
symmetryS S

Article

Acoustic Imaging Using the Built-In Sensors of a Smartphone

Chenming Li 1, Junchao Wang 1,* , Xinyi Ding 1 and Naiyin Zhang 2

����������
�������

Citation: Li, C.; Wang, J.; Ding, X.;

Zhang, N. Acoustic Imaging Using

the Built-In Sensors of a Smartphone.

Symmetry 2021, 13, 1065. https://

doi.org/10.3390/sym13061065

Academic Editors: Sergei D. Odintsov

and Basil Papadopoulos

Received: 7 May 2021

Accepted: 11 June 2021

Published: 14 June 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Key Laboratory of RF Circuits and Systems, Ministry of Education, Hangzhou Dianzi University,
Hangzhou 310018, China; lcm54365694@hdu.edu.cn (C.L.); 17042002@hdu.edu.cn (X.D.)

2 School of Artificial Intelligence, Hangzhou Dianzi University, Hangzhou 310018, China; nyzhang@hdu.edu.cn
* Correspondence: junchao@hdu.edu.cn

Abstract: Thanks to the rapid development of the semiconductor industry, smartphones have
become an indispensable part of our lives with their increasing computational power, 5G connection,
multiple integrated sensors, etc. The boundary of the functionalities of a smartphone is beyond
our imagination again and again as the new smartphone is introduced. In this work, we introduce
an acoustic imaging algorithm by only using the built-in sensors of a smartphone without any
external equipment. First, the speaker of the smartphone is used to emit sound waves with a specific
frequency band. During the movement of the smartphone, the accelerometer collects acceleration data
to reconstruct the trajectories of the movements, while the microphones receive the reflected waves. A
microphone plus an accelerometer are able to partially replace the functionality of a microphone array
and to become a symmetry-imitation system. After scanning, a series of algorithms are implemented
to generate a heat map, which outlines the target object. Our algorithm demonstrates the feasibility
of smartphone-based acoustic imaging with minimal equipment complexity and no additional
cost, which is beneficial to the promotion and popularization of acoustic imaging technology in
daily applications.

Keywords: acoustic imaging; symmetry imitation; smartphone-based technology; computer algorithm

1. Introduction

Acoustic imaging is a method for obtaining visible images of structure characteristics
of objects using sound waves. The first acoustic imaging could be traced back to scan-based
sound visualization methods. Winston Kock used the electrical signal of a microphone to in-
duce a change in the the brightness of a bulb [1]. Currently, with dramatic improvements in
sensor technology, algorithms, and computational power, acoustic imaging technology has
been widely used in various areas of life, such as aerospace [2], underwater exploration [3],
geological exploration [4], medical diagnosis [5], and military fields [6].

Normally, acoustic imaging requires active equipment to emit sound waves with
composite frequency bands, while a receiver is required to collect the waves reflected by
the targets [7]. After the reflected waves are collected by the receiver, computer algorithms
such as the beamforming method are implemented to analyze the waves to obtain the
information behind in order to generate one-dimensional or multi-dimensional images of
the target [8]. However, for the application of traditional acoustic imaging technology, it is
necessary to include specific systems and complex instruments to achieve the purpose of
acoustic imaging. Traditional acoustic imaging equipment is either large or expensive. For
example, A DW-T6 medical color Doppler ultrasound machine costs $71,500 and its volume
is 330 mm × 289 mm × 70 mm [9]. Therefore, we wonder whether it is possible for the
smartphones we use every day to achieve acoustic imaging without leveraging additional
equipment or sensors. Thanks to the development of the semiconductor industry, the
CPU is integrated with billions of transistors to provide enough computational power [10]
while MEMS sensors can be made to be less than 1 square millimeter in size to provide
accuracy [11,12]. For instance, both Huawei P40 Pro and iPhone 12 are equipped with two
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speakers (transmitter) and microphones (receiver), which satisfies the waveband transmis-
sion and reception. Specifically, the Apple A14 chip integrates 11.8 billion transistors in a
size of 88 mm2, for which the calculation speed could reach 11 TOPS, which is 3.75 times
that of the Apple A4 chip decades ago [13]. In the meantime, the processor of Huawei P40
Pro is Kirin 990, for which the calculation speed exceeds 7 TOPS [14]. Taking the hardware
and algorithm implementation into consideration, it is feasible to use smartphones for
acoustic imaging.

A number of scholars have conducted theoretical and experimental investigations
on taking advantage of smartphones, which expands the application of acoustic imaging
technology [15,16]. Wang et al. presented an acoustic-based obstacle collision detection
algorithm by using the smartphone [17]. Pradhan et al. presented smartphone-based
acoustic indoor space mapping applications [18]. Both of these articles focus on using the
sensors of a smartphone to calculate the distance between the target and the smartphone.
On the other hand, one of the effective methods for acoustic imaging is a system based on
Synthetic Aperture Radar (SAR) technology [19]. It uses an audible frequency band from
10 kHz to 15 kHz. The reflected wave is processed by SAR to generate a two-dimensional
acoustic image. The core idea is to build a minimum equivalent length antenna by spatial
sampling. Due to the transmission and reception occuring at different times, it is able to
map the different positions. The combination of the signals received builds a virtual aper-
ture, which is much longer than the physical antenna width. After that, a two-dimensional
image is generated through a series of algorithms including phase error correction, distor-
tion removal, and several noise filters. According to the experiments, the SAR method is
capable of reaching 70% to 90% similarity to the measured contour of the object, which
demonstrates the feasibility and effectiveness of acoustic imaging on a smartphone. How-
ever, the acoustic imaging algorithms based on SAR are quite complex and difficult to
be implemented. In addition, there are multi-platform acoustic imaging systems based
on broadband beamforming and adaptive beamforming technologies [20], 3D imaging
systems that integrate microphone arrays and cameras [21], etc. They need to be equipped
with a microphone array, which is impossible for smartphones. Hence, we wondered
whether we can use a simpler algorithm to approach the accuracy as mentioned above.

In this work, we propose an acoustic imaging algorithm to image the contour of
an object. Our imaging method only uses the built-in sensors of a smartphone without
leveraging other additional hardware. Specifically, we use the phone speaker as an active
sound equipment to emit the sound signals, the microphones as a receiver to collect the
reflected waves, and the built-in accelerometer to gather the acceleration data. After
that, the sound data and acceleration data are used to calculate the sound energy and
trajectory of how a smartphone moves, respectively. Finally, the sound energy is mapped
to each trajectory point, and a two-dimensional image of the target is obtained through the
interpolation algorithm.

2. Theory of Smartphone-Based Acoustic Imaging Technology

One fundamental issue needs to be overcome: the limited amount of microphones and
speakers in a smartphone. Acoustic imaging usually uses the speaker and microphone
array as the transmitter and receiver [22]. However, the number of microphones and
speakers in a smartphone is usually less than five. For example, iPhone 12 has only
two speakers (transmitter) and four microphones (receiver) [23]. To address this issue,
we used the motion trajectory to replace the microphone array. A microphone plus an
accelerometer become a symmetry imitation system that functions as the microphone array.
As shown in Figure 1, the smartphone sweeps the surface of the object according to the
prescribed route and the microphone collects reflected wave data at regular intervals. The
light blue background indicates the surface of the object, the dark blue solid line indicates
the prescribed route, and the yellow point indicates the sampling point. In this way, the
sampling points on the trajectory constituted as a virtual microphone array (or so-called
symmetry imitation system).
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Figure 1. A schematic of the moving smartphone trajectories used to imitate a microphone array.

2.1. Overall Description of the Algorithm

Based on the above analysis, our method provides a new solution to simplify the
acoustic imaging algorithm to outline the contour of a target object. The processing flow of
our method is summarized in Figure 2.

Figure 2. A flowchart of the imaging algorithm.

The algorithm shown in Figure 2 is composed of three modules: signals acquisition,
data processing, and acoustic imaging. Cooperating with the built-in acceleration sensor,
speakers, and microphones of a smartphone, we achieve acoustic imaging. The whole
system is divided into two parts: the front end and the back end. The front end is con-
structed by HTML, which runs on the smartphone. The function of the front end is to call
the built-in sensors on the smartphone to collect the acceleration data and reflected data.
The back end is the server part. The algorithm of the data processing and acoustic image
generation was implemented in the server (Centos 7.3, Intel Xeon E5-2680, 2.5 GHz, Santa
Clara, CA, USA), for which the computing speed is 172 GFLOPS.

The working mechanism of our algorithm is described as follows. Starting from the
end of the smartphone, the speakers of the smartphone acts as an active sound-generating
device. It emits sound waves that contain a single or composite frequency band to the target
object. After that, the reflected waves carrying the information of the object are collected
by the microphones. Meanwhile, the accelerometer is used to collect the motion data in
the process of scanning the object, which is further calculated to generate the motion track
points. Finally, the reflected wave data are quantified as sound energy, which is mapped to
the track points for visual expression to generate a two-dimensional acoustic image in the
server end.

2.2. Data Acquisition Module

The data acquisition module provides a user-friendly interface (Figure 3) to control our
imaging system, which can be accessed by https://chenmingbright.com/sum/assets/ index.html

https://chenmingbright.com/sum/assets/index.html


Symmetry 2021, 13, 1065 4 of 18

(accessed on 28 April 2021). The smartphone model used for the experiment was Huawei
P40 Pro (Android 10.0). After clicking the record button, the software turns on the speaker
of the smartphone to emit sound waves of a 3 kHz frequency band and set the microphone
to be ready for the incoming reflected waves. After that, the user clicks the start button to
initialize the imaging process by recording the reflected wave and acceleration data. When
the user starts to scan the target, the software automatically collects the waves reflected
by the object under experiment as well as the trajectories provided by the acceleration
data. When the smartphone moves, the main microphone at the bottom of the smartphone
is aimed at the object, 2∼3 cm away from the top of the object. The moving speed was
∼0.065 m/s, which is relatively stable. Therefore, the amplitude change caused by human
physiological jitter in the Z-axis direction can be negligible. The smartphone performs
sinusoidal motion in the XY plane because the sinusoidal curve can cover the upper surface
of the object to the greatest extent. It is able to ensure that enough effective data points are
collected for acoustic imaging. The scanning process is also described in Figure 4. During
the acquisition process, the reflected waves and acceleration data are stored in the local
storage. After acquisition, the smartphone packages the cached data into a JSON format
file and sends it to the server in a POST method.

Figure 3. Main interface of the data acquisition module.
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Figure 4. The overall process of the scanning process.

2.3. Data Processing Module

There are inevitable errors in acceleration data and sound data collected by smart-
phone. Therefore, before processing them into trajectory and sound energy, the data need
to be preprocessed to improve the accuracy of the final imaging. We used Fast Fourier
transformation (FFT) [24], Parseval theorem [25,26], Kalman filter [27], and forced zero
algorithm to calibrate the reflected wave and acceleration data.

2.3.1. Acceleration Data Processing

In the acceleration data processing module, we reduced the data error to an acceptable
accuracy. Through the processed data, reconstruction of the trajectory of the smartphone
movement is realized. The type of accelerometer used in the smartphone for testing is
a MEMS-based sensor. Due to its own electrical and mechanical characteristics, there
are three major types of errors from the MEMS-based accelerometer [28]. First, due to
environmental temperature, magnetic field, etc., the acceleration data fluctuates around
zero when the smartphone is stationary, which is called zero drift. In the other case, when
the smartphone moves in a single direction, the acceleration data in the other direction
have inertial fluctuations, which is called inertial drift. These two types of errors are
defined as drift errors. Second, environmental electromagnetic changes or internal friction
of sensor components produce unpredictable errors. These errors are defined as random
errors. Third, during the movement of the smartphone, the tiny errors of the accelerometer
continue to accumulate, which eventually creates a greater impact on the accuracy of the
entire trajectory. These errors are defined as cumulative errors. Since the cumulative errors
mainly come from the accumulation of drift errors and random errors, the cumulative
errors can be reduced accordingly while reducing the other two types of errors.

The random errors or so-called random noise is hard to predict [29]. Therefore, we
need an effective algorithm to extract the signals from noise. In this work, the Kalman
filter was chosen to eliminate the random noise. The Kalman filter is an efficient recursive
filter [27]. Its basic idea is to bring the estimated value of the state at the previous moment
and the observed value of the state at the current moment into the linear system state
equations. In this way, the estimation of the state variables are updated and the state at the
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current moment is mostly estimated as well as calibrated. The Kalman filter uses continuous
iteration, prediction, and correction methods to estimate the state of the dynamic system.
Due to the fact that the observation data during the experiment includes random noise, the
optimal estimation of the Kalman filter can be regarded as a filter process.

The Kalman filter includes two processes: state prediction and state update. Equations (1) and (2)
express the state prediction:

Xt|t−1 = AXt−1|t−1 + BUt−1 (1)

where Xt|t−1 is the predicted result using the previous state of the system. Xt−1|t−1 means
the optimal result that is processed by the Kalman filter at time t− 1. Ut−1 is the control
function of the system, which is not defined during the experiment. Therefore, Ut−1 is
set to 0. A is the state transition matrix. Since the sampling time of the sensor set in the
experiment is 0.02 s. It is so short that the change between two adjacent states is negligible,
so we set A = 1. The function of the Equation (1) is to use the motion state at time t− 1 to
predict the state at time t.

Pt|t−1 = APt−1|t−1 AT + Q (2)

where Pt|t−1 is the error covariance matrix corresponding to Xt|t−1, which is the same
as Pt−1|t−1 to Xt−1|t−1. Q is the covariance matrix of random noise errors in the motion
process. It has components in the X and Y directions. In this way, Q can be expressed as
[Qx, Qy]. Set Qx as an example; it is calculated as follows: accelerometer moves in the Y
direction, the variance of the acceleration data measured when the X direction is stationary.
According to the experiment, [Qx, Qy] = [0.006263, 0.006263]. AT is the transposed matrix
of A. The function of Equation (2) is to use the error covariance matrix at time t− 1 to
predict the error covariance at time t.

Through the Equations (1) and (2), we can obtain the predicted state at current moment.
Combining the prediction result with the actual observation value can obtain the optimal
estimated value Xt|t. Equations (3)–(5) are used to calculate how the next status is updated.

Kt =
Pt|t−1HT

HPt|t−1HT + R
(3)

where Kt is the Kalman gain. R is the random error covariance matrix of the sensor. Its
value is the variance of the X-axis and Y-axis acceleration data measured in the static state,
which is approximately equal to 0.0036. Moreover, H is the parameter of the measurement
system. Since the MEMS sensor integrated in the smartphone is calibrated by the sensor
manufacturer, the observed value measured by the sensor reflects the current motion state
of the sensor. Therefore, we set H = 1, where HT indicates the transposed matrix of H.

Xt|t = Xt|t−1 + Kt(Xt − HXt|t−1) (4)

where Xt|t means the optimal result processed by the Kalman filter at time t. The function
of Equation (4) is to use the estimated value Xt|t−1 at time t to calibrate the measured value
Xt at time t.

Pt|t = (L− Kt H)Pt|t−1 (5)

where L presents the identity matrix. The function of Equation (5) is to use Pt|t−1, which is
the error covariance matrix corresponding to Xt|t−1, to update the error covariance matrix
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Pt|t. When the system enters time t + 1, Pt|t is updated to Pt−1|t−1 in Equation (2), so that
the algorithm autoregressively calculates until the system process ends.

The optimal estimation process of the system motion state mentioned above can be
regarded as a process of filtering. It could remove the noise and interference in the system,
which is capable of reducing random errors. The flowchart of the Kalman filter is further
described in Figure 5.

Figure 5. A flowchart of teh Kalman filter process.

Apart from the Kalman filter, we also use a forced zero algorithm to suppress the drift
errors of the system, including zero drift and inertial fluctuation. In general, the fluctuation
of the acceleration data causes a large error in the speed calculation, thereby affecting the
calculation of the trajectory. We designed a forced zero algorithm to reduce the error of
speed caused by the above two drift errors.

As shown in Figure 6, first, the acceleration data are used to calculate the velocity at
each sampling time. The acceleration data has components in the X and Y directions. The
data in each direction are processed separately. Set the X direction as an example:

vt = vt−1 + atT (6)

where vt and vt−1 are the velocity values at the current time and the previous time in the
X direction, respectively. at is the acceleration in the X direction, and T is the sampling
period. Using 20 sampling points as a window, we can calculate the standard deviation σn
of the speed in each window:

σn =

√√√√ 1
20

n20

∑
i=n0

(vi − r)2 (7)

where ni means the ith point at the current window and the r is the average of 20 points
speed data. Moreover, the vi presents the velocity of the ith point.
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Figure 6. A flowchart of the proposed forced zero algorithm.

With the standard deviation σn as the threshold, the program traverses all of the
windows. If the standard deviation of this window is less than σn, all of the data in
this window are returned to zero. The acceleration data in the X and Y directions are
processed as described above, and we obtained the speed data with smaller errors in the
two directions.

After using the Kalman filter and the forced zero algorithm, we obtain the speed
data of the smartphone along the X and Y directions at each sampling point. Additionally,
the error of the speed data is suppressed to a certain extent, which is able to rebuild the
trajectory. Since the time interval between two adjacent sampling points is short enough,
the motion between two adjacent points can be approximated as a uniform linear motion.
Additionally, the speed is the average value of that at the two adjacent sampling points.
Using the speed data in the two directions, we can calculate the displacement in each
sampling period and its accumulation over time.

The displacement xt within a certain sampling period in a certain direction is expressed
by Equation (8):

xt =
(vt + vt+1)

2
T (8)

where xt is the displacement within a sampling period. vt and vt+1 indicate the velocity
values at time t and t + 1, respcetively. T is the sampling period. The cumulative value
Xt of the displacement from time 0 to the sampling point (time t at current) in a certain
direction is expressed by Equation (9):

Xt = Xt−1 + xt (9)

where the meaning of Xt−1 is the same as Xt. xt represents the displacement from time
t− 1 to t. Combining Equations (8) and (9), we are able to obtain the total displacement of
each sampling point of the smartphone in a single direction. Finally, the two sets of data
are drawn on a two-dimensional plane and combined orthogonally to obtain the motion
trajectory of the smartphone.

2.3.2. Reflected Wave Data Processing

After completing the trajectory reconstruction, we need to process the reflected wave
signal. The errors of reflected wave data mainly come from two aspects: (1) The reflected
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wave is affected by environmental noise, such as reflected echo. Theoretically, the sound
received by the microphones appear as an overlapping wave. (2) The sound energy is
attenuated by the square of the distance during transmission and reception.

For the first question, we combined the method of smartphone self-calibration and
selection of the best sound wave. As show in the Figure 7, it is a distribution map of the
microphones in the smartphone that we used for the experiment.

𝑇𝑜𝑝 𝑓𝑖𝑙𝑡𝑒𝑟 𝑚𝑖𝑐𝑟𝑜𝑝ℎ𝑜𝑛𝑒

𝐵𝑜𝑡𝑡𝑜𝑚 𝑚𝑎𝑖𝑛 𝑚𝑖𝑐𝑟𝑜𝑝ℎ𝑜𝑛𝑒

𝑍𝑜𝑜𝑚 𝑚𝑖𝑐𝑟𝑜𝑝ℎ𝑜𝑛𝑒

Figure 7. Microphone distribution on the phone.

There are three microphones. The main one is at the bottom, recording the reflected
wave at the sound source. The second one is the top filter microphone, recording the noise
and the attenuated wave from the sound source. The third zoom microphone is located
in the camera module. When the phone recording function and call function work, the
top and bottom microphone work by default. In the system that we designed, the bottom
microphone is used to record the 3 kHz sound waves reflected from the sound source. The
top filter microphone records reflected waves outside the sound source and background
noise. The smartphone has built-in sound signal processing algorithms [30]. The algorithm
detects the sound source and processes the noise based on the power of the sound signals
recorded by the two microphones. After the self-filtering process of the smartphone, the
signal recorded by the smartphone retains the sound source to the greatest extent and filters
other noises. These algorithms are designed by manufacturers to ensure the quality of a
call and are relatively mature. In addition, we tested the sound waves in the best audible
frequency band to maximize the signal collected at the sound source. We built a sound
wave with a composite frequency band, the range of which is from 1 kHz to 20 kHz. As
shown in Figure 8, the sound wave in the 3 kHz frequency band is the most obvious in the
reflected waves. It means that selecting a 3 kHz frequency band can minimize the impact
of environmental noise.
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Figure 8. Spectrogram of reflected waves received by the smartphone microphone. (A) Multi-band
composite sound wave test. (B) Single-frequency band sound wave test. (C) Short-impulse tone test
in a noisy environment.

As for the solution to error type two, the method we used is close-range scanning and
dense sampling. The amplitude of the sound signal is attenuated with the square of the
distance [31]. We set the smartphone to be 2∼3 cm away from the object in the experiment.
As a healthy human hand’s physiological jitter in the Z-axis direction is less than 0.2 cm,
we assume that the smartphone is stationary in the Z-axis. Moreover, dense sampling
points can ensure that a sufficient amount of data are collected. As the smartphone is
a highly integrated device, the internal sensors cannot be controlled by the user at will,
unlike a microphone array. What we are able to do is to enhance the target sound and to
optimize the physical environment. The combination of the two methods mentioned above
compensates for the sound energy loss.

To facilitate the subsequent sound energy calculation, the sound data collected and
stored by the microphones are first converted from the time domain to the frequency
domain. As the collected sound signal is a discrete signal, each frame of sound needs
to be processed by Fast Fourier transformation (FFT) and converted into a frequency
domain representation:

X(k) =
N−1

∑
n=0

x(n)Wnk
N (k = 0, 1, ..., N − 1) (10)

where x(n) is the signal value of the nth sampling point in one frame in the time domain.
Wnk

N is a rotation factor, which is defined as shown in Equation (11). Wnk
N is an expression

of complex numbers in FFT transformation. X(k) is the value of the kth signal in one frame
after FFT. X(k) is a complex number. Through the argument and modulus, algorithm can
calculate the frequency and amplitude.
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Wnk
N = e−j(2πnk/N) (11)

where N is the total number of the sampling points in one frame. Taking into account the
computational time complexity, the FFT algorithm used in the code design is able to obtain
the amplitude and phase of each frequency component decomposed from each frame of
sound signal rapidly. The process of FFT is shown in Figure 9. The program divides the
sound signal into frames. Each frame is performed by FFT to transform the signal from the
time domain to the frequency domain. This process is implemented by the FFT function in
the Librosa library or the NumPy library of the Python. The result of the function execution
can be a list containing each frequency component and the corresponding intensity.

Figure 9. FFT realizes the time-frequency transformation of speech signals.

After completing the transformation, we selected the frequency component of 3 kHz
for further calculation. As 3 kHz is the test frequency band, this selection process can be
regarded as filtering. The FFT size that we used for the experiment was 1024, and the
sampling frequency was 20 kHz. Then, we used the Parseval theorem [26] to convert
the sound energy calculation of one frame into the frequency domain because frequency
filtering is easier in the frequency domain. The total energy of the signal was calculated
according to the integral of the energy per unit time over the entire time or according to
the energy per unit frequency integrated over the entire frequency range.

E =
∞

∑
n=−∞

|x(n)|2 =
1

2π

∫ π

−π
|X(ejw)|2dw (12)

where x(∗) is the same as x(n) in Equation (10). Using Equation (12), the energy of the
sequence in the time domain is equal to its energy in the transform domain, which is the
sum of the power of each harmonic.

As for the Fourier series of a complex exponential form, its energy value can be directly
calculated by the square of the modulus of the coefficient. Therefore, the short-time average
energy Ei is expressed as Equation (13):

Ei =
N−1

∑
k=0
|Xi(k)|2 (13)

where Ei represents the short-time average energy of the ith frame. Xi(k) represents the
signal amplitude of the kth frequency component of the ith frame, and N is the total number
of all frequency components in the ith frame.
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2.3.3. Acoustic Imaging

Now, we obtained the “microphone array data” based on the moving trajectory and
sound energy data. At this point, how should we combine these two data to generate an
acoustic image? First, we matched the sound energy with the track points data in that
the number of the sound energy was different from the track points. The audio sampling
frequency we set was 48 kHz, and the number of samples in one frame was 384. We used
the MP3 format to store the wave file. It is a lossy compression, but the frequency band
it compressed is the high part (greater than 20 kHz) [32]. Therefore, the time contained
in one frame is 384 1000/48000 = 8 ms and the total number of frames of sound energy
collected for 1 s is 1 s /8 ms = 125 frames. However, the sampling time of the trajectory
points was 0.02 s. Hence, the number of the trajectory points is 50. The total number of
sound energy data is larger than the number of trajectory points in the case of the same
length of time. To solve the problem of quantity mismatch, we took the number of track
points as the number of windows and then summed the sound energy in a window as the
sound energy corresponding to the trajectory point.

Regarding the rationality of the processing method, we first summed the sound signals
into a period of time as the sound energy at corresponding point. As the sampling speed
of the sound signal is 48,000 Hz, the sampling speed is fast. Therefore, the sound signal
exhibits continuous characteristics in the time domain. The sampling of our trajectory
signal is 0.02 s, which makes the trajectory almost a continuous curve even though it is
depicted by a scatter diagram. For two consecutive signals, as long as the start and end
times are the same, we can match them in the time domain. The other treatment is the audio
delay between two sampling points. As we know, the propagation speed of sound waves
under a standard atmospheric pressure is 340 m/s while the speed of the smartphone in
the experiment is 0.065 m/s. The error due to the time delay is 0.019%. Under the condition
that high precision is not required, this error is negligible. After completing the matching
process, the sound energy was mapped to the track point and we obtained a curve with
energy distribution.

However, what we wanted to show in the end is a two-dimensional plane with energy
distribution, not a trajectory. Therefore, we used bilinear interpolation [33] to complete the
trajectory. Bilinear interpolation is calculated by using the correlation of four pixels around
the original image pixel to be processed.

As shown Figure 10, we expected to obtained the sound energy of f (x, y). Hence, we
selected the four pixels closest to the coordinates (x, y) : (x− 1, y− 1), (x− 1, y + 1), (x−
1, y + 1), (x + 1, y + 1). The bilinear interpolation algorithm stipulates that the nearest
neighbor points are the upper left, lower left, upper right, and lower right of the pixel.
First, we input the sound energy of the four closet points into Equations (14) and (15) to
obtain the value of f (Q1), f (Q2):

f (Q1) ≈ x2 − x
x2 − x1

f (x− 1, y− 1) +
x− x1

x2 − x1
f (x + 1, y + 1) (14)

f (Q2) ≈ x2 − x
x2 − x1

f (x− 1, y + 1) +
x− x1

x2 − x1
f (x + 1, y− 1) (15)

where f (∗, ∗) is the pixel value, reflecting the sound energy of the coordinate (∗, ∗). x2 is
equal to x + 1, and x1 is equal to x− 1. Then, putting f (Q1) and f (Q2) into Equation (16),
we obtained the value of (x, y):

f (x, y) ≈ y2 − y
y2 − y1

f (Q1) +
y− y1

y2 − y1
f (Q2) (16)

where y1 is equal to y + 1 and y2 is equal to y− 1.
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Figure 10. Bilinear interpolation.

In order to verify the rationality of the bilinear interpolation algorithm, we carried out
theoretical calculations. The concept map is shown in Figure 11.

Figure 11. Bilinear interpolation calculation hypothesis.

The squares in the background represent pixels, and the orange curve is the trajectory
curve of the smartphone scanning the human hand. We set points A and B as an example,
and points A and B have no trajectory passing. Therefore, we estimated the pixel values
of the two points through bilinear interpolation. The coordinates and sound intensity
assumptions of points A and B and their adjacent points are shown in Table 1:

Table 1. Calculation hypothesis.

Point Coordinate Sound Intensity (dB) Point Coordinate Sound Intensity (dB)

A (2, 5) Theoretically 0 B (8, 8) Theoretically 1
A1 (1, 4) 0 B1 (7, 7) 1
A2 (3, 4) 1 B2 (9, 7) 1
A3 (1, 6) 0 B3 (7, 9) 1
A4 (3, 6) 0 B4 (9, 9) 1
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By bringing point As and point Bs into Equations (14)–(16), f (A) = 0.25 dB and
f (B) = 1 dB can be calculated. It conforms to the actual situation. Based on the above dis-
cussion, the interpolation algorithm we used is reasonable. Therefore, bilinear interpolation
can help us completely transform the trajectory into a plane.

3. Results and Discussion

The smartphone models we used for the experiment were Huawei P40 Pro (Android
10.0) and iPhone 12 (IOS 14). The experimenter was in good health and had no related
diseases that could cause severe hand shaking.

3.1. Determination of the Frequency Band of Sound Waves

The frequency band of sound waves that smartphones can emit is limited to 20 kHz,
and the reflected waves interfere with each other. To solve this issue, we built a mixed
wave with a frequency band from 1 kHz to 20 kHz to determine which frequency of sound
waves should be used for our algorithm. As shown in Figure 8, in the composite frequency
band test (Figure 8A), the sound wave in the low frequency band was more obvious in the
reflected wave. Therefore, we conducted a single band test on the four frequency bands
(1 kHz, 2 kHz, 3 kHz, and 5 kHz) with a strong reflection. This test was performed on a
smooth table. In the single frequency band test (Figure 8B), 3 kHz suffers less interference
from other frequencies. These two tests showed that the 3 kHz frequency band retains the
reflected wave carrying the object information to the maximum. In addition, in order to
verify the noise reduction performance of the mobile phone, as described in Section 2.3.2,
we conducted a single-band test of short impulse tones in a noisy environment. The result
is shown in Figure 8C; before the main sound source appears, the microphone records the
noise in the environment. After the main sound source (1k, 2k, 3k, and 5k) appeared, the
background noise was obviously suppressed.

In order to verify the general applicability of the experimental conclusion, we supple-
mented the single-frequency test with three aspects: reflect surface, the smartphone system,
and the environment. As shown in Figure 12, under most of the test conditions, the 3 kHz
reflected wave data was well preserved and the 3 kHz frequency band was relatively clean.
Therefore, the 3 kHz frequency band used in our experiment is a good example.

Figure 12. Best single-band test extensione. (A) Reflective surface is paper. (B) Noisy road. (C) The
reflective surface is a rough cloth. (D) Test by an iPhone with the iOS system.

3.2. Reconstruction of Trajectories from the Motion of the Smartphone

After two filtering processes, the acceleration data was calculated as the trajectory
points using Newton’s second law of motion. In order to test the effect of trajectory
reconstruction, we used basic graphics including a rectangle (Figure 13A) with its algorithm
outlined trajectory (Figure 13B), a triangle (Figure 13C) with its algorithm outlined trajectory
(Figure 13D), a circle (Figure 13E) with its algorithm outlined trajectory (Figure 13F), and
a sinusoid (Figure 13G) with its algorithm outlined trajectory (Figure 13H) to test our
algorithms. From the four generated trajectories, this algorithm reconstructed the trajectory
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curve from smartphone movement perfectly. After the analysis, the experimental error was
within 10%, which meets the requirements of subsequent imaging.

Figure 13. Comparison of designed trajectories (A,C,E,G) and smartphone estimated trajectories (B,D,F,H).

In the speed trajectory reconstruction, the sensor called by the smartphone was only
the accelerometer. It was calibrated by the smartphone manufacturer before leaving the
factory. Unless in a strong geomagnetic environment or subjected to a serve impact, the
accelerometer works normally. Therefore, realization of the trajectory reconstruction part is
scalable under different physical conditions and different platforms.

3.3. Acoustic Imaging

After the preliminary data processing, the acceleration data and the reflected wave
data were processed into trajectories and sound energy, respectively. Then, these two
data were matched and interpolated through the acoustic imaging module. As shown in
Figure 14, we scanned a pen (Figure 14A), an orange (Figure 14B), and a piece of aluminum
(Figure 14C). Figure 14D–F show the corresponding trajectories. The scanning area covers
the area where the object is located but is not a large-scale scan. This is because the
accelemeter of the smartphone is a capacitive sensor, and there is a spring inside that
connects a mass and a plate. The compression or extension of the spring during the
movement causes the capacitance to change. Thus, the acceleration can be measured. If the
scanned area is too large, it is difficult for the experimenter to control the movement state
of the hand, which easily leads to sudden changes. In addition, our smartphone adopts an
approximate sine curve motion and the trajectory covers the surface of the object as many
times as possible. The trajectory of the sine curve is not prone to sudden changes in one
direciton, and multiple coverages can ensure that enough reflected wave information is
collected. If the trajectory passes through a point repeatedly, the program updates the value
of that point. The final imaging result is shown as Figure 14G–I. The imaging algorithm
first generates a low-resolution (few pixels) image matrix, which allows for most of the
pixel blocks to have trajectories passing by. Then, the matrix was interpolated many times
to generate a high-resolution picture. In order to facilitate observation, we expanded the
background of the result graph (the part where the sound energy is 0 in purple). For the
part with sound wave reflection, the basic contour of the scanned object was able to be
observed in the part with a heating value ≥ 0.7. The parts with heating values between
0.2 and 0.6 were the desktop scanned during the movement. The desktop is far from the
smartphone, and the radiation received waves are relatively weaker than the surface of the
object. Although the image quality cannot be comparable with commercial equipment, it
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outlined the general shape of the three target objects. From the effect diagram of acoustic
imaging, the algorithm designed in this paper can reconstruct the outline of simple objects.

Figure 14. Acoustic imaging results of (A) a pen and (D) its scanning trajectory as well as (G) its imaing result; (B) an
orange and (E) its scanning trajectory as well as (H) its imaing result; and (C) a aluminum box and (F) its scanning trajectory
as well as (I) its imaing result.

Moreover, we compared the results achieved by SAR based on the audible fre-
quency band.

(1) From the results, our algorithm also achieved acoustic image under the sound
wave condition in the audible frequency band. The imaging results can roughly identify
the shape and the size of the object. Our accuracy is between 60% and 90%, while the
accuracy of the SAR-based method is between 70% and 90%. This proves the feasible of
our algorithm to use the audible frequency band for acoustic imaging.

(2) In terms of implementation method, the system based on SAR uses the movement
of the device to simulate an antenna to replace the microphone array. The algorithm
performs coherent processing on echoes received at different locations to obtain high-
resolution acoustic images. SAR needs to locate the sound source of the reflected wave,
which involves phase correction, interference cancellation, and filtering. This approach is
able to work out high-quality images, but its implementation logic is more complicated.
Our algorithm uses the sampling points on the trajectory to directly simulate the real
microphone array, which becomes a symmetry imitation system. Since the distance between
the object and the smartphone is 2∼3 cm, we assumed that the sampling point and the
sound source are correspondent. Therefore, we do not need to locate the sound source point.
Moreover, the best sound wave test and the smartphone’s self-filtering algorithm ensures
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that the reflected waves carry the correct information. The algorithm implementation
logic is simple. Furthermore, we compared the performance of the smartphone processor
(Kirin 990, greater than 7 TOPS) and sever processor (Intel Xeon E5-2680, 172 GFLOPS),
which verifies that the feasibility of transplantation of data processing and acoustic imaging
algorithms to a smartphone is high. However, our algorithm exhibits strong randomness
in experiments. We speculate that it is due to the limitation of the physical properties of
the sensors.

4. Conclusions

This paper presents an acoustic imaging algorithm to outline the contour of a target
using the built-in sensors of a smartphone. The core idea is to use the smartphone motion
trajectory instead of a microphone array by leveraging the idea of a symmetry imitation
system. Using the built-in sensors, a smartphone is able to send and receive sound wave
signals as well as reflected waves. In this way, the smartphone itself is a transceiver.
Meanwhile, the accelerometer in the smartphone collects the motion data. After uploading
the data to the server, the data is preprocessed by the Kalman filter and Parseval theorem.
Finally, the processed trajectory and sound energy data are interpolated to obtain an
acoustic image with energy distribution.

In summary, our work explores the possibility of using a smartphone to achieve acous-
tic imaging as well as the corresponding algorithms. The experimental demonstration is
feasible but the current accuracy is low, which is due to the limitations of the smartphone’s
hardware conditions. In further research, we will design adaptive algorithms such as
attitude angle fusion and reflected wave distance calculation methods for dynamic calibra-
tion of data acquisition during movement. It will help compensate for the defects of the
hardware and will improve the imaging accuracy. Moreover, based on our discussion of
the computing speed between sever and smartphone, we also plan to transplant the entire
algorithm implementation program to a smartphone to realize a completely phone-based
acoustic imaging approach.
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