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Abstract: Chalcones are secondary metabolites belonging to the flavonoid (C6-C3-C6 system) family
that are ubiquitous in edible and medicinal plants, and they are bioprecursors of plant flavonoids.
Chalcones and their natural derivatives are important intermediates of the flavonoid biosynthetic
pathway. Plants containing chalcones have been used in traditional medicines since antiquity. Chal-
cones are basically α,β-unsaturated ketones that exert great diversity in pharmacological activities
such as antioxidant, anticancer, antimicrobial, antiviral, antitubercular, antiplasmodial, antileishma-
nial, immunosuppressive, anti-inflammatory, and so on. This review provides an insight into the
chemistry, biosynthesis, and occurrence of chalcones from natural sources, particularly dietary and
medicinal plants. Furthermore, the pharmacological, pharmacokinetics, and toxicological aspects of
naturally occurring chalcone derivatives are also discussed herein. In view of having tremendous
pharmacological potential, chalcone scaffolds/chalcone derivatives and bioflavonoids after subtle
chemical modification could serve as a reliable platform for natural products-based drug discovery
toward promising drug lead molecules/drug candidates.

Keywords: chalcone; flavonoids; biosynthesis; chemistry; bioactivities; pharmacokinetics

1. Introduction

Chalcones (or 1,3-diaryl-2-propen-1-ones) are one of the major secondary metabolites
of plants belonging to the flavonoid family. These metabolites are abundantly present
in edible plants. A majority of naturally occurring chalcones is polyhydroxylated aro-
matic compounds, and they are considered the bioprecursors of open chain flavonoids,
flavonoids, and isoflavonoids. Due to the presence of phenolic groups, chalcones have a
radical quenching property, which has created interest among researchers to investigate
chalcone-rich plant extracts in search for therapeutically useful compounds. The therapeu-
tic applications of chalcones have been associated since time immemorial for the treatment
of different diseases [1]. Chalconarngenin, phloretin, and its glucosidephloridzin (phloretin
2′-O-glucose) are some of the most common chalcones present in food [2].

Chalcones and their structural analogues, either natural or synthetic, are known
to exhibit diverse therapeutic and pharmacological activities such as antioxidant, anti-
inflammatory, antiplasmodial (antimalarial), antileishmanial, antitubercular, antimicrobial,
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antiviral, anticancer, modulation of P-glycoprotein (P-gp) mediated multi-drug resistance,
and immunosupportive potential. Studies have revealed that compounds with a chalcone-
based structure and/or chalcone template also show a profound pharmacological influence
on the cardiovascular, cerebrovascular, and neurovascular systems. Some chalcones have
been associated with anti-peptic ulcer and antihypertensive activities. Some other activities
have been also reported as anti-spasmodic, tranquilizing, analgesic, sedative, anti-thrombic,
vasodilatory, estrogenic, anesthetic, anti-coagulating, anti-convulsant, and diuretic activi-
ties. Moreover, chalcones are considered as important pharmacophores of various bioactive
natural products and therefore display a variety of biological potential. Representative
examples of naturally occurring bioactive chalcones are cardamonin, a hydroxychalcone
isolated from a Zingiberous plant species, which possesses antimutagenic, vasorelaxant,
and anti-inflammatory properties, and xanthohumol, the principal prenylated flavonoid of
the hop plant, which is characterized as a broad-spectrum cancer chemopreventing agent
in vitro [3,4].

This review aims to discuss detailed aspects of naturally occurring chalcones includ-
ing their biosynthesis, chemistry, and spectrum of bioactivities. In addition, this review
also highlights the bioavailability issues associated with natural chalcones, along with
pharmacokinetics and toxicities. All the relevant databases available in electronic search en-
gines such as Web of Science, ScienceDirect, Pubmed, and Scopus were explored to collect
relevant information for the terms such as chalcones, natural and dietary chalcones, chal-
cone derivatives, pharmacological activities, and the bioavailability or pharmacokinetics of
naturally occurring chalcones.

2. Chalcone: Structure, Nomenclature, and Chemistry

Chalcone is a vital intermediate substance in the biosynthetic pathway of flavonoids.
The term chalcone was coined by Kostanecki and Tomar who first demonstrated chalcone
as banzalacetophenone or benzylidene acetophenone [5]. In recent years, the chemistry
and synthesis of chalcone-based bioactive molecules have become an interesting area of
research in the field of medicinal chemistry and drug discovery for their potential as a
good structural synthon with wide molecular diversity (natural as well as synthetic) and
having an array of biodynamic or pharmacological activities.

2.1. Chemical Structure

Chalcones are α,β-unsaturated ketones containing a reactive ketoethylenic group i.e.,
–CO-CH=CH-. These compounds are also known as benzalacetophenone or benzylidene
acetophenone. Chemically, chalcones are 1,3-diaryl-2-propen-1-one, in which two aromatic
rings are linked by an aliphatic three-carbon α,β-unsaturated carbonyl system (Figure 1a).
Chalcones possess conjugated double bonds and a completely delocalized π-electron
system on both benzene rings. They constitute the skeleton of open-chain flavonoids in
which the three-carbon aliphatic system is used as an adjunct between two aromatic rings A
and B [6]. Chalcones are small, low molecular weight (in the range of 300–600 g/mol), non-
chiral molecules with relatively high lipophilicity (Log P ≈ 5–7). As a result of the presence
of the chromophore -CO-CH=CH-, chalcones are colored compounds. Chalcones may exist
as either cis (E, 1) or trans (Z, 2) isomeric forms. The trans form is thermodynamically more
stable than the cis form [6].

2.2. Nomenclature

Chalcone or chalconoid is an enone and an aromatic ketone, which forms the central
core for several important biological compounds. Benzylideneacetophenone is the parent
member of the chalcone series. The alternative names given to chalcone are benzalacetophe-
none, phenyl styryl ketone γ-oxo-α,γ-diphenyl-α-propylene, α-phenyl-β-benzoylethylene,
and β-phenylacrylophenone. Different methods of nomenclatures for chalcone are avail-
able. The following two nomenclatures have been adopted by the “Chemical Abstracts”
published by American Chemical Society (I) and the British Chemical Abstract and Journal
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of Chemical Society (II) (Figure 1b). The IUPAC name of chalcone is 1,3-diphenyl-2-propen-
1-one [6].
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2.3. Occurrence of Chalcones

Chalcones are secondary plant metabolites, belonging to the flavonoid family that
are abundantly present in edible plants, particularly fruits and vegetables. Therefore,
chalcones belong to an important class of plant flavonoids (C6-C3-C6 system) (Figure 1c).
Chalcones and their derivatives are important intermediates of the flavonoid biosynthetic
pathway. Flavonoids are an important group of naturally occurring bioactive compounds.
The majority of naturally occurring chalcones are polyhydroxylated aromatic compounds
abundantly found in fruits, grains, legumes, vegetables, and beverages such as tea, coffee,
red wine, beer, etc. The medicinal benefits of polyhydroxylated chalcones are mainly
attributed due to their free radical scavenging activity (antioxidant property), which in turn
mitigates oxidative stress-induced tissue damage associated with some chronic disorders
such as cardiovascular diseases, inflammatory diseases and neurological disorders, and
certain infectious diseases [7–9].

3. Biosynthesis of Chalcones

Chalcone is one of the precursors in the biosynthesis of flavonoids, isoflavonoids,
anthocyanidins, proanthocyanidins, and other polyphenolic compounds [7]. Chalcone syn-
thase (CHS) is the major enzyme that plays a vital role in the biosynthesis of chalcones [8,9].
The effectiveness of chalcone synthase (CHS) as an enzyme for chalcone formation is
brought about by the presence of two active sites in the enzyme. One of the active sites
referred to as the upper domain consists of four amino acids. The second active site referred
as the lower domain is also essential for chalcone formation [7]. Phenylalanine is the major
precursor for chalcones biosynthesis (phenylalanine is formed from chorismate as a precur-
sor). p-Coumaroyl CoA and malonyl CoA are other important biomolecules required for
the formation of chalcones. However, p-coumaroyl CoA is formed from phenylalanine [9].
Phenylalanine undergoes deamination at the aliphatic chain to form cinnamic acid. This is
catalyzed by phenylalanine ammonia-lyase (PAL), which is followed by hydroxylation at
the para position of the phenylalanine aromatic ring mediated by cinnamate-4-hydroxylase
to form p-coumaric acid. Succinyl-CoA substitution of the hydroxyl group occurs at the
aliphatic carboxyl group of the p-coumaric acid to yield p-coumaroyl CoA by the enzyme
4-coumaroyl-coenzyme A ligase. CHS catalyzes the condensation of three molecules of
malonyl CoA and p-coumaroyl CoA (one molecule) successively. The process also involves
the decarboxylation, cyclization, and aromatization of malonyl CoA, which is mediated by
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the four amino acids (Asn 336, His 303, Phe 215, and Cys 164) present in the active site of
CHS [9]. The biosynthesis of chalcones is depicted in Figure 2.

Molecules 2021, 26, x FOR PEER REVIEW 4 of 21 
 

 

hydroxyl group occurs at the aliphatic carboxyl group of the p-coumaric acid to yield 
p-coumaroyl CoA by the enzyme 4-coumaroyl-coenzyme A ligase. CHS catalyzes the 
condensation of three molecules of malonyl CoA and p-coumaroyl CoA (one molecule) 
successively. The process also involves the decarboxylation, cyclization, and aromatiza-
tion of malonyl CoA, which is mediated by the four amino acids (Asn 336, His 303, Phe 
215, and Cys 164) present in the active site of CHS [9]. The biosynthesis of chalcones is 
depicted in Figure 2. 

 
Figure 2. Biosynthesis of chalcone. PAL: phenylalanine ammonia-lyase, C4H: cinnamate 
4-hydroxylase, 4CL: 4-coumarate-CoA ligase. 

The chalcone formed is a biosynthetic precursor for various polyphenolic classes of 
natural products such as flavanones, flavonols, flavanols, dihydroflavonols, isoflavones, 
flavones, isoflavonoids, aurone, and anthocyanidins [4]. The biosynthesis of various 
chalcone bioprecursors is represented in Figure 3. 

The formation of prenylated chalcones has been reported to be mediated by prenyl-
transferase, which plays a significant role in transferring prenyl units to an acceptor 
molecule from an isoprenyl source, which is usually dimethylallyl pyrophosphate 
(DMAPP) (Figure 4a) [10]. 

In the formation of methoxylated chalcones, methylation takes place through a cat-
alytic mediation of S-adenosyl-L-methionine-dependent-O-methyltransferase (OMTs) 
[11]. It mediates the transfer of a methyl group from a donor (S-adenosyl-L-methionine) 
to an acceptor molecule. Methylenedioxy chalcone is generated through the formation of 
methylenedioxy bridges and catalyzed by cytochrome P450-dependent enzymes along-
side NADPH, which acts as a cofactor (Figure 4b) [12,13]. Retro chalcones have been re-
ported to be formed by the inversion of α, β-unsaturated ketone during the biosynthesis 
of 6′-deoxychalconeisoliquiritigenin (Figure 4c) [14]. It has been reported that the pres-
ence of CHS and a polyketide reductase (CHR) as the active enzymes in a biosynthetic 
process generates 6′-deoxychalcones (Figure 4d) [13]. 

During chalcone biosynthesis, the linkage of a sugar molecule catalyzed by the en-
zyme uridine diphosphate glycosyltransferase yields glycosylated chalcones. In this case, 
a nucleophilic substitution reaction is used to transfer the sugar molecule from a donor 
molecule (UDP-glycoside) to an acceptor molecule [15,16]. 
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The chalcone formed is a biosynthetic precursor for various polyphenolic classes of
natural products such as flavanones, flavonols, flavanols, dihydroflavonols, isoflavones,
flavones, isoflavonoids, aurone, and anthocyanidins [4]. The biosynthesis of various
chalcone bioprecursors is represented in Figure 3.

The formation of prenylated chalcones has been reported to be mediated by prenyl-
transferase, which plays a significant role in transferring prenyl units to an acceptor
molecule from an isoprenyl source, which is usually dimethylallyl pyrophosphate (DMAPP)
(Figure 4a) [10].

In the formation of methoxylated chalcones, methylation takes place through a cat-
alytic mediation of S-adenosyl-L-methionine-dependent-O-methyltransferase (OMTs) [11].
It mediates the transfer of a methyl group from a donor (S-adenosyl-L-methionine) to
an acceptor molecule. Methylenedioxy chalcone is generated through the formation of
methylenedioxy bridges and catalyzed by cytochrome P450-dependent enzymes alongside
NADPH, which acts as a cofactor (Figure 4b) [12,13]. Retro chalcones have been reported
to be formed by the inversion of α, β-unsaturated ketone during the biosynthesis of 6′-
deoxychalconeisoliquiritigenin (Figure 4c) [14]. It has been reported that the presence of
CHS and a polyketide reductase (CHR) as the active enzymes in a biosynthetic process
generates 6′-deoxychalcones (Figure 4d) [13].

During chalcone biosynthesis, the linkage of a sugar molecule catalyzed by the enzyme
uridine diphosphate glycosyltransferase yields glycosylated chalcones. In this case, a
nucleophilic substitution reaction is used to transfer the sugar molecule from a donor
molecule (UDP-glycoside) to an acceptor molecule [15,16].



Molecules 2021, 26, 7177 5 of 21Molecules 2021, 26, x FOR PEER REVIEW 5 of 21 
 

 

 
Figure 3. Biosynthesis of chalcone precursors. DFR: dihydroflavonol-4-reductase, IFS: isoflavonone 
synthase, F3H: flavanone-3-hydroxylase, FLS: flavonol synthase, UF3GT: UDP-glucose flavo-
noid-3-O-glucosyltransferase. 

 
Figure 4. Biosynthesis of (a) prenylated chalcones, (b) methoxychalcone and methylenedioxychalcone, (c) retro chalcones, 
and (d) dedoxychalcones. 

Figure 3. Biosynthesis of chalcone precursors. DFR: dihydroflavonol-4-reductase, IFS: isoflavonone
synthase, F3H: flavanone-3-hydroxylase, FLS: flavonol synthase, UF3GT: UDP-glucose flavonoid-3-
O-glucosyltransferase.

Molecules 2021, 26, x FOR PEER REVIEW 5 of 21 
 

 

 
Figure 3. Biosynthesis of chalcone precursors. DFR: dihydroflavonol-4-reductase, IFS: isoflavonone 
synthase, F3H: flavanone-3-hydroxylase, FLS: flavonol synthase, UF3GT: UDP-glucose flavo-
noid-3-O-glucosyltransferase. 

 
Figure 4. Biosynthesis of (a) prenylated chalcones, (b) methoxychalcone and methylenedioxychalcone, (c) retro chalcones, 
and (d) dedoxychalcones. 

Figure 4. Biosynthesis of (a) prenylated chalcones, (b) methoxychalcone and methylenedioxychalcone, (c) retro chalcones,
and (d) dedoxychalcones.



Molecules 2021, 26, 7177 6 of 21

4. Naturally Occurring Chalcones

Chalcones occurring in nature have plants as their major source. They are usually
found either in medicinal plants or in dietary plants. In nature, chalcones can be found as
chalcone derivatives and flavonoids [17]. Chalcone derivatives of medicinal importance
can be chemically synthesized in the laboratory by chemical modification of the parent
chalcone scaffolds with a diverse range of structural substitutions [18].

4.1. Chalcones from Medicinal and Dietary Plants

Several chalcones with proven therapeutic activities have been isolated from var-
ious medicinal and potential medicinal plants. Star et al. (1978) carried out the isola-
tion of Pityrogramma triangularis [19] exudate, which yielded a chalcone, 2,6-dihydroxy-4-
methoxy-3-methyl chalcone, which was reported as a new compound. Isoliquiritigenin,
isoliquiritin, neoisoliquiritin [20], licochalcone A, licochalcone B [21], echinatin [22], licuro-
side [20], and neolicurosid [23] have earlier been isolated from liquorice (Glycyrrhiza glabra),
which is a medicinal plant having therapeutic uses against many human diseases [20].
Two dihydrochalcones, 2,6-dihydroxy-4-methoxy-3,5-dimethyl dihydrochalcone and 4,4,6-
trimethyl-2-(3-phenyl propionyl)-cyclohexane-1,3,5-trione from Myrica gale have been
reported by Uyar et al. (1978) [24]. Crotalaria prostrata, an Indian medicinal plant, has
been reported to yield crotaoprostrin on isolation [25]. Psoralea corylifolia, a known tra-
ditional medicine for Indians and Chinese, has also yielded bavachromanol, a novel
natural chalcone [26]. Dihydrochalcone, dihydroisocordon, and flemistrictin B have
been isolated from Lonchocarpus xuul root extract [27]. In a comprehensive review by
Wang et al. (2020), about 42 chalcones isolated from licorice have been reported [28]. Brack-
enin is a dimeric dihydrochalcone isolated from Brackenridgea zanguebarica belonging to
the Ochnaceae plant family [29]. Six chalcones have been isolated from Angelica keiskei
extracts by column chromatography [30]. Alongside a flavonoid mixtecacin, oaxacin
had been isolated from Tephrosia woodii [31] and epoxychalcone has been isolated from
Tephrosia carrollii [32]. Furthermore, 3,4-dimethoxy chalcone and 3,4-dihyroxy-3′,4,4′-
trimethoxy chalcone have been isolated from Arrabidaea brachypoda flowers [33]. Three
chalcones, flavokawain B, pinostrobn, and pashanone have been also been reported from
seeds of Periscariala pathifolia through chromatographic separations [34]. Four chalcones,
5,7-dihydroxy-4-phenyl-8-(3-phenyl-trans-acry-loyl)-3,4-dihydro-1-benzopyran-2-one, 2′-
hydroxy-4′,6′dimethoxychalcone, 2′,4′-dihydroxy-6′-methoxy-3′,5′-dimethylchalcone, and
2′,4′-dihydroxy-6′-methoxy-3′-methylchalcone (along with three new chalcone deriva-
tives, parasiticin A, parasiticin B, and parasiticin C) have been isolated from the fern
Cyclosorus parasiticus [35]. Chalcones has been identified as a complex mixture of mul-
ticomponents in Helichrysum rugulosum [36]. Glycyrrhizae radix has been identified as a
source of licuraside and isoliquiritin, which are nothing but chalcone derivatives [37]. Mal-
lotophilippens C, D, and E are chalcone derivatives that have been isolated from the fruits
of Malotus philippinensis [38]. About five chalcones have been isolated from Artocarpus no-
bilis 2′,4′,4-trihydroxy-3′-geranylchalcone, 2′,3,4,4′-tetrahydroxy-3′-geranylchalcone, 2′,4′,4-
trihydroxy-3′-[′2-hydroxy-7-methyl-3-methylene-6-oetaenyl] chalcone, 2′,4′,4-trihydroxy-
3′-[6-hydroxy-3,7-dimethyl-′2(E),7-oetadienyl] chalcone, and 2′3,4,4′-tetrahydroxy-3′-[6-
hydroxy-3,7-dimethyl-2(E),7-octadienyl] chalcone [39]. 2-hydroxy-4′, 6′-dibenzyloxy chal-
cone, and 4′, 6′, 8′-trihydroxy chalcones have been isolated from Helichrysum gymno-
comum [40]. Other compounds that have been isolated from Bidens tripartitus are 2′-
hydroxy-4,4′-dimethoxychalcone [41]. Ponganones I and II have been identified as chal-
cone constituents of Pongamia pinnata [42]. 2′,4′-dihydroxy-3′-methoxychalcone and 2′,4′-
dihydroxychalcone have been reported as constituents of Zuccagnia punctata [43]. 2′,4′-
dihydroxy-3′,5′-dimethyl-6′-methoxychalcone has been reported from Dalea versicolor [44].
Cycloaltilisin 6, a dimeric dihydrochalcone, has been identified as a constituent of the
bud cover of Artocarpus altilis [45]. Stipalen, which is a diprenylated chalcone, has been
reported as a constituent of Dalbergia stipulacea root [46]. 3,3′dihyroxy chalcone has been
isolated from primula macrophylla [47]. Even though flemistrictin A has been previously
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isolated from Tephrosia spinosa, two chalcones later, spinochalcones A and B, have been iden-
tified [48]. 4′-O-α-D-(2′′-p-coumaroyl)glucopyranosyl-4,2′,3′-trihydroxychalcone, 4′-O-α-
D-(2′′-p-coumaroyl-6′′-acetyl)glucopyranosyl-4,2′,3′-trihydroxychalcone, and 3′-(3-methyl-
2-butenyl)-4′-O-â-D-glucopyranosyl-4,2′-dihydroxychalcone, and 4′-O-α-D-(2′′-acetyl-6′′-
cinnamoyl)glucopyranosyl-4,2′,3′-trihydroxychalcone, which are chalcone glycosides, have
been isolated from Maclura tinctoria [49]. Calythropsis aurea crude extract yielded ca-
lythropsin and dihydrocalythropsin on isolation [50]. Cedreprenone, 2′-methoxy helikrau-
sic chalcone, cedrediprenone, 5,7-dimethylpinocembrine, flavokawin B, and uvangoletin
have been isolated from the fruits and seeds of Cedrelopis grevei [51]. Anneslea fragrans var.
lanceolata yielded eight dihydrochalcones, davidigenin-2′-O-(6′′-O-4′′′-hydroxybenzoyl)-β-
glucoside, davidigenin-2′-O-(2′′-O-4′′′-hydroxybenzoyL)-β-glucoside, davidigen-2′-O-(3′′-
O-4′′′-hydroxybenzoyl)-β-glucoside, davidigenin-2′-O-(6′′-O-syringoyl)-β-glucopyranoside,
1-O-3,4-dimethoxy-5-hydroxyphenyl-6-O-(3,5-di-O-methylgalloyl)-β-gluco-pyranoside, da-
vidioside, 4′-O-methyldavidioside, and davidigenin on isolation by chromatography [52].
Another two dihydrochalcones, 2′,4,4′,6′-tetrahydroxy-5-(E-3, 7-dimethylocta-2,6-dienyl)-
3-(3-methylbut-2-enyl)dihydrochalcone, and 2′,4,4′,6′-tetrahydroxy-3,5-di(3-methylbut-2-
enyl)dihydrochalcone have also been isolated from the aerial parts of boronia inconspicua [53].
Hostmanin A, B, C, and D, 2′,6′-dihydroxy-4′-methoxy, linderatone, aductine E, and (-)-methyl
linderatin are all dihydrochalcones isolated from piper hostmannianum var. berbicense [54]. 2′,4′-
dihydroxy-6′-methoxy-3′,5′-dimethylchalcone has been extracted from the dried flower,
Cleistocalyx operculatus [55]. The roots of lonchocarpus sericeus yielded derricin and lon-
chocarpin on isolation of its hexane extract [56]. In addition to pedicin, two novel
condensed chalcones, fissistin and isofissistin, have been isolated from the ethyl ac-
etate extract of Fissistigma lanuginosum [57]. Four dihydrochalcones, 10′,6′-diacetoxy-4,4′-
dimethoxydihydrochalcone, 4,2′,6′-trihydroxy-4′-methoxy dihydrochalcone, 2′,6′-dihydroxy-
4′-methoxydihydrochalcone, and chalcone 2′,4′-diacetoxy chalcone have been reported
from the leaves of Carthamus arborescens [58]. Syzygium samarangense has been identified
as a source of stercurensin, cardamonin, and 4′, 6′-dihydroxy-2′-methoxy-3′,5′-dimethyl
chalcone [59]. Litseaone A and B have been isolated from the stem bark of Litsea rubescens
and Litsea pedunculata [60]. Cyclohexanyl chalcone and panduratin have been found to
be a constituent of Boesenbergia rotunda [61]. Crotalaria trifoliastrum yielded munchiwarin,
which has a 2,2,6-tri-isoprenyl-cyclohex-5-ene-1,3-dione skeleton [62]. Glycyrrhiza inflate
has been reported to contain kanzonol, licochalcone A, D, and G, licoagrochalcone A,
isoliquiritigenin, 5-prenyl butein, and echinantin [63]. Isoliquiritigenin, syzalterin, L-
farrenol, and L-liquiritigenin have been isolated from Pancratium maritium [64]. Xanthohu-
mol has been reported from Humulus lupulus [65]. Glabridin, licochalcone A, isoliquirit-
igenin, glycycoumarin, glycerin, glycerol, and liquiritigenin have been reported from
Glycyrrhiza uralensis [66]. α-Hydroxy dihydrochalcones together with the novel isofla-
vanone, norisojamicin have been isolated from the Millettiaus aramensis stem bark [67].
A prenylated chalcone, 2′,4′-dihydroxy-5- prenylchalcone has been isolated from the
aerial parts of Lonchocarpus cultratus [68]. Ulvaria dulcis has yielded 2′,3′-dihydroxy- 4′,6′-
dimethoxychalcone [69]. Pashanone, pinostrobin, and flavokawain chalcones have been
identified as constituents of persicaria lapathifolia seeds [34]. p-Hydroxy benzaldehyde,
dorsmanin A, 4,2,4-trihydroxy-3-prenylchalcone, and 4,2,4-trihydroxychalcone have been
isolated from Dorstenia zenkeri [70]. Ethanolic extract of Haematoxylum campechia num. L. has
been reported to contain two chalcones, sappanchalcone and 3-deoxy sappanchalcone [71].
Some newer chalcones such as (-)-hydroxypanduratin A, a cyclohexenyl chalcone deriva-
tive, dihyro-5,6-dehydro kawain, pinocembrin, panduratin A, pinostrobin, and sakuranetin
have been investigated by Tuchinda et al. (2002) [72]. Perez- Gutierrez et al. isolated
six flavonoids from the bark of Eysenhardtia polystachiya with 2′,4′-dihydroxychalcone-
6′-O-β-d-glucopyranoside, α,4,4′-trihydroxydihydrochalcone-2′-O-β-d-glucopyranoside,
α,3,2′,4′-tetrahydroxy-4-methoxy-dihydrochalcone, and 3′-C-β-glucopyranosy-6′-O-β-d-
glucopyranoside bearing the chalcone moiety [73]. Artoindonesianin J, a prenylated
chalcone has been isolated from the root bark of Artocarpus bracteate [67]. More recently,
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Nchiozem-Ngnitedem et al. have isolated eight known chalcones alongside four new
steroidal sapogenins and a conjugated chalcone–stilbene [74].

Chalcone has been identified as one of the vital constituents of some edible plants [75].
In general, the phenolic chalcones present in edible plants play an essential role in main-
taining good health condition for humans, with their basic function ranging from be-
ing good antioxidants to antimicrobial activities, among others [76]. Chalcones have
been identified, isolated, and characterized from edible plants in many research works.
Phloretin-3′,5′-di-C-β-glucopyranoside, a dihydrochalcone, and chalconaringenin have
been identified from Solanaceae specie of tomatoes [77]. Iijima et al. (2008) reported the
presence of eriodictyol chalcone in tomatoes (Solanum lycopersicum). They also reported
narigenin chalcones [78]. Slimestad and Verheul (2011) reported the presence of chal-
conarigenin from fresh cherry tomatoes [79]. Two hydroxylated polymethoxychalcones
have been isolated from sweet orange (citrus sinensis) peel [80]. 2′-hydroxy-3,4,4′,5′,6′-
pentaethoxychalcone and 2′-hydroxy-3,4,3′,4′,5′,6′-pentaethoxychalcone, which are C-
methylated chalcones, have been isolated from the edible syzygium samarangense methanolic
extract [59]. Apple fruit (Malus domestica) has been reported to possess phloridzin, seboldin,
and trilobatin [81]. Angelica keiski (Ashitaba), which is vital as a food supplement, con-
stitutes some chalcone compounds. Nine chalcones have been isolated from this plant
alongside four coumarins in different research; 4-hydroxy derricin and xantholangelol
were isolated from the ethanolic extract [82]. Glycyrrhiza glabra, a licorice species, is a
vital constituent of candies, snacks, beverages, and sweets [28]. Many compounds in-
cluding isoliquiritin apioside [83], lucuraside [84], butein-4-O-β-D-glucopyranoside [28],
neoisoliquiritin [28], licochalcone C, licoagrochalcone B, licoagrochalcone C, licoagrochal-
cone D, kanzonol Y [85], echinatin, licochalcone B, morachalcone A, 2,3′,4,4′-tetrahydroxy-
3,5′-diprenyl chalcone, 3,3′,4,4′-tetrahydroxy-2′-methoxy-5-prenylchalcone, paratocarpin B,
2,3′,4,4′,α-pentahydroxy-3,5′-diprenyl-dihydrochalcone, 2,3′,4,4′,α-pentahydroxy-3-prenyl-
dihydrochalcone [86], kanzonol B, 4-hydroxylonchocarpin [87], licochalcone G [88], 3,4,3′,4′-
tetrahydroxy-2-methoxychalcone [89], glypallichalcone [90], paratocarpin A and B [91], gly-
cybridin A, B, and C have been isolated from this plant [92]. Trankoontivakorn et al. (2001)
isolated six chalcones, panduratin A, pinostrobin, cardamonin, pinocembrin, 4-hydroxy
panduratin A, and 2′,4′,6′-triydroxychalcone from finger root rhizomes (boesenbergia pan-
durate) [93].

4.2. Bioactivities of Naturally Occurring Chalcones

Generally, chalcones exhibit a wide range of biological activities: antioxidant, anti-
malarial, anti-inflammatory, antimicrobial, antiosteoporosis, antiplasmodial, anticancer,
antifungal, antihyperglycemic, and many others (Figure 5) [75]. Specifically, chalcones from
medicinal plants exhibit these biological activities, and as a consequence, plants containing
chalcones are used as therapeutic agents in various diseases. Many plants containing
chalcones have shown inhibition against cancer growth. Licochalcone A, xanthohumol,
4-hydroxyderricin, butein, phloretin, garcinol, flavokawain A, B, and C, broussochalcone,
dimethyl amino chalcones, cardamonin, and 2′-hydroxy-2,3,4′,6′-tetramethoxy chalcone
have been reported to exhibit anticancer activity against various cancer cells [94–97].

The antimalarial and antileishmanial activities of some chalcones, for example, Licochal-
cone A, have also been investigated [98]. Chalcones from the plants Mallotus hilippinensis
and Maclura tinctoria have been shown to possess antifungal activity [99]. Xanthoangelol
and 4-hydroxyderricin, constituents of ashitaba, have been reported to possess a consider-
able extent of hyperglycemic activity [100]. Protein tyrosin phosphatase IB (PTBIB) plays a
significant role in the regulation of hyperglycemia [101]. Some chalcone derivatives from
medicinal plants are essential PTPIB inhibitors [102].
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Chalcones from dietary sources also possess many biological activities. This enables
edible plants containing chalcones to be used as therapeutic agents [103]. Tomatoes have
been reported to exhibit anticardiovascular, antidiabetic, and anticancer activities [104–106].
Anti-inflammatory, antiallergic [107], and antiobesity [108] activities have been reported
with naringenin chalcone. It is one of the major bioconstituents of tomatoes [107–109].
Other chalcone constituents such as phloretin-3′,5′-di-C-glucoside present in tomatoes have
been reported to possess antioxidant properties [96]. Panduratin A, boesenbergin A, and
pinostrobin chalcone in tomatoes have been reported for their aphrodisiac properties [110].

In a separate description, panduratin A has been reported for its antioxidant, an-
tiobesity, anti-inflammatory, and antimicrobial activities [111–114]. Even though boesen-
bergin has been reported to be highly hepatoxic, it has been demonstrated to exhibit
anti-inflammatory, antioxidant, and anticancer activities [115]. Protease inhibition, anti-
cancer, and antipyretic activities have been attributed to cardamonin [116]. Antiretroviral
activity has been reported for hydroxypanduratin A, pinostrobin, and panduratin chal-
cone [117,118]. Licochalcone A, a constituent of licorice, has been reported to have a
good inhibition of TNF-α, IL-β, and IL-6 inflammatory markers [118,119]. This chal-
cone along with licochalcone B, C, and D has been associated with antiviral [3], anti-
inflammatory [120], antidiabetic [121], antitrypanosomal [122], anticancer [123], and an-
tibacterial [124] activities. Apple containing dihydrochalcone constituents has biological
activities against many diseases [125,126]. Phloretin is the most important chalcone present
in apple. Phloretin has been demonstrated to possess antioxidant, anticancer, and anti-
inflammatory effects [127,128]. As an anticancer agent, it targets the inhibition of GLUT2.
It also inhibits the anti-inflammatory markers such as NF-Kβ, TNF-α, etc. [128].

The bioactivities of chalcones obtained from medicinal plants are illustrated in Table 1.
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Table 1. Bioactivities of important naturally occurring chalcones.

Sl. No. Plant Species Chalcone Bioactivity Reference

1 Dalbergia odorifera T Butein
(2′,4′,3,4-tetrahydroxychalcone)

Antioxidant activity
against lipid and
LDL peroxidation

[129]

2 Humulus lupulus Xanthohumol Antioxidant activity against
LDL oxidation [130]

3 Broussonetia papyrifera Vent. BroussochalconeA
Antioxidant activities due to

inhibition of IκBα degradation
and iNOS

[131]

4 Bidens pilosa Okanin Antioxidant activity [132]

5 Malotus philippinensis 11-O-galloylbergenin Anti-inflammatory activity [133]

6 Toussaintia orientalis Verdc. 2-Hydroxy-3,4,6-
trimethoxychalcone

Anti-inflammatory activity against
COX-2 enzyme [134]

7 Glycyrrhiza inflate Licochalcone A Anti-inflammatory activity [135]

8 Humulus lupulus L. Xanthohumol B and
dihydroxanthohumol

Anti-inflammatory activity by
inhibition of production of NO
due to the suppression of iNOS

[136]

9 Psoralea corylifolia

Isobavachalcone, bavachromene,
kanzonol B,

4-hydroxy- lonchocarpin
chromenoflavanone

Anti-inflammatory activity due to
inhibition of iNOS and COX-2 in
LPS-activated microglia; blocks

the I-κBα degradation and
down-regulated NF-κB level in
LPS-stimulated BV-2 microglia

[137,138]

10 Artocarpus communis

Arcommunol C, arcommunol D,
5′-geranyl-3,4,2′,4′-

tetrahydroxychalcone, prostratol,
arcommunol E,

3′-geranyl-3,4,2′,4′-
tetrahydroxydihydrochalcone,

and 3′-geranyl-3,4,2′,4′-
tetrahydroxychalcone

Anti-inflammatory activity by
decreased LPS mediated induction
of protein expressions of iNOS and

COX-2 in RAW 264.7 cells

[139]

11 Glycyrrhiza inflata Licochalcone A and C
Antimicrobial activity by

inhibition of NADH-cytochrome
c reductase

[140]

12 Boesenbergia rotunda Panduratin A Antimicrobial activity against
clinical enterococci [141]

13 Angelica keiskei Isobavachalcone, bavachalcone
broussochalcone

Antibacterial activity against
Gram-positive bacteria [142]

14 Mallotus philippinensis

Rottlerin, 4′-hydroxyrottlerin,
1-(5,7-dihydroxy-2,2,6-trimethyl-

2H-1-benzopyran-8-yl)-3-
phenyl-2-propen-1-one

Antifungal activity [143]

15 Maclura tinctoria Isobavachalcone
Antifungal activity against

Candida albicans and
Cryptococcus neoformans

[144]

16 Zuccagnia punctata Cav.
2′,4′-dihydroxychalcone and

2′,4′-dihydroxy-3′-
methoxychalcone

Antifungal activity [145]

17 Humulus lupulus Xanthohumol

Anti-HIV-1 activity by
induction of cytopathic effects,
viral p24 antigen and reverse

transcriptase in
C8166 lymphocytes

[146]
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Table 1. Cont.

Sl. No. Plant Species Chalcone Bioactivity Reference

18 Boesenbergia pandurata Hydroxypanduratin A,
panduratin A

Anti-HIV-1 protease
inhibitory activity [147]

19 Glycyrrhiza inflata Licochalcone G Antiviral activity against H1N1
swine influenza [148]

20 Erythrina abyssinica 5-prenylbutein Anti-plasmodial activity [149]

21 Crotalaria orixensis Crotaorixin
Antimalarial activity against

Plasmodium falciparum
(Strain NF-54)

[150]

22 Glycyrrhiza uralensis Licochalcone A Antimalarial activity [151]

23 Cyclosorus parasiticus Parasiticins C, 2′,4′-dihydroxy-6′-
methoxy-3′,5′-dimethylchalcone

Anti-proliferative activity
by induction of apoptosis in the

HepG2 cell line
[35]

24 Alpinia pricei Hayata Flavokawain B
Antiproliferative effect due to

induction of G2/M accumulation,
autophagy, and apoptosis

[152]

25 Caesalpinia ferrea Mart Pauferrol B, pauferrol C

Inhibitory activities against human
topoisomerase II and cell

proliferation by induction of
apoptosis in human leukemia cells

lines (HL 60)

[153]

26 Boesenbergia rotunda Panduratin A Anti-angiogenic agent [154]

27 Angelica keiskei 4-Hydroxyderricin
Hypotensive and lipid regulatory
actions, reduction of serum VLDL

levels and hepatic triglyceride
[155]

28 Artemisia dracunculus L.

Davidigenin, 2′,4′-dihydroxy-4-
methoxydihydrochalcone,4,5-di-

O-caffeoylquinic acid,
6-demethoxycapillarisin and

Antidiabetic activity as aldose
reductase inhibitor [156]

29 Lonchocarpus sericeus lonchocarpin and derricin

Antiplatelet activity by
phosphodiesterase activity
inhibition or elevation of

intracellular levels cAMP and
cGMP or by inhibition of
thromboxane formation

[157]

30 Glycyrrhiza glabra

Glabrol, 4′-O-methoxy glabridin,
hispaglabridin A, glabridin,

4′,7-dihydroxy flavone,
7-hydroxy-4′-methoxy flavone,

3,3′,4,4′-tetrahydroxy-2-
methoxychalcone, liquiritigenin,

isoliquiritigenin, licuroside,
isoliquiritoside and isoononin

Antiobesity and
lipid-lowering effects [158]

The structures of naturally occurring chalcones are presented in Figure 6.
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5. Pharmacokinetics and Toxicities of Chalcones

Although chalcones have a wide range of pharmacological activities, the unavailability
of sufficient bioavailability and bioaccessibility data in humans is a major challenge toward
their development as therapeutic agents [159]. Synthetic chalcones have been widely
studied, whereas the bioavailability of chalcones from natural sources is limited. The
expected level of in vivo efficacy in preclinical evaluation has not been reached yet due
to poor bioavailability profile. However, optimization of the physiochemical properties
of chalcone derivatives could be an important step in their further development as lead
molecules or drug candidates. The adsorption, distribution, metabolism, excretion, and
toxicity (ADMET) of some naturally occurring chalcones have been studied, but the data
do not satisfactorily support their ADMET profile [160,161] (Figure 7).

Studies have shown that amongst many natural chalcones, prenylated derivatives
are bioavailable, but they exhibit low bioaccessibility. One such chalcone is xanthohumol
obtained in hop plant (Humulus lupulus), which upon oral administration by force feeding
at extremely higher dosage to rodents (1 g/kg body weight) produces good oral bioavail-
ability, but it does not obtain appreciable accessibility at the site of action. Xanthohumal
4′-O-glucoronide has been found to be the major metabolite in plasma, and unmetabolized
xanthohumol has also been detected ten times less concentration after 4 h post adminis-
tration [162]. In vitro metabolism studies indicate that xanthohumal in human and rat
liver microsomes can be freely converted to glucuronides [163]. Gil-Izquierdo et al. (2001)
studied the bioavailability of diversely processed juice of Citrus sinensis (L.) by mimicking
in vitro digestion in stomach as well as the small intestine [164]. They have reported that in
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mild alkaline medium, 50–60% of the dissolved flavanones (mainly hesperidine) becomes
converted to chalcones (hisperidin chalcone). Due to the poor solubility of these chal-
cones, the bioequivalence is not achieved to the expected level [165,166]. Another chalcone
derivative is cardamonin, which is obtained from plants belonging to the Zingiberacea
family, which has been reported to be poorly absorbed upon oral administration exhibiting
18% oral bioavailability in mice. It exhibited a high volume of distribution, short mean
residence, high clearance, and was excreted in bile in its conjugated and unchanged form.
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Zhao et al. (2020) studied the pharamacokinetics of phloretin, a naturally occurring
dihydrochalcone flavonoid found in apple, pear, roots peels, and juicy fruits peels, by orally
administering it to Sprague–Dawley rats. Absorption mechanisms have been investigated
in a Caco-2 cell monolayer and by a single pass intestinal perfusion in rats [167]. Phloretin
is transported through active transport, efflux protein transport, and by cell bypass. It
has been reported to be a substrate of P-glycoprotein (P-gp) and multi-drug resistance
protein (MRP2) and found to have low oral bioavailability (8.676%) with colon as the best
absorption site.

Naturally occurring chalcones have also been found to affect the pharmacokinetic
parameters of drugs when administered simultaneously. Choi et al. (2014) investigated
the effect of licochalcone A on the pharmacokinetics of nifedipine and its metabolite
dehydronifedipine in rats. Hepatic CYP3A4 metabolizes nifedipine. Oral administration
of nifedipine with licochalcone A has been found to inhibit CYP3A4 as well as exhibit the
cellular accumulation of rhodamine-123 in MCF-7/ADR cells overexpressing P-gp, leading
to a higher peak plasma concentration (Cmaxs) [168]. Boonnop et al. (2017) proposed
that the co-administration of Boesenbergia rotunda extract with therapeutic drug may cause
herb–drug interaction, leading to an alteration of the efficacy and toxicity of the drug.
Panduratin A isolated from the Boesenbergia rotunda has been reported to cause herb–drug
interaction and alter renal cationic drug clearance by inhibiting organic cation transporters
(OCT2), which are responsible for the renal excretion of cationic drugs [169].

Recently, Qin et al. (2021) also studied the metabolic and inhibitory effects of isobavach-
alcone, a natural chalcone obtained from Psoralea corylifolia, on efflux transporters, cy-
tochrome P450 and UDP-glucuronosyltransferase enzymes. The glucuronidation of isobava-
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chlacone in the human liver microsome and human intestine microsome has been well char-
acterized with the production of three glucuronides. Moreover, the main contributors for
glucuronidation were UGT1 A9, 1A8, 1A7, 1A3, and 1A1. MRP1, MRP4, and BCRP trans-
porters have been found to participate more in glucuronide excretion. Isobavachalcone
has been recognized as a broad-spectrum inhibitor against UGT2B7, UGT1A9, UGT1A1,
CYP2E1, CYP2D6, CYP2C19, CYP2C9, and CYP2B6 [170].

In view of the above facts, to design a chalcone derivative with acceptable ADMET
properties, the maximization of its physiochemical properties with modification in the
chemical structure would play a crucial role.

6. Conclusions and Future Directions

Chalcone scaffolds considered as the key bioactive precursors of plant flavonoids
possess huge chemical and biological potential with significance in medicinal chemistry
and pharmacology in current times. The chemistry and biological importance of naturally
occurring chalcones have not been extensively explored. However, regardless of its versatile
medicinal importance, the pharmacokinetics of plant-derived/dietary chalcones is a major
challenge. Moreover, there is a lack of preclinical or clinical data on naturally occurring
chalcones in the current literature. Further in-depth research studies are required to be
carried out to address the pharmacokinetic issues and toxicological aspects related to
naturally occurring chalcones and chalcone-derived flavonoids. There are ample scopes
for the discovery of lead molecules or drug candidates from naturally occurring bioactive
chalcones. Therefore, the proper chemical derivatization of natural chalcones is necessary
to obtain novel flavonoid molecules that would play a vital role in the chalcone scaffolds-
based discovery of drug molecules.
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