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Neotypification of Pleurocapsa fuliginosa and epitypification of P. minor 
(Pleurocapsales): resolving a polyphyletic cyanobacterial genus

Abstract

Strains with complete morphological match to Pleurocapsa fuliginosa and P. minor were isolated from oahu (hawaii, 
uSa), with another strain matching P. minor isolated from a wet rock face in utah (uSa). Phylogenetically these baeocyte 
and pseudofilament producing strains fell in a single well-supported clade among a number of pleurocapsalean strains. 
they were sister to a clade of baeocyte-producing strains that lack the ability to form pseudofilaments and likely belong in 
an as-yet-to-be-described genus. Strains putatively named Pleurocapsa are scattered throughout the Pleurocapsales and 
Chroococcales, indicating a need for clear definition of the genus so that revisionary work and alpha-level taxonomy can 
move forward. to satisfy this need, P. fuliginosa ha4302-Mv1 and P. minor ha4230-Mv1 were chosen as neotype and 
epitype, respectively, establishing the genus based on molecular sequence data. In addition to the distinctive morphology of 
the genus, all Pleuro-capsa species for which 16S-23S ItS regions are available have an unusually long, branched D5 helix 
at the termination of the ItS region. the sister clade of strains that lack the ability to form pseudofilaments also possess an 
unusually long and branched D5 helix as well, suggesting that this feature of the ItS region may be a family-level 
synapomorphy.

Key words: cyanobacteria, Pleurocapsa, Pleurocapsales, neotype, epitype, 16S rrNa phylogeny, ItS, hawaii archipelago, 
grand Staircase-escalante National Monument

Introduction

the Pleurocapsales is an order of coccoid cyanobacteria with mostly polarized growth of the vegetative cells which 
subsequently divide by multiple fission forming beaocytes. recently, members of Chroococcidiopsis geitler (1933: 
625) have been separated from the Pleurocapsales, into their own order, Chroococcidiopsidales, based on molecular 
evidence (Komárek et al. 2014). Presently, Pleurocapsales contains 4 families, 25 genera, and 247 species (Komárek 
et al. 2014, oliveira alvarenga et al. 2016, guiry, M.D. & guiry 2018). this group has been recognized as 
taxonomically confusing to many researchers (Cumbers & rothschild 2014, Mareš 2017). Confusion arises due to 
inconsistencies in morphological character states between genera, their rare occurrence in nature, and the lack of 
sequence data of all representative genera. a particularly problematic genus is Pleurocapsa thuret in hauck (1885: 
515), which has been attributed to many strains deposited in culture collections all over the world, of which many 
have been sequenced. however, in DNa based phylogenies these strains intermix with sequences assigned to 
Chroococcidiopsis, Hyella Bornet & Flahault (1888: 162), Myxosarcina Printz (1921: 35), Stanieria Komárek & 
anagnostidis (1986: 208), Xenococcus thuret in Bornet & thuret (1880: 73, 74), and Dermocarpella lemmermann 
(1907: 349) (Ishida et al. 2001, Mareš & Cantonati 2016, oliveira alvarenga et al. 2016).
 the genus Pleurocapsa is an old, established taxon, originally described from limestone in the intertidal zone 
in the adriatic Sea near trieste, Italy (hauck 1885). this genus was diagnosed by its ability to produce baeocytes, 
as well as to form irregular to radial or sarcinoid colonies with tightly appressed cells (Fig. 1a). Soon after, several



species were described in the genus that had the capability of producing pseudofilaments: P. minor hansgirg (1891: 
89), P. concharum hansgirg (1891: 90), and P. crepidinum Collins (1901: 136). however, P. fuliginosa Hauck (1885: 
515), the type species, was not reported to produce pseudofilaments in the protologue, a significant departure from 
the modern conception of the genus. Subsequently, Ercegović established Scopulonema Ercegović (1930: 368) to 
accommodate those Pleurocapsa species capable of producing pseudofilaments, most species in the genus at the 
time. later, Komárek (1972) examined herbarium material of P. fuliginosa from Musée d’histoire naturelle, Paris. 
he reported and illustrated pseudofilaments found in the original material, leading him to subsume Scopulonema into 
Pleurocapsa (Komárek & anagnostidis 1995, Komárek & anagnostidis 1998). Forms of Pleurocapsa not developing 
pseudofilaments have been moved to other genera: P. fluviatilis lagerheim (1888: 430) into Chroococcopsis fluviatilis 
(Lagerheim) Komárek & Anagnostidis (1995: 17) and P. muralis lagerheim in Wittrock & Nordstedt (1893: 195) into 
Chroococcidiopsis muralis (Lagerheim) Miscoe & Johansen in Miscoe et al. (2016: 87). In the botanical literature, a 
total of 18 valid species of Pleurocapsa are now listed in Komárek & Anagnostidis (1998), along with seven additional 
species clearly requiring further characterization or revision.

FIGURE 1. line drawings of the type species of genus Pleurocapsa, P. fuliginosa: (a) Copy of P. fuliginosa from original publication 
(Shalygin after hauck 1885); (B) original images of P. fuliginosa from the neotype from hawaii archipelago (cultural material) with 
additional morphological trait-pseudofilaments. Scale bar equals 10 µm.



 using microbiological methods and a strains-based approach, Waterbury & Stanier (1978) and Waterbury (1989) 
completed two important studies on strains assigned to the Pleurocapsales, and their findings became the foundation 
of the review of the order in Bergey’s Manual (rippka et al. 2001, rippka et al. 2015). they recognize only a subset 
of the described genera, including Cyanocystis Borzì (1882: 314) which is synonymous with Dermocarpa Crouan & 
Crouan (1858: 70), Dermocarpella, Stanieria, Xenococcus, Chroococcidiopsis, Myxosarcina, and the Pleurocapsa-
group including Pleurocapsa, Hyella, and Solentia ercegovic (1927: 80). although few species were recognized in 
these works, detailed life cycles based on cell division and baeocyte formation were reported, and the morphological 
characteristics of many strains were shown. Consequently, sequences that were later determined for these strains 
are of exceptionally high value given the morphological and physiological characterizations that are linked to these 
sequences.
 Despite the value of the previous microbiological work on the Pleurocapsales, the work is incomplete as it stands. 
More genera will likely need to be recognized in order to achieve monophyletic genera in the Pleurocapsales, and 
this will be accomplished either by assigning some of the sequenced Pleurocapsa taxa to other existing genera or 
to new genera (Mishler & theriot 2000, Johansen & Casamatta 2005, Komárek et al. 2014, Dvořák et al. 2015, 
Shalygin et al. 2017). however, a challenge to revisionary work is that some of the most abundantly sequenced and 
clearly polyphyletic genera have not had their generitype species sequenced and definition of all of the genera in the 
Pleurocapsales is consequently presently ambiguous.
 In the present paper we establish a neotype for the generitype, P. fuliginosa, and an epitype for a long-established 
species, P. minor. We base these typifications on sequenced strains that closely conform to descriptions for each species 
using the monophyletic species concept sensu Johansen & Casamatta (Mishler & theriot 2000, Johansen & Casamatta 
2005), following the rules for epitypification established in the International Code for algae, Fungi and Plants (ICN, 
turland et al. 2018). Furthermore, we establish the phylogenetic benchmark for Pleuracapsa sensu stricto including the 
two species mentioned. We exclude some strains, formerly assigned to the genus Pleurocapsa, from Pleurocapsa sensu 
stricto based on both phylogenetic and morphological evidence. Finally, we make recommendations for designating 
reference strains and sequences for six additional pleurocapsalean genera: Chamaecalyx Komárek & anagnostidis 
(1986: 199), Hyella, Foliisarcina oliveira alvarenga, rigonato, Branco, Melo & Fiore (2016: 694), Xenococcus, 
Stanieria, and Chroococcopsis geitler (1925: 342).

Materials and Methods

Field Methods
Pleurocapsa fuliginosa ha4302-Mv01 and P. minor ha4230-Mv01 were isolated from environmental samples 
collected by vaccarino and Johansen on oahu, hawaii, on the 23rd and 25th of July, 2009. Samples were placed in 2.0 
ml eppendorf tubes. environmental samples were preserved in 2.5% CaCo3-buffered glutaraldehyde and deposited in 
the Bernice Pauahi Bishop Museum, along with dried herbarium mounts. Fresh material was kept for culturing at John 
Carroll university and isolates from this material are available upon request from the John Carroll university algal 
Culture Collection. additionally, information about habitat and morphology are available in the table 1 or on the web 
through CrIS (Melechin et al. 2013).
 an additional strain, P. minor gSe-Chr-MK-17-07r, was obtained from the John Carroll university Culture 
Collection. this strain was originally isolated from a collection made by Bohunická and Johansen from lower Calf 
Creek Falls, grand Staircase-escalante National Monument, utah, on the 18th of august, 2006 (table 1).

TAblE 1. Main environmental features of the members of Pleurocapsaceae.
locality/Coordinates altitude (m) habitat Substrate/Moisture

Pleurocapsa fuliginosa
ha4302-Mv1

hawaii/21° 21’ 05”N 
latitude, 157° 46’ 08”W 
longitude

~107 tropics: Maunawili stream 
(freshwater)

rock face near the 
stream/wet

Pleurocapsa minor
ha4230-Mv1

hawaii/21° 22’ 01” N 
latitude, 157° 47’ 31” W 
longitude

~412 tropics: Nuuanu Pali lookout 
(subaerophytic)

Cement/wet

Pleurocapsa minor
gSe-Chr-MK17-07r

utah/37° 49’ 44.77” N 
latitude, 111° 25’ 12.58” W 
longitude

~1694 Desert: lower Calf Creek Falls 
(freshwater) within grand Staircase-
escalante National Monument

Sandstone near 
waterfall/wet



laboratory work
Fresh samples were diluted and inoculated onto Z8 medium (Carmichael 1986) agar plates. the dilution plates were 
then grown under low light (<200 μE) conditions. Colonies were picked after an extended growth period (1–2 months 
or more) and isolated into unialgal culture for microscopy and molecular analysis. all strains were characterized using 
olympus BX60 and Zeiss axioscope photomicroscopes with high resolution Nomarski DIC optics. Morphological 
measurements were made using Zeiss axiovision 4.8 software (oberkochen, germany).
 healthy cultured cells were scraped from unialgal slants, and genomic DNa isolation was performed using the 
UltraClean Microbial DNA Isolation Kit from MO BIO (Carlsbad, CA). DNA was eluted into 50 μl of solution MD5 
and stored at –20°C.
 In order to amplify the promoter/leader region of the rrNa operon for the hawaiian strains, we used the 16S 
forward promoter primer (5’-gga tat att gga taa gtg CC-3’) developed by lukešová et al. (2009) and the 16S 
reverse (5’-CCC att gCg gaa aat tCC-3’) primer to amplify the leader region and first 359 nucleotides of the 
16S rrNa gene. Fifty microliter reactions were performed in a Bio-rad DNa engine PtC200 (hercules, Ca), and 
these reactions resulted in a ~540 bp PCr product. PCr conditions were 35 cycles of 94°C for 30 s, 53°C for 30 s, and 
72°C for 60 s; a 300 s extension at 72°C and 4°C hold followed. Final concentrations of reagents in the reactions were 
1X taq polymerase buffer (uSB, Cleveland, ohio), 1.5 mM MgCl2, 2.5 pmol/μl of each primer, 1 μl of template DNA 
(100–200 ng total), 0.2 mM dNtPs (uSB), and 1.25 units taq polymerase (uSB).
 a PCr product of ~1600 nucleotides containing the 16S rrNa gene from bp 325 to the end of the gene, the 
16S–23S ItS region, and the beginning of the 23S–5S ItS was generated using primers vrF1 and vrF2 (Boyer et 
al. 2001). the final reagent concentrations were the same as the leader PCr reactions. a 25 µl reaction for each strain 
was run in a C1000 thermocycler (BIoraD).
 Cycling conditions for the leader region and beginning of 16S rrNa gene were 35 cycles of 94°C for 45 s, 57°C 
for 45 s, and 72°C for 135 s. a 5 min extension at 72°C was performed, and the reactions were held at 4°C indefinitely. 
Cycling conditions for the ending 16S rrNa gene and 16S–23S ItS were a melting cycle of 95°C for 5 minutes; 
followed by 35 cycles of: 95°C for 60 s, 57°C for 45 s, and 72°C for 240 s; ending in an additional 300 s at 72°C and 
finally an indefinite hold at 4°C. the final concentrations of reagents used were as in lukešová et al. (2009).
 amplification of the 23S–5S ItS region was performed by using the 23S end forward (5’-
gCtgaaagCatCtaagtggg-3’) and 5S reverse (5’-CCtggCrtCgagCtattt-3’) primers (lukešová et al. 
2009). reaction conditions were 35 cycles of 94°C for 30 s, 50°C for 30 s, and 72°C for 60 s followed by a 72°C 
extension for 300 s and a 4°C incubation. reagent concentrations were the same as indicated above.
 all PCr products were analyzed on 1% agarose gels before being ta-cloned into the pSC-amp/kan plasmid of 
the Stratagene Cloning Kit (la Jolla, Ca). Putative clones were isolated using QIaprep Spin kits (Qiagen, Carlsbad, 
CA) with elution in 50 μl of sterile water. The presence of an insert was confirmed by Ecor I digestion.
 at least two of each cloned PCr amplifications were sequenced for each of the three reactions by Functional 
Biosciences, Inc. (Madison, WI) using the M13 forward and M13 reverse primers present in the plasmid. additionally, 
the 16S–23S ItS-containing plasmids were sequenced with internal primers vrF5 (5’-tgtaCaCaCCgCCCgtC-
3’), vrF7 (5’-aatgggattagataCCCCagtagtC-3’), and vrF 8 (5’-aaggaggtgatCCagCCaCa-3’). 
Sequences were assembled and proofread using Sequencher software (version 4.8, ann arbor, MI).
 Secondary structures of the 16S–23S internal transcribed spacer (ItS) region were determined for all Pleurocapsales 
strains for which ItS sequence was available (our strains and those on NCBI genBank). the 16S–23S ItS regions 
recovered for Pleurocapsa all had both trNa genes. Conserved domains within the 16S–23S ItS were identified 
through employment of comparative analysis with the ItS of other cyanobacteria, particularly with respect to the basal 
portions of each helix. the v3 and D5 domains were identified by folding the end of the ItS with the 23S–5S ItS 
region. 

Phylogenetic Analysis
Phylogenetic analysis was based on the complete 16S rrNa gene (bp 1–1,558) sequences. We recovered two 
distinct ribosomal operons for Pleurocapsa minor ha4230-Mv01, and both were used in the phylogenetic analyses. 
approximately, 122 other sequences were chosen from genBank for the phylogenetic analyses. Sequences were 
picked based on 1) similarity to our sequences of Pleurocapsa as determined by BlaSt searches, 2) the strain name 
in a search for Pleurocapsa, Xenoccoccus, Stanieria, Dermocarpella, Myxosarcina and Chroococcidiopsis (i.e. the 
baeocyte-producing taxa), and 3) sufficient base length of sequence. Five outgroup taxa were included in the phylogeny, 
representing the gloeobacterales, Synechococcales, Chroococcidiopsidales and Nostocales. the 16S rrNa gene 
sequences were aligned manually in Microsoft Word (Microsoft Corp., redmond, Washington, uSa) with the aim 



of preserving secondary structure (Lukešová et al. 2009, Řeháková et al. 2014). Bayesian Inference (BI), Maximum 
likelihood (Ml), and Maximum Parsimony (MP) generated the phylogenies, however only the Bayesian tree topology 
is shown with additional Ml probabilities and MP bootstrap values mapped onto the nodes represented on FIgure 
S1. For Ml and BI we used the gtr+I+g model, which was given by jModeltest2 (Darriba et al. 2012). During BI, 
which was running on MrBayes v.3.2.6, two runs of eight Markov chains were applied with 20 million generations, 
sampling every 100 generations, with 25% burn-in, using the sump command in Mr. Bayes (ronquist et al. 2012). Ml 
analysis was performed utilizing raxMl v. 7.2.8 with 1,000 bootstrap pseudoreplicates (Stamatakis et al. 2008). Both 
BI and Ml analyses were run using CIPreS (Miller et al. 2015). MP analysis was completed on PauP v. 4.02b with 
steepest descent, tree bisection and reconnection (tBr) branch swapping, and 1,000 bootstrap replicates, p-distance 
values were also calculated with PauP (Swofford 2002).
 Phylogenetic trees, ItS structures folded in Mfold (Zuker 2003) and line drawings of the species were post-
produced in adobe Photoshop CS5 (adobe Systems Inc., San Jose, California, uSa).

Results 

16S rRNA phylogeny

the three phylogenetic analyses were in overall agreement with each other and with recent taxonomic revisions of 
cyanobacteria, which were based on conserved sequences of multiple protein coding genes (Komárek et al. 2014, 
Mareš 2017). the most derived lineages, furthest from gloeobacter violaceus rippka, J.B. Waterbury & Cohen-
Bazire (1974: 436) were Nostocales and Chroococcidiopsidales (Figs. 2, S1). Both of these clades contained coccoid 
members. We assume that the taxonomically-undetermined coccoids in the Chroococcidiopsidales were members of 
that clade which have not been shown to produce baeocytes because of insufficient study. the unknown coccoids as 
well as genus Chlorogloeopsis Mitra & Padney (1967: 112) within the Nostocales are more problematic, but we have 
also seen Nostoc species from soils which produced such compact colonies that their filamentous nature is not evident, 
and which do not produce heterocytes unless grown in N-free medium. these “coccoids” require further study before 
taxonomic determinations can be made. the overall topology from the three different analyses (BI, Ml, and MP) were 
highly congruent. the Bayesian Inference analysis had the greatest node support in comparison to Ml and MP (Fig. 
S1). 

While the Pleurocapsales clade had a posterior probability support value of 0.95 in the BI analysis, it was 
nested in the Chroococcales. the Bayesian Inference analysis had at least three lineages basal and paraphyletic 
to the Pleurocapsales with representatives of gomphosphaeriaceae, aphanothececaceae, Merismopediaceae, 
Coelosphaeraceae, Microcystaceae, and Chroococcaceae (following Komárek et al. 2014). Chroococcus turgidus 
(Kützing) Nägeli (1849: 46) was attributed to strains in very different phylogenetic positions, within the clades containing 
Limnococcus Komárková, Jezberová, o.Komárek & Zapomelová (2010: 79), gomphosphaeria Kützing (1836: no I) 
and Chroococcus Nägeli (1849: 46). additionally, the Pleurocapsa concharum group including P. concharum vP4-07 
was located among the Microcystaceae (Fig. S1), and needs to be moved to another genus in the future if the strains 
indeed have the distinctive morphology of this species. resolution of problems within Chroococcales and Nostocales 
is outside the scope of the present study.
 the Pleurocapsales are morphologically defined by the presence of baeocytes and distant phylogenetic relationship 
to another baeocyte producers from Chroococccidiopsidales. Based on the literature (Waterbury & Stanier 1978) 
and our robust phylogeny we propose that some of the NCBI sequences need to be renamed to reflect more correct 
taxonomic determination. For example, Dermocarpella incrassata lemmermann (1907: 349) was transferred into 
Chamaecalyx incrassatus (lemmermann) Komárek & anagnostidis (1986: 199) consequently all sequences designated 
as D. incrassate, such as Sag 29.84, need to be updated in NCBI (Fig. 2; table 2). the clade which contains our two 
species, P. fuliginosa and P. minor, forms a well supported subcluster within the Pleurocapsales, and we are identifying 
this subcluster as Pleurocapsa sensu stricto. even though Pleurocapsa sp. hrC17 is closely related to our Pleurocapsa, 
it certainly belongs to a different species. Its genetic identity with Pleurocapsa sensu stricto is only 95.5%, but given 
that only a 700 bp sequence exists for this species from a hyersaline habitat, little weight can be given to comparisons 
of genetic identity.



FIGURE 2. Collapsed 16S rrNa gene phylogeny of Pleurocapsales based on 253 otus with maximum length of 1,483 bp. Support 
values are shown as BI. Nodes lacking support are indicated by “–”. the entire uncollapsed tree can be found in the Supplementary 
Materials as Fig. S1. Strains we consider to be correctly identified and representative of the genus are followed by an asterisk. taxa which 
need revision are placed in the quotes.



TAblE 2. New suggested names for NCBI sequences, based on phylogenetic clustering and modern taxonomic 
treatments.
Old name Our proposed name Accesion
Dermocarpella incrassata Sag 29.84 Chamaecalyx incrassatus Sag 29.84 aJ344559
Stanieria sp. PCC 7301 Hyella sp. PCC 7301 aB039009
Stanieria sp. PCC 7302 Hyella sp. PCC 7302 KM019985
uncultured Stanieria sp. clone CrN-P11 Hyella sp. CrN-P11 DQ072926
Pleurocapsa sp. PCC 7516 Hyella caespitosa PCC 7516 X78681
uncultured Xenococcus sp. Cl. Crv-P5 Hyella sp. Crv-P5 DQ072929
Pleurocapsa sp. ha4230-Mv1 
(clones 2B and 2C) 

Pleurocapsa minor ha4230-Mv1 (clones 2B and 
2C)

KC525080– 
KC525081

Pleurocapsa sp. ha4302-Mv1 Pleurocapsa fuliginosa ha4302-Mv1 JN385285
Pleurocapsalean cyanobacterium 3MX-NQ1 Chroococcopsis sp. 3MX-NQ1 Mg710500

 the members of Pleurocapsa sensu stricto have been observed to form pseudofilaments as well as 
pseudodichotomously branching aggregates in contrast to representatives of the sister clade directly below Pleurocapsa 
(Figs. 2, S1). this group of taxa is ambiguously separated from Pleurocapsa sensu stricto, having genetic identities 
with that group >95.3% (Table 3), which is above the cut-off indicative of separate genera (≤94.5%, see Yarza et al. 
2014). however, this level of genetic demarcation is almost identical to that separating Chaemaecalyx and Pleurocapsa, 
which are morphologically very different and unquestionably belong to independent lineages. Furthermore, this sister 
group consists mostly of coccoid baeocyte producers unable to produce pseudofilaments that are morphologically 
similar to Chroococcidiopsis, and some even bear this generic epithet. Pleurocapsa minor Sag 4.99 is in this group, 
but it does not have pseudofilaments according to images available on the Sag website, and so it is morphologically 
consistent with other clade members. Finally, the sister group is ecologically distinct, containing many strains isolated 
from desert soils and quartz rocks. For now we leave this group of strains in Pleurocapsa, recognizing that they 
should be moved to other (likely new) genera in the future. given the strong morphological similarity of our strains to 
Pleurocapsa, we are confident in our taxonomic determination of the hawaiian strains, and will neotypify P. fuliginosa 
and epitypify P. minor so that these sequenced strains can provide a firm benchmark for the genus and for the order 
Pleurocapsales.

TAblE 3. Percent similarity of different representatives of Pleurocapsales, members of genus Pleurocapsa higlighed with 
bold font, “Pleurocapsa concharum” from Choococcales served as outgroup. the length of the sequences was ~ 1500 bp.
Strains 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1 Pleurocapsa fuliginosa HA4302-MV1

2 Pleur. minor GSE-CHR-MK17-07R 97.28

3 Pleurocapsa minor ha4230-Mv1 2C 98.02 98.76

4 Pleurocapsa minor ha4230-Mv1 2B 98.27 99.01 99.75

5 “Pleurocapsa sp.” hPC17 95.54 95.79 96.53 96.53

6 Xenococcus sp. PCC7307 97.03 97.28 97.52 97.77 96.04

7 “Pleurocapsa sp.” PCC7319 95.79 95.79 96.04 96.29 96.29 96.53

8 Pleurocapsales ata3-5Q-K04 au5 95.79 96.04 96.78 96.78 98.76 96.29 96.53

9 Pleurocapsales ata3-5Q-Ko4 95.54 95.79 96.53 96.53 98.51 96.04 96.29 99.75

10 Pleurocapsales ata3-4Q-Ko6 95.54 95.79 96.53 96.53 98.51 96.04 96.29 99.75 99.50

11 Pleurocapsales ata6-12-rM16 95.54 95.79 96.53 96.53 98.51 96.04 96.29 99.75 99.50 100.00

12 “Pleurocapsa minor” Sag 4.99 95.30 95.54 96.29 96.29 98.27 95.79 96.04 99.50 99.26 99.75 99.75

13 Chamaecalyx sp. hSC1 96.29 95.54 95.79 96.04 94.55 97.77 95.05 95.05 94.80 95.30 95.30 95.05

14 Chamaecalyx incrassatus Sag 29.84 96.53 95.05 95.30 95.54 94.06 96.29 94.06 94.55 94.31 94.80 94.80 94.55 98.02

15 Hyella caispitosa PCC 7516 96.53 96.04 96.29 96.53 96.29 97.28 96.04 96.53 96.29 96.78 96.78 96.53 96.04 96.53

16 Stanieria cyanosphaera aB039008 93.32 92.33 93.07 93.32 91.83 93.56 93.81 91.58 91.34 91.58 91.58 91.34 92.57 92.33 91.83

17 “Pleurocapsa concharum” vP4-07 90.59 89.60 90.35 90.59 90.10 89.85 90.35 90.10 89.85 89.85 89.85 90.10 89.60 89.85 89.85 92.33

Characterization of 16S–23S ITS and 23S–5S ITS regions

all Pleurocapsaceae studied strains had both trNa genes (trNaIle and trNaala) and a v2 helix between the genes 
(table 4). they also all had unusally long end regions following the v3 helix (table 4).



 Secondary structures of the conserved domains in Pleurocapsa were distinctive. the D1-D1’ helices for both P. 
fuliginosa ha4302-Mv1 and P. minor ha4230-Mv1 both had a short helix in the 3’ side of the unilateral basal bulge 
(Fig. 3 a, B), and formation of this short helix caused an unusual unpairing of the 5’ side of the bulge which had four 
unpaired nucleotides. this structure also formed in two closely related pleurocapsalean strains (Fig. 3 D, F). In three 
of the strains, an alternate structure could form that resembles the typical structure of this helix in other cyanobacteria 
(Fig. 3 C, e, g). however, the alternate structure could not be formed in the case of P. fuliginosa due to a C→G 
transversion mutation in the 5’ strand of the helix (Fig. 3 a).

FIGURE 3. Secondary structures of conserved domains in the 16S–23S ItS region. a–g. D1-D1’ helices for four strains; alternative 
structures for the same strain are indicated with equilibrium arrows. h–J. v2 helices situated between trNaIle and trNaala genes. K–M. 
Box-B anti-terminator helix. N–o. end region of 16S–23S ItS showing D4 helices (yellow), v3-helices (purple), D5 region (green), and 
position of attachment of 23S rrNa gene within the D5, with 3’ end of 16S–23S ItS paired to 5’ end of 23S–5S ItS.



TAblE 4. length of ItS conserved domains for species in Pleurocapsa sensu stricto and three close genera for which ItS 
regions are available. Chroococcidiopsis thermalis and C. muralis lacked the gene for trNaala and the v3 helix; Pleurocapsa 
concharum (belonging to Chroococcales) lacked both trNa genes. 
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Pleurocapsa fuliginosa HA4302-MV1 7 61 51 45 74 79 73 28 41 21 11 19 46 108
Pleurocapsa minor HA4230-MV1 clone 2C 7 64 47 49 74 82 73 35 42 21 11 19 47 211
Pleurocapsa minor HA4230-MV1 clone 2b 7 64 47 49 74 82 73 35 42 21 11 19 47 218
Pleurocapsalean cyanobacterium ata3-4Q-Ko6 7 60 77 42 74 79 73 67 42 21 11 19 46 154
Pleurocapsalean cyanobacterium ata12-6-rM16 7 60 77 42 74 79 73 66 42 21 11 19 46 154
Pleurocapsalean cyanobacterium ata3-5Q-Ko4 7 60 78 42 74 79 73 65 40 21 11 19 46 155
Pleurocapsa sp. PCC7319 7 63 44 28 74 53 73 45 40 22 11 19 44 134
Stanieria cyanosphaera PCC 7437 8 62 44 14 74 86 73 34 31 19 11 32 25 26
Stanieria cyanosphaera NIeS 3757 8 62 42 14 74 86 73 41 31 19 11 32 26 26
Chroococcidiopsis thermalis PCC 7203 8 93 52 28 74 49 89 16 11 57
Chroococcidiopsis thermalis CBg1-NQ12 8 93 52 28 74 49 89 16 11 57
Chroococcidiopsis muralis ha8275-lM2 8 97 52 28 74 41 91 16 11 57
Pleurocapsa concharum PCC 7327 8 95 31 19 45 15 11 27 66 63

 the v2 helices were highly variable within the pleurocapsalean taxa represented, indicating they were separate 
species (Fig. 3 h–J). all three Box-B helices had identical basal clamp regions (5’-agCa:ugCu-3’), but differed 
significantly in the three nucleotides adjacent to the clamp region on both the 5’ and 3’ strands (Fig. 3 K–M). the two 
Pleurocapsa species were identical in sequence in the central portion of the Box-B helix, but differed in sequence and 
length in the terminal loop (Fig. 3 K, l).
 the most distinctive region of the ItS was the 3’ end region (Fig. 3 N, o). the D4 helix, which pairs with the 23S–
5S ItS, was typical in structure and length (17–18 nucleotides), as was the v3 helix (46–47 nucleotides). however, the 
D5 helix is typically a short unbranched helix formed from the 3’ end of the 16S–23S ItS and the 5’ end of the 23S–5S 
ItS. the D5 helices of Pleurocapsa were very long and branched, and were highly unusual in comparison to all other 
cyanobacterial D5 helices characterized thus far. these helices were long in both Pleurocapsa sensu stricto and the 
sister Pleurocasalean strains (table 4, first seven sequences).

Characterization of strains

Class Cyanophyceae

Subclass Oscillatoriophycidae

orber Pleurocapsales

Family Pleurocapsaceae

Pleurocapsa fuliginosa Hauck 1885

Description of our material:—(Figs. 1a, B, 4a ) Colony dark blackish brown, hard, dry, in discrete small clumps, 
arising from the substrate, consisting of large sarcinoid clusters of coccoid cells, with pseudofilament production 
uncommon, not obviously divaricately branching, but sarcinoid divaricating clusters may expand outward as they divide 
radially from a central point, forming compact disc-like expanses. Sheaths colorless, thin, tight, scarcely apparent. 
Pseudofilaments uni- or multiseriate, 4–8 µm wide when uniseriate, up to 20 µm wide in multiseriate filaments. Cells 
spherical or more commonly ovoid with sides appressed by neighboring cells, typically in large sarcinoid packets, 
at first the color of red wine, becoming bluish gray, with mature cells russet-brown to dull copper-brown, with thin 
cross walls, with few but distinct spherical granules, diameter (2) 4–17(20) µm, sometimes individual cells becoming 



rounded, enlarged, up to 25 µm in diameter. Chromoplasm often appearing in a parietal position. Baeocytes uncommon, 
rounded, 3–3.5 µm in diameter.
 Collection locality:—Maunawili stream, approximately 20 minutes hike downstream from Maunawili Falls, 
oahu. 21° 21’ 05”N latitude, 157° 46’ 08”W longitude; July 25, 2009.

FIGURE 4. light photomicrographs of Pleurocapsa spp.: (a) P. fuliginosa from neotype material, note pseudofilaments as well as 
peripheral and irregular thylakoid arrengment; (B) P. minor from grand Staircase-escalante National Monument (cultured isolates), with 
classical morphology for that taxon, which is formation of long pseudofilaments, and pseudodichotomous branchings. Scale bar equals 
10 µm.



 Holotype:—Possibly in the Musée d’histoire naturelle, Paris, according to Komárek (1972). Not available for 
external loan. Material from North america Illustrated in Komárek & anagnostidis 1998, Fig. 622 c, p. 472. 
 Neotype here designated:—BISh 755070, Bernice Pauahi Bishop Museum, honolulu, hawaii, uSa., herbarium 
mount prepared from the strain, ha4302-Mv1.
 Reference Strain:—ha4302-Mv1, John Carroll university Culture Collection, university heights, ohio, 
uSa.
 Taxonomic notes:—P. fuliginosa was originally described from limestone in the intertidal zone of the adriatic 
Sea near trieste, Italy by hauck (1885) and a specimen was deposited in thuret´s collection in the Musée d’histoire 
naturelle, Paris. here is original hauck’s description of P. fuliginosa:
 “Macrocolonies as blackish aggregates. Cells 5–20 µm wide, single or 2–4 celled, in the large subcolonies up to 
50–100 µm. Cell golden-brown, reddish to dirty violet, sometimes blackish, cell content homogeneous. envelopes 
colorless”.
 however, none of the three deposited specimens which are available on the official web site Musée d’histoire 
naturelle, Paris fit the type locality of the species. they all originate from different marine environments in North 
america. Some of them, such as P. fuliginosa MNhN-PC-PC0560503, were originally determined as Coccochloris 
deusta Meneghini (1841: 173) which is an earlier name for Entophysalis deusta (Menegh.) Drouet & Daily (1948: 
79). Members of that genus are incapable of baeocyte production. Komárek (1972) most likely examined one of the 
three specimens which were mentioned to be epiphytic on the marine macroalgae, in contrast to the original material 
of hauck who described P. fuliginosa from the stony intertidal. Here is an excerpt from correspondence with Prof. Jíři 
Komárek concerning P. fuliginosa sent in 2017:
 “I have studied the type material of Pleurocapsa fuliginosa almost 50 years ago in the laboratory of Prof. Bourrelly 
in Paris. as I remember, we have studied there with Prof. Bourrelly the isotype material of Pl. fuliginosa, which was 
originally from thuret´s collection and was deposited in the herbarium of Musée d’histoire naturelle, Paris. I have 
studied these types just with the supervision and initiative of Prof. Bourrelly. unfortunately, I do not remember the 
locality of the original haucks material, because I was oriented mostly on my strains in that time, which are described 
in my short study. Prof. Bourrelly gave me this type material only for comparison and it was my omission that I did not 
describe better this original haucks specimen. however, maybe that this type material is still deposited in cryptogamic 
herbarium in Paris, where the original locality should be found.”
 unfortunately, Musée d’histoire naturelle, Paris does not allow loan or use of biomass for molecular investigation 
of type materials for algae. given the fact that the museum catalogue does not have material from the type locality or 
type substrate, we question whether or not the type is actually in the collection. Subsequently, following ICN (article 
9.7, ICN) we consider type materials of Pleurocapsa fuliginosa as being lost, and consequently we are establishing a 
neotype for that particular species, which is the type species of the genus.
 the strain ha4302-Mv01 which have been primarily characterised by Sherwood et al. (2014) exactly fits the 
morphological description and illustrations of the original description given by Hauck (1885). In particular, the sarcinoid 
radiating colony is identical, cell dimensions are the same, and the color of the cells are all a close match (Figs. 1, 3a). 
the dirty-violet (wine red) color is only found in this species of Pleurocapsa. the only difference we can detect is in 
ecological habitat. P. fuliginosa occurs in brackish (e.g. Baltic Sea) to marine (e.g. adriatic Sea) waters, whereas our 
strain is only in freshwater in hawaii. however, the sample from which our P. fuliginosa derived was collected in a 
Maunawili stream which is <5 kilometers from the coast. We are making the assumption that the neotype population 
could ultimately have had a marine origin. 

Class Cyanophyceae

Subclass Oscillatoriophycidae

orber Pleurocapsales

Family Pleurocapsaceae

Pleurocapsa minor HansgIRg 1891
Synonym:—Scopulonema minus (hansgirg) geitler (1942: 93)



FIGURE 5. light microphotographs of the epitype of the Pleurocapsa minor ha4230-Mv1 from hawaii: (a) Stages of germination; (B) 
young subcolonies, derived from baeocytes, and initial stages of pseudodichotomously branched pseudofilaments (indicated with arrow); 
(C) Mature stages with defined rows of the cells, and clear pseudodichotomous branches; (D) older stages with yellowish-orange, more
or less robust sheaths. Scale bar equals 10 µm.

Description of our material:—(Figs. 4 B, 5) Colony compact, olive-brown, soft to hard, dry, in clumps or small 
irregular mounds, arising from the substrate with extensions that are higher than wide, consisting of aggregates of 
coccoid cells, in diads or tetrads, but not forming large cubical sarcinoid clusters, containing pseudofilamentous, 
pseudodichotomously branching aggregates, united laterally by the confluence of thin gelatinous sheaths. Sheaths 
colorless, thin, scarcely apparent, later, in the older stages, more robust with yellowish-orange color. Pseudofilaments 



uni- or biseriate, 5–12.5 µm wide, with rounded end cells lighter in color than central cells, 4–10 µm wide, 3.5–22 µm 
long. Cells of the central portion of the thallus irregular, with binary to multiple fission, but mainly sarcinoid, dark 
olive-green, brown, to brownish orange in older parts of colony, nongranular, with reticulate nature of the cytoplasm 
often evident, 2.5–10 µm wide, up to 11.5 µm long. Baeocytes uncommon, 1.4–2.8 µm in diameter.
 Collection localities:—gSe-Chr-MK-17-07r: lower Calf Creek Falls, grand Staircase-escalante National 
Monument, utah, uSa. growing in algal mats on sandstone continually wetted by a waterfall. 37° 49’ 44.77” N 
latitude, 111° 25’ 12.58” W longitude, august 16, 2006 (Fig. 2B). ha4230: Nuuanu Pali lookout, hWy 61, oahu, 
uSa. growing on cement trail by the cement wall. 21° 22’ 01” N latitude, 157° 47’ 31” W longitude; July 23, 2009.
 Holotype:—Hansgirg (1891), as a pressed isotype specimen stored in the Department of Botany Collection, 
housed in the Smithsonian National Museum of Natural history, Washington, uSa. 
 Epitype here designated:—dried material BISh 751766 is derived from ha4230-Mv1, Bernice Pauahi Bishop 
Museum, honolulu, hawaii, uSa.
 Reference Strain:—ha4230-Mv1, John Carroll university Culture Collection, university heights, ohio, 
uSa.
 Taxonomic notes:—our strains are an excellent fit to the morphological description of Pleurocapsa minor 
Hansgirg (1891), and the subsequent expanded description of geitler (1932). P. minor is typically found in waterfalls. 
P. minor ha4230-Mv1 has a genetic identity of 98.8–99.0% to P. minor GSE-CHR-MK17-07R (Fig. 5), but is ≤98.7%
similar to to all other species in our Pleurocapsales clade (98.0–98.3% similarity to P. fuliginosa, ≤96.8% similarity to
all other taxa in the phylogeny).

Discussion

Cyanobacterial type specimens can be problematic as a source of taxonomic resolution for several reasons. herbarium 
materials are dried and often chemically preserved, and have limited usage for molecular characterization, and frequently 
are not even of value for morphology. types were not regularly designated prior to the type concept becoming prevalent 
in botany, and many times the original material is not described in sufficient detail to match old material from a collection 
with the material from which a taxon was described. Many types are inaccessible, with herbaria limiting access to the 
material, and often reluctant to allow any of the material to be destructively analyzed for sequencing. and finally, 
many potential types have been lost or destroyed. Consequently, many taxa have no type or an ambiguous type which 
cannot be identified with the original description with certainty. epitypification and neotypification are both processes 
designed for addressing this problem and designating types that are useful in a modern context. By choosing new 
type specimens (neotypes) or more modern materials which can serve as unambiguous supplemental type specimens 
(epitypes) some of the ambiguity can be eliminated (turland et al. 2018). Cyanobacteria are governed by both the 
International Code of Nomenclature for Fungi, algae, and Plants (ICN) and the International Code of Nomenclature 
for Prokaryotes (ICNP) (oren & ventura 2017), but almost all taxa were described under the ICN. the ICN allows 
for both neotypes and epitypes, and recently several taxa have been epitypified, including geitlerinema splendidum 
(greville ex gomont) anagnostidis (1989: 43), Anagnostidinema amphibium (agardh ex gomont) Strunecký et al. 
(2017: 119), and A. pseudoacutissimum (geitler) Strunecký et al. (2017: 119). Phormidium penicillatum gomont 
(1893: 88–89) served as the basionym for the new genus, Caldora penicillata (gomont) engene et al. (2015: 679) 
which was epitypified with a recently isolated strain. Some other filamentous taxa such as Oscillatoria princeps 
vaucher ex gomont (1892: 206) in Mühlsteinova et al. (2018) and Drouetiella lurida (gomont) Mai & Johansen in 
Mai et al. (2018: 27) have also been epitypified. the practice of epitypification is employed not only for cyanobacteria, 
but for other algal groups as well, including euglenaceae (Karnkowska-Ishikawa et al. 2010, Karnkowska-Ishikawa 
et al. 2012), eustigmataceae (Kryvenda et al. 2018), and Klebsormidiophyceae (rindi et al. 2017). an epitype can 
be a specimen or an illustration selected to serve as an interpretative type when the holotype, lectotype, or previously 
designated neotype, or all original material associated with a validly published name, cannot be identified for the 
purpose of the precise application of the name to a taxon (ICN, article 9.9). We feel this is the situation at hand for P. 
minor. 
 Pleurocapsales is the poorest known order within cyanobacteria, with few molecularly established taxa (Ishida et 
al. 2001, oliveira alvarenga et al. 2016). an essential task for this order is to establish the type species of the genus, 
so that it serves as benchmark for the genus, the family, and the order based upon it. our Pleurocapsa sensu stricto 
group contains 3 geographically distant lineages which formed a well-supported, tight clade. Pleurocapsa fuliginosa is 



established with a neotype (ICN, atricle 9.8) in this work because type material has likely been lost (the “type” material 
from Muséum National d’histoire Naturelle Paris comes from a locality different from the type locality the adriatic 
sea of treiste, Italy). an epitype for Pleurocapsa minor was designated since the type specimen was unofficially 
moved from the Naturhistorisches Museum Wien (vienna, austria) to the Smithsonian National Museum of Natural 
history (Washington, uSa). the original illustrations were ambiguous, and so were not chosen as lectotypes. 
 there are still existing inconsistencies in the taxonomy of the Pleurocapsales. Pleurocapsa has been placed both 
in the hyellaceae and the Pleurocapsaceae (Komárek et al. 2014). the correct placement must be the Pleurocapsaceae 
if Pleurocapsales is accepted as distinct from Chroococcales. the other families assigned to the order, hydrococcaceae, 
Xenococcaceae, and Dermocarpellaceae, have representatives that have >93% genetic identity with Pleurocapsa, 
and we consider it likely that when sufficient taxon sampling is complete these families may be subsumed into 
Pleurocapsaceae. We consider the resolution of family-level taxonomy to be beyond the scope of this work, and will 
require further study before resolution is possible. however, we can make recommendations for reference strains 
for some of the pleurocapsalean genera present in our phylogeny for which morphological data are available. We 
recommend that the clades containing Chamaecalyx incrassatus (lemmermann) Komárek & anagnostidis Sag 29.84, 
Hyella caespitosa Bornet & Flahault (1888: 162) PCC 7516, Foliisarcina bertiogensis oliveira alvarenga, rigonato, 
Branco, Melo & Fiore (2016: 694) CeNa 333 (in collapsed Foliisarcina clade, see Fig. 2, Fig. S1), Xenococcus 
sp. PCC 7503, Stanieria cyanosphaera (Komárek & hindák) Komárek & anagnostidis (1986: 208) sensu stricto, 
and Chroococcopsis gigantea geitler (1925: 342) Sag 12.99 be considered as the correct representatives of those 
genera. Strains assigned to one of these genera outside of the clade containing the reference strain for the genus need 
reassignment to existing or new genera. Myxosarcina is still polyphyletic, but we cannot make a recommendation at 
this time as to which clade contains Myxosarcina sensu stricto. 
 Several modern phylogenies have shown a paraphyletic relationship between Pleurocapsales and Chroococcales 
(Calteau et al. 2014, Komárek et al. 2014, Beccati et al. 2017, Mareš 2017). however, generitypes for these two orders 
were not sequenced: Chroococcus rufescens (Kützing) Nägeli (1849: 46) and Pleurocapsa fuliginosa, respectively. 
assuming that Pleurocapsales with our typified sequences will be part of Chroococcales as Stigonematales became 
as a part of the Nostocales (Komárek et al. 2014), if only one order is recognized the name of the order must be 
Chroococcales since Chroococcus rufescens is the older taxon. For now, we leave Pleurocapsales intact, as a separate 
order with members bearing baeocytes with few exceptions. the final decision about inclusion of Pleurocapsales into 
the Chroococales should be made after a sequence of type species of Chroococcus, C. rufescens becomes available 
and taxon sampling within these two groups increases. With the establishment of a neotype for Pleurocapsa fuliginosa, 
it will now be possible to revise the numerous other pleurocapsalean taxa that bear the name Pleurocapsa, such as P. 
concharum, Pleurocapsa sp., or Pleurocapsales cyanobacterium. 
 the ItS region was highly unusual in the occurrence of a very long and branched D5 helix region. the D5 is 
typically under 40 nucleotides (Johansen et al. 2011, hentschke et al. 2016, Mai et al. 2018, Becerra-absalón et al. 
2018), and is not branched. Since the exceptionally long D5 helix was characteristic of both Pleurocapsa sensu stricto 
and the sister group lacking pseudofilaments, this may be a feature of the family Pleurocapsaceae. greater taxon 
sampling is needed to evaluate this character as a family-level marker. If consistent with greater taxon sampling, it will 
be the first instance of a family-level synapomorphy based on ItS sequence data.
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Pleurocapsa fuliginosa HA4302-MV1 JN385285
“Pleurocapsa”sp. HPC17 AY430155

ATA3-5Q-K04-AU5
ATA3-5Q-KO4
ATA3-4Q-KO6-PCI78A

ATA6-12-RM16-PCI93B
“Pleurocapsa minor” SAG 4.99 AJ344564

“Pleurocapsa”sp. CALU1126 DQ293994
“Chroococcidiopsis”sp. LEGE 06174 HQ832924

CENA348 KT731164
“Pleurocapsa”sp. OU12 GQ162221

“Pleurocapsa minor” UAM 388 JQ070059
“Myxosarcina”sp. LEGE 06146 HQ832897

“Chroococcidiopsis”sp. CCMP1489 AJ344556
“Chroococcidiopsis”sp. CCMP2623 JF810074
“Pleurocapsa”sp. PCC 7319 AB039006

“Xenococcus”sp. PCC 7307 AB074510
“Chroococcidiopsis”sp. CCMP3184 JF810077
“Chroococcidiopsis”sp. CCMP3185 JF810078
“Chroococcidiopsis”sp. CCMP3187 JF810079

“Myxosarcina”sp. Nubeena45 AY500108
“Myxosarcina”sp. PCC 7325 AJ344562

“Stanieria cyanosphaera” SAG 33.87 KF417641
“Pleurocapsa”sp. SCyano22 DQ058854

“Gloeocapsopsis crepidinum” BDHKU 35101 KF498710

“Chroococcidiopsis”sp. UFS-A4UI-NPMV4-B4 cl B4 KC525099

“Pleurocapsa”sp. SCyano23 DQ058855
Foliisarcina ber ogensis CENA333 KT731153

“Myxosarcina”sp. GI-1 JN202625
“Chroococcidiopsis”sp. CCMP199 JF810072

Foliisarcina ber ogensis CENA331 KT731151
“Chroococcidiopsis”sp. PCC 6712 AJ344557

“Hyella patelloides” LEGE 07179 KR676351
Xenococcus sp. EC60 DQ889918

Xenococcus sp. PCC 7305 AF132783
“Euhalothece”sp. MPI 96N304 AJ000713

“Euhalothece”sp. MPI 95AH10 AJ000709
“Xenococcus”sp. CR_34M EF545618

“Xenococcus”sp. CR_L15 EF545631
“Xenococcus”sp. CR_L2 EF545621
“Xenococcus”sp. CR_L10 EF545627
“Xenococcus”sp. CR_15M EF545606

Stanieria cyanosphaera CR_L6 EF545624
Stanieria cyanosphaera CR_L39 EF545648

Stanieria cyanosphaera CR_L30 EF545642
Stanieria cyanosphaera PCC 7437 CP003653

Stanieria cyanosphaera PCC 7437 AB039008
Stanieria sp. NIES-3757 AP017375

Chroococcopsis gigantea SAG 12.99 KM019987
Pleurocapsalean cyanobacterium 3MX-NQ1 

Coccoid cyanobacterium GSE-CHR-MK-11-08E cl1 MG710497

MG710500

cl2 MG710498Coccoid cyanobacterium GSE-CHR-MK-11-08E 
“Gloeocapsa”sp. PCC 73106 AB039000

“Chroococcus turgidus” HUW 799 DQ460703
Gomphosphaeria aponina SAG 52.96 KM019999

“Gloeocapsa”sp. KO20B5 AB067578
“Gloeocapsa”sp. KO30D1 AB067579
“Gloeocapsa”sp. KO38CU6 AB067575

“Cyanothece”sp. ATCC 51142 AF132771
“Aphanocapsa”sp. HBC6 EU249123

“Gloeothece”sp. KO11DG AB067577
“Cyanothece”sp. SKTU126 AB067581
“Gloeothece”sp. KO68DGA AB067580

Aphanothece stagnina H7 FR848375
Aphanothece stagnina H5 FR848374

Aphanothece sacrum AB119259
Coccoid cyanobacterium GSE-SYN-MK-03-07R PGAT2 MG710506
Coccoid cyanobacterium GSE-SYN-MK-010-08E PGAC2 MG710505
Snowella litoralis 0TU37S04 AJ781040

Woronichinia sp. T2 JN172621
Woronichinia naegeliana 0LE35S01 AJ781043

Merismopedia glauca 0BB39S01 AJ781044
Merismopedia glauca CCAP 1448/3 HF678499

 aeruginosa 0BB35S02 AJ635430
 aeruginosa NIES89 U03403

 aeruginosa PCC 7806 U03402
 aeruginosa 2LT27S08 FM177497

Eucapsis minor SAG 14.99 KM019991
Coccoid cyanobacterium AKU-NQ4 MG710499

Chalicogloea cavernicola CCALA 975 JQ967037
Coccoid cyanobacterium  14142 NP3B PPCI6A

“Chroococcus”sp. JJCM AM710384
“Pleurocapsa concharum” PCC 7327 AB039007

“Pleurocapsa concharum” VP3-02 FR798927
“Pleurocapsa concharum” VP4-07 FR798930
“Pleurocapsa concharum” VP3-02b FR798929
“            Pleurocapsa”sp. C16 JQ323131

Gloeothece sp. PCC 6909/1 EU499305
Gloeothece membranacea PCC 6501 X78680

PCC 6501 X78680“Cyanothece”sp. PCC 7424 AJ000715
Chroococcus minutus CCALA 055 GQ375047
Chroococcus sp. CCALA 057 GQ375045

Chroococcus sp. CCALA 701 GQ375046
Chroococcus sp. JJCV AM710385

Chroococcus sp. CCALA 702 GQ375044
Chroococcus turgidus AICB61 KJ746515

Nodosilinea sp. IAM M-82 AB003168
Nodosilinea nodulosa PCC 7104 AB039012

Nodosilinea nodulosa UTEX 2910 KF307598
UFS-A1-BI-1B4 PCI158C
UFS-A1-BI-1B4 PCI158D
UFS-A1-BI-1B4 PCI158B 
Synechococcus elongatus PCC 6301 X03538

Synechococcus elongatus PCC 7942 AF132930
Cyanobium gracile PCC 6307 NR_102447

Geitleribactron purpureum Tovel-4 KT819293
Geitleribactron purpureum Tovel-1 KT819296

Leptolyngbya boryana UTEX B 485 AF132793
Leptolyngbya boryana PCC 73110 X84810

Leptolyngbya foveolarum X84808
Leptolyngbya appalachiana GSM-SFF-MF60 EF429286
Oculatella subterranea VRUC135/Albertano1985 X84809
Oculatella subterranea VRUC192/Albertano 1992 DQ295208

Chamaesiphon minutus PCC 6605 NR_102459
Chamaesiphon sp. GSE-CHR-MK06-7S MG710502 

Chamaesiphon polonicus SAG 32.87 KM019983
Coccoid cyanobacterium ATA8.1-RM1 PCI95A
Coccoid cyanobacterium ATA8.1-RM1 PCI95D
Coccoid cyanobacterium ATA8.1-RM1 PCI95B

Coccoid cyanobacterium I-035 MF cl1 MG710486
Coccoid cyanobacterium I-035 MF cl2 MG710487

Pseudanabaena sp. PCC 7403 AB039019
Pseudanabaena mucicola IAM M-221 AB003165

Pseudanabaena sp. PCC 6802 AB039016
Pseudanabaena catenata PCC 7408 AB039020

Pseudanabaena sp. PCC 6903 AF132778
Gloeobacter violaceus PCC 7421 NR_074282

Limnococcus limnet cus Svet06 GQ375048i

FIGURE S1

“Chroococcidiopsis”

“Xenococcus”sp.

FIGURE S1. uncollapsed 16S rrNa gene phylogeny. Support values are given as BI/Ml/MP; if boot straps=100 in Ml or MP, or 
posterior probabilities=1.00 in BI, this full support is indicated by “*”. Nodes lacking support are indicated by “–”. Pleurocapsa sensu 
stricto marked in bold. 
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