the identification of 25 native Dendrobium species in Thailand [16].

3. Materials and Methods

3.1. Plant Material, DNA Extraction, and Sequencing

The sample of Paphiopedilum delenatii plant (Figure 5) was identified by the shape of the flowering
plant and stored at −80 ◦C at Tay Nguyen Biological Institute, Vietnam. First, 0.2 g of leaf was ground
with 5 µL proteinase K, 3mL of a mixture of beta-mer and extract buffer at 65 ◦C, then incubated
for 30 min at 65 ◦C. The sample was had 600 uL P:C:I added and was centrifuged for 10 min at
10,000 rpm. After adding 5 uL of RNAse and incubating at 37 ◦C, the sample had 600 uL C:I added.
DNA was precipitated by isopropanol and incubated overnight at −20 ◦C. The pellet, obtained by
centrifugation, was washed with 70%, 80%, and 90% ethanol. DNA was suspended in 25 uL TE and
stored at −20 ◦C. The library construction and whole-genome sequencing of P. delenatii was performed
by GENEWIZ (South Plainfield, NJ, USA). Sequencing was carried out on an Illumina HiSeq (Genewiz,
South Plainfield, USA) using a 2 × 150 paired-end (PE) configuration.
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3.2. Read Data Processing and Chloroplast Genome Assembly

Demultiplexing was performed by bcl2fastq 2.17. Raw data was filtered as follows: (1) discard
pair-end reads with adapter, (2) discard pair-end reads when the content of N bases is more than 10% in
either read, and (3) discard pair-end reads when the ration of bases of low quality (Q < 20) is more than
0.5 in either read. The chloroplast genome of P. delenatii was reconstructed using NOVOPlasty 2.7.2 [82],
with the complete chloroplast genome of P. armeniacum (RefSeq: NC_026779.1) as the reference genome
and the rbcL from the same plastid genome of P. armeniacum as the seed sequence. The annotation was
done by GeSeq [83] and further manually curated by comparison to the annotations of P. armeniacum,
P. dianthum, and P. niveum in GenBank. The genome map was drawn by OGDRAW [84].

3.3. Repeat Sequence and Microsatellite Identification

REPuter [85] was used to calculate DNA repeats, including forward, reverse, complement,
and palindromic kinds of repeat sequences. The repeats were identified with a hamming distance of
3 and minimum repeat size of 30 [6]. MISA [86] was used to identify microsatellite sequences with
default parameters.

3.4. Examination of IR Junctions

We manually examined the IR junctions of all included orchid species. Annotations of IRs, SSC,
LSC, and genes were based on their respective annotations in the RefSeq database. For genomes
without IR annotations, we used REPuter to identify their pairs of inverted repeats.

3.5. Phylogenetic Analysis

The phylogenetic analysis was based on the complete genome sequences of 16 orchid species
under the maximum likelihood criterion and the GTR + I + G nucleotide substitution model using R
package phangorn [87]. Node was calculated from 1000 bootstrap replicates. Figtree [88] was used to
visualize the resulting tree. The multiple alignment data of 16 plastomes was used to calculate variable
sites and genetic distance matrices using MEGA [89]. MAFFT [90] was used to pairwise align and
construct dot-plot graph of these 16 plastomes.
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3.6. Nucleotide Variability Calculation

DnaSP v6.1 was used to extract the parsimony variable site density over the plastid genome
alignment of four analyzed Paphiopedilum species with a sliding window (window length≤ 600 and step
size = 200). Nucleotide diversity was calculated by the ratio of Pi and window length. The diversity
threshold was 0.079, calculated by the sum of the average and double the standard deviation [67].
Regions with diversity higher than the threshold were recommended as highly variable regions.

4. Conclusions

In this study, we aimed to expand the genetic resource of the endangered species P. delenatii by
next-generation sequencing and chloroplast genome assembly. P. delenatii chloroplast genome exhibited
a quadripartite structure of 160,955 bp and a total of 130 genes, which were highly conserved compared
to other Paphiopedilum species. All six ndh genes in the P. delenatii cp genome were pseudogenes.
The presence or absence of the ndhF gene and the shift of ycf 1 and rpl22 genes on the boundaries
between IRs and LSC and SSC regions resulted in different IR/SSC patterns that can be useful in
inferring species relationships. A reference of 87 SSRs/minisatellite repeats in P. delenatii was proposed
for further research on identification applications. Eight highly-variable regions were suggested
as the potential markers in barcoding and phylogeny studies of Paphiopedilum genus. Hence, the
sequence data of P. delenatii complete chloroplast genome could be used directly in the identification of
Paphiopedilum species or for the development of other identification markers, such as SSR, barcoding,
or species-specific PCR-based techniques. Although it is still costly and time-consuming compared to
short DNA sequencing, genome sequencing costs have decreased significantly in recent years. Along
with the development of other whole genome sequencing without amplification steps, e.g., Nanopore
technique, we might hope that sequencing of the whole genome would be easier and convenient in
the future.
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Abbreviation

IUCN International Union for Conservation of Nature
Cp chloroplast
CR Critically endangered
IR Inverted repeat region
SSC Small single-copy region
LSC Large single-copy region
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gBGC GC-biased gene conversion
SSR Simple sequence repeat
SNP Single nucleotide polymorphism
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