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Abstract: Forty-three metabolites including several methoxylated flavonoids, tremetones, and
ent-clerodane diterpenes were accurately identified for the first time in the ethanolic extract of
P. quadrangularis by means of hyphenated UHPLC-quadrupole Orbitrap mass spectrometry, and seven
isolated compounds were tested regarding gastroprotective activity using the HCl/EtOH-induced
lesion model in mice. A new tremetone (compound 6) is reported based on spectroscopic evidence.
The isolated clerodanes and tremetones showed gastroprotective activity in a mouse model, evidenced
by compound 7 (p-coumaroyloxytremetone), which showed the highest gastroprotective activity
(76%), which was higher than the control drug lansoprazole (72%). Our findings revealed that several
constituents of this plant have gastroprotective activity, and particularly, p-coumaroyloxytremetone
could be considered as a lead molecule to explore new gastroprotective agents. This plant is a rich
source of biologically active tremetones and terpenoids which can support the ethnobotanical use of
the plant.
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1. Introduction

Parastrephia quadrangularis (Meyen) Cabrera, (Figure 1) commonly known as Tola-Tola (Alpachtola
or Burru suputula, Aymara names) since pre-Hispanic times, is a resinous shrub that grows up
to 2 m high, typically found in dry semi-arid places in the Cordillera of the Central Andes in the
Puna habitats, at altitudes of 3500 to 5000 m above the sea level. This plant is medicinal and used
for gastrointestinal ailments, plus the treatment of urinary and respiratory diseases, fever, altitude
sickness, and to treat bone dislocations and bruises [1–4], besides cattle feeding in the Atacama
Desert [5]. Furthermore, Parastrephia (tola) is an important highland genus of South American
perennial plants in the aster (sunflower) family (Asteraceae) growing in the Altiplano of Chile,
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Bolivia, Argentina, and Peru. Many interesting bioactivities were reported for plants within this
genus. For example, the plant Parastrephia lucida (Meyen) Cabrera is used in traditional medicine
as an antiseptic and anti-inflammatory [6]. The plant resin is also used for the healing of wounds
and showed inhibition of arachidonic acid metabolism [7]. The related plant P. lepidophylla showed
antifungal activity on some phytopatogenic fungi of lemon [8] and inhibition of cell proliferation
using Caco-2 cells [9]. In addition, the infusions of P. lepidophylla and P. lucida showed a protective
effect agaist oxidative damage on human erythrocytes [10]. From these genera, antioxidant and
analgesic tremetone (5-acetyl-2,3-dihydro-2-isopropenyl-benzofuran) derivatives were isolated [11,12].
Moreover, bioactive constituents of snakeroot (Eupatorium rugosum) and several rayless goldenrods
(especially Haplopappus heterophyllus) and other species are reported to be tremetones, causing milk
sickness in humans and trembles in livestock [13,14].
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Regarding the phytochemical components of P. quadrangularis, a poly-methylated flavonoid:
5,7- dihydroxy-3,8,3′,4′-tetramethoxyflavone, some common coumarins and tremetones were
reported [12,15]. Recently, other tentative molecules (coumaroyloxytremetone-O-hexoside and
coumaroyloxytremetone C-hexoside) found in a sample from Argentina were suggested using only
low-resolution mass spectrometry [16]. Some extracts of this species showed antifungal properties
against Fusarium verticilloides which were attributed to the presence of tremetones in the active
fractions of the plant [16]. On the other hand, medicinal tinctures are extracts of the active metabolites
of the most usable part of a medicinal plant; For this, an extraction method is used in which the plants
are submerged or macerated for days in mixtures of edible ethanol water or edible pure ethanol [17,18].
Moreover, one out of five persons suffer from ulcers associated to diet, stress, and certain drugs, due to
an imbalance among aggressive factors (bile and hydrochloride acids, pepsins, hypoxia, drugs, and
alcohol) and defensive factors (mucose blood flow, nitric oxide, sulfhydryl, growth factors bicarbonate,
prostaglandins and mucus) in the stomach. Medicines used in the treatment of gastric ulcers are
mainly H2-receptor antagonists, anti-acids, and proton-pump inhibitors and when the gastric ulcer
is produced by Helicobacter pylori, antibiotics are included in the treatment. In this regard, numerous
pharmacological agents with known anti-ulcer activity produce severe collateral effects, showing the
need for new agents, including natural products which can be valuable as antiulcer agents [19–21].

Following our program to analyze and isolate interesting bioactive compounds from the Atacama
Desert flora [22–24], we report in this study the gastroprotective activity of several compounds isolated
from this plant; furthermore, the high resolution UHPLC fingerprinting analysis of the ethanolic
extract (medicinal tincture) of this important Aymara plant is reported for the first time.



Molecules 2018, 23, 2361 3 of 13

2. Results and Discussion

2.1. Isolation and Identification of the Compounds in Parastrephia Quadrangularis Extract

Several isolation steps of the ethanol extract of P. quadrangularis allowed the isolation of the known
clerodane diterpenes (Figure 2): 1 (bacchalineol), 2 bacchalineol 18-O-malonic acid) 3 (bacchalineol
18-O-malonate methyl ester), 4 (bacchalineol 18-O-malonate ethyl ester), and 5 (bacchalineol
18-O-acetate) [25]. In addition, the new tremetone 6 plus the known tremetone 7 [26] were isolated,
together with the known methylated flavones 5,7-dihydroxy-3,8,3′,4′-tetramethoxyflavone [15],
3′,4′-dimethoxymyricetin [27], 3,7,3′-trimethoxyquercetin, and hesperetin plus the coumarins
umbelliferone and scopoletin [28].
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Figure 2. Structures of clerodanes (1–5) and tremetones (6–7) isolated from P. quadrangularis.

After data comparison with other tremetones [12], and examination of the NMR spectra we
realized that compound 6 (Figure 2) showed similar NMR data to that reported for compound 7 [26],
particularly the missing of a doublet of doublets in the proton spectra corresponding to the aromatic
ring of the coumaroyl moiety (Table S1 and Figure S2, Supplementary Material) plus similar IR
bands, but differences in the substitution pattern of only the aromatic protons of the cynnamoyl
attached to the tremetone, in the 1H- and 13C-NMR spectra evidenced by 1-D and 2-D NMR analyses
(HMBC, HMQC, Tables S1 and S2, Supplementary Material), which led to the identification of 6 as a
p-cinnamoyloxyltremetone, a newly reported compound.

p-Cinnamoyloxytremetone (compound 6, Figure 3) IR (CCl4, neat) 1650 cm−1 (CO), 1685 (PhCO),
1610, 1590 (Ph). [α]25

D = −0.4, c = 2.2. Proton NMR (1H Bruker Avance 400 MHz, CDCl3) δ ppm: 7.85
(1H, br s, H-4), 7.83 (1H, br d, J = 8.5 Hz, H-6), 7.65 (1H, d, J = 15.9 Hz, H-7′), 7.53 (2H, d, J = 8.6 Hz,
H-3′, H-5′), 7.40 (2H, d, J = 8.6 Hz, H-2′, H-6′), 7.40 (1H, m, H-4′), 6.84 (1H, d, J = 8.3 Hz, H-7), 6.39
(1H, d, J = 15.9 Hz, H-8′), 5.46 (1H, dd, J = 8.8, 8.6 Hz, H-2), 5.38 (2H, d, J = 8.8 Hz, H-12), 4.84 (2H, q,
J = 13.4 Hz, H-11a-H-11b), 3.50 (1H, dd, J = 15.9, 9.8 Hz, H-3β), 3.28 (1H, dd, J = 15.9, 7.8 Hz, H-3α),
2.50 (3H, s, COCH3). 13C-NMR (CDCl3) δ ppm: 196.8 (C-8), 166.9 (C-9′), 162.8 (C-7a), 125.5 (C-4), 145.5
(C-7′), 141.8 (C-10), 130.6 (C-6), 134.4 (C-5), 129.0 (C-3′), 129.0 (C-5′), 129.0 (C-3a), 128.5 (C-4′), 127.2
(C-1′), 128.2 (C-2′), 128.2 (C-6′), 114.8 (C-12), 109.4 (C-7), 117.8 (C-8′), 84.6 (C-2), 63.8 (C-11), 35.1 (C-3),
26.4 (C-9). HR-ESI-MS spectra: See Table 1.

Molecules 2018, 23, x FOR PEER REVIEW  3 of 13 

 

Several isolation steps of the ethanol extract of P. quadrangularis allowed the isolation of the 

known clerodane diterpenes (Figure 2): 1 (bacchalineol), 2 bacchalineol 18-O-malonic acid) 3 

(bacchalineol 18-O-malonate methyl ester), 4 (bacchalineol 18-O-malonate ethyl ester), and 5 

(bacchalineol 18-O-acetate) [25]. In addition, the new tremetone 6 plus the known tremetone 7 [26] 

were isolated, together with the known methylated flavones 5,7-dihydroxy-3,8,3′,4′-

tetramethoxyflavone [15], 3′,4′-dimethoxymyricetin [27], 3,7,3′-trimethoxyquercetin, and hesperetin 

plus the coumarins umbelliferone and scopoletin [28]. 

 

Figure 2. Structures of clerodanes (1–5) and tremetones (6–7) isolated from P. quadrangularis. 

After data comparison with other tremetones [12], and examination of the NMR spectra we 

realized that compound 6 (Figure. 2) showed similar NMR data to that reported for compound 7 [26], 

particularly the missing of a doublet of doublets in the proton spectra corresponding to the aromatic 

ring of the coumaroyl moiety (Table S1 and Figure S2, Supplementary Material) plus similar IR bands, 

but differences in the substitution pattern of only the aromatic protons of the cynnamoyl attached to 

the tremetone, in the 1H- and 13C-NMR spectra evidenced by 1-D and 2-D NMR analyses (HMBC, 

HMQC, Tables S1 and S2, Supplementary Material), which led to the identification of 6 as a p-

cinnamoyloxyltremetone, a newly reported compound. 

p-Cinnamoyloxytremetone (compound 6, Figure 3) IR (CCl4, neat) 1650 cm−1 (CO), 1685 (PhCO), 

1610, 1590 (Ph). [a]𝐷
25 = −0.4, c = 2.2. Proton NMR (1H Bruker Avance 400 MHz, CDCl3) δ ppm: 7.85 

(1H, br s, H-4), 7.83 (1H, br d, J = 8.5 Hz, H-6), 7.65 (1H, d, J = 15.9 Hz, H-7′), 7.53 (2H, d, J = 8.6 Hz, H-

3′, H-5′), 7.40 (2H, d, J = 8.6 Hz, H-2′, H-6′), 7.40 (1H, m, H-4′), 6.84 (1H, d, J = 8.3 Hz, H-7), 6.39 (1H, 

d, J = 15.9 Hz, H-8′), 5.46 (1H, dd, J = 8.8, 8.6 Hz, H-2), 5.38 (2H, d, J = 8.8 Hz, H-12), 4.84 (2H, q, J = 

13.4 Hz, H-11a-H-11b), 3.50 (1H, dd, J = 15.9, 9.8 Hz, H-3β), 3.28 (1H, dd, J = 15.9, 7.8 Hz, H-3α), 2.50 

(3H, s, COCH3). 13C-NMR (CDCl3) δ ppm: 196.8 (C-8), 166.9 (C-9′), 162.8 (C-7a), 125.5 (C-4), 145.5 (C-

7′), 141.8 (C-10), 130.6 (C-6), 134.4 (C-5), 129.0 (C-3′), 129.0 (C-5′), 129.0 (C-3a), 128.5 (C-4′), 127.2 (C-

1′), 128.2 (C-2′), 128.2 (C-6′), 114.8 (C-12), 109.4 (C-7), 117.8 (C-8′), 84.6 (C-2), 63.8 (C-11), 35.1 (C-3), 

26.4 (C-9). HR-ESI-MS spectra: See Table 1. 

 

Figure 3. Minimized molecule of compound 6 (Gaussian 9.0, MM1). 

Figure 3. Minimized molecule of compound 6 (Gaussian 9.0, MM1).



Molecules 2018, 23, 2361 4 of 13

Table 1. UHPLC PDA and HR-MS analysis of P. quadrangularis ethanol extract.

Peak
Number

UV Max
(nm) Tentative Identification

Elemental
Composition

[M – H]−
Retention Time

(min)
Theoretical
Mass (m/z)

Measured
Mass (m/z) MSn Ions

1 238–310 Dicaffeoyl quinic acid C25H23O12
− 10.65 515.11938 515.11840

353.08774, chlorogenic
acid, 191.05554 (quinic

acid)

2 270–310 Euphorbetin C18H9O8
− 11.92 353.03046 353.02919 177.01871

3 310 Caffeic acid * C9H7O4
− 12.62 179.03498 179.03441 108.02070(C6H8O2

−;
–CH=CHCOO–)

4 288 Hydroxy-hesperetin C16H13O7
− 13.24 317.06668 317.06656 125.02354 (C6H5O3

−);
207.06560 (C11H11O4

−)

5 281 Hydroxyeriodictyol C15H11O7
− 11.92 303.05103 303.05090 125.02360 (C6H5O3

−)

6 265–365 Kaempferol * C15H9O6
− 13.67 285.04046 285.04028 135.04431 (C8H7O2

−)

7 254–365 Isorhamnetin * C16H11O7
− 14.23 315.05103 315.05090 300.05090 (C15H8O7

−)

8 255–375 6-Hydroxytrimethoxymyricetin C18H15O9
− 15.55 375.07211 375.07202 315.01437 (C15H7O8

−);
271.02448 (C14H7O5

−)

9 287 Eriodictyol * C15H11O6
− 13.55 287.05611 287.05597 243.02946 (C13H7O5

−)

10 255–373 8-Isoprenyl-7,4′-dimethoxymyricetin C22H21O8
− 15.97 413.12419 413.12411 145.02867 (C9H5O2

−);
249.07637 (C13H13O5

−)

11 255–375 3′,5′-Dimethoxymyricetin C17H13O8
− 14.36 345.06159 345.06152 315.01422 (C15H7O8

−)

12 255–373 3′,4′-Dimethoxymyricetin * C18H15O8
− 16.86 345.06159 345.06149 285.04007 (C15H9O6

−);
125.02357 (C6H5O3

−);

13 255–373 8-Isoprenyl-7,3′,4′-trimethoxymyricetin C23H23O8
− 17.64 427.13984 427.13977 145.02869 (C9H5O2

−);
263.09210 (C14H15O5

−)

14 254–365 7,3′-Dimethoxyquercetin(7-O-methyl-isorhamnetin) C17H13O7
− 18.21 329.06668 329.06662 299.01953 (C15H7O7

−)

15 287 Hesperetin * C16H13O6
− 18.42 301.07176 301.07159 135.04431 (C8H7O2

−)

16 255–373 7,3′,5′-Trimethoxymyricetin C18H15O8
− 15.98 359.07724 359.07715 284.03229 (C15H8O6

−)

17 205 18-O-Malonyl-Bacchalineol C23H31O5
− 19.86 387.21770 387.21771 -

18 203 Adenolin C C23H33O8
− 19.43 437.21809 437.21780 299.01953 (C15H7O7

−)
19 285 Methoxyeriodictyol C16H13O6

− 19.68 301.07176 301.07166 135.04430 (C8H7O2
−)

20 255–373 6-Hydroxy-3,7,3′,5′-tetramethoxymyricetin C19H17O9
− 19.87 389.08781 389.08780 359.04031 (C17H11O9

−,
-2CH3)



Molecules 2018, 23, 2361 5 of 13

Table 1. Cont.

Peak
Number

UV Max
(nm) Tentative Identification

Elemental
Composition

[M – H]−
Retention Time

(min)
Theoretical
Mass (m/z)

Measured
Mass (m/z) MSn Ions

21 265–365 8-Isoprenyl-7,4′-dimethoxykaempferol C22H21O6
− 20.01 381.13436 381.13425 119.04949 (C8H7O−)

22 205 11-Acetoxy-11,12-dehydrated adenolin C C25H33O9
− 20.25 477.21301 477.21249 -

23 217 11-Acetoxy-7-methoxyadenolin C C26H37O9
− 20.27 493.24431 493.24384 -

24 254–354 3,7,3′-Trimethoxyquercetin(3,7-di-O-methyl-isorhamnetin) * C18H15O7
− 20.49 343.08233 343.08203 313.03491 (C16H9O7

−)

25 217 Bacchalineol 18-O-malonate methyl ester C25H35O5
− 20.52 401.23340 401.23225 -

26 255–373 5,7-Dihydroxy-3,8,3′,4′-Tetramethoxyflavone C19H17O8
− 20.84 373.09277 373.09271 343.04556 (C17H11O8

-)

27 254–355 p-Coumaroyloxytremetone C22H19O5
− 20.93 363.12380 363.12378 121.02878 (C7H5O2

−)

28 207 Bacchalineol 18-O-malonate ethyl ester C25H35O5
− 21.05 415.24899 415.24790

29 218 Bacchalineol C20H29O2
− 21.26 301.21730 301.21840 -

30 265–365 3-O-Acetyl-8-isoprenyl-7,5,4′-trimethoxykaempferol C25H25O7
− 21.75 437.16058 437.16046 119.04943 (C8H7O−);

163.03926 (C9H7O3
−)

31 210 1,2,19-Trihydroxy-18-acetyl-solidagoiol A C22H31O6
− 21.54 391.21261 391.21252 287.20145 (C19H27O2

−)

32 207 Adenolin C 11,12 dehydrated derivative C23H31O7
− 21.76 419.20753 419.20746 289.21698 (C19H29O2

−)

33 207 1,18-Dihydroxysolidagoic acid C20H27O5
− 22.01 347.18640 347.18637

34 207 Hawtriwaic acid C20H27O4
− 22.45 331.19148 331.19141 -

35 265–365 3-O-Acetyl-8-isoprenyl-7,4′-dimethoxykaempferol C24H23O7
− 22.58 423.14493 423.14487 119.04947 (C8H7O−);

163.03931 (C9H7O3
−)

36 205 19-Hydroxy-solidagoiol A acetate C22H31O4
− 22.78 359.22278 359.22278 211.07591 (C14H11O2

−)

37 - p-Cinammoyloxytremetone C22H19O4
− 22.86 347.12888 347.12892

38 232–272 8-Isoprenyl-7,4′-dimethoxyapigenin C22H21O5
− 23.66 365.13945 365.13947 119.04942 (C8H7O−);

201.09149 (C13H13O2
−)

39 205 Barticulidiol diacetate C24H33O5
− 24.15 401.23335 401.23328 333.20688 (C20H29O4

−)

40 205 Bacchalineol acetate C22H31O3
− 25.74 343.22787 343.22784 -

41 254–355 8-Iisoprenyl-7-methoxyquercetin C21H19O7
− 26.35 383,11363 383.11353 119.04935 (C8H7O−);

163.03922 (C9H7O3
−)

42 270–310 Umbelliferone C9H6O3
− 26.43 162.03169 162.03124

43 270–310 Scopoletin 26.78 192.04226 192.04220

* Identification made using authentic standards.
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2.2. Full Metabolome Identification by UHPLC-PDA-MS

Forty-three compounds were identified including two tremetones (peaks 27 and 37, the last
one a new compound), two phenolic acids (peaks 1 and 3), eighteen flavonoids (peaks 4–16, 20,
21, 26, 38, and 41), and twelve diterpenoids, (peaks 17, 18, 22, 23, 25, 28, 29, 31, 32, 34, 36, and 39
in the chromatogram of the ethanol extract of P. quadrangularis. (Figure 4, Table 1). Figure S1a–n
(Supplementary Materials) show spectra and structures of compounds detected as examples. The
detailed identification is explained below.
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2.2.1. Phenolic Acids

Peak 1 was identified as caffeoyl-quinic acid (DiCOA, C25H23O12
−, Figure S1a) [23] and peak 3

with a [M − H]- ion at m/z: 179.0344 was identified as caffeic acid (C9H7O4
−).

2.2.2. Coumarins

Peaks 42 and 43 were identified as umbelliferone and scopoletin by spiking experiments with
authentic standards. Peak 2 with a pseudomolecular ion at m/z 353.02919 was identified as the
dicoumarin euphorbetin (Figure S1b) [29].

2.2.3. Flavonols

Peak 7 with a pseudomolecular ion at m/z 315.05090 (C16H11O7
−) was identified as

isorhamnetin, [23] identity confirmed by using co-injection with an authentic standard, and
peak 6 as the flavonol kaempferol (C15H9O6

−), respectively. The 3,7-methoxilated derivatives of
isorhamnetin, peaks 14 and 24 (7-O-methyl-isorhamnetin and 3,7-di-O-methyl-isorhamnetin) were
also detected. Peaks 8, 11, and 12 with molecular ions at m/z 375.07202, 345.06152 and 345.06149 were
identified as methoxylated myricetin derivatives with molecular formulas C18H15O9

−, C17H13O8
−,

and C17H13O8
−, Table 1 [27]. Among those, peaks 11 and 12 were identified as the isomers

3′,5′-dimethoxymyricetin and 3′,4′-dimethoxymyricetin [27], respectively. In the same way, peak 26 was
identified as the tetramethyl flavone 5,7-dihydroxy-3,8,3′,4′-tetramethoxyflavone (C19H17O8

−) [15].
Peaks 16 and 20 with [M – H]− ions at m/z: 359.07715 (Figure S1d) and 389.08780 (Figure S1g)
were identified as 7,3′,5′-trimethoxymyricetin and 6-hydroxy-3,7,3′,5′-tetramethoxymyricetin [27]
(C18H15O8

−, C19H17O9
−), respectively.
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2.2.4. Flavanones

Peak 5 was identified as the flavanone eriodictyol (C15H11O6
−), peak 4 as Hydroxy-hesperetin

(C16H13O7
−), peak 9 and 19 as the derivatives hydroxyeriodictyol (C15H11O7

−) and
methoxyeriodictyol (C16H13O6

−). In the same manner, peak 15 was identified as the flavanone
hesperetin (C16H13O6

−), which was isolated and confirmed by spiking experiments, and peak 4 was
identified as hydroxyhesperetin (C16H13O7).

2.2.5. Prenylated Flavonoids

Several interesting isoprenylated derivatives of flavonoids were also detected. Peak
10 with a pseudomolecular anion at m/z: 413.12411 was identified as the dimethoxylated
isoprenylated myricetin derivative: 8-isoprenyl-7,4′-dimethoxymyricetin (C22H21O8

−, Figure
S1c), while peak 13 as the trimethoxylated derivative: 8-isoprenyl-7,3′,4′-trimethoxymyricetin
(C23H23O8

−), Peak 41 was identified as 8-isoprenyl-7-methoxyquercetin (C21H19O7
−) and peak 21 as

8-isoprenyl-7,4′-dimethoxykaempferol (C22H21O6
−). Peak 30 was identified as the derivative of the

latter, 3-acetyl-8-isoprenyl-7,5,4′-trimethoxykaempferol (C25H25O7
−) and peak 35 as the acetylated

one, 3-O-acetyl-8-isoprenyl-7,4′-dimethoxykaempferol (C24H23O7
−). Peak 38 was identified as

8-isoprenyl-7,4′-dimethoxyapigenin (C22H21O5
−, Figure S1m).

2.2.6. Kaurene Terpenoids

Peak 18 with a [M − H]− ion at m/z: 437.21780 (Figure S1f) was identified as the kaurene
diterpenoid Adenolin C (C23H33O8

−) and peaks 23 and 42 as its derivatives, 11-acetoxy-11,12-
dehydrated adenolin C (C25H33O9

−) and 11-acetoxy-7-methoxyadenolin C (C26H37O9
−), respectively.

Peak 32 was identified as the 11,12-dehydrated derivative of Adenolin C (C23H31O7
−, Figure S1k).

2.2.7. Clerodane Terpenoids

Bacchalineol was identified with peak 29 (Table 2) while bacchalineol 18-O-malonic acid,
bacchalineol 18-O-malonate methyl ester ([M – H]− ion at m/z: 401.23328, C24H33O5

−, Figure S1n,e,
respectively), and bachalineol 18-O-malonate ethyl ester (Figure S1i) [25] were isolated and identified
in the chromatograms with peaks 17, 25, and 28, identity confirmed with spiking experiments with
authentic standards. Peak 34 with a [M – H]− ion at m/z: 331.19141 was identified as the furanyl
clerodane diterpene hawtriwaic acid (C20H27O4

−) [30]. Other compounds detected were related
to the antibacterial compound soligagoic acid A (C20H29O2

−), [31,32]. Peak 33 with a [M – H]−

ion at m/z: 347.18637 was identified as 1,18-dihydroxysolidagoic acid (C20H27O5
−), while peak 36

with a pseudomolecular ion at m/z: 359.22278 was identified as the hydroxyl-acetyl derivative of
the alcohol, 19-hydroxy-solidagoiol A acetate (C22H31O4

−, Figure S1l), and finally peak 31 as the
tri-hydroxy-derivative: 1,2,19-trihydroxy-18-acetyl-solidagoiol A (C22H31O6

−) [31,32]. Peak 39 with a
[M – H]− ion at m/z 401.23328 was identified as the related clerodane compound barticulidiol diacetate
(C24H33O5

−) [33], Peak 40 with an anion at m/z: 343.22784 was identified as the acetyl derivative of
the alcohol, bacchalineol acetate (C22H31O3

−, Figure S1n) [25,34].

2.2.8. Tremetones

Peak 27 with a [M – H]− ion at m/z: 363.12385 was identified as p-coumaroyloxyltremetone,
identity confirmed by spiking experiments with a standard sample, and peak 37 with a [M – H]− ion
at m/z: 347.12855 as a derivative of the latter, which was isolated and used as standard for spiking
experiments (see experimental).

2.3. Gastroprotective Capacities of Isolated Compounds (1–7) from Parastrephia Quadrangularis

The results of the gastroprotective effects of compounds 1–7 in the HCl/EtOH-induced gastric
lesion model are presented in Table 2. All compounds tested showed gastroprotective activity at a dose
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of 20 mg/kg (p.o) except compound 2 and 4. The best effect was shown by compound 7 (76%) which
was close to that observed with lansoprazole (72%). In addition, the protection displayed by compound
6 (41%) was nearly half of that showed by the positive control, showing that an addition of an OH
group in the cinnamoyl moiety for compound 7 is key for the bioactivity. Among the most lipophilics
compounds (1–5), the lowest gastroprotective activity was evidenced by compound 5 (bacchalineol
18-O-acetate, 19%), compound 1 (bacchalineol, 12%), and compound 3 (bacchalineol methyl malonate,
11%). Compound 2 (bacchalineol malonic acid) and 4 (bacchalineol 18-O-malonate ethyl ester) did not
show any significant difference with the control group.

The gastroprotective activity of several terpenoids have been reported in the literature. Among
them, plaunotol, ferruginol and their derivatives, mulinane diterpenoids, dehydroabietic acid
derivatives, carnosol and carnosic acid derivatives, labdane diterpenoids, poligodial sesquiterpenoids,
oleanolic acid and their derivatives, suaveolol diterpenoid, ent-beyerene derivatives, and lupeol [35–40].
The gastroprotective effects of these terpenoids reported in those studies were comparable with our
results at the same oral dose. A high amount of compound 7 could explain in part for some of the
putative medicinal properties assigned to this species. Further studies are necessary to explain the
mechanism of action of compound 7.

Table 2. Gastroprotective effect of compounds isolated from P. quadrangularis at 20 mg/kg on
HCl/EtOH-induced gastric lesions in mice.

Compound n Lesion Index (mm) % Lesion Reduction

1 7 35.7 ± 4.6 ** 12 *
2 7 39.0 ± 3.5 ** 4
3 7 36.6 ± 1.5 ** 11 *
4 7 46.6 ± 7.2 ** -
5 7 33.1 ± 2.0 ** 19 *
6 7 23.9 ± 3.1 ** 41 *
7 7 13.9 ± 2.2 76 *

Lansoprazole 7 11.3 ± 1.5 72 *
Control 7 40.6 ± 1.2 ** -

The results are expressed as mean ± sem * p < 0.01; significantly different compared with the control and ** p < 0.01
significantly different compared with lansoprazole (ANOVA followed by Dunnett’s test). n = number of mice.

3. Materials and Methods

3.1. Chemicals and Plant Material

UHPLC-MS Solvents, LC-MS formic acid, reagent grade lanzoprasole, formalin, ethanol, HCl,
deuterated chloroform and deuterated methanol, and reagent grade chloroform were from Merck
(Santiago, Chile). Ultrapure water was obtained from a Millipore water purification system (Milli-Q
Merck Millipore, Santiago, Chile). UHPLC standards, (kaempferol, caffeic acid, isorhamnetin,
hesperetin, eriodictyol, all standards with purity higher than 95% by HPLC) were purchased either
from Sigma Aldrich (Saint Louis, Mo, USA), ChromaDex (Santa Ana, CA, USA), or Extrasynthèse
(Genay, France).

3.2. Plant Material

Parastrephia quadrangularis (Meyen), Cabrera aerial parts were collected in El Tatio, Atacama
Desert, in November 2015 at 4000 m.a.s.l. and were identified by the botanist Alicia Marticorena from
the University of Concepción, Chile. Voucher herbarium specimens are kept at the Natural Products
Laboratory of the Universidad de Antofagasta under reference number: PQ20151115.
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3.3. Extraction

Dried and chopped aerial parts of P. quadrangularis (500 g) collected in Northern Chile were
extracted with absolute ethanol (1 L, per 3 times in the dark, 24 h each time) to obtain a medicinal
tincture, at room temperature. The tincture was then concentrated in vacuum below 40 ◦C to yield
36 g of a dark gummy extract.

3.4. Isolation

Thirty-six grams of the crude ethanol extract (concentrated medicinal tincture) was submitted
to flash permeation thorough Sephadex LH-20 (700 g) using methanol as eluent and three fractions
(PQ-A to PQ-C) were collected after TLC analyses and clear spots (Kieselgel F254 plates, developed
with Hexane: EtOAc 8:2 v/v, and spots visualized by spraying with vanillin:sulfuric acid 2% in ethanol
and heating) . Fraction PQ-B (7 g) was submitted to open column chromatography (Silica gel 60, 500 g)
using hexane ethyl acetate of increasing polarity and 7 fractions were collected (pq-a to pq-f) according
to TLC profiles. Fractions pq-d and pq-f were pooled, (2 g) and submitted to a medium pressure column
chromatography system composed of an 2.5 cm × 48 cm medium pressure column (Aceglass Inc.,
Vineland, NY, USA) packed with silicagel (Kieselgel 60 H, Merck, Darmstadt, Germany) using an
isocratic solvent system of n-hexane-ethyl acetate (9.5:0.5 v:v) pumped with a medium pressure pump
(FMI lab pump, Syosset, NY, USA) with a flow rate of 10 mL-minute. The collected fractions (75)
were combined according to TLC analysis and 12 combined fractions (Pq-1 to Pq-12) were obtained.
Fraction Pq-3 (376 mg) was re-chromatographed using the same chromatographic system and the
known compounds: 1 (32 mg) and 2 (44 mg) were isolated which showed similar NMR spectra [25].
Fraction Pq-5 (543 mg) was rechromatographed on Sephadex L-H 20 to yield diterpenes 3 (35 mg),
4 (43 mg) and 5 (50 mg) whose NMR data corresponded to the data previously reported [25]. Fraction
Pq-7 (612 mg) was rechromatographed on Sephadex L-H 20 to yield the new tremetone compound
6 (42 mg) plus the known tremetone 7 (55 mg) [26]. From fraction PQ-C (5 g), after several steps on
Sephadex LH-20 permeation (500 g and 200 g, using as mobile phase HPLC grade methanol), the
methylated flavones 5,7-dihydroxy-3,8,3′,4′-tetramethoxyflavone (13 mg) 3′,4′-dimethoxymyricetin
(23 mg), 3,7,3′-trimethoxyquercetin (17 mg), plus hesperetin (12 mg), showing NMR data as previously
reported [15,27,41] plus the coumarins umbelliferone (15 mg) and scopoletin (23 mg) [28], were isolated.

3.5. UHPLC-PDA-MS Instrument

A Thermo Scientific Dionex Ultimate 3000 UHPLC system hyphenated with a Thermo Q exactive
focus machine was used [24]. For the analysis, 5 mg of the extract were dissolved in 2 mL of methanol,
filtered (thorough PTFE filter) and 10 µL were injected in the instrument, with all specifications set as
previously reported [24].

3.6. LC Parameters and MS Parameters

Liquid chromatography was performed using an UHPLC C18 column (Accucore,
150 mm × 4.6 mm internal diameter, 2.5 µm particle size, Thermo Fisher Scientific, Bremen, Germany)
operated at 25 ◦C. The detection wavelengths were 254, 280, 330 and 354 nm, and PDA was recorded
from 200 to 800 nm for peak characterization. Mobile phases were 1% formic aqueous solution (A) and
1% formic acid in acetonitrile (B). The gradient program (time (min), % B) was: (0.00, 12); (5.00, 12);
(10.00, 20); (15.00, 40); (20.00, 40); (25.00, 70); (35.00, 12) and 15 min for column equilibration before
each injection. The flow rate was 1.00 mL min−1, and the injection volume was 10 µL. Standards and
the resin extract dissolved in methanol were kept at 10 ◦C during storage in the autosampler. The
HESI II and Orbitrap spectrometer parameters were optimized as previously reported [24,42].
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3.7. Animals

Animals were acquired from the Chilean Institute of Health, Chile, Santiago. Swiss albino mice
weighing 30 ± 3 g were fasted for 24 h before the experiments. The animals were fed on certified
Champion diet with free access to water under standard conditions of 12 h dark-light period, 50%
relative humidity and room temperature (22 ◦C). The protocols were approved by the Animal Use
and Care Committee of the Universidad de Chile (07022010) following the recommendations of the
Canadian Council on Animal Care as stated previously [40].

3.8. Gastroprotective Effects

The gastroprotective activity of the compounds 1–7 was performed in the HCl/EtOH-induced
lesion model as described previously [19]. Briefly, mice were distributed into groups of seven animals
each and fasted for 24 h with free access to water prior to the experiments. Fifty min after oral
administration of the compounds (20 mg/kg), lansoprazole (20 mg/kg) or 12% Tween 80 (10 mL/kg),
all groups were orally treated with 0.2 mL of a solution containing 0.3 M HCl/60% ethanol (HCl/EtOH)
for gastric lesion induction. Animals were sacrificed 1 h after the administration of HCl/EtOH, and
the stomachs were excised and inflated by injection of saline (1 mL). The ulcerated stomachs were
fixed in 5% formalin for 30 min and opened along the greater curvature. Gastric damage visible to the
naked eye was observed in the gastric mucosa as elongated black-red lines, parallel to the long axis of
the stomach. The length (mm) of each lesion was measured, and the lesion index was expressed as the
sum of the length of all lesions.

3.9. Statistical Analysis

The statistical analysis was carried out using the originPro 9.1 software packages (Originlab
Corporation, Northampton, MA, USA). The determination was repeated at least three times for each
sample solution. Analysis of variance was performed using ANOVA. Significant differences between
means were determined by Dunnet comparison test (p values < 0.05 were regarded as significant).

4. Conclusions

The ethanol extract of an endemic species from the Atacama Desert showed several metabolites
which were isolated using chromatography and detected using a hybrid UHPLC-PDA-OT-MS
instrument. The isolated tremetones and clerodanes showed gastroprotective activity in a mouse
model, evidenced by compound 7, which showed better gastroprotective capacity than the control
drug lansoprazole (76%). The hyphenated machine equipped with orbitrap-PDA detectors and
high-resolution collision cell is an outstanding tool for accurate and fast metabolomics analysis of the
Atacama Desert flora, and allowed for the first time the identification of several ent-clerodane and
kaurene diterpenes. P. Quadrangularis is rich in phenolic compounds and terpenoids and thus can be
useful for the preparation of nutritional supplements. This study might support in part the putative
medicinal properties of the plant as a gastroprotective agent.

Supplementary Materials: The following are available online, NMR data and Full mass spectra and structure of
several of the compounds identified by UHPLC-ESI-MS-MS.
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