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Abstract: Selenium compounds are relatively rare as minerals; there are presently only 118 known
mineral species. This work is intended to codify and systematize the data of mineral systems and
the thermodynamics of selenium minerals, which are unstable (selenides) or formed in near-surface
environments (selenites), where the behavior of selenium is controlled by variations of the redox
potential and the acidity of solutions at low temperatures and pressures. These parameters determine
the migration of selenium and its precipitation as various solid phases. All selenium minerals are
divided into four groups—native selenium, oxide, selenides, and oxysalts—anhydrous selenites (I)
and hydrous selenites and selenates (II). Within each of the groups, minerals are codified according
to the minimum number of independent elements necessary to define the composition of the mineral
system. Eh–pH diagrams were calculated and plotted using the Geochemist’s Workbench (GMB 9.0)
software package. The Eh–pH diagrams of the Me–Se–H2O systems (where Me = Co, Ni, Fe, Cu, Pb,
Zn, Cd, Hg, Ag, Bi, As, Sb, Al and Ca) were plotted for the average contents of these elements in
acidic waters in the oxidation zones of sulfide deposits. The possibility of the formation of Zn, Cd,
Ag and Hg selenites under natural oxidation conditions in near surface environments is discussed.

Keywords: selenium minerals; mineral systems; chemical weathering; oxidation zones; physicochemical
modeling; Eh–pH diagrams

1. Introduction

Selenium release and pollution is a worldwide phenomenon that results from a wide variety of
anthropogenic activities, such as agriculture, mining, and other process industries [1]. Selenium is
a potentially toxic element, and mining-related selenium release was a major concern during the last
decade as high concentrations were reported at some mine sites [2,3]. Selenium contamination is vast,
affecting both aquatic and terrestrial ecosystems, and has therefore attracted the attention of natural
resource and water quality regulators around the world [4,5]. Due to the high mobility of selenium in
oxidizing geochemical environments, the behavior of selenium is also important in safety analyses of
radioactive waste repositories [6,7]. Khamkhash et al. [1] reported a brief introduction to selenium
chemistry and toxicity, presented a detailed review of currently available techniques for removing
selenium from industrial/mining wastewater, and discussed mining-related selenium contamination
from Alaskan mines. Se mobility, bioavailability and toxicity are controlled by the various possible
oxidation states (the most common being −2, 0, +4 and +6) that prevail under various conditions.
These characteristics of selenium are affected by the redox conditions and the pH, which also plays
a crucial role in selenium behavior in near-surface environments.
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The oxidation zone of selenide or selenium-bearing sulfide deposits is one of the prime
contributors of selenium release into the environment. The mining of coal, precious metals (gold and
silver), and metallic sulfides are key contributors of selenium from mining operations [2] exposing
selenium-bearing compounds to air and water. This mobilizes selenium into aquatic systems where it
bioaccumulates in the food chain, thereby escalating its hazardous effects [1].

Previously, we have characterized the selenium oxysalts (selenites and selenates) and evaluated
the accuracy of the thermodynamic constants of the selenites [8]. The objective of this paper is to
characterize all selenium minerals as natural mineral systems and to review the thermodynamic
constants of the selenium minerals, which are unstable or formed during the oxidation of selenides
and selenium-bearing sulfide ores, and to propose data at the standard state (25 ◦C, 1 bar pressure).

2. Materials and Methods

2.1. Mineral Systems of Selenium Minerals

The selenium minerals are relatively rare in nature; only 118 mineral species are presently
known (Supplementary Table S1). As shown [9,10], any mineral can be assigned to a specific
system, each component of which is a species-defining chemical element (cf. [11–13]) determined
by the rules of the new mineral species definition [14–16]. For mineral coding, we used the
sequence of species-defining chemical element symbols according to the so-called “thermochemical”
sequence of chemical elements (Figure 1) [9,10]. For example, giraudite, Cu6Cu4Zn2(AsSe3)4S,
responds to the system SSeAsZnCu, while prewittite, K2Pb3Zn2Cu12(SeO3)4O4Cl20, responds to
the system OClSePbZnCuK.
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Figure 1. Thermochemical sequence of chemical elements and corresponding
single-component systems.

As in all contemporary mineral classifications, selenium minerals is clearly divided into four
groups—native selenium, oxide, selenides, and oxysalts—anhydrous selenites (I) and hydrous selenites
and selenates (II). Within each of these groups, minerals can be classified according to the minimum
number of components required for their formation [9,10]. The proposed classification of selenium
mineral systems is given in Table 1. An important advantage of this classification of selenium mineral
systems is the ability to use computer technology to organize, store and retrieve thermodynamic data.
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Table 1. Mineral systems and ∆fG0
298 of selenium minerals.

n System Mineral Chemical Formula ∆fG0
298, kJ/mol

Native Elements

1 Se Selenium Se 0

Oxides

2 OSe Downeyite SeO2 −171.80 ± 0.62

Selenides

2

SeAs Laphamite As2Se3 −83.9 ± 4.2
SeSb Antimonselite Sb2Se3 −127.4 ± 3.7

SeBi

Nevskite BiSe −46.8 ± 5.7
Guanajuatite Bi2Se3 −146.6 ± 10.1

Paraguanajuatite Bi2Se3 –
Laitakarite Bi4Se3 –

SePb Clausthalite PbSe −97.9 ± 7.7
SeMo Drysdallite MoSe2 –

SeFe
Achávalite FeSe −70.1 ± 4.0

Dzharkenite (cub) FeSe2 –
Ferroselite (orth) FeSe2 −101.3 ± 15.0

SeCo
Bornhardtite CoCo2Se4 –

Freboldite CoSe −56.3 ± 6.5
Trogtalite CoSe2 −100.4 ± 15.0

SeNi

Sederholmite NiSe −69.8 ± 1.6
Mäkinenite NiSe –
Penroseite NiSe2 −112.4 ± 7.0

Kullerudite NiSe2 –
Trüstedtite NiNi2Se4 –
Wilkmanite Ni3Se4 –

SePd
Verbeekite PdSe2 –

Oosterboschite Pd7Se5 –
Palladseite Pd17Se15 –

SePt
Sudovikovite PtSe2 –

Luberoite Pt5Se4 –

SeCu

Klockmannite CuSe −36.8 ± 0.6
Krut’aite CuSe2 –

Petříčekite CuSe2 –
Bambollaite CuSe2 –

Bellidoite Cu2Se –
Berzelianite Cu2Se –
Umangite Cu3Se2 –

Athabascaite Cu5Se4
Geffroyite Cu9Se8 –

SeAg Naumannite Ag2Se −46.9 ± 1.3
SeZn Stilleite ZnSe −172.5 ± 4.0
SeCd Cadmoselite CdSe −140.9 ± 1.9
SeHg Tiemannite HgSe −51.2 ± 4.0

3

SSeAg Aguilarite Ag4SeS –

SeTeBi

Kawazulite Bi2Te2Se –
Skippenite Bi2Se2Te –

Telluronevskite Bi3TeSe2 –
Vihorlatite Bi24Se17Te4 –

SeTeNi Kitkaite NiTeSe –
SeTePd Miessiite Pd11Te2Se2 –
SeTeAg Kurilite Ag8Te3Se –
SeAsNi Jolliffeite NiAsSe –
SeAsPd Kalungaite PdAsSe –
SeAsCu Mgriite Cu3AsSe3 –
SeSbPd Milotaite PdSbSe –

SeSbCu
Bytízite Cu3SbSe3 –

Permingeatite Cu3SbSe4 –
Příbramite CuSbSe2 –
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Table 1. Cont.

n System Mineral Chemical Formula ∆fG0
298, kJ/mol

SeSbAg Selenostephanite Ag5(SbSe3)Se –
SeBiPb Poubaite PbBi2Se4 –
SeBiPd Padmaite PdBiSe –

SeBiCu
Grundmannite CuBiSe2 –
Hansblockite CuBiSe2 –
Eldragónite Cu6BiSe4(Se2) –

SeBiAg Bohdanowiczite AgBiSe2 –
SePbCu Schlemaite Cu6PbSe4 –

SeTlCu
Bukovite Cu4Tl2Se4 –

Sabatierite Cu6TlSe4 –
Crookesite Cu7TlSe4 –

SeFeCu Eskebornite CuFeSe2 –
SeCoCu Tyrrellite CuCo2Se4 –
SePdCu Jagüéite Cu2Pd3Se4 –
SePdAg Chrisstanleyite Ag2Pd3Se4 –
SePdHg Tischendorfite Hg3Pd8Se9 –
SePtHg Jacutingaite Pt2HgSe3 –

SeCuAg Eucairite CuAgSe –
Selenojalpaite Ag3CuSe2 –

SeCuHg Brodtkorbite Cu2HgSe2 –
SeAgAu Fischesserite AgAuSe2 –

4

SeAsFeCu Chaméanite (Cu3Fe)Σ4AsSe4 –
SeSbCuHg Hakite Cu6Cu4Hg2(SbSe3)4Se –
SeBiPbCu Watkinsonite Cu2PbBi4Se8 –
SeBiPbAg Litochlebite Ag2PbBi4Se8 –

5

SSeAsZnCu Giraudite Cu6Cu4Zn2(AsSe3)4S –
SSeSbCuAg Selenopolybasite CuAg6Ag9Sb2S9Se2 –

SeBiPbCuHg Petrovicite Cu3HgPbBiSe5 –
Quijarroite Cu6HgPb2Bi4Se12 –

I. Selenites without H2O

3 OSePb
Molybdomenite PbSeO3 −458.0 ± 6.0

Plumboselite Pb3(SeO3)O2 –

4

OSeZn Zincomenite ZnSeO3 –
OSSePb Olsacherite Pb2(SeO4)(SO4) –

OClSeCu

Georgbokiite Cu5(SeO3)2O2Cl2 –
Parageorgbokiite Cu5(SeO3)2O2Cl2 –
Nicksobolevite Cu7(SeO3)2O2Cl6 –
Chloromenite Cu9(SeO3)4O2Cl6 –

OClSeZn Sofiite Zn2(SeO3)Cl2 –

5

OClSeBiCu Francisite Cu3Bi(SeO3)2O2Cl –

OClSePbCu
Sarrabusite Pb5Cu(SeO3)4Cl4 –

Allochalcoselite CuCu5PbO2(SeO3)2Cl5 –

OClSeCuNa Ilinskite NaCu5(SeO3)2O2Cl3 –

6 OClSeCdCuK Burnsite KCdCu7(SeO3)2O2Cl9 –

7 OClSePbZnCuK Prewittite K2Pb3Zn2Cu12(SeO3)4O4Cl20 –

II. Selenites and Selenates Containing H2O

4

OHSeAl Alfredopetrovite Al2(SeO3)3·6H2O −3657.4
OHSeCo Cobaltomenite CoSeO3·2H2O −937.4 ± 2.5 1

OHSeFe Mandarinoite Fe2(SeO3)3·6H2O −2756.80 ± 7.3
OHSeNi Ahlfeldite NiSeO3·2H2O −932.4 ± 2.5 1

OHSeCu Chalcomenite CuSeO3·2H2O −835.3 ± 5.3 2

OHSeU Haynesite (UO2)3(SeO3)2(OH)2·5H2O –
OHSeCa Nestolaite CaSeO3·H2O −1188.9 ± 2.5
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Table 1. Cont.

n System Mineral Chemical Formula ∆fG0
298, kJ/mol

5

OHClSePb Orlandiite Pb3(SeO3)Cl4·H2O –
OHSSeCu Pauladamsite Cu4(SeO3)(SO4)(OH)4·2H2O –

OHSePbCu Schmiederite Pb2Cu2(SeO3)(SeO4)(OH)4 –

OHSeCuU
Derriksite Cu4(UO2)(SeO3)2(OH)6·H2O –
Marthozite Cu(UO2)3(SeO3)2O2·8H2O –

OHSeUCa Piretite Ca(UO2)3(SeO3)2(OH)4·4H2O –
OHSeUBa Guilleminite Ba(UO2)3(SeO3)2(OH)4·3H2O –
OHSeUNa Larisaite Na(H3O)(UO2)3(SeO3)2O2·4H2O –

6
OHSSePbCu Munakataite Pb2Cu2(SeO3)(SO4)(OH)4 –
OHSeBiPbCu Favreauite PbBiCu6O4(SeO3)4(OH)·H2O –
OHSePbCuU Demesmaekerite Pb2Cu5(UO2)2(SeO3)6(OH)6·2H2O –

7 OHISeMgNaK Carlosruizite K6Na4Na6Mg10(SeO4)12(IO3)12·12H2O –

Notes: 1 [17]; 2 [18].

2.2. Thermodynamics

The physico-chemical modeling of mineral equilibria is based on the thermodynamic constants
of minerals and aqueous species (values of the Gibbs energy of formation, ∆fG0

298). These data are
mostly calculated from calorimetric measurements (e.g., [19–34]) or experimental determinations of
solubility (e.g., [35–44]). Such works are very numerous; their results are not always consistent with
each other. A detailed analysis of all thermodynamic data for selenium minerals is beyond the scope of
this article; this can be found, for example, in the review [45], and primarily in the reference book [46],
which presents a scrupulous critical review of all the published experimental measurements. We used
this reference book [46] in the preparation of Table 1, which contains the values of the Gibbs energy of
formation (∆fG0

298) for selenium minerals and their synthetic analogues. Additional thermodynamic
data (∆fG0

298 for solid phases not containing selenium and aqueous species) for the calculation of
diagrams have been taken from [47]. In addition, some of our recent articles were used as sources of
∆fG0

298 for certain selenites [17,18,48,49]. It should be emphasized that the values of the Gibbs energy
of formation are known only for 25 (Table 1) of the 118 selenium minerals.

3. Results and Discussion

Thermodynamic modeling of the mineral-forming processes in the oxidation zone of ore deposits
is based on the analysis of Eh–pH diagrams. In this study, the calculation and construction of
Eh–pH diagrams were carried out by means of the Geochemist’s Workbench software (GMB 9.0) [50].
The calculation of the diagrams was predated by the introduction of new thermodynamic data and
some elements (Cd, Sb, Bi) into the database and the specification of some constants. The activity
coefficients were calculated with the Debye–Hückel equation. Eh–pH diagrams of Me–Se–H2O systems
(where Me = Co, Ni, Fe, Cu, Pb, Zn, Cd, Hg, Ag, Bi, As, Sb, Al and Ca) have been constructed for
the average contents of these elements in acidic waters of the oxidation zones of sulfide deposits [51].
It should be noted that Eh–pH diagrams of Me–Se–H2O systems (where Me = Co, Ni, Fe, Cu, Pb,
Zn, Al and Ca) have been discussed in detail previously [8] and therefore we present here only their
brief description.

3.1. Thermodynamic System Co–Se–H2O

In this system, three selenides (bornhardtite, CoCo2Se4; freboldite, CoSe; and trogtalite,
CoSe2) and one selenite (cobaltomenite, CoSeO3·2H2O) were reported. For cobalt selenides the
thermodynamic data are known only for trogtalite and freboldite (Table 1). These data were
used for plotting the Eh–pH diagram of the Co–Se–H2O system (Figure 2). The thermal stability,
solubility and thermochemical calorimetric investigations were carried out on a synthetic analogue of
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cobaltomenite [49,52,53]. The Eh–pH diagram of the Co–Se–H2O system (Figure 2) contains, in addition
to the stability field of native selenium, a stability field of Co3O4, which is unknown in nature, and the
stability field of trogdalite. Cobaltomenite appears in the environment covering the pH range of 4.5 to
7.5, while Eh is not too high.
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3.2. Thermodynamic System Ni–Se–H2O

In this system six selenides (sederholmite, and mäkinenite, NiSe; penroseite, and kullerudite,
NiSe2; trüstedtite, and wilkmanite, NiNi2Se4) were reported, but the thermodynamic data are known
only for penroseite and sederholmite (Table 1). These data were used for plotting the Eh–pH diagram
of the Ni–Se–H2O system (Figure 3). The thermal stability, the solubility and the thermochemical
calorimetric investigations were carried out on a synthetic analogue of ahlfeldite [49,52,53]. The Eh–pH
diagram of the Ni–Se–H2O system (Figure 3) contains the stability fields of native selenium, penroseite
and sederholmite, and a wide field of bunsenite. Ahlfeldite appears in the environment covering the
pH range of 4.3 to 8.2, while the Eh is not too high at the temperature fluctuations corresponding to
the environmental conditions.
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3.3. Thermodynamic System Fe–Se–H2O

The Table 1 shows that in this system, three selenides (achávalite, FeSe; dzharkenite, and ferroselite,
FeSe2), native selenium, and one selenite, mandarinoite (Fe2(SeO3)3·6H2O), were reported.
The composition, solubility, and the thermal behavior of iron selenite were discussed earlier [8].
Figure 4 presents Eh–pH diagrams of the Fe–Se–H2O system, which contains wide stability fields
of native selenium, hematite and ferroselite, and small fields corresponding to the crystallization of
oxides (magnetite, wüstite). The field of mandarinoite appears in acid areas at a high positive Eh.
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3.4. Thermodynamic System Cu–Se–H2O

In this thermodynamic system, nine selenides (klockmannite, CuSe; krut’aite, petříčekite,
and bambollaite, CuSe2; bellidoite, and berzelianite, Cu2Se; umangite, Cu3Se2; athabascaite, Cu5Se4;
geffroyite, Cu9Se8) were reported, but the thermodynamic data are only available for CuSe (Table 1) and
it was used for plotting the Eh–pH diagram of the Cu–Se–H2O system (Figure 5). Also in this system,
two natural polymorphous modifications exist among water-containing selenites without additional
anions. They have the CuSeO3·2H2O formula: chalcomenite (orthorhombic) and clinochalcomenite
(monoclinic). Chalcomenite is the more abundant mineral; clinochalcomenite is poorly documented
and remains a controversial mineral species. The thermal stability, the solubility and thermochemical
calorimetric investigations were carried out on a synthetic analogue of chalcomenite [17,54,55].

The Eh–pH diagram of the Cu–Se–H2O system is shown in Figure 5. It is seen that klockmannite,
copper oxides (cuprite, tenorite), native selenium, and native copper (in the alkaline region of negative
Eh) are stable. Chalcomenite (CuSeO3·2H2O) occurs in a slightly acid environment and at a rather
high positive Eh.
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3.5. Thermodynamic System Pb–Se–H2O

In this thermodynamic system, one selenide (clausthalite, PbSe), and two anhydrous lead
selenites (molybdomenite, PbSeO3, and plumboselite, Pb3(SeO3)O2) were reported (Table 1), but the
thermodynamic data are only available for PbSe, and PbSeO3 (Table 1). These data were used for
plotting the Eh–pH diagram of the Pb–Se–H2O system (Figure 6). The greatest part of the diagram
contains stability fields of solid phases and is characterized by the fields of native selenium, claustalite
(PbSe), plattnerite (PbO2), litharge (Pb3O4) and massicot (PbO). It is noteworthy that a wide stability
field of molybdomenite (PbSeO3) appears covering the pH range of 4 to 9.5.
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3.6. Thermodynamic System Zn–Se–H2O

In this system only one selenide, stilleite (ZnSe), was reported (Table 1). Natural hydrous
Zn selenites have not yet been found, but their formation in nature is quite possible, for example, in the
oxidation zones of Se-bearing sulfide ores, in which sphalerite or stilleite (ZnSe) is a source of Zn.
The rarity and difficulty of their identification may explain why hydrous zinc selenites have not yet
been detected in nature. However, Pekov et al. [56] have recently found a new anhydrous Zn selenite
mineral (zincomenite, ZnSeO3) in fumarole products in the Tolbachik volcano.

The solubility and the thermal behavior of synthetic ZnSeO3·2H2O, and ZnSeO3·H2O were
discussed in [55,57]. It was shown that ZnSeO3·2H2O is a more stable phase than ZnSeO3·H2O under
environmental conditions. The monohydrate appears to be a metastable phase. The thermochemical
calorimetric investigations were carried out on synthetic zinc selenites, ZnSeO3·2H2O and
ZnSeO3·H2O [18].

Finally, the Eh–pH plot of the Zn–Se–H2O system is shown in Figure 7. This system attracts
interest because it allows the estimation of the physico-chemical parameters of the formation of hydrous
Zn selenite. As we see in Figure 7, the diagram contains the stability fields of native selenium, stilleite,
zincite (ZnO), and zinc selenite (ZnSeO3·2H2O). As follows from this diagram, the physico-chemical
parameters of zinc selenite stability—pH, Eh, and the activities of Zn and Se—are close to those of
cobalt and nickel selenites (ahlfeldite and cobaltomenite) [49], and ZnSeO3·2H2O is the stable phase at
the temperature fluctuations corresponding to environmental conditions.
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3.7. Thermodynamic System Cd–Se–H2O

In this thermodynamic system, only one selenide (cadmoselite, CdSe) was reported (Table 1).
Cadmoselite was found in Ust’ Uyok deposit (Turan District, Tuva Republic, Eastern-Siberian Region,
Russia) as fine xenomorphic disseminations cementing sandstone associated with ferroselite,
clausthalite, amorphous selenium, Cd-bearing sphalerite, and pyrite [58]. The thermodynamic
constants of synthetic hydrous cadmium selenite were reported [18]. These data were used for plotting
the Eh–pH diagram of the Cd–Se–H2O system (Figure 8). The greatest part of the diagram contains
stability fields of solid phases and is characterized by the fields of native selenium, cadmoselite and
hydrous Cd selenite. It is noteworthy that a wide stability field of hydrous Cd selenite (CdSeO3·H2O)
appears covering the pH range of 2 to 12.5. Therefore, in terms of geochemistry, hydrous cadmium
selenite is theoretically able to form in the oxidation zones of Se-bearing sulfide ores, in which
Cd-bearing sphalerite (Zn, Cd)S or Cd-bearing is a source of Cd. The rarity and difficulty of their
identification may explain why hydrous cadmium selenites have not yet been detected in nature.
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3.8. Thermodynamic System Hg–Se–H2O

In this thermodynamic system, one selenide, tiemannite (HgSe) was reported. Natural Hg selenites
have not yet been found in nature. Tiemannite was described for the first time at the St Lorenz Mine,
Burgstatt veins, Clausthal-Zellerfeld, Harz, Lower Saxony, Germany [59] in association with
clausthalite, berzelianite, naumannite, pyrite, sphalerite, galena, quartz, bournonite. Tiemannite
is a common mineral, it has been found in 75 localities (according www.mindat.org), associated with
low-sulfur hydrothermal deposits with other selenides, and also in mercury deposits. The Eh–pH
plots of the Hg–Se–H2O system are shown in Figure 9. This system is interesting because it allows the
estimation of the physico-chemical parameters of the formation of anhydrous Hg selenites. The greatest
part of the diagram contains the stability fields of tiemannite, mercury and anhydrous Hg selenites
(HgSeO3, Hg2SeO3).
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3.9. Thermodynamic System Ag–Se–H2O

In this thermodynamic system, only one mineral, naumannite (Ag2Se) was reported. Naumannite
was found in Germany, in the Harz Mountains, at Tilkerode [60], in hydrothermal veins deficient in
sulfur, associated with other selenides, quartz, and carbonates. Natural Ag selenites have not yet
been found, but their formation in nature is quite possible in the oxidation zones of Se-bearing sulfide
ores, because naumannite is a widespread mineral (according to mindat.org it was discovered in 156
localities). The thermodynamic data recommended in the directory [46] was used for plotting the
Eh–pH diagram of the Ag–Se–H2O system (Figure 10). The greatest part of the diagram contains
stability fields of naumannite, native selenium and silver, with small field of Ag2O in extremely
alkaline areas at a high positive Eh. It is noteworthy that a small stability field of Ag selenite (Ag2SeO3)
appears covering the pH range of 6 to 7.5.
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3.10. Thermodynamic System Bi–Se–H2O

The Table 1 shows that in this system four mineral species—nevskite (BiSe), guanajuatite (Bi2Se3),
paraguanajuatite (Bi2Se3), and laitakarite (Bi4Se3)—were reported, but only for two of them (nevskite
and paraguanajuatite) are the thermodynamic data available (Table 1). Both minerals occur in
hydrothermal deposits of low to medium temperatures. The greatest part of the Eh–pH diagram of
Bi–Se–H2O system is characterized by the fields of paraguanajuatite, native selenium, and a small
bismuth stability field. It is noteworthy that a wide stability field of paraguanajuatite appears covering
the wide pH range (Figure 11).
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3.11. Thermodynamic System As–Se–H2O

In this system only one selenide mineral (laphamite, As2Se3) was reported. Laphamite was found
in one locality (Burnside, Northumberland County, PA, USA) as a secondary incrustation, probably
by sublimation, on a burning pile of waste material from an anthracite coal mine in association with
arsenolite, bararite, downeyite, galena, orpiment, selenium, and sulfur [61].

The Eh–pH diagram of the As–Se–H2O system (Figure 12) shows that the larger part of the
diagram contains stability fields of native selenium and laphamite. A small stability field of arsenic
corresponds to the alkaline region with a negative Eh.
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3.12. Thermodynamic System Sb–Se–H2O

In this system only one selenide, antimonselite (Sb2Se3), was reported (Table 1). Antimonselite
was found in uraniferous calcite veins in a hydrothermal U–Hg–Mo polymetallic deposit in association
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with pyrite, sphalerite, galena, ferroselite, clausthalite, uraninite, cinnabar, hematite, and calcite (near
Kaiyan, Guizhou Province, China) [62].

The Eh–pH diagram of the Sb–Se–H2O system (Figure 13) shows that the larger part of the
diagram contains stability fields of antimonselite and native selenium.
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3.13. Thermodynamic System Al–Se–H2O

Recently, the compound Al2(SeO3)3·6H2O was found in nature as the mineral alfredopetrovite
(Table 1). The mineral occurs in the El Dragón mine, Antonio Quijarro Province, Potosí Department,
Bolivia. The El Dragón mine is situated in a telethermal deposit consisting of a single selenide vein
hosted by sandstones and shales. Selenide oxidation has produced a wide range of secondary rare
selenites (ahlfeldite, chalcomenite, mandarinoite, favreauite, molybdomenite, olsacherite, schmiederite
and others), one of which is alfredopetrovite [63].

The Eh–pH diagram of the Al–Se–H2O system is shown in Figure 14. At the background
concentration of Al and Se, the larger section of the diagram contains stability fields of gibbsite
(Al(OH)3) and native selenium. A small stability field corresponds to alfredopetrovite in the diagram’s
acidic section, with a high positive Eh.
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3.14. Thermodynamic System Ca–Se–H2O

In this system, hydrous calcium selenite (CaSeO3·H2O) has recently been found in nature as the
mineral nestolaite (Table 1). Specimens containing nestolaite were collected in the Little Eva mine,
Yellow Cat District, Grand County, UT, USA. The mineral is very rare and occurs as light violet,
round aggregations on sandstone associated with cobaltomenite, gypsum, orschallite, ferroselite,
native selenium and others. Nestolaite was formed due to the supergene oxidation of primary Se
minerals, such as native selenium and ferroselite [64].

The Eh–pH diagram of the Ca–Se–H2O system is shown in Figure 15. The larger part of the
diagram contains stability fields of native selenium and portlandite, Ca(OH)2. A stability field of
nestolaite corresponds to the alkaline region with a positive Eh.
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3.15. Selenates

In conclusion, we dwell on the probable formation of natural Co, Ni, Fe, Cu, Zn and Pb
selenates. We calculated the Eh–pH diagrams within a wide range of activities of the components and
found values corresponding to the appearance of the stability fields of CoSeO4·6H2O, CuSeO4·5H2O,
NiSeO4·6H2O, PbSeO4 and ZnSeO4·6H2O [65].

The calculations indicate that, among all the discussed systems, selenates are formed only in
the Pb–Se–H2O and Cu–Se–H2O systems at 25 ◦C with more or less real (although high) activities of
metals and Se in the solution: aΣSe = 10−3 and aΣPb = 10−3; aΣSe = 10−1 and aΣCu = 10−1.

The activities of Co, Ni and Zn necessary for the formation of their selenate hydrates are
extremely high and cannot be encountered in nature. The Eh–pH diagrams of the Cu–Se–H2O
and Pb–Se–H2O systems show crystallization fields of CuSeO4·5H2O and PbSeO4 [65]. The results
are consistent with the list of the three known mineral species containing selenate ions: schmiederite
(Pb2Cu2(SeO3)(SeO4)(OH)4); olsacherite (Pb2(SeO4)(SO4)), which is found at the Dragon and
Pacajake deposits in Bolivia and the Baccu Locci deposit in Sardinia, Italy together with selenites;
and carlosruizite (K6Na10Mg10(IO3)12(SeO4)12·12H2O), a very specific mineral differing in its formation
conditions, which are found at a niter deposit in association with nitratine, fuenzalidaite, and halite [66].
Kerstenite, PbSeO4 [67], a single simple selenate, has turned out to be a molybdomenite after
a detailed study [68].
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3.16. Thermodynamic Data

Unfortunately, for most selenium minerals no data on the thermodynamic functions of the
formation have been reported. Additional experimental investigations are needed in order to produce
reliable and accurate standard thermodynamic data, which will enable researchers to adequately
describe Se migration behavior in the oxidation zones of sulfide and selenide ores and contaminated
areas. It should be noted that the experimental determination of the thermodynamic data of
rare minerals in general, and of the title compounds in particular, on the basis of studying their
solubility or by calorimetric measurements, can hardly rely on natural samples, because these usually
do not occur in sufficient amounts, forming only tiny crystals which may incorporate inclusions,
be covered by weathering crusts, and almost inevitably contain impurities. All these defects influence
many properties of the samples studied and certainly their thermodynamic parameters. Therefore,
the investigation of the thermodynamic properties of selenium minerals is carried out on their
synthetic analogues.

4. Conclusions

The obtained data show that the behavior of selenium, the nearest geochemical counterpart of
sulfur, in the surface environment can be quantitatively explained by variations of the redox potential
and the acidity–basicity of the mineral-forming medium. Precisely these parameters determine the
migration ability of selenium compounds and their precipitation in the form of various solid phases.

Supplementary Materials: The following are available online at www.mdpi.com/2075-163X/7/10/188/s1,
Table S1: Selenim minerals: Chemical formula, type locality (TL) and number of localities (NL).
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