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Abstract

Ploidy level is important in biodiversity studies and in developing strategies for

isolating important plant genes. Many herbicide-resistant weed species are

polyploids, but our understanding of these polyploid weeds is limited. Japanese

foxtail, a noxious agricultural grass weed, has evolved herbicide resistance.

However, most studies on this weed have ignored the fact that there are multiple

copies of target genes. This may complicate the study of resistance mechanisms.

Japanese foxtail was found to be a tetraploid by flow cytometer and chromosome

counting, two commonly used methods in the determination of ploidy levels. We

found that there are two copies of the gene encoding plastidic acetyl-CoA

carboxylase (ACCase) in Japanese foxtail and all the homologous genes are

expressed. Additionally, no difference in ploidy levels or ACCase gene copy

numbers was observed between an ACCase-inhibiting herbicide-resistant and a

herbicide-sensitive population in this study.

Introduction

Ploidy level, defined as the number of sets of chromosomes in the nucleus, is an

important genomic characteristics in biodiversity studies and developing

strategies for isolating important plant genes [1, 2, 3]. Although knowledge on

ploidy levels continues to improve in angiosperms, little is known regarding those
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of weeds. Nevertheless, it has been shown that polyploidy is more frequent in

weeds than in other species, especially in natural area invaders and agricultural

weeds [4, 5]. The advantages of being polyploidy may predispose such weeds to be

biologically invasive species [5, 6]. The intensive and global use of herbicides to

control agricultural weeds has resulted in the evolution of resistance, and

herbicide-resistant weeds pose a great threat to global agriculture. To date,

resistance is documented in 431 resistant biotypes in 235 species [7]. Furthermore,

compared with the knowledge of diploid weeds, our understanding of the

evolution of herbicide resistance in polyploid weeds is limited [8].

Acetyl-CoA carboxylase (ACCase; EC 6.4.1.2) is a key enzyme in most

organisms, catalyzing the carboxylation of acetyl-CoA to form malonyl-CoA

[9, 10]. Plants have two ACCase isoforms [11, 12]. Cytosolic ACCase, encoded by

a single nuclear gene, is a multidomain and homodimeric enzyme in all plants.

Plastidic ACCase is a multisubunit and heteromeric enzyme consisting of three

nuclear-encoded subunits and one plastidic-encoded subunit in most plants

[11, 12, 13]. The exception is the plastidic ACCase in the Poaceae family, which is

a multidomain and homodimeric enzyme, encoded by a nuclear gene

[11, 12, 13, 14]. The difference among plastidic ACCase between broadleaf and

grass weeds is the basis for the selectivity of ACCase-inhibiting herbicides [9]. The

cytosolic ACCase and the plastidic heteromeric ACCase are relatively insensitive,

but the plastidic homomeric ACCase is sensitive to ACCase-inhibiting herbicides

[9, 14, 15]. The continuous and extensive use of these herbicides has resulted in

resistance evolution in at least 46 weeds [7]. Two mechanisms known to confer

ACCase-inhibiting herbicide resistance to plants are target site resistance (TSR)

and non-target site resistance [14, 15, 16, 17]. To date, substitutions at seven

codon positions: (1781, 1999, 2027, 2041, 2078, 2088 and 2096) in the carboxyl

transferase domain of plastidic ACCase genes have been identified to endow

resistance to ACCase-inhibiting herbicides [18, 19, 20, 21, 22]. However, the

ploidy level of many weeds is unknown. This may influence the isolation of target

genes of interest since the ploidy level of the weed will determine the number of

target genes. Thus, determining the ploidy of weeds is meaningful in studying

resistance.

Japanese foxtail (Alopecurus japonicus Steud.), an annual weed of the Poaceae

family, is one of the most noxious weeds infesting cereal and oilseed rape fields in

China and Eastern Asia [23]. Resistance to ACCase and acetolactate synthase

(ALS)-inhibiting herbicides has been documented in Japanese foxtail

[24, 25, 26, 27, 28, 29]. Although Japanese foxtail is one of the most studied

herbicide-resistant grass weeds in China, most of the previous studies ignored the

multiple copies of target genes. The traditional method for determining ploidy

level is chromosome counting, which has proven reliable in many different species

[30, 31]. Flow cytometry, a convenient, fast and reliable method, has also been

used recently to determine the DNA content and ploidy levels in many plant

species [32]. The objectives of this study are to determine the ploidy level of

Japanese foxtail and to assess any difference in this respect between a sensitive and

resistant population.
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Materials and Methods

Plant materials

Seeds from a resistant (R) Japanese foxtail population JLGY-4 were collected in

2011 from a wheat field in Ganyu, Lianyungang, Jiangsu province in China

(34 7̊89N, 119 1̊29E). The R population evolved resistance to the ACCase-

inhibiting herbicides fenoxaprop-P-ethyl and pinoxaden [29]. A sensitive (S)

population (JLGY-1) was collected near the R population on a river bank that had

never been treated with herbicide (34 7̊89N, 119 0̊69E). This population has been

documented to be sensitive to ACCase-inhibiting herbicides [29]. The distance

between the two sites is approximately 5 km. Seeds from both R and S

populations were sown in 12-L pots filled with a 2:1 (wt/wt) mixture of sand and

soil, and seedlings were grown in the greenhouse. The growth conditions were 25/

20 C̊ day/night temperatures (¡ 3 C̊) and 12/12 h cycles of light/dark with a light

intensity of 450 mmol photons m–2 s–1. All plants were actively growing and

healthy at the time of the sampling. Both R and S plants were used in the

following study.

‘‘No specific permissions were required for the location where the Japanese

foxtail seeds were collected. This study did not involve any endangered or

protected species’’.

Flow cytometry

Eight samples from each of R and S populations were analyzed by flow cytometry.

Flow cytometry was performed essentially as described by Dolezěl et al. [32].

Briefly, approximately 100 mg of fresh Japanese foxtail leaf tissue was harvested

and transferred to a glass Petri-dish (on ice). Approximately 80 mg of fresh

perennial ryegrass (Lolium perenne L., 2n 5 4X 5 28) leaf tissue served as an

external reference standard. Tissues were finely chopped with a razor blade in ice-

cold LB01 lysis buffer (15 mM Tris, 2 mM Na2EDTA, 0.5 mM spermine

tetrahydrochloride, 80 mM KCl, 20 mM NaCl, and 0.1% (v/v) Triton X-100)

[33]. After chopping, the suspension was filtered through a 50-mm nylon mesh,

and RNase A and propidium iodide (both to 50 mg/ml final concentrations) were

added. A suspension of isolated nuclei was then incubated on ice in darkness for

30 min prior to analysis.

Flow cytometry was performed with an Accuri C6 flow cytometer (BD Accuri,

USA). For each sample, 5000 to 10,000 nuclei were collected and analyzed. The

results were displayed as one-parameter DNA histograms (G0/G1 peak). Flow

cytometer records the fluorescence intensity of cells in G0/G1 and G2 periods.

Cells in the G0/G1 period precede DNA synthesis. Cells in the G2 period have

finished DNA replication but have not divided. Thus, the ploidy level of the

sample can be determined by the equation [32]: Sample ploidy 5 reference ploidy

6 (mean position of sample G0/G1peak)/(mean position of standard G0/G1peak)
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Chromosome counts preparation and cytological measurement

Japanese foxtail root tips were harvested from germinated seeds, pretreated with

2 mM 8-hydroxyquinoline for 4–6 h at 20 C̊ to accumulate metaphase cells, and

fixed in methanol–acetic acid (3:1) fixative. Root tips were macerated in 1 M HCl

at 20 C̊ for 1h and squashed in 45% acetic acid. All slides were stored at 70 C̊.

After removing the coverslips, slides were dehydrated using 100% ethanol prior to

the chromosome counting. Slides were stained in 4,6-diamidino-2-phenylindole

(Roche Diagnostics, Switzerland) for 5 min at room temperature, and finally,

anti-fade (Vector, USA) was applied under the coverslip. Slides were examined

under an Olympus BX51 fluorescence microscope. Chromosome images were

captured using an Evolution VF CCD camera (Media Cybernetics, USA) and

merged using Image-Pro Express software.

DNA isolation and Southern blot analysis

Southern blotting was carried out to confirm the existence of multiple copies of

genes encoding plastidic ACCase in Japanese foxtail. The genomic DNA of

Japanese foxtail was isolated from the young leaf tissues of R and S individuals

according to Xu et al. [24]. Southern blot analysis was performed according to the

manufacturer’s instructions using the DIG High Prime DNA Labeling and

Detection Starter Kit I (Roche Diagnostics). In brief, 30 mg of genomic DNA was

digested with HaeIII, EcoRI and double digested with both enzymes, and then

electrophoresed through a 1.0% agarose gel. DNA was transferred onto Pure

Nitrocellulose Blotting Membranes (Solarbio Science&Technology Co., China) by

capillary transfer and crosslinked under UV light. The hybridization probe labeled

with digoxigenin was a 553 bp PCR fragment amplified by the primer pair

ACCp1F/ACCp1R (Table 1). After hybridization, the membrane was washed and

analyzed following the manufacturer’s instructions.

Total RNA extraction, cDNA synthesis and PCR amplification

Total RNA was extracted from 100 mg young shoot tissue of individuals using

RNAiso Plus (TaKaRa Biotech, China) according to the manufacturer’s

instructions. Genomic DNA contamination was removed using the Recombinant

DNase I (TaKaRa). cDNA was synthesized following the manufacturer’s

instructions using a PrimeScript 1st Strand cDNA Synthesis Kit (TaKaRa). The

primer pairs ACCp1F/ACCp1R and ACCp2F/ACCp2R were used to amply a 1230

bp region containing the resistance-endowing ACCase gene mutation sites

(Table 1) [29]. The PCR procedure was conducted as described in Xu et al. [24].

Purification of the PCR products, cloning and sequencing protocols were as

described previously [29]. At least eight clones for each biological replicate were

sequenced. BioEdit Sequence Alignment Editor software was used to align and

compare the sequence data.
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Results

Flow cytometry

The mean fluorescence value of the G0/G1 peak positions for the reference

standard was 9.846105. The mean fluorescence values of the G0/G1 peak positions

for the R and S samples were 1.016106 and 1.006106, respectively. The

coefficient of variation of the cytometry values, as a parameter of the reliability of

the measurement, varied between 2.3% and 4.7%. These values were considered

acceptable [32]. The flow cytometry results revealed that all these samples were

tetraploid. Thus, Japanese foxtail is a tetraploid grass weed species (Fig. 1).

Chromosome count

Mitotic metaphase chromosomes are advantageous for counting chromosomes.

As previously reported, chromosome numbers were used to confirm the ploidy

levels of different species. To determine the ploidy level of Japanese foxtail,

chromosome counting was used to corroborate the flow cytometry results. More

than 20 excellent mitotic cells with dispersed metaphase chromosomes were

obtained and counted. The result showed 28 chromosomes in each cell (Fig. 2).

Interestingly, because of the basic chromosome number in Alopecurus, which is X

5 7, the result is in accordance with 2n 5 4X 5 28 [34]. Thus, Japanese foxtail

was confirmed to be tetraploid.

Southern blot analysis

A genomic hybridization analysis was performed to estimate the copy number of

the gene encoding plastidic ACCase in Japanese foxtail. The hybridization pattern

after digestion with EcoRI, HaeIII or both enzymes displayed two, three and three

fragments, respectively (Fig. 3). The same hybridization pattern was observed in

the R and S populations of Japanese foxtail (data not shown). Since there is no

restriction site for either enzyme within the probe, these data suggest that at least

two copies of the ACCase gene should be present in the Japanese foxtail genome.

The presence of multiple copies of the ACCase gene would be in accordance with

the tetraploid nature of Japanese foxtail. This result confirmed the previous

finding by our group [29].

Table 1. List of primers.

Primer Sequence (59-39) Usage
Product size
(bp)

Annealing
temperature ( C̊) References

ACCp1F GCAAACTCIGGTGCTCGGATTGGCA Southern probe and
sequencing

553 60 [29]

ACCp1R GAACATAICTGAGCCACCTCAATATATT

ACCp2F TGCATACAGCGTATTGACCAG Sequencing 873 60 [29]

ACCp2R CTCTGACCTGAACTTGATCTC

doi:10.1371/journal.pone.0114712.t001
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ACCase gene isolation and sequencing

Since two copies of the ACCase genes have been isolated previously, this study was

conducted to confirm that both of the homologous genes isolated are expressed.

Reverse transciptase-PCR analysis revealed that two homologous genes can be

transcribed. The isolated cDNA lengths of Acc1;1 and Acc1;2 were all 1230 bp

(GenBank accession numbers KJ781292 and KJ781293 for the S population, and

KJ781294 and KJ781295 for the R population). No intron was found for either

gene when comparing the genomic sequences obtained previously. The deduced

amino acid sequences of Acc1;1 and Acc1;2 showed 99% identity. When

Fig. 1. Flow cytometric analysis of homogenates prepared from perennial ryegrass (a) and Japanese foxtail (b).

doi:10.1371/journal.pone.0114712.g001

Fig. 2. Mitotic metaphase chromosomes of Japanese foxtail. Scale bar is 10 mm.

doi:10.1371/journal.pone.0114712.g002
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comparing the sequences derived from six plants of both the R and S populations,

it was discovered that the R population plants contained a TGG to TGC mutation,

causing a tryptophan to cysteine mutation at codon position 1999 on locus Acc1;1.

This finding is in agreement with our previous report that the mutation Trp-

1999-Cys was responsible for the resistance to ACCase-inhibiting herbicides [29].

Discussion

In the present study, Japanese foxtail was determined to be a tetraploid weed by

two commonly used methods, flow cytometer and chromosome counting. Flow

cytometry is a convenient, fast and reliable method that has been used to

determine the ploidy level of many species [32]. Since the reliability of flow

cytometry compares with that of chromosome counting, this method has become

Fig. 3. Genomic southern blot hybridization analysis of Japanese foxtail digested with EcoRI, HaeIII
and both enzymes. M, DIG labeled DNA molecular weight.

doi:10.1371/journal.pone.0114712.g003
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widespread in biomedical research [32]. Here, flow cytometry offered a rapid

method to determine the ploidy level of Japanese foxtail.

No difference of ploidy levels was observed between R and S populations,

suggesting that resistance was irrelevant to ploidy level in this study. Puri et al.

[35] found that there were ploidy variations among different biotypes of Hydrilla

verticillata (Linn. f.) Royle, a serious problematic aquatic weed in the United

States, with varying levels of resistance to fluridone. The differential resistance

levels in different biotypes may also be due to ploidy variations [35]. Polyploidy is

an important feature of evolution for many plant species [6, 36]. Polyploidy may

confer new attributes, allowing plants to enter new environments or adapt to

changing environments [6]. This may be significant to the weed’s ability to evolve

resistance under herbicide stress. Whether ploidy level can affect resistance in

agricultural weeds is still unknown.

Multiple copies of the plastidic ACCase gene would be predicted based on the

tetraploid nature of Japanese foxtail, and two copies of this gene were recently

isolated by our group [29]. However, in the present study, the hybridization

pattern after genomic DNA was digested with EcoRI, HaeIII or both enzymes

displayed two, three and three fragments, respectively. These results indicate the

presence of at least two ACCase genes in Japanese foxtail. Similarly, when

confirming the presence of multiple ALS genes in Schoenoplectus mucronatus (L.)

Palla (three ALS genes have been isolated) by Southern blot, four fragments were

observed [37]. The presence of at least three ALS genes in the S. mucronatus

genome was concluded by Scarabel et al. [37]. In hexaploid Avena sterilis L. and

Avena fatua Linn., three plastidic ACCase gene loci were isolated [8, 38]. In the

tetraploid Echinochloa phyllopogon (Stapf.)Koss., four plastidic ACCase gene loci

were isolated [39]. In addition, multiple copies of target genes have been observed

in polyploid weed species when isolating the genes of ALS, which is another

important herbicide-targeted enzyme [37, 39, 40, 41, 42]. Two partial cDNA

sequences were isolated in this study. By comparing the sequences isolated from

genomic DNA previously [29], we found that all of the homologous ACCase genes

isolated were transcribed. Similarly, the three homologous ACCase genes in A.

fatua were documented to be transcribed [8]. The mutation(s) in either of the

ACCase gene loci may confer resistance since each gene was able to maintain its

own mutation in Japanese foxtail and A. fatua. However, Iwakami et al. [39]

reported that one of the four ACCase gene loci was not transcribed in E.

phyllopogon. This may due to the pseudogenization of duplicated genes or gene

silencing [43].

Although the ploidy levels of many plants have been documented, limited

knowledge is available regarding that of agricultural weeds. For instance, the

ploidy levels of the problematic weed species Descurainia sophia (Linn.) Webb. ex

Prantl, Myosoton aquaticum (Linn.) Moench, Galium aparine Linn.and P. fugax

are still unknown. In recent research, D. sophia, M. aquaticum and G. aparine were

documented to confer resistance to tribenuron [44, 45, 46, 47, 48], and a

population of P. fugax evolved resistance to ACCase-inhibiting herbicides [49].

Because of the unknown ploidy levels of these weeds, multiple copies of target
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genes may be ignored when they are studied. Even when the ploidy level was

known for some polyploid weed species, multiple copies of target genes have been

ignored [50, 51, 52]. Derived cleaved amplified polymorphic sequence (dCAPS), a

simple technique to detect herbicide resistance-conferring gene mutations, has

been widely used [8, 29, 53, 54, 55, 56]. This technique was considered able to

detect heterozygous and homozygous loci with herbicide-resistant mutations.

However, the presence of more than one target gene confounded the ability of this

technique to accurately identify ‘‘true’’ heterozygotes [8, 29, 41]. Recently, we

found that plants of the R population of Japanese foxtail carrying ACCase-

inhibiting herbicide resistance-conferring mutations were always determined to be

heterozygous using dCAPS [29], which suggested that multiple plastidic ACCase

genes existed. The heterozygotes detected were probably homologous hetero-

zygotes, not ‘‘true’’ allelic heterozygosity. These findings were in agreement with

those of Yu et al. and Warwick et al. [8, 41]. In addition, the dilution effect could

make the resistance more complex in polyploidy weed species [8, 39]. For multiple

copies of target genes, the protein products of each gene can be diluted by the

others. Under the same herbicide selection pressure, polyploid weed species may

evolve resistance more slowly than diploids because of the dilution effect [39].

Relatively low-level resistance was observed in the polyploid A. fatua in contrast to

high-level resistance conferred by the same mutations in unrelated diploid weed

species [8]. This may in part be due to polyploidy and the dilution of resistance

genes by susceptible genes. Thus, before studying the mechanism of resistance, the

ploidy level and the target gene’s copy number should be determined.
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17. Délye C, Jasieniuk M, Le Corre V (2013) Deciphering the evolution of herbicide resistance in weeds.
Trends Genet 29: 649–658.

18. Kaundun SS, Bailly GC, Dale RP, Hutchings SJ, McIndoe E (2013) A novel W1999S mutation and
non-target site resistance impact on acetyl-CoA carboxylase inhibiting herbicides to varying degrees in a
UK Lolium multiflorum population. PLOS ONE 8(2): e58012. doi:10.1371/journal.pone.0058012

19. Jang SR, Marjanovic J, Gornicki P (2013) Resistance to herbicides caused by single amino acid
mutations in acetyl-CoA carboxylase in resistant populations of grassy weeds. New Phytol 197: 1110–
1116.

20. Liu WJ, Harrison DK, Chalupska D, Gornicki P, O’Donnell CC, et al. (2007) Single-site mutations in
the carboxyltransferase domain of plastid acetyl-CoA carboxylase confer resistance to grass-specific
herbicides. Proc Natl Acad Sci USA 104: 3627–3632.

21. Yu Q, Collavo A, Zheng MQ, Owen M, Sattin M, et al. (2007) Diversity of acetyl-coenzyme a
carboxylase mutations in resistant Lolium populations: Evaluation using clethodim. Plant Physiol 145:
547–558.
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