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Abstract 
Ecological interactions among species often lead to parasitic lineages coevolving with 
host resources, which is often suggested as the primary driver of parasite diversification. 
Freshwater mussels are bivalves that possess a parasitic life cycle requiring larval 
encystment on freshwater vertebrates to complete metamorphosis. The North American 
freshwater mussel tribe Quadrulini has a suite of life history adaptations including highly 
specialized patterns of host use, infection strategies, and variable larval morphologies. 
However, the evolution of life histories has yet to be explored using phylogenetic 
comparative methods. In this study, we use a holistic approach incorporating 
biogeographical, ecological, molecular, and morphological datasets to reconstruct the 
evolution of Quadrulini. Comparative phylogenetic analyses suggested the diversification 
of Quadrulini has been driven, at least in part, by codiversification with their primary 
host fishes in Ictaluridae. Major diversification events in both ictalurids and quadrulines 
were estimated to have occurred in the Mississippi River basin throughout the Miocene. 
Life history characteristics associated with parasitism were supported to have coevolved 
with host repertories, supporting the hypothesis that ecological interactions with host 
fishes have shaped the evolution of highly specialized traits in this group. Our findings 
demonstrate the importance of ecological interactions with host resources in shaping the 
evolutionary history of freshwater mussels. 

Introduction 

Ecological interactions among species over time and space 
often lead to parasitic lineages coevolving with host re- 
sources (Klassen, 1992). Co-speciation with host lineages 
has therefore been hypothesized to be the primary driver 
of parasite diversification, which has led to the assumption 
that phylogenies of parasites are congruent with their hosts 
(Hoberg & Brooks, 2008). However, many events (e.g., ex- 
tinction, host-switching, vicariance) can lead to changes in 
a species host repertoire (i.e., suitable hosts) and incon- 
gruencies between host and parasite phylogenies. Thus, as- 
sessing coevolutionary hypotheses often requires a thor- 
ough understanding of the evolutionary histories of both 
parasites and their hosts (e.g., Brooks & Ferrao, 2005; 
Dowling et al., 2003). 

Focal system 

Freshwater mussels (Bivalvia: Unionida) are a diverse group 
of bivalves represented by 958 species globally (Graf & 
Cummings, 2021). The radiation of this group is hypothe- 
sized to be significantly influenced by an obligate parasitic 
life cycle that requires temporary larval encystment on the 
gills, fins, or epidermis of vertebrate hosts to complete 
metamorphosis (Barnhart et al., 2008). Here, we focus on 
the freshwater mussel tribe Quadrulini Ihering, 1901 (Fig. 
1), which is a strictly North American taxon represented 
by 25 species (Graf & Cummings, 2021) that have highly 
specialized patterns of host use and associated life history 
traits. Species in Cyclonaias Pilsbry in Ortmann and Walker, 
1922; Quadrula Rafinesque, 1820; and Tritogonia Agassiz, 
1852 have been documented to primarily parasitize benthic 
ictalurids (Actinopterygii: Ictaluridae) (Haggerty et al., 
1995; Hove et al., 2011, 2012), while species in Theliderma 
Swainson, 1840 use pelagic minnows in the family Leucis- 
cidae as primary hosts (Fritts et al., 2012; Yeager & Neves, 
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Figure 1. Select photographs of specimens representing taxa in Quadrulini. 
a) Megalonaias nervosa (USNM 83903), b) Uniomerus tetralasmus (USNM 85604), c) Theliderma metanevra (USNM 84237), d) Theliderma cylindrica (USNM 151737), e) Quadrula quadrula 
(USNM 84165), f) Quadrula verrucosa (USNM 149358), g) Cyclonaias tuberculata (USNM 84293), h) Pustulosa nodulata (USNM 84200), and i) Pustulosa pustulosa (USNM 85768). 

1986). Parasitism of ecologically and evolutionarily diver-
gent host groups appears to have also led to divergent 
host attraction mechanisms ostensibly adapted to exploit-
ing dietary preferences of their hosts. For example, Theli-
derma exhibit small, colorful mantle lures to attract sight-
feeding minnows (Barnhart et al., 2008), while Cyclonaias, 
Quadrula, and Tritogonia exhibit various pale colored man-
tle lures that may resemble moribund fish or unionids (Si-
etman et al., 2012). However, host repertoire evolution in 
Quadrulini has yet to be explored using phylogenetic com-
parative methods, which is critical toward understanding 
how ecological interactions have influenced the origin of 
specialized life history traits (Braga et al., 2020). 

Host repertoires in freshwater mussels are often char-
acterized at the family level, which has been useful in un-
derstanding generalized patterns of host use (Hewitt et al., 
2019, 2021; Smith et al., 2020), but greater taxonomic reso-
lution of host use is necessary to understand more nuanced 
evolutionary patterns (e.g., codiversification, host switch-
ing, host extinction). Although species in Cyclonaias, 
Quadrula, and Tritogonia parasitize Ictaluridae, there are 
variable patterns of host use within the family. For ex-
ample, some Cyclonaias species use madtoms (Noturus 
Rafinesque, 1818) as secondary hosts in addition to bull-
heads (Ameiurus Rafinesque, 1820), blue and channel cat-
fishes (Ictalurus Rafinesque, 1820), and flathead catfish (Py-
lodictis Rafinesque, 1819) (Dudding et al., 2020; Haag & 
Leann Staton, 2003; Sietman et al., 2010). Reconstruction 
of ancestral host repertoires below the family level is neces-
sary to understand the evolutionary ecology of Quadrulini 
more precisely. The biogeographic and evolutionary histo-
ries of Ictaluridae have been well characterized (Arce-H. et 

al., 2016), which provides an opportunity to test if codiver-
sification with ictalurids has contributed to the evolution of 
Quadrulini. 

Objectives  

In this study, we use a holistic approach incorporating bio-
geographical, ecological, molecular, and morphological 
datasets to reconstruct the evolution of Quadrulini. Our 
specific objectives were to: a) estimate a phylogenomic re-
construction of Quadrulini, b) reconstruct the evolution 
of host repertoires, c) test for codiversification between 
quadrulines and their host fishes, d) trace the evolution of 
life history characters (i.e., brooding and larval morphol-
ogy, host infection strategy), and e) synthesize our findings 
in terms of their ecological and evolutionary significance. 
Our holistic analysis also provided clarity on the taxon-
omy of Quadrulini, and we make multiple taxonomic revi-
sions to accurately reflect its evolutionary history (refer to 
Systematics in Quadrulini for additional details). We recog-
nize 6 genera and 25 recent species in Quadrulini: Cyclon-
aias (C. tuberculata (Rafinesque, 1820)); Megalonaias Utter-
back, 1915 (M. nervosa (Rafinesque, 1820)); Pustulosa stat. 
res. Frierson, 1927 (P. infucata comb. nov. (Conrad, 1834); P. 
kieneriana (Lea, 1852); P. kleiniana comb. nov. (Lea, 1852); 
P. necki comb. nov. (Burlakova, Karatayev, Lopes-Lima & 
Bogan in Burlakova et al., 2018); P. nodulata (Rafinesque, 
1820); P. petrina (Gould, 1855); P. pustulosa (Lea, 1831); P. 
succissa comb. nov. (Lea, 1852)); Quadrula (Q. couchiana 
(Lea, 1860); Q. fragosa (Conrad, 1835); Q. nobilis (Conrad, 
1854); Q. quadrula (Rafinesque, 1820); and Q. verrucosa 
(Rafinesque, 1820)); Theliderma (T. cylindrica (Say, 1817); 
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T. intermedia (Conrad, 1836); T. johnsoni (Bogan & Lopes-
Lima in Lopes-Lima & Bogan, 2019); T. metanevra 
(Rafinesque, 1820); T. sparsa (Lea, 1841); T. stapes (Lea, 
1831)); and Uniomerus Conrad, 1853 (U. carolinianus (Bosc, 
1801); U. columbensis (Lea, 1857); U. declivis (Say, 1831); U. 
tetralasmus (Say, 1831)). 

Materials and methods    
Taxon sampling and anchored hybrid 
enrichment data generation 

     
   

We compiled or generated AHE data for 27 species from the 
subfamily Ambleminae, including all but 1 extant member 
of Quadrulini (T. intermedia – sample failed, low capture 
efficiency). Representative taxa from the subfamily Go-
nideinae (Gonidea angulata) and the amblemine tribes Am-
blemini Rafinesque, 1820 (Amblema plicata (Say, 1817)), 
Lampsilini Ihering, 1901 (Lampsilis cardium Rafinesque, 
1820), Pleurobemini Hannibal, 1912 (Pleurobema 
strodeanum (Wright, 1898)), and Popenaiadini Heard & 
Guckert, 1970 (Popenaias popeii (Lea, 1857)) were selected 
as an outgroup. Information regarding taxon sampling, in-
cluding catalog numbers and SRA accessions, can be found 
in Table 1. For novel data, genomic DNA was extracted 
using the Qiagen PureGene DNA extraction kit (Qiagen, 
Hilden, Germany), and high molecular weight was ensured 
by visualizing isolations on a 1% agarose gel stained with 
GelGreen nucleic acid stain (Biotium, Hayward, CA, USA). 

The Unioverse probe set (Pfeiffer et al., 2019) was used 
to capture orthologous nuclear protein-coding loci. Target 
capture, library construction, and sequencing was per-
formed by RAPiD Genomics (Gainesville, FL, USA) following 
similar methodologies as outlined in Smith et al. (2020). 
TRIM GALORE! v0.4.0 (www.bioinformatics.babra-
ham.ac.uk/projects/trim_galore/) was used to quality trim 
reads (Phred score < 20) and filter reads less than 30 nt. 
Individual loci were assembled using an iterative bait as-
sembly (Breinholt et al., 2017) with Unioverse reference se-
quences as baits following parameters outlined in Pfeiffer 
et al. (2019). Individual loci were screened with single hit 
and orthology location mapping to the Bathymodiolus plat-
ifrons genome following Breinholt et al. (2017) with a 
BLASTN (Altschul et al., 1990) e-value of 0.00001 and a bit 
score cut off for a single hit set to 0.7. If more than one 
sequence was still present at a locus, we retained the se-
quence with the highest coverage (Pfeiffer et al., 2021). Loci 
with gene occupancy ≥ 70% across Ambleminae and par-
simony informative sites were retained for dataset genera-
tion. 

We followed similar methods as Smith et al. (2020) to 
create a molecular supermatrix consisting of probe and 
both flanking regions for each AHE locus. Loci were initially 
aligned in MAFFT using the commands “–allowshift –un-
alignlevel 0.8 –reorder –leavegappyregion”. Problematic 
flanking regions were then removed following Breinholt et 
al. (2017), and loci were trimmed using a 50% gap thresh-
old in Trimal v 1.2 (Capella-Gutiérrez et al., 2009). Loci 
were concatenated into a super-matrix using FASconCAT-G 
v 1.0.5 (Kück & Longo, 2014). 

Phylogenetic analyses   

We used concatenation and coalescent-based species tree 
methods to perform phylogenetic reconstruction. For con-
catenation analyses, partitions were determined using 
ModelFinder (Kalyaanamoorthy et al., 2017) with an rclus-
ter of 10. Using the best partitioning scheme, phylogenetic 
inference was performed under Maximum Likelihood (ML) 
and Maximum Parsimony (MP) in IQ-TREE v 2.1.2 (Minh et 
al., 2020) and PAUP* v 4.0a (Swofford, 2003), respectively. 
IQ-TREE2 analyses consisted of 10 independent runs and 
1000 ultrafast bootstrap (ufBS) replicates for nodal sup-
port (Hoang et al., 2017). PAUP* analyses were performed 
using heuristic searches with 100 random sequence ad-
dition replicates conducted with tree-bisection-reconnec-
tion branch-swapping and 1000 bootstrap (BS) replicates 
for nodal support. We enforced two topological constraints 
to test previous taxonomic hypotheses in Quadrulini under 
ML and MP: 1) Tritogonia as monophyletic (Q. nobilis + Q. 
verrucosa) and 2) Cyclonaias (as previously recognized: C. 
tuberculata + Pustulosa) as monophyletic. For all compar-
isons, we used an AU test (Shimodaira, 2002) implementing 
10,000 RELL (Kishino et al., 1990) replicates in ML analyses 
and Templeton (Templeton, 1983) and winning sites tests 
(Prager & Wilson, 1988) in MP analyses to test topologies. 
A significance level of a = 0.05 was used when assessing the 
statistical significance between topologies. 

The coalescent-based approach ASTRAL-III v 5.7.7 
(Zhang et al., 2018) was used to generate a species tree 
from individual locus trees under ML. Locus trees were re-
constructed using IQ-TREE2 with the best available nu-
cleotide substitution model determined by ModelFinder 
and 1000 ufBS replicates for nodal support. Bipartitions 
with < 10 ufBS were removed using Newick Utilities v 1.6 
(Junier & Zdobnov, 2010), per developers recommendation 
for accuracy. We also used the coalescent-based approach 
SVDquartets (Chifman & Kubatko, 2014) in PAUP* to infer 
the species tree using 1000 BS replicates for nodal support. 

A calibrated phylogenetic analysis was performed on the 
concatenated dataset under Bayesian inference in BEAST v 
2.6.5 (Bouckaert et al., 2019). The best partitioning scheme 
and models of nucleotide substitution used in ML were 
used for the analysis. To estimate divergence times, we 
used two calibrations based on fossils and geographic ev-
idence of drainage evolution. First, we used a wide expo-
nential prior that aged the crown of Ambleminae near the 
Cretaceous–Paleogene boundary while encompassing pre-
vious estimates based on calibrations from distantly re-
lated taxa (up to 120 Mya) (Huang et al., 2019; Zieritz et 
al., 2020) within the 95% quantile (mean = 20, offset = 60, 
95% quantile = 120). We chose to set the lower limit of 
the crown of Ambleminae near the Cretaceous–Paleogene 
boundary given previous studies have documented a puta-
tive mass extinction event of North American freshwater 
mussels at the Cretaceous–Paleogene boundary (Hartman, 
1998; Scholz & Hartman, 2007). Cretaceous–Paleogene ex-
tinction events have been documented to coincide with 
the crowns of many other taxonomic groups (Alfaro et al., 
2018; Feng et al., 2017; Friedman, 2010; Longrich et al., 
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Table 1. Taxa and voucher material used in the phylogenetic analyses. 

Subfamily Tribe Taxa Catalog number Accession Source 

Ambleminae Amblemini Amblema plicata UF 438572 SRR8473047 Pfeiffer et al., 2019 

Ambleminae Lampsilini Lampsilis cardium UMMZ 304654 SRR8473035 Pfeiffer et al., 2019 

Ambleminae Pleurobemini Pleurobema strodeanum UF 441317 SRR8473051 Pfeiffer et al., 2019 

Ambleminae Popenaiadini Popenaias popeii UF 438742 SRR8473050 Pfeiffer et al., 2019 

Ambleminae Quadrulini Cyclonaias tuberculata UF 438245 SRR17818386 This study 

Ambleminae Quadrulini Megalonaias nervosa NCSM 35123 SRR17818385 This study 

Ambleminae Quadrulini Pustulosa infucata UF 440951 SRR17818404 This study 

Ambleminae Quadrulini Pustulosa kieneriana UF 438660 SRR17818403 This study 

Ambleminae Quadrulini Pustulosa kleiniana UF 438023 SRR17818392 This study 

Ambleminae Quadrulini Pustulosa necki BSGLC 1672 SRR17818391 This study 

Ambleminae Quadrulini Pustulosa nodulata UF 439202 SRR17818390 This study 

Ambleminae Quadrulini Pustulosa petrina JBFMC 9504.1 SRR17818389 This study 

Ambleminae Quadrulini Pustulosa pustulosa UA 416 SRR17818388 This study 

Ambleminae Quadrulini Pustulosa succissa UF 438538 SRR17818387 This study 

Ambleminae Quadrulini Quadrula fragosa N/A (Swab) SRR17818402 This study 

Ambleminae Quadrulini Quadrula nobilis BSGLC 1856 SRR17818397 This study 

Ambleminae Quadrulini Quadrula quadrula UF 441088 SRR8473075 Pfeiffer et al., 2019 

Ambleminae Quadrulini Quadrula verrucosa UA 1350 SRR17818396 This study 

Ambleminae Quadrulini Theliderma cylindrica UF 439167 SRR17818401 This study 

Ambleminae Quadrulini Theliderma johnsoni NCSM 30474 SRR17818400 This study 

Ambleminae Quadrulini Theliderma metanevra UF 439158 SRR17818399 This study 

Ambleminae Quadrulini Theliderma sparsa N/A (Swab) SRR17818398 This study 

Ambleminae Quadrulini Uniomerus carolinianus UF 438215 SRR17818395 This study 

Ambleminae Quadrulini Uniomerus columbensis UF 441227 SRR17818394 This study 

Ambleminae Quadrulini Uniomerus declivis JBFMC 8586.2 SRR17818393 This study 

Ambleminae Quadrulini Uniomerus tetralasmus N/A (Transcriptome) SRR910418 Luo et al., 2014 

Gonideinae Gonideini Gonidea angulata NCSM 41055.202 SRR8473064 Pfeiffer et al., 2019 

Acronyms for collections are as follows: BSGLC – Buffalo State Great Lakes Center, JBFMC – Joseph Britton Freshwater Mussel Collection, NCSM – North Carolina Museum of Natural Sciences, UA – Alabama Museum of Natural History, UF – Florida Museum, and UMMZ – 
University of Michigan Museum of Zoology. 
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2012; Wible et al., 2007), which suggests, along with fossil 
evidence (Hartman, 1998; Scholz & Hartman, 2007), the 
possibility that the crown of Ambleminae may be at or 
near the Cretaceous–Paleogene boundary. We chose to not 
use an individual fossil to calibrate the phylogeny given 
we consider defensible placement of fossils difficult due 
to morphological convergence (Watters, 2001). Second, we 
set a MRCA prior on P. necki, P. nodulata, and P. petrina 
to coincide with the split of Mega-Brazos and Mega-Col-
orado basins in the late Miocene (Blum & Hattier-Womack, 
2009). Briefly, climatic changes in the late Miocene led to 
the creation of two mega-drainages: 1) Mega-Brazos (Bra-
zos, Calcasieu, Sabine, and Trinity drainages) and 2) Mega-
Colorado (Colorado and Guadalupe drainages). These two 
mega-drainages separated in the late Miocene, which has 
been demonstrated to align with diversification in other 
freshwater mussels in central (Fusconaia iheringi and F. 
mitchelli) and east Texas (F. askewi) (Pieri et al., 2018; Smith 
et al., 2021). Based on this, we used a lognormal prior 
(Mean = 2.1, Standard Deviation = 0.2, 95% CI = 5.52–12.1) 
to age the split between central (P. necki and P. petrina) and 
east Texas (P. nodulata) lineages in Pustulosa. The analysis 
used an optimized relaxed clock (Douglas et al., 2021), a 
Yule model as the tree prior, and was run for 3*108 million 
MCMC generations sampling every 5000 trees. Effective 
sample size (ESS) as determined by Tracer v 1.7 (Rambaut et 
al., 2018) was used to ensure convergence of all parameters 
(ESS > 200), and a maximum clade credibility tree was cre-
ated using TREEANNOTOR v 2.6 (Bouckaert et al., 2019). 

Host-parasite coevolution and host 
repertoire evolution 

We compiled host use information for taxa in Quadrulini 
included in phylogenetic analyses from the Freshwater 
Mussel Host Database (Illinois Natural History Survey & 
Ohio State University Museum of Biological Diversity, 2017) 
and those available in the literature (Dudding et al., 2020; 
Haag & Leann Staton, 2003; Hove et al., 2011; Howard 
& Anson, 1922; Howells, 1997; Lane et al., 2021; Sietman 
et al., 2012). We only considered records based on labora-
tory transformations as hosts. Records were removed if they 
were based on unpublished data, were taxa not native to 
North America, or identified as unsuitable hosts from the 
literature (e.g., low transformation efficiency, inconsistent 
transformation across replicates, universal hosts). 

We performed Procrustean Approach to Cophylogeny 
(PACo) (Hutchinson et al., 2017) in the R package paco on 
a time calibrated freshwater fish phylogeny, the time-cal-
ibrated freshwater mussel phylogeny resolved by BEAST, 
and a species-level host use matrix to test for evidence of 
codiversification among freshwater mussels and their host 
fishes. Specifically, we tested if freshwater mussel diversi-
fication was dependent on freshwater fish diversification. 
We downloaded the time-calibrated ray-finned fish tree of 
life (Chang et al., 2019; Rabosky et al., 2018) and pruned 
the tree to host fish species confirmed by lab trials (N = 59; 
Table S1). We also pruned the time-calibrated mussel tree 
to taxa with host information (N = 18). Before the analysis, 
we used a Cailliez correction for negative eigenvalues (Cail-

liez, 1983), per developers recommendation. We used a r0 
null model, and 1000 permutations were used to assess sta-
tistical significance using a critical value of 0.05. 

We used a comparative phylogenetic approach as de-
scribed in Braga et al. (2020) to model the host repertoire 
evolution in RevBayes v 1.1.1 (Höhna et al., 2016). To in-
clude a phylogeny of host fish, we downloaded the ray-
finned fish tree of life and pruned the tree to include a rep-
resentative from all fish families confirmed as hosts. We 
only included a single representative for fish families out-
side Ictaluridae to reduce computational demand. To fur-
ther explore the evolution of host use within Ictaluridae, 
we included a representative from the genera Ameiurus, Ic-
talurus, Noturus, and Pylodictis. We did not include Prietella 
Carranza, 1954; Satan Hubbs & Bailey, 1947; and Troglogla-
nis Eigenmann, 1919 in our analyses given these taxa are 
not known to serve as hosts. Details about fish taxa in-
cluded in the analysis can be found in Table S2. We cre-
ated an interaction matrix between each freshwater mussel 
species and known host taxa included in phylogenetic re-
constructions. Using the resulting interaction matrix, time-
calibrated fish phylogeny, and time-calibrated mussel phy-
logeny, we set up a 2-state model similar to Braga et al. 
(2021), which included host and non-host states to infer 
host repertoire evolution. The model does not allow miss-
ing data, so we took a conservative approach and coded all 
missing interactions as non-host states. The analysis was 
run for 5*105 MCMC generations sampling every 50 cycles 
with a 10% burn-in. Tracer v 1.7 was used to ensure conver-
gence of all parameters (ESS > 200). 

    
  Historical biogeography   

We used four biogeographic regions for historical biogeog-
raphy analyses based on Haag (2009): Atlantic, Eastern 
Gulf, Mississippian, and Pacific. We compiled current dis-
tributional data for taxa included in phylogenetic analyses 
from the literature (Haag, 2009; Johnson et al., 2018; 
Lopes-Lima et al., 2019; Williams et al., 2014). We then in-
vestigated historical biogeographical patterns of ictalurids 
by collapsing the ray-finned fish tree of life to freshwater 
fish in the genera Ameiurus, Ictalurus, Noturus, and Pylo-
dictis. We ran this analysis to compare historical biogeog-
raphy of freshwater mussels and ictalurids during special-
ization and host gain events. Distributional information for 
ictalurid taxa was compiled from Page and Burr (2011). 
Biogeographic analyses were performed on time-calibrated 
phylogenies using BioGeoBEARS (Matzke, 2013), and the 
DEC+J model (Matzke, 2014) was used to infer the most 
likely biogeographic history. 

Ancestral character reconstruction    

We compiled available information for brooding morphol-
ogy (i.e., ectobranchus or tetragenous) and larval measure-
ments (i.e., larval height and larval length) for taxa in-
cluded in phylogenetic analyses. Brooding morphology and 
larval measurements were compiled from the literature 
(Barnhart et al., 2008; Brim Box & Williams, 2000; Dudding 
et al., 2020; Fritts et al., 2012; Hove et al., 2011; Lea, 1863; 
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Arnold E. Ortmann, 1912; Arnold Edward Ortmann, 1923; 
Utterback, 1915; Watters et al., 2009; Williams et al., 2008, 
2014) or from museum specimens (P. necki – JBFMC8168-1 
and JBFMC8168-12; P. petrina – JBFMC8690). We estimated 
the evolutionary history of larval brooding morphology us-
ing Bayesian stochastic character mapping (Bollback, 2006; 
Huelsenbeck et al., 2003) with the “make.simmap” function 
in the R package phytools v 1.0-1 (Revell, 2011). Bayesian 
stochastic character mapping used 1000 simulations. To es-
timate the evolutionary history of larval height, we used 
the ML based “contMap” function in phytools. The time 
calibrated phylogeny was pruned to only include taxa with 
brooding or larval data for each analysis. To further explore 
congruence between larval morphology and phylogeny, we 
created bar plots and ran a phylogenetic principal compo-
nent analysis (pPCA) using larval height, larval length, and 
our time-calibrated phylogeny in the R packages phylosig-
nal (Keck et al., 2016) and adephylo (Jombart et al., 2010), 
respectively. 

We compiled available information on host infection 
strategies for taxa included in phylogenetic analyses fol-
lowing the literature (Barnhart et al., 2008; Haag, 2012; Si-
etman et al., 2012). Host infection strategies were divided 
into six categories: 1) broadcasting; 2) conglutinate; 3) 
large mantle lure; 4) large, pale mantle magazine; 5) small, 
colorful mantle magazine; and 6) small, pale mantle mag-
azine. We pruned the time calibrated phylogeny of taxa 
with missing data and traced the evolutionary history of 
host infection strategies using Bayesian stochastic char-
acter mapping in phytools. Bayesian stochastic character 
mapping used 1000 simulations to estimate ancestral char-
acter states. 

We used the “phyloSignal” function in phylosignal to 
test the null hypothesis of the absence of phylogenetic sig-
nal for each trait used in ancestral character reconstruction. 
Abouheif’s Cmean index (Abouheif, 1999) was used to com-
pute phylogenetic signal, and 1000 replicates were used to 
assess statistical significance. All analyses were performed 
in R v 4.1.1. 

Hierarchical clustering   

We used a hierarchical clustering approach to integrate sig-
nal from biogeographic, ecological, molecular, and mor-
phological datasets. First, we pruned all datasets to only 
include taxa in Quadrulini without missing data across all 
datasets. We then created distance matrices using the 
“cophenetic.phylo” function in the R package ape v 5.6-1 
(Paradis & Schliep, 2018) from the time-calibrated phy-
logeny; the “dist.binary” function in the R package ade4 v 
1.7-18 (Dray & Dufour, 2007) from the biogeography, larval 
brooding morphology, and host infection strategy datasets; 
and the “vegdist” function in the R package vegan v 2.5-7 
(Oksanen et al., 2016) from larval measurements. To also 
incorporate host use information, we first used the “cophe-
netic.phylo” function to generate a distance matrix from 
the host phylogeny used in the RevBayes analysis (Table 
S2). We then used the phylogenetic distance and interac-
tion matrices to create a distance matrix among freshwater 
mussel taxa using the “comdist” function in the R package 

picante v 1.8.2 (Kembel et al., 2010). All resulting distance 
matrices were combined using the “fuse” function in the R 
package analogue v 0.17-6 (Simpson, 2007) with equal con-
tribution from each matrix. Hierarchical clustering was per-
formed on the fused matrix using the “hclust” function in 
the R package stats v 4.1.1. A threshold of 0.3 was used to 
delimit clusters. 

Results  
Phylogenetic analyses   

All novel AHE reads used in this study are available in the 
GenBank SRA database (BioProject PRJNA800785). Infor-
mation regarding material and accession numbers used in 
this study can be found in Table 1. The final molecular 
supermatrix consisted of 550 loci represented by 366,360 
nucleotides (File S1). Before concatenated phylogenetic 
analyses, the dataset was grouped into 21 partitions. Con-
catenated and coalescent based analyses under ML and MP 
were completely concordant other than a minor topological 
difference by SVDquartets regarding the placement of P. 
succissa (Fig. S1). Nearly all nodes were fully supported in 
all ML and MP analyses (BS = 100; Fig. S1), and topolo-
gies were generally concordant with Johnson et al. (2018), 
except for the placement of C. tuberculata. Theliderma was 
resolved as sister to Cyclonaias, Quadrula, and Pustulosa 
with full support (Fig. S1). Cyclonaias was resolved sister 
to Quadrula and Pustulosa; however, ML and MP analyses 
did not fully support the placement of C. tuberculata (Fig. 
S1). Topological constraints enforcing the monophyly of 
previous taxonomic hypotheses for Cyclonaias (ML – p = 
0.00115; MP – p = 0.0319) and Tritogonia (ML – p < 0.0001; 
MP – p < 0.0001) were significantly worse than the esti-
mated topology. 

The time-calibrated phylogenetic reconstruction under 
Bayesian inference was completely concordant with ML and 
MP analyses (Fig. 2). All nodes were fully supported (PP = 
1.0). The crown of Quadrulini was estimated at the early-
mid Paleogene (45.29 Ma; 95% highest posterior density 
(HPD) = 35.48–55.91 Ma) (Fig. 2). Cyclonaias, Quadrula, 
Pustulosa, and Theliderma were estimated to have origi-
nated in the late Paleogene to early Miocene (Fig. 2). Parti-
tioning of genera was estimated to have occurred through-
out the early–middle Miocene (Fig. 2), with subsequent 
speciation events estimated to have occurred until the 
Pliocene. All tree files generated from phylogenetic analy-
ses can be found in supplemental information (Files 
S2–S6). 

Host-parasite coevolution and host 
repertoire evolution 

    
  

PACo indicated significant evidence of codiversification be-
tween quadrulines and their host fishes (m2XY = 0.66; p < 
0.001; n = 1000), supporting the hypothesis that codiver-
sification with hosts has contributed to the evolution of 
Quadrulini. Our reconstruction of host repertoire evolution 
supported generalized host use as the ancestral state of 
Quadrulini, which included Centrarchidae (PP = 0.63), Per-
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Figure 2. Maximum clade credible tree generated from the calibrated phylogenetic analysis in BEAST. 
Divergence time is scaled to million years before present, and node bars represent the 95% highest posterior density. All nodes were fully supported (PP = 1.0). Stars represent crown 
calibration points. 

cidae (PP = 0.66), Ameiurus (PP = 0.86), Ictalurus (PP = 0.87), 
and Pylodictis (PP = 0.88) (Figs. 3 & S2). Ictalurid special-
ization, which included Ameiurus (PP = 0.90), Ictalurus (PP 
= 0.92), and Pylodictis (PP = 0.93) host use, was supported to 
have occurred in the MRCA of Cyclonaias, Quadrula, Pustu-
losa, and Theliderma. The MRCA of Theliderma was strongly 
supported to have experienced a host switch from ictalurids 
to leuciscids (PP = 0.999) (Fig. 3 & S2). Most other species 
in Cyclonaias, Pustulosa, and Quadrula maintained the an-
cestral state of Ameiurus, Ictalurus, and Pylodictis host use, 
but the MRCA of Pustulosa was strongly supported to have 
gained Noturus as a host (PP = 0.98) (Fig. 3 & S2). The 

MRCA of Quadrula fragosa and Quadrula quadrula was sup-
ported as a specialist on Ictalurus (PP = 1.0), with no other 
hosts having PP > 0.5 (Fig. 3 & S2). 

Historical biogeography   

Comparative historical biogeography failed to reject syn-
chronous origins of Quadrulini and ictalurids in the Mis-
sissippian region, with the origin of MRCA of Ameiurus, 
Ictalurus, Noturus, and Pylodictis (42.86 Ma) falling within 
the 95% HPD (35.48–55.91 Ma) of the crown of Quadrulini 
(Figs. 4 & S3). Cyclonaias, Quadrula, Pustulosa, and Thelid-
erma originated in the Mississippian region (Fig. 4A) where 
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Figure 3. RevBayes reconstruction of host repertoire evolution along the time calibrated phylogeny of Quadrulini. 
All interactions displayed are represented by posterior probability ≥ 0.5. Node numbers are used to match posterior probabilities reported in supplemental information (Figure S2). 
Host use information for taxa in Quadrulini is provided in cells to the right of terminals. Cell coloration corresponds to the following: black – confirmed host, gray – unknown, and 
white – confirmed non-host. From top to bottom and left to right, fish photos are as follows: Cyprinella venusta, Micropterus salmoides, Perca flavescens. Ameiurus melas, Ictalurus 
punctatus, Noturus gyrinus, and Pylodictis olivaris. Illustrations courtesy of Joe Tomelleri and the Fishes of Texas Database (http://www.fishesoftexas.org/). 

they have diversified—with the MRCA of P. infucata, P. 
kleiniana, and P. succissa invading the Eastern Gulf region 
in the late Miocene (Fig. 4A). Pustulosa and Noturus were 
estimated to have originated synchronously in the Missis-
sippian region during the Miocene (Fig. 4), with the MRCA 
of Noturus (18.52 Ma) falling within the 95% HPD 
(15.78–25.60 Ma) of the MRCA of Pustulosa. These results 
are coincident with host gain of Noturus in Pustulosa (Fig. 
3) and codiversification between the two groups. 

Ancestral character reconstruction    

Ancestral character reconstructions of larval height sup-
ported a shared evolutionary history of larval miniaturiza-
tion in Quadrula (Fig. 5), which is concordant with their 
characteristic of parasitic growth. Bar plots and pPCA (Fig. 
5) distinguished genera in Quadrulini based on larval char-
acters, which were supported to be phylogenetically con-
served (p = 0.01). Ancestral character reconstruction of lar-
val brooding morphology supported an independent 
origination of ectobranchy in C. tuberculata (Fig. S4). The 
lack of phylogenetic signal in larval brooding morphology 
was rejected (p = 0.002). Bayesian stochastic character 
mapping resolved broadcasting as the most likely ancestral 
state of Quadrulini (PP = 0.5; Fig. 6). Small, pale mantle 
magazines were supported to have originated in the MRCA 
of Cyclonaias, Quadrula, Pustulosa, and Theliderma (PP = 
0.64; Fig. 6), aligning with the estimated timing of ictalurid 
specialization. Small, colorful mantle magazines were 
strongly supported to have evolved in the MRCA of Theli-
derma (PP = 0.99; Fig. 6), which was concordant to the re-

solved host switch to leuciscids. Large, pale mantle mag-
azines were strongly supported to have originated in 
Quadrula (PP = 0.96; Fig. 6), which aligned with the shared 
evolutionary history of larval miniaturization. Small, pale 
mantle magazines were strongly supported as the ancestral 
state of Pustulosa (PP = 1.0; Fig. 6). Large, pale mantle mag-
azines (p < 0.0001); small, colorful mantle magazines (p 
< 0.0001); and small, pale mantle magazines (p < 0.0001) 
were supported as phylogenetically conserved—while the 
absence of phylogenetic signal could not be rejected for 
other infection strategies (p > 0.05), likely due to small 
sample size. 

Hierarchical clustering   

Twelve taxa in Quadrulini were included in hierarchical 
clustering analyses, which included all genera currently as-
signed to the tribe expect Uniomerus. Hierarchical cluster-
ing of biogeographical, ecological, morphological, and phy-
logenetic distances delimited 5 clusters within Quadrulini 
aligning with our taxonomic hypotheses: Cyclonaias (C. tu-
berculata), Megalonaias (M. nervosa), Quadrula (Q. fragosa, 
Q. quadrula, and Q. verrucosa), Pustulosa (P. kieneriana, P. 
necki, P. nodulata, P. pustulosa, and P. succissa), and Thelid-
erma (T. cylindrica and T. metanevra) (Fig. S5). 

Discussion  

Our findings suggest the diversification of Quadrulini has 
been driven, at least in part, by codiversification with their 
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Figure 4. Ancestral-area estimates using the DEC+J model in BioGeoBEARS for a) Cyclonaias, Quadrula, and Pustulosa, 
and b) Ameiurus, Ictalurus, Noturus, and Pylodictis. 
Rectangles on terminals represent the current distribution of sampled taxa and size represents the number of areas. Pie charts on nodes represent support for ancestral areas. Maps 
illustrate the geographic distributions of the Atlantic (red), Mississippian (blue), and Eastern Gulf (green) regions in the United States. Black lines delineate provinces and grey col-
oration represent regions uninhabited by presented taxa. 

host fishes. Life history characteristics associated with a 
parasitic lifestyle were supported to have coevolved with 
reconstructed host repertories, supporting the hypothesis 
that ecological interactions with host fishes have shaped 
the evolution of highly specialized traits in this group. Be-
low, we synthesize our results in terms of their ecological 
and evolutionary significance. 

Ecological interactions with host fishes 
shape life histories in Quadrulini 

     
     

Our findings suggest the MRCA of Quadrulini used a gener-
alized suite of life history characteristics, including passive 
host infection (broadcasting) and taxonomically broad host 
use (Centrarchidae, Percidae, Ameiurus, Ictalurus, and Pylo-
dictis) (Figs. 3 & 6). Megalonaias, the sister species to the 
remainder of Quadrulini, has a more generalized life his-
tory strategy in comparison to the rest of the tribe and has 
retained some plesiomorphic traits, including a taxonomi-
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Figure 5. Ancestral character reconstruction of larval height and phylogenetic principal coordinate analysis loadings 
based on larval height, larval length, and the time calibrated phylogeny on the time calibrated phylogeny generated by 
BEAST. 
Colors in ancestral character reconstruction represent reconstructed trait values. Bar plots are colored by genera in Quadrulini: Megalonaias (green), Uniomerus (pink), Theliderma 
(blue), Cyclonaias (yellow), Quadrula (purple), and Pustulosa (red). 

Figure 6. Reconstructed evolutionary history of host infection strategies based on Bayesian stochastic character 
mapping. 
Circles on terminals represent the character state of extant taxa. Coloration in pie charts on nodes represent support for character states. 

cally diverse host repertoire and host infection via passive 
entanglement (Haag, 2012) (Figs. 3 & 6). However, our es-
timation of quadruline ancestral states would be improved 
by inclusion of Uniomerus, but the life history of the taxon 
is poorly understood and could not be included in some of 

our analyses. We hypothesize that the host repertoire of 
Uniomerus likely at least includes ictalurids or leuciscids, 
and future life history studies will be useful in testing and 
resolving the evolutionary history of host use and infection 
strategies in Quadrulini. 
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We observed specialized host repertoires and associated 
life history traits in Cyclonaias, Quadrula, Pustulosa, and 
Theliderma. Ictaluridae specialization and mantle maga-
zines were supported to have evolved in the MRCA of Cy-
clonaias, Quadrula, Pustulosa, and Theliderma (Figs. 3 & 6), 
suggesting mantle magazines may be a functional trait for 
successful parasitism of ictalurids. Ictalurid host use was 
strongly supported as the ancestral state of these genera 
with a clear instance of host switching from Ictaluridae to 
Leuciscidae in Theliderma during the late Oligocene or early 
Miocene (Figs. 2 & 3). A previous study has highlighted the 
use of Leuciscidae in Theliderma as a synapomorphy for the 
genus (Lopes-Lima et al., 2019), but the evolution of the 
trait had remained untested using phylogenetic compara-
tive methods. The transition to an ecologically and phy-
logenetically divergent host group coincided with the ori-
gin of small, colorful mantle magazines ostensibly adapted 
to attract sight-feeding minnows (Fig. 6), which supports 
the hypothesis that ecological interactions with novel host 
fishes has shaped life history characteristics in Theliderma 
unique to Quadrulini. 
Cyclonaias, Pustulosa, and Quadrula have retained a host 

repertoire that includes Ameiurus, Pylodictis, and Ictalurus 
(Fig. 3). However, our analyses supported an independent 
origination of Noturus host gain in Pustulosa, which was 
supplemented by their synchronous origination in the Mis-
sissippian region and diversification throughout the 
Miocene (Fig. 4). This, along with significant evidence of 
codiversification between quadrulines and their host fishes 
(p < 0.001), suggests that co-speciation with ictalurids may 
have contributed to the diversification of Quadrulini. Pus-
tulosa also has a shared evolutionary history of a small, pale 
mantle magazine (Fig. 6), which may be a functional trait 
for successful parasitism of Noturus—the smallest members 
of Ictaluridae. However, it is worth note that a small, pale 
mantle magazine was resolved as the ancestral state of ic-
talurid specialists and is also present in Cyclonaias (Fig. 4). 
Despite similar host infection strategies in Cyclonaias and 
Pustulosa, the two genera display different levels of species 
diversity, which we hypothesize to have been driven by co-
speciation of Pustulosa and Noturus, but we cannot reject 
other drivers of observed codiversification. 

Our ancestral character reconstruction of larval size sup-
ported a single larval miniaturization event in the evolu-
tionary history of Quadrula (Fig. 5). Multiple larval minia-
turization events have occurred in Ambleminae, including 
Potamilus, Quadrula, and Truncilla, each of which is coupled 
with parasitic growth during encapsulation (Barnhart et al., 
2008; Smith et al., 2020). Within Quadrulini, miniaturized 
larvae and parasitic growth are life history traits unique to 
Quadrula (Hove et al., 2011, 2012), but the functional sig-
nificance of those traits are uncertain. Larval miniaturiza-
tion in Potamilus and Truncilla has been hypothesized to be 
a functional trait to increase fecundity given putative host 
infection by maternal sacrifice (Smith et al., 2020). Inter-
estingly, large catfishes (Ictalurus and Pylodictis) are known 
to feed on adult mussels (reviewed by Tiemann et al., 2011), 
but it remains uncertain if they consume mature quadru-
lines (Sietman et al., 2012). Although there is uncertainty 

regarding predation by ictalurids, the brooding period of Q. 
verrucosa coincided with peak ictalurid feeding (May–June) 
(Hove et al., 2011), which suggests host infection in this 
species could rely, at least in part, on maternal sacrifice 
similar to other lineages with miniaturized larvae. How-
ever, larval miniaturization may also be a functional trait 
for dispersal. Given freshwater mussels are largely sessile 
as adults, parasitism is hypothesized to have evolved to fa-
cilitate dispersal (Watters, 2001). Therefore, dispersal ca-
pabilities could theoretically be correlated with the time 
larvae encyst on host fish, and there is some limited evi-
dence favoring this hypothesis over the fecundity hypoth-
esis. First, there appears to be little to no difference in 
fecundity between Pustulosa and Quadrula (Haag, 2012), al-
beit based on very limited sampling. Second, encystment 
time on host fish has been demonstrated to have extensive 
variation in Quadrula. Life history studies have suggested 
that the period of encystment typically ranges from ap-
proximately one to five weeks in Cyclonaias, Pustulosa, and 
Theliderma (Dudding et al., 2020; Fritts et al., 2012; Haag 
& Leann Staton, 2003; Hove, 1997). In Quadrula, however, 
it has been demonstrated that encystment time could be 
up to nine months under natural conditions (Hove et al., 
2012; Steingraeber et al., 2007), but we recognize encyst-
ment time shows extensive variability due to water tem-
perature (Steingraeber et al., 2007). We hypothesize larval 
miniaturization may have evolved for one of these reasons, 
but future research into early life histories in Quadrulini 
will be necessary to better understand the functional sig-
nificance of larval miniaturization in Quadrula. 

Systematics in Quadrulini    

Taxonomy in Quadrulini has been unstable due to system-
atic hypotheses being primarily based on external shell 
morphology (Campbell & Lydeard, 2012; Johnson et al., 
2018; Lopes-Lima et al., 2019; Serb et al., 2003). Our holis-
tic analysis provides clarity on systematics by using evi-
dence-based explanations for taxonomic recommendations 
based on biogeographical, ecological, morphological, and 
phylogenetic datasets (Fig. S5). Our phylogenetic analyses 
rejected the monophyly of Cyclonaias as previously recog-
nized (i.e., C. tuberculata + Pustulosa; p < 0.05), with C. 
tuberculata resolved sister to Quadrula and Pustulosa (Fig. 
2). Our evaluation identified multiple characters that dis-
tinguish Cyclonaias from Pustulosa, including ectobranchy 
(Fig. S4) and large larval size (>300 µM; Fig. 5). In addition, 
our data supports Noturus host use as a synapomorphy for 
Pustulosa (Fig. 3), which is not a known host for Cyclona-
ias (Hove & Kurth, 1997). Given these findings, we desig-
nate Cyclonaias a monotypic genus consisting of the type 
species C. tuberculata. Designating Cyclonaias as monotypic 
leaves the clade consisting of P. infucata, P. kieneriana, P. 
kleiniana, P. necki, P. nodulata, P. petrina, P. pustulosa, and 
P. succissa without a generic epithet. We resurrect the old-
est available generic epithet, Pustulosa (type species – Obli-
quaria (Quadrula) bullata Rafinesque, 1820; replacement 
name in errata for Bullata Frierson, 1927 non Jousseaume, 
1875 [Gastropoda]), to represent this clade. Obliquaria 
(Quadrula) bullata is considered a junior synonym of P. pus-
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tulosa (Williams et al., 2008), and we therefore designate 
P. pustulosa as the type species of Pustulosa. Previous tax-
onomic treatments have recognized Pustulosa as Amphina-
ias (Graf & Cummings, 2007). Amphinaias is represented by 
the type species Unio couchianus—an extinct species con-
sidered endemic to the Rio Grande drainage (Williams et 
al., 2017). Multiple attempts were made to include material 
for this taxon in this study, but we were unable to get usable 
material for genetic analysis. However, we agree with previ-
ous taxonomic treatments that have considered Unio couch-
ianus as a member of Quadrula based on its quadrate shell 
shape and sulcus (Williams et al., 2017), which are unlike 
Pustulosa. Therefore, we consider Amphinaias a junior syn-
onym of Quadrula. 
Tritogonia was non-monophyletic, with T. nobilis and T. 

verrucosa resolved in a monophyletic group with Quadrula 
(Fig. 2), and our phylogenetic analyses rejected the mono-
phyly of Tritogonia (p < 0.0001). Previous studies delineated 
Quadrula and Tritogonia based on sexual dimorphism of 
their shells despite their low level of genetic divergence 
(Lopes-Lima et al., 2019). However, the two genera have 
many similar life history traits as depicted in our study, in-
cluding brooding morphology (Fig. S4), host use and infec-
tion strategy (Figs. 3 & 6), miniaturized larval morpholo-
gies (Fig. 5), and parasitic growth (Hove et al., 2011, 2012; 
Sietman et al., 2012). We synonymize Tritogonia into 
Quadrula based on our findings, which aligns with recom-
mendations from previous studies based on molecular or 
morphological characters (Arnold E. Ortmann, 1912; Serb 
et al., 2003; Utterback, 1915).     

Conclusions  

In this study, we integrated biogeographical, ecological, 
molecular, and morphological data to provide a holistic 
view of the evolutionary history of Quadrulini. Our ap-
proach emphasized the importance of codiversification 
with ictalurids in shaping the evolutionary history of 
Quadrulini and resolved systematics in a taxonomically un-
stable group of freshwater mussels. Although our approach 
is robust with available data, there are still many unknowns 
regarding the host fish species and infection strategies of 
Quadrulini, especially within common species (Fig. 3). A 
more thorough understanding of the host repertoires of 
common species has promise in understanding their appar-
ent resiliency to anthropogenically driven ecosystem state 

change. Our findings provide novel information regarding 
the evolution of host use in Quadrulini (Fig. 3), which can 
be used to guide future life history studies in poorly ex-
plored taxa. 
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Table S1. Host taxa confirmed by lab trials included in the codiversification analysis. 

Family Taxa 

Acipenseridae Scaphirhynchus platorynchus 

Centrarchidae Ambloplites rupestris 

Centrarchidae Lepomis cyanellus 

Centrarchidae Lepomis gibbosus 

Centrarchidae Lepomis macrochirus 

Centrarchidae Lepomis megalotis 

Centrarchidae Micropterus dolomieu 

Centrarchidae Micropterus salmoides 

Centrarchidae Pomoxis annularis 

Centrarchidae Pomoxis nigromaculatus 

Cottidae Cottus confusus 

Cottidae Cottus marginatus 

Ictaluridae Ameiurus melas 

Ictaluridae Ameiurus natalis 

Ictaluridae Ameiurus nebulosus 

Ictaluridae Ictalurus furcatus 

Ictaluridae Ictalurus punctatus 

Ictaluridae Noturus exilis 

Ictaluridae Noturus funebris 

Ictaluridae Noturus gyrinus 

Ictaluridae Noturus leptacanthus 

Ictaluridae Pylodictis olivaris 

Lepisosteidae Lepisosteus osseus 

Lepisosteidae Lepisosteus platostomus 

Leuciscidae Campostoma anomalum 

Leuciscidae Campostoma oligolepis 

Leuciscidae Clinostomus elongatus 

Leuciscidae Cyprinella camura 

Leuciscidae Cyprinella galactura 

Leuciscidae Cyprinella lutrensis 

Leuciscidae Cyprinella spiloptera 

Leuciscidae Cyprinella venusta 

Leuciscidae Cyprinella whipplei 

Leuciscidae Erimystax dissimilis 

Leuciscidae Erimystax insignis 

Leuciscidae Hybognathus hankinsoni 

Leuciscidae Hybognathus nuchalis 

Leuciscidae Hybopsis amblops 

Leuciscidae Luxilus cardinalis 

Leuciscidae Luxilus chrysocephalus 

Leuciscidae Luxilus cornutus 

Leuciscidae Luxilus zonatus 

Leuciscidae Macrhybopsis storeriana 

Leuciscidae Margariscus margarita 

Leuciscidae Nocomis biguttatus 
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Family Taxa 

Leuciscidae Nocomis micropogon 

Leuciscidae Notropis atherinoides 

Leuciscidae Notropis percobromus 

Leuciscidae Pimephales notatus 

Leuciscidae Pimephales promelas 

Leuciscidae Pimephales vigilax 

Leuciscidae Rhinichthys atratulus 

Leuciscidae Rhinichthys cataractae 

Leuciscidae Rhinichthys obtusus 

Leuciscidae Semotilus atromaculatus 

Percidae Etheostoma gracile 

Percidae Perca flavescens 

Percidae Sander vitreus 

Sciaenidae Aplodinotus grunniens 

Table S2. Taxon sampling for host tree in host repertoire analyses. 

Family Taxa 

Acipenseridae Scaphirhynchus platorynchus 

Centrarchidae Micropterus salmoides 

Cottidae Cottus marginatus 

Ictaluridae Ameiurus melas 

Ictaluridae Ictalurus punctatus 

Ictaluridae Noturus exilis 

Ictaluridae Pylodictis olivaris 

Lepisosteidae Lepisosteus osseus 

Leuciscidae Cyprinella venusta 

Percidae Perca flavescens 

Sciaenidae Aplodinotus grunniens 
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Figure S1. Cladogram generated by maximum likelihood and maximum parsimony analyses. 
Tips are labeled with taxonomic hypotheses for Cyclonaias sensu Johnson et al. (2018) and Tritogonia sensu Lopes-Lima et al. (2019). All trees were concordant except for a minor 
topological difference due to the placement of “Cyclonaias” succissa in SVDquartets (BS = 1). For nodes without full support (i.e., PP < 1.0 or BS/ufBS < 100), support values from con-
catenated analyses (IQ-TREE2/PAUP*) are denoted above and coalescent-based (ASTRAL-III/SVDquartets) below the branch. 

Figure S2. Interactions from the host repertoire evolution analysis supported by A) PP ≥ 0 and B) PP ≥ 0.5. 
Node numbers align with node labels presented in Figure 3 in the main text. 
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Figure S3. Ancestral-area estimates using the DEC+J model in BioGeoBEARS for sampled freshwater mussel species. 
Rectangles on terminals represent the current distribution of extant taxa, and size represents the number of ancestral areas. Pie charts on nodes represent support ancestral areas. 
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Figure S4. Bayesian stochastic character mapping of brooding morphology on the time calibrated phylogeny of 
Quadrulini generated by BEAST. 
Coloring in pie charts on nodes indicate posterior probability support for character states. 
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Figure S5. Hierarchical clustering based on biogeographical, ecological, morphological, and phylogenetic distances. 
Red boxes indicate cutoffs of clusters based on height of 0.3. 
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