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Simple Summary: Although rare, uveal melanoma (UM) is the most common cancer that develops
inside adult eyes. The prognosis is poor, since 50% of patients will develop lethal metastases in the
first decade, especially to the liver. Once metastases are detected, life expectancy is limited, given
that the available treatments are mostly unsuccessful. Thus, there is a need to find methods that can
accurately predict UM prognosis and also effective therapeutic strategies to treat this cancer. In this
manuscript, we initially compile the current knowledge on epidemiological, clinical, pathological
and molecular features of UM. Then, we cover the most relevant prognostic factors currently used for
the evaluation and follow-up of UM patients. Afterwards, we highlight emerging molecular markers
in UM published over the last three years. Finally, we discuss the problems preventing meaningful
advances in the treatment and prognostication of UM patients, as well as forecast new roadblocks
and paths of UM-related research.

Abstract: Uveal melanoma (UM) is the most common malignant intraocular tumour in the adult
population. It is a rare cancer with an incidence of nearly five cases per million inhabitants per year,
which develops from the uncontrolled proliferation of melanocytes in the choroid (≈90%), ciliary body
(≈6%) or iris (≈4%). Patients initially present either with symptoms like blurred vision or photopsia,
or without symptoms, with the tumour being detected in routine eye exams. Over the course of the
disease, metastases, which are initially dormant, develop in nearly 50% of patients, preferentially
in the liver. Despite decades of intensive research, the only approach proven to mildly control
disease spread are early treatments directed to ablate liver metastases, such as surgical excision
or chemoembolization. However, most patients have a limited life expectancy once metastases
are detected, since there are limited therapeutic approaches for the metastatic disease, including
immunotherapy, which unlike in cutaneous melanoma, has been mostly ineffective for UM patients.
Therefore, in order to offer the best care possible to these patients, there is an urgent need to find
robust models that can accurately predict the prognosis of UM, as well as therapeutic strategies that
effectively block and/or limit the spread of the metastatic disease. Here, we initially summarized the
current knowledge about UM by compiling the most relevant epidemiological, clinical, pathological
and molecular data. Then, we revisited the most important prognostic factors currently used for
the evaluation and follow-up of primary UM cases. Afterwards, we addressed emerging prognostic
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biomarkers in UM, by comprehensively reviewing gene signatures, immunohistochemistry-based
markers and proteomic markers resulting from research studies conducted over the past three years.
Finally, we discussed the current hurdles in the field and anticipated the future challenges and novel
avenues of research in UM.

Keywords: uveal melanoma; prognostic factors; biomarkers; metastases; survival; molecular pathology

1. Introduction

Uveal melanoma (UM) is the most common primary malignant neoplasia afflicting
the eyes of adults [1,2]. Metastases develop in approximately 50% of patients, who then
have a shortened life expectancy [1–3]. UM metastasis can develop up to 30 years after
the initial diagnosis and treatment [4], and once metastases are detected, the median
survival time for UM patients is approximately 12 months, especially because therapeutic
options for advanced disease are limited and mostly ineffective [5–7]. The identification
of robust clinical and molecular biomarkers that can accurately predict the prognosis
of patients, namely, the possibility of metastases development, is therefore of extreme
relevance and an ongoing challenge in the field [8]. The discovery of robust prognostic
biomarkers and/or models has the prospect to positively impact in a personalized UM
patient approach, with patient-targeted surveillance and therapeutic strategies [9]. This is
particularly pertinent since that there are diverse guidelines for the medical follow-up of
UM patients and a definition of which tests are the most effective in detecting early disease
relapse is lacking [for example, should patients be followed using only liver ultrasound
and/or magnetic resonance imaging (MRI)? Should the MRI be performed with or without
contrast medium?] [9,10]. On one hand, the establishment of UM patients with high-risk
of disease relapse would lead to a more close monitoring of those patients [11]. On the
other hand, the early detection of disease relapse, such as liver metastases, could enable
the surgical removal or chemoembolization of those lesions in a premature state, which
seems to be the most efficacious strategy currently available to deal with metastatic disease
and to extend the life of UM patients with advanced disease [7,10,12]. In addition, liver
lobe resection, systemic chemotherapy, radiofrequency ablation or isolated liver perfusion
constitute alternative therapeutic approaches for UM metastatic to the liver, however, are
essentially unsuccessful at achieving a final cure for the patient [6,12,13]. It is possible that
patients who are eligible for metastases resection have a lower burden of disease and a
potentially more favourable tumour biology compared with UM patients non-eligible for
metastatic ablation [14].

In the present review, we first appraise the main clinical, epidemiological and patho-
logical features of UM. Next, we review the aspects of UM genetics which are at the core of
neoplastic transformation and summarize the most relevant knowledge on the currently
used prognostic markers in UM, including the updated views on the molecular classification
of UM. Afterwards, we review the gene signatures and novel immunohistochemistry-based
biomarkers with prognostic relevance in UM published over the past three years. Finally,
we discuss the current hurdles in the field, imminent challenges and the promising future
research avenues towards a successful and optimized treatment of patients afflicted by this
aggressive disease that significantly reduces the quality of life and average life expectancy
of patients.

2. Uveal Melanoma: Relevant Epidemiological, Clinical and Pathological Features

The first known description of the complete natural history of UM dates back to
the beginning of the 19th century, when two Scotland-based surgeons, Allan Burns and
James Wardrop, described and detailed the clinical history of a 41-year-old woman living
in Glasgow, who developed an intraocular lesion that rendered her quickly blind and
which became extremely painful and with extrascleral extension only after 4 months [15].
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Even though she was enucleated, the patient later evolved with hepatic and abdominal
metastases and died in less than a year after the initial medical visit [15]. UM develops
from the uncontrolled proliferation of melanocytes in the uveal tract, which comprises the
pigmented tissues in both the anterior (iris) and the posterior (choroid and ciliary body)
segments of the eye (Figure 1). The disease is usually unilateral and the majority of UM
cases have their epicenter in the choroid (≈90%), while nearly 6% of them are restricted
to the ciliary body and 4% to the iris (Figure 1) [1,3,16]. The annual incidence in Europe
and USA is ≈5 per million population, but worldwide it can range from <1 to >9 per
million population per year [17–20]. Most patients with UM are diagnosed between 50
and 70 years old [18,21]. The symptoms that most commonly prompt UM patients for a
medical visit are blurred or distorted vision, loss of visual fields, photopsia and changes
in the colour or appearance of a new lesion in the iris (Figure 1) [9,22]. However, in
nearly one-third of the UM cases, the patients are asymptomatic and the disease is only
detected due to routine ophthalmological check-up or screening for other eye conditions,
such as diabetic retinopathy (Figure 1) [9,22]. The most common presenting complications
encountered in patients with UM are exudative retinal detachment, glaucoma, cataracts,
intraocular hemorrhage, vision loss, changes in the cornea including edema and band
keratopathy [21–23]. Less than 2% of UM patients have long-distance metastases already at
presentation (Figure 1) [24].

Over the past years, numerous risk factors have been described as being associated
with the development of UM (Figure 1), of which the most established are an age between
50 and 70 years, a fair skin colour, light-coloured eyes (blue or grey), multiple skin naevi,
sensitivity to sunburn, northern European ancestry, congenital ocular melanocytosis, ocular
melanocytoma, family history of cutaneous melanoma or UM, BAP1 (BRCA1-associated
protein 1)-tumour predisposition syndrome and also germline mutations in MBD4 (methyl-
CpG-binding domain protein 4), MLH1 (mutL homolog 1) and PALB2 (partner and localizer
of BRCA2) [1,9,25–27]. Interestingly, in UM there is no evidence of gene signatures indica-
tive of tumours induced by ultraviolet (UV) irradiation, with the only exception being iris
melanoma and some residual cases of posterior melanomas [28–30].

Once the diagnosis of UM is made, the treatment will aim to treat the tumour, preserve
the eye up to its best functional state possible and conserve the vision [9]. Therapeutic
modalities include phototherapy (no longer recommended), different forms of radiotherapy
(106ruthenium brachytherapy or 125iodine brachytherapy, proton beam therapy or stereo-
tactic radiosurgery) and local resection after radiotherapy for selected lesions [9,31–35].
Besides this, enucleation is the most adequate option for large-sized UMs and cases with ad-
vanced local disease, since it allows an enhanced local control with improved quality of life
for the UM patient [9,31–35]. Interestingly, previous studies demonstrated superimposable
mortality rates when comparing proton beam irradiation versus enucleation for patients
with large choroidal melanomas [33]. Local tumour control is achieved in more than 95%
of cases, even for large-size tumours [1,9]. Despite the successful local disease control,
metastases will develop in nearly 50% of patients during the first 10 years (Table 1) [3,16].
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Figure 1. Overview of key facts in uveal melanoma, the most common intraocular primary 
malignant tumour in adults. Different risk factors are associated with the development of uveal 
melanoma. The choroid is the most frequent intraocular site of uveal melanoma development, 
which is detected in routine ophthalmological exams in asymptomatic patients. However, the 
majority of uveal melanoma patients present with symptoms, such as blurred vision or photopsia. 
Metastases, especially to the liver, occur in nearly 50% of patients during the first 10 years after 
diagnosis, but constitute a presenting symptom in only a small fraction of patients (<2%). In the 
carcinogenic process of uveal melanoma, several tumour-initiating and tumour-promoting 
mutations have already been identified and characterized. Uveal melanoma patients with mutations 
in BAP1 (highlighted in red) have been demonstrated to have the worst outcome, while patients 
with EIF1AX (highlighted in green) have a better prognosis and patients with SF3B1/SRSF2 
(highlighted in orange) have an intermediate prognosis. Diagram generated in line with previous 
literature [1–3,9,22,25–27,36–40] (Diagram created with BioRender.com, accessed on 15 December 
2021). 

Table 1. Most frequent anatomic sites afflicted by metastases in uveal melanoma. The estimation of 
organ involvement was based on the compilation of the data from 1092 patients extracted from 5 
relevant previously published studies [24,41–45]. Relative percentages are variable depending on 
the cohort studied. However, in all studies, the liver is the preferential site of UM metastization. 

Anatomical Site % of Cases 
Liver 85 
Lung 29 
Bones 16 

Subcutaneous tissue 12 
Lymph Nodes 11 

Brain 5 
Other sites 13 

Multiple sites 32 

Figure 1. Overview of key facts in uveal melanoma, the most common intraocular primary malignant
tumour in adults. Different risk factors are associated with the development of uveal melanoma. The
choroid is the most frequent intraocular site of uveal melanoma development, which is detected in
routine ophthalmological exams in asymptomatic patients. However, the majority of uveal melanoma
patients present with symptoms, such as blurred vision or photopsia. Metastases, especially to
the liver, occur in nearly 50% of patients during the first 10 years after diagnosis, but constitute
a presenting symptom in only a small fraction of patients (<2%). In the carcinogenic process of
uveal melanoma, several tumour-initiating and tumour-promoting mutations have already been
identified and characterized. Uveal melanoma patients with mutations in BAP1 (highlighted in
red) have been demonstrated to have the worst outcome, while patients with EIF1AX (highlighted
in green) have a better prognosis and patients with SF3B1/SRSF2 (highlighted in orange) have an
intermediate prognosis. Diagram generated in line with previous literature [1–3,9,22,25–27,36–40]
(Diagram created with BioRender.com, accessed on 15 December 2021).

Table 1. Most frequent anatomic sites afflicted by metastases in uveal melanoma. The estimation
of organ involvement was based on the compilation of the data from 1092 patients extracted from
5 relevant previously published studies [24,41–45]. Relative percentages are variable depending on
the cohort studied. However, in all studies, the liver is the preferential site of UM metastization.

Anatomical Site % of Cases

Liver 85
Lung 29
Bones 16

Subcutaneous tissue 12
Lymph Nodes 11

Brain 5
Other sites 13

Multiple sites 32
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Death related with metastases onset is more likely in the first 10 years after UM
diagnosis, being scarcely observed beyond 20 years after the initial treatment [46–48]. Some
studies demonstrate that metastization might occur early in the disease process and that
micrometastases can remain in a quiescent state for several years, without the possibility of
efficiently detecting them, similarly to other malignant neoplasias [49–51]. The liver (≈85%)
is the preferred site for metastases development in UM, sometimes constituting the initial
presentation of the disease [41,52] (Table 1). Other locations of UM metastasis include the
lung (≈29%) and bone (≈16%), among others [24,41] (Table 1). In nearly one-third of the
metastatic cases, there is involvement of multiple sites by UM metastases [24,41]. Despite
the advances in the understanding of UM biology and the advent of new therapeutic
modalities, the 5-year survival rate for UM (≈80%) has remained stable over the past five
decades [46–48].

3. The Main Genetic Features of Uveal Melanoma

The genetic studies conducted over the past couple of decades allowed the identifica-
tion of significant mutations in almost a dozen of genes which are relevant for UM develop-
ment (Figure 1) [36,53]. In contrast to other tumours, including cutaneous melanoma [54]
or lung adenocarcinoma [55], the tumour mutational burden (TMB; defined as the num-
ber of non-inherited mutations per million of bases of investigated genomic sequence)
of UM is normally low [28,36,40]. Indeed, The Cancer Genome Atlas (TCGA) project
(http://cancergenome.nih.gov/, accessed on 15 December 2021) showed that TMB for
UM was 1,1 per Mb, whereas for cutaneous melanoma it was 18 per Mb [40,56]. In UM,
the genes whose studies demonstrated the presence of mutations which are relevant for
UM development can fundamentally be grouped into genes with tumour-initiating muta-
tions and genes harbouring mutations with relevant impact in the prognosis of patients
(Figure 1) [36,53,57]. Indeed, more than 90% of the patients have activating mutations
in GNAQ (Guanine nucleotide-binding protein G(q) subunit alpha, ≈50%) and GNA11
(Guanine nucleotide-binding protein subunit alpha-11, ≈45%) (Figure 1) [36,53]. These mu-
tations are normally mutually exclusive, which means that if a patient carries a mutation in
GNAQ, they normally do not harbour a mutation in GNA11 and vice versa [36,58]. GNAQ
and GNA11 encode proteins that are both involved in the Gα11/Q pathway, which regu-
lates a myriad of cellular processes, including cell proliferation and growth [58–60]. In a
restrict number of UM patients, there are tumour initiating mutations in CYSLTR2 (cysteinyl
leukotriene receptor 2), which also encodes a G-protein coupled receptor (Figure 1) [61,62],
or PLCB4 (1-Phosphatidylinositol-4,5-bisphosphate phosphodiesterase beta-4), which en-
codes a protein downstream in the GNAQ signalling cascade (Figure 1) [63]. Together, all
these tumour-initiating mutations suggest that a dysregulated G-protein signalling is at the
core of the carcinogenic process in UM development [58]. However, these mutations do
not differentially impact on the prognosis of UM [64]. Recent research proposed that the
pathway based on the axis GNAQ/11–PLCβ–PKC–MAPK could be a preferential target
in the treatment of tumours with underlying Gαq pathway mutations, such as most of
the UM cases [65]. Interestingly, UM normally arise de novo, but they can also develop
from choroidal nevi, which frequently contain mutations in GNAQ, GNA11, CYSLTR2 and
PLCB4 [62,66].

The process of malignant transformation in UM critically depends on “second hit”
mutations, which in addition will also considerably impact on the prognosis of patients
(Figure 1) [36,57,67]. Indeed, several studies suggest that metastization in UM is an early
event and the ability to develop metastases with clinical impact is directly linked with
the “second hit” genetic alterations of the primary tumour [36,57,67]. The most important
mutated genes included in this group are BAP1, EIF1AX (eukaryotic translation initiation
factor 1A, X-chromosomal), SF3B1 (splicing factor 3B subunit 1) and SRSF2 (serine and
arginine rich splicing factor 2) (Figure 1) [36,67]. Nearly 10 years ago, in a breakthrough
study, researchers identified in 26 of 31 (84%) metastasizing UM cases inactivating somatic
mutations in the gene encoding BAP1 [48], which is located on chromosome 3p and is a
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deubiquitylase that participates in molecular complexes that are pivotal to the regulation
of cell cycle, cellular differentiation, cell death and DNA damage response (DDR), among
other key cellular pathways [49]. This study implicated that loss of BAP1 is a major event
in the development of UM metastases [48]. Subsequent research demonstrated germline
BAP1 mutations with familial clustering in different neoplasias, leading to the discovery of
a new cancer syndrome, termed BAP1-tumour predisposition syndrome, which leads to the
development of benign and malignant melanocytic skin tumours, malignant mesothelioma,
UM and renal cell carcinomas, among other neoplasias [41,49–52]. BAP1 mutations are
identified in nearly one-third of UM cases and loss of BAP1 or partial deletion of chromo-
some 3 including the BAP1 locus is a stronger predictor of higher risk of metastases and
poor survival for UM patients [36,67,68].

The EIF1AX gene is located on chromosome X [53,69] and encodes a protein that inter-
acts with mRNA, being involved in translation initiation, by a combination of recognition
of target mRNA and also of ribosome stabilization, preparing mRNA for translation [53,69].
Mutations in EIF1AX, which occur in nearly 13% of UM cases (Figure 1), appear to be
mutually exclusive to SF3B1 in UM and lead to altered protein translation processes [36,69].
Patients who harbour theses mutations have a decreased risk of metastases development
and, therefore, a considerable better prognosis comparatively to UM patients with BAP1
loss (Figure 1) [36,67,70].

SF3B1 gene is located in chromosome 2 and is responsible for encoding the subunit 1
of the splicing factor 3b protein complex, a large molecular apparatus which is involved in
the processing of precursor mRNA (spliceosome) [53,71]. It guarantees that correct splicing
occurs through retaining pre-mRNA to define the site for splicing [53,70]. SF3B1 mutations,
found in nearly 20% of UM cases (Figure 1), can therefore lead to alternative splicing events
for a myriad of genes [69,70]. On the other hand, the SRFS2 gene is located in chromosome
17 and is a member of the serine/arginine (SR)-rich family of pre-mRNA splicing factors,
which constitute part of the spliceosome [53,72]. Mutations in SRSF2 are found in up to 4%
of UM cases (Figure 1) [36]. Similarly to SF3B1, mutations in SRFS2 lead to alternatively
spliced transcripts [70,72]; however, the details of the impact of SF3B1/SRFS2 mutations
in UM remain to be entirely understood [53,72]. Patients who harbour SF3B1/SRFS2
mutations have an increased risk of late-onset metastasis and, thus, have an intermediate
prognosis comparatively to UM patients with EIF1AX mutations (low-risk) and BAP1 loss
(high-risk) (Figure 1) [36,67,70,71].

4. Current Well-Established Prognostic Biomarkers in Uveal Melanoma

The establishment of an accurate prognosis for patients with UM is pivotal [73,74]. In
this regard, the prognostic class of a given patient could impact on the specific protocol
for surveillance of metastases development [8,11]. In addition, the stratification of patients
based on their risk of metastases development or death could be a vital tool to select candi-
dates to be included in clinical trials aiming to test promising adjuvant therapies [8,11,75].
In addition, patients might wish to know their accurate prognosis, which could be impor-
tant in end-of-life planning, especially in a disease with no currently approved standard
therapy for metastatic disease, which normally is associated with an extremely dismal
prognosis [5,7,75,76].

Numerous robust prognostic factors for UM were established over the past years
and are currently taken into account when evaluating primary UM cases (Table 2). Age
could play an important prognostic role in UM, since adults older than 60 years at the time
of diagnosis have an enhanced risk of metastases development compared to young and
middle-aged adult patients [77,78]. Interestingly, some studies also suggest that gender
could influence the prognosis of UM patients, documenting a worse prognosis for males,
who have increased rate of metastases development and a decreased survival in the first
decade after UM diagnosis [17,79].

The location of the UM within the eye also has important prognostic implications [16,80].
While UM centred in the ciliary body or involving the ciliary body have the worst mortality
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rates within 5 years after diagnosis, iris melanoma has the best prognosis, with some studies
pointing towards a 10-year mortality below 10% [9,81]. Choroidal melanoma, which is the
most frequent type of UM (Figure 2), has an intermediate prognosis between ciliary body
and iris melanoma [81]. The best prognosis for iris melanoma can be linked with the fact
that the iris is easily visualized and most lesions are detected at an early stage [9,81,82].
Conversely, the ciliary body has a localization that is challenging for clinical examination,
which can only be accomplished by slit-lamp examination, ophthalmoscopy, gonioscopy,
or transillumination, so that lesions tend to grow larger before they can be detected [9,82].
In addition, the possibility of invasion of the Schlemm’s canal allows an easier and faster
route for systemic dissemination of the UM [83,84].

The tumour size is among the most robust established prognostic factors in the UM
medical literature [8,80]. The largest basal diameter (LBD) and tumour thickness (TT),
which are more accurately measured by ultrasonography and fundus photography, help
to stratify the size of UM cases in small (T1), medium (T2), large (T3) and very large
(T4) tumours, which considerably differ in their survival prognosis [73,82,85]. Some early
studies showed that patients with tumours with a LBD above 15 mm have a significantly
shorter survival comparatively to patients with tumours smaller than 15 mm [86]. In
the international study for validation of the 7th edition of the American Joint Committee
on Cancer (AJCC) classification for UM, involving more than 3000 patients, the authors
performed Kaplan–Meier metastases-free estimates (5, 10 years), obtaining the following
results: T1 (97%, 94%), T2 (85%, 80%), T3 (77%, 68%) and T4 (61%, 5-year only) [85]. In
addition, in a previous study involving a large cohort of 8033 UM patients, the authors
demonstrated a significant 5% increase in the risk of metastases at 10 years per each
millimetre of increased thickness of the UM [16]. Therefore, increased UM size indicates a
worse patient prognosis [16,85].

Table 2. Currently well-established prognostic factors in primary uveal melanoma. All the factors
highlighted below are associated with a worse prognosis for patients diagnosed with UM.

Factors Associated with a Worse Prognosis for Uveal Melanoma Patients

Higher age at diagnosis [77,78]
Male gender [17,79]

Ciliary body location and involvement [9,81,82]
Increased tumour size [Largest basal diameter (LBD) and tumour thickness (TT)] [73,82,85]

Epithelioid cell morphology [8,80,87]
Vascular invasion [83,88]

Extraocular spread [84,89]
Increased mitotic count [87,90,91]

Increased microvessel density [92,93]
Presence of tumour-infiltrating lymphocytes (TILs) [94–96]

Presence of tumour-infiltrating macrophages (TIMs) [94–97]
Presence of necrosis (in non-treated UM) [81]
Higher T stage (AJCC, TNM staging) [73,98]

Presence of uveal melanoma metastases [7,8,98]
Loss of nuclear BAP1 expression/BAP1 mutation [99–102]

PRAME expression [103–106]
Chromosomal abnormalities, especially M3, 8q gain, 6q loss and 1p loss [3,36,39,40,73,107–109]

Gene Expression Profiling (GEP) Class 2 [110–113]
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Figure 2. Lamas et al., 2021

Figure 2. Uveal melanoma is a primary malignant tumour of the eye with a potential dismal
prognosis, since nearly 50% of the patients die because of metastases, preferentially to the liver,
which are not curable due to the absence of meaningful therapeutic strategies. The morphological
features of uveal melanoma are instrumental to predict the prognosis of patients. (A) Eye specimen
containing a pigmented round tumour located in the choroid (posterior segment of the eye), the most
frequent anatomic location of uveal melanomas. (B) Whole-slide representative microscopic view of
the large-sized choroidal melanoma with evidence of associated exudative retinal detachment (H&E,
2× magnification). (C) Uveal melanomas composed by more than 90% of spindle cells are called
spindle cell melanomas (G1; H&E, 400× magnification). (D) Uveal melanomas containing more than
10% of a spindle cell component and less than 90% of an epithelioid component are termed mixed cell
melanomas (G2; H&E, 400× magnification). (E) Epithelioid cell melanomas (G3), which are associated
with a worse patient prognosis, are composed by more than 90% of epithelioid malignant cells
(H&E, 400× magnification). (F) Uveal melanoma disseminates systemically through a preferential
haematogenous pathway. The presence of images of vascular invasion is correlated with a worse
prognosis for patients (H&E, 200× magnification). (G) The presence of an increased number of mitosis
(yellow circle) also hints a worse outcome for uveal melanoma patients (H&E, 200× magnification).
(H) The presence of necrosis in non-treated uveal melanoma cases is an additional marker of bad
prognosis for patients (H&E, 200× magnification). A summary of all currently well-established
markers of bad prognosis in uveal melanoma is presented in Table 2.
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The morphology of the UM cells also has important prognostic implications for ciliary
body and choroidal melanoma (Figure 2), whereas in iris melanoma this factor has no
prognostic implications [8,80]. Patients with spindle cell UM, which contains more than 90%
of spindle cells (G1) have the best survival; while epithelioid cell melanomas, which com-
prises more than 90% epithelioid cells (G3), have the worst prognosis (Figure 2) [8,114]. The
melanomas which contain less than 90% of spindle cells and more than 10% of epithelioid
cells (G2), termed mixed cell melanomas, have an intermediate prognosis (Figure 2) [8,114].
Interestingly, some authors demonstrated that the presence of any percentage of an epithe-
lioid component is per se an indicator of a worse outcome [87].

UM preferentially escapes from the eye microenvironment through a haematogenous
pathway [115]. The process seems to involve transendothelial migration using complex
mechanisms of ameboid blebbing and mesenchymal lamellipodial protrusion, which re-
main to be fully understood [115]. Dissemination through the lymphatic system only occurs
if there is extraocular extension with invasion of the conjunctival lymphatics [116,117].
Therefore, UM spread is intimately linked with the presence of tumour cells in blood
vessels (Figure 2) [83], so that the presence of images of vascular invasion in UM (Figure 2),
either inside or outside the tumoural area, is associated with a worse prognosis for UM
patients and is correlated with other prognostic factors, such as LBD or epithelioid cell
phenotype [88]. Additionally, the presence of angiotropism, which is defined as the pres-
ence of neoplastic cells disposed along the abluminal surface of vascular structures without
intravasation, has also been demonstrated to be a prognostic factor for metastasis and
UM-related death [83]. In line with this, microvessel density (MVD), a surrogate marker of
angiogenesis which can be easily assessed using antibodies against CD34, became estab-
lished as a significant prognostic factor in UM nearly two decades ago [92,93]. Higher MVD
is independently associated with a poor prognosis and other markers of bad prognosis,
such as epithelioid cell morphology and LBD [92,93], as well as with the UM genetic profile,
namely, monosomy 3 [complete loss of one copy of chromosome 3 (M3)] and loss of BAP1
expression [118].

Extraocular spread of UM, irrespective of the type of extraocular spread route and
dimension of the extraocular tumoural fragment, is a marker of worse prognosis in UM,
being correlated with increased rate of metastases development and increased UM-related
death [84]. Apparently, it is an indirect sign of enhanced tumour malignancy and for poste-
rior tumours signals a more advanced disease state [84]. Extraocular spread is correlated
with other important prognostic factors, such as UM size, tumour location, histologic type
and cytogenetics [84,89]. For example, in UM cases with extraocular extension, a gain of
chromosomal 8q is associated with increased risk of metastatic disease [89].

Mitotic counts constitute another robust and important classical prognostic factor in
UM (Figure 2). In a straightforward manner, in haematoxylin and eosin (H&E) stained
sections, mitotic counts are usually performed in 40 fields at high-power (40× objective),
with or without the aid of immunohistochemistry (IHC) proliferation markers, such as
Ki-67 or PHH3 (phospho-histone 3) [91]. Some pioneer studies demonstrated that mitotic
counts were independently associated with metastatic risk and increased mitotic counts
were correlated with a shorter survival [87,90].

The absence of a significant immune response against allografts placed within the
ocular microenvironment led the pioneer transplantation immunologist Sir Peter Medawar
to describe the eye as an immune privileged site nearly 70 years ago [119]. The eye has
distinctive anatomical features, namely, a blood barrier analogous to the central nervous
system (CNS) blood–brain barrier and lacks a direct lymphatic drainage [119,120]. Besides
the anatomical features, novel distinctive immunological and biochemical mechanisms
have emerged as plausible explanations for the immunologically unique and privileged
microenvironment within the eye [119]. Therefore, unlike in other neoplasias, in UM
patients the presence of tumour-infiltrating lymphocytes (TILs) and tumour-infiltrating
macrophages (TIMs) is associated with a worse prognosis [94–96], with some authors
suggesting it is a likely indirect signal of a disruption of the barrier between the eye
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microenvironment and the rest of the organism [121]. Studies in the early 1990s already
demonstrated that patients with UM containing higher amounts of TILs had a worse
outcome comparatively to patients with lower amounts of TILs [94,95]. In line with this,
pioneer research conducted nearly 20 years ago also demonstrated that patients with
UM containing higher amounts of TIMs had a shorter survival [96]. Ensuing studies
showed that M2-type macrophages are the predominant macrophage population in UM,
being more abundant in M3 UM cases comparatively to disomy 3 (D3) [97]. Interestingly,
infiltration by M2-macrophages was linked with a shoddier prognosis for survival [97].
Our understanding of the interplay between the immune infiltrating cells and UM is still
in its infancy, but as new knowledge emerges, a better understanding of the role and
modulation of TILs and TIMs in UM might lead to innovative robust therapies for UM
based on immunotherapy (please see Section 8) [122,123].

Similarly to other neoplasias, the presence of necrosis in non-treated tumours is also
associated with an inferior prognosis in UM (Figure 2), with some studies demonstrating an
association with other prognostic factors, namely, a correlation between a higher degree of
necrosis and a larger tumour size, epithelioid morphology of UM cells or increased number
of TIMs [81]. Therefore, the presence or absence of necrosis is a histomorphological feature
that is normally assessed by the pathologist during the evaluation of UM cases (Figure 2).

UM is currently staged according to the 8th Edition of the TNM staging system of the
American Joint Committee on Cancer (AJCC), which is still the gold standard system for
prognostication in UM [73,98]. The TNM staging will help to define the follow-up strategies
and the T category was demonstrated to be a robust predictor of UM metastatic disease with
increased significant likelihood of metastases development at 5, 10 and 20 years for T1 (8%,
15%, 25%), T2 (14%, 25%, 40%), T3 (31%, 49%, 62%) and T4 (51%, 63%, 69%) stages [73,98].
In line with this, an analogous trend for significant increased risk of death with a higher T
stage has also been demonstrated [73,98].

The development of a metastatic disease in UM is among the factors with the biggest
impact in the definition of life expectancy of the UM patient [7,8]. Unless metastases are
detected early and submitted to ablation therapy, the presence of metastases in UM is
a marker of early death, given that effective therapeutic options for the metastatic UM
disease are still limited [124,125]. In fact, recent studies demonstrate a median survival
time of 17.5 months for M1a (largest diameter of the largest metastasis less than or equal
to 3 cm), 9.6 months for M1b (largest diameter of the largest metastasis 3.1–8.0 cm) and
5 months for M1c (largest diameter of the largest metastasis greater than or equal to 8.1 cm)
once metastatic UM disease is detected [98].

BAP1 status is one of the most relevant prognostic factors currently evaluated in
patients with UM. Indeed, the determination of BAP1 status through IHC in primary UM
has become routine in the prognostic evaluation, since it was shown to be highly correlated
with gene mutation status [99–102]. Patients with loss of nuclear BAP1 staining were shown
to have an 8-fold higher likelihood of developing metastases comparatively to patients with
preserved nuclear BAP1 [100,101]. Therefore, BAP1 quickly became established as a robust
independent survival predictor for UM patients, indicating the development of a likely
aggressive metastatic phenotype [99–101]. Interestingly, a recent study also showed that
BAP1 methylation at a single genomic locus is strongly correlated with BAP1 mutations,
loss of BAP1 genomic copy and BAP1 protein levels [126]. Besides this, higher levels of
BAP1 methylation significantly correlated with worse survival in UM patients [126]. A
recent study also put in evidence that BAP1 mutations occur in the early steps of UM
neoplastic development, before the tumour is even detected and with a timing that is likely
to match the advent of the pioneer micrometastases [127].

Preferentially expressed antigen in melanoma (PRAME) was initially revealed by
studies on skin melanoma as an antigen present in tumoural cells and recognized by T
cells displaying cytotoxic activity [128]. In melanocytic lesions of the skin and conjunc-
tiva, it is currently used as a helpful and robust adjunct marker to differentiate benign
melanocytic lesions from melanoma [129,130]. Furthermore, the increased expression of
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PRAME is a marker of poor prognosis in different types of neoplasias, namely, breast
cancer [131], head and neck squamous cell carcinoma (HNSCC) [132], neuroblastoma [133],
osteosarcoma [134], among others. The prognostic significance of PRAME expression in
UM emerged from a few studies conducted over the past 5 years, which showed that
PRAME expression in UM is associated with an increased tumour volume, enhanced
metastatic risk and global inferior prognosis [103–106].

Pioneer cytogenetic studies in the 1990s allowed the identification of important chro-
mosomal abnormalities in UM which influence the prognosis of patients, especially involv-
ing chromosomes 1, 3, 6 and 8 [107–109]. The most important chromosomal abnormality
is M3, which is strongly associated with a higher risk of metastases and, thus, a worse
prognosis [40,73,135]. Regarding chromosome 1, total or partial loss of chromosome 1p is
also a marker of poor prognosis, irrespective of the presence or absence of M3 [136,137]. As
far as chromosome 6 is concerned, the gain of 6p is a robust indicator of good prognosis,
since it has a reverse relationship with the metastatic risk [8,138]. On the contrary, the
loss of chromosome 6q is correlated with a decreased life expectancy [8,138]. The loss of
chromosome 8q is a rare event in UM, while gain of 8q is more common and linked with
poor prognosis [8,73]. Interestingly, chromosome 8q gain frequently co-exists with M3
and these patients have the worst prognosis among all (Figure 3) [138,139]. In summary,
M3, gain of 8q, loss of 1p and 6q loss are all associated with an inferior prognosis for UM
patients [39,138,139]. A novel and more robust molecular prognostic classification of UM is
being proposed, which has its backbone on chromosomal abnormalities (Figure 3) [36,40].
The new molecular classification is based on the data gathered from the TCGA project,
in which a vast array of 80 UM patients had their primary tumour profiled through a
comprehensive analysis involving different molecular methodologies (Figure 3) [39,40].
This new classification comprises four main prognostic classes: class A [D3/Disomy 8
(D8)], class B (D3/partial extra 8q), class C (M3/8q gain) and class D (M3/multiple 8q
gains), with progressive increased risk of metastases development and, thus, increased risk
of poor prognosis, from class A to class D (Figure 3) [3,36,39,40,73]. This new molecular
classification has been demonstrated to be superior to the current gold standard AJCC
TNM staging in predicting the risk of metastases and death (Figure 3) [3,36,73,139].

The risk of metastatic development for patients with UM can also be predicted using
the Gene Expression Profiling (GEP; Castle Biosciences, Phoenix, AZ, USA) of the primary
tumour, a commercially available test based on a 15-gene array conducted on a microfluidics
quantitative polymerase chain reaction (PCR) platform, which allows accurate UM testing
even from small needle biopsy samples [110,111]. A machine learning algorithm is then ap-
plied and stratifies UM patients into low metastatic risk (Class 1A), intermediate metastatic
risk (Class 1B) and high metastatic risk (Class 2) [111–113]. This test has been validated by
numerous studies [112,113] and, interestingly, a correlation between class 2 patients and
loss of nuclear BAP staining/BAP1 mutation has been found [67,140]. The prognostic accu-
racy of GEP has been proven to be robust and superior to clinical features, histopathological
analysis, TNM staging and evaluation of chromosomal abnormalities [112,141,142].

Worldwide, the usage of GEP and/or chromosomal analysis has been a heterogeneous
scenario, with a few centres using both and several centres favouring the usage of one over
the other. In centres with less abundance of resources, only the status of BAP1 is tested,
through immunohistochemistry, as an indicator of BAP1 mutation and as a surrogate
marker for M3. Finally, in a myriad of other centres none of these molecular markers are
tested and, thus, UM patient prognostication still relies in classical histomorphological
prognostic markers as described above (Table 2).
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Figure 3. New molecular prognostic classification for uveal melanoma based on the data generated
by the TCGA project involving primary uveal melanoma cases [40]. The new model comprises four
main prognostic classes: class A [D3/D8], class B (D3/partial extra 8q), class C (M3/8q gain) and class
D (M3/multiple 8q gains). The risk of metastases development increases progressively from class
A to class D. Uveal melanoma patients in class D have the least favourable prognosis, with nearly
all patients dying within the first decade after diagnosis. Diagram generated in line with previous
literature [3,36,39,40,73] (Diagram created with BioRender.com, accessed on 15 December 2021).

5. Gene Signatures as Novel Prognostic Biomarkers in Uveal Melanoma

Even though the current therapeutic options are effective in ablating local UM disease,
invariably nearly half of the patients will develop metastases in the first decade after the ini-
tial diagnosis [9,10]. The ability to accurately predict the patients at high risk of metastases
is, thus, of fundamental importance [8,143]. One of the main lines of investigation that the
scientific community dedicated to the study of UM has followed is the development of
genomic expression signatures of primary UM cases, aiming to find robust ones that can be
used to construct reliable prognostic models which can be applied in the follow-up and
treatment of patients diagnosed with UM (Table 3). Recently, these efforts were consider-
ably accelerated following the public availability of the clinical and genomic datasets of the
TCGA project (http://cancergenome.nih.gov/, accessed on 15 December 2021), in which a
vast array of 80 UM patients had their primary tumour profiled [40]; and the datasets within
the Gene Expression Omnibus (GEO) database (http://www.ncbi.nlm.nih.gov/geo/, ac-
cessed on 15 December 2021), such as GSE22138 (63 UM samples) [144], GSE27831 (29 UM
samples) [145], GSE39717 (41 UM samples) [146] and GSE84976 (28 UM samples) [147].
Thus, several UM genomic databases are now available for usage by researchers worldwide,
which has helped to significantly leverage genomic research in the UM field (Table 3).

BioRender.com
http://cancergenome.nih.gov/
http://www.ncbi.nlm.nih.gov/geo/
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Table 3. Novel promising prognostic gene signatures in primary uveal melanoma. The novel gene
signatures for uveal melanoma described below were published in the past three years.

Study Gene Signature Relevance of the Study

Wan et al., 2018 [148] ABTB1, ADPRHL1, NTRK2 and SLC17A7 are hub genes
in UM

Important diagnostic and prognostic markers for UM
recurrence detection

Xue et al., 2019 [149]

AC010442.3, AC023790.2, AC092821.1, AL137784.1,
CA12, FABP5P1, FAM189A2, GRIN2A, MGLL, MIR4655,

MMP9, PARP8, RNF208, S100A13, SIRT3, TCTN1,
ZBED1 and ZNF497

Early identification of UM patients with poor and
good prognosis

Ni et al., 2019 [150]
ABHD3, APOM, CALHM2, CENPV, CHAC1, HTR2B,
HTRA3, LZTFL1, UBE2W, VCPIP1, ZNF391, ZNF415,

ZNF667-AS1 and ZNF835

Gene signature that allowed prediction of overall
survival (OS) and recurrence-free survival (RFS)

Choi et al., 2020 [151] CTNNB1, CYC1, NDUFB9 and NDUFV2 are hub genes
in UM

Lower expression of CTNNB1 and increased
expression of NDUFB9, NDUFV2 and CYC1 are

associated with decreased survival of UM patients

Luo et al., 2020 [152] ANXA2P2, CA12, HMCES, POMGNT2, RNF208, SIRT3,
SLC44A3, STPG1, TCTN1 and ULBP1

High expression of ANXA2P2, CA12 and ULBP1 and a
low expression of HMCES, POMGNT2, RNF208, SIRT3,

SLC44A3, STPG1 and TCTN1 are associated with
higher metastatic risk and a shorter survival

Wan et al., 2020 [153] CREG1, HIST1H4E, LZTS1, NIPA1, SH2D3A
and TMEM201

Low expression of LZTS1 and TMEM201 plus high
expression of CREG1, HIST1H4E, NIPA1, SH2D3A are

associated with decreased survival of UM patients

Tang and Cai, 2021 [154] EIF1B, MEGF10, PHLDA1, RPL10A, RPL15, SLC25A38,
TFDP2 and TIPARP Robust prediction model of metastases-free survival

Jun Liu et al., 2021 [155] ARPC1B, BTBD6, GUSB, KRTCAP2, RHBDD3
and SLC39A4 Robust prediction model of OS for UM patients

In 2018, Wan et al. used the TCGA genomic data involving 10,975 genes from
80 UM patients [148] and performed weighted gene co-expression network analysis
(WGCNA) [156–158], a popular method frequently employed to ascertain the potential
interactions between genes and phenotypes, which has been successfully utilized in stud-
ies in neuroscience [159–161], cancer [162–165] and more recently in COVID-19-applied
research [166], among other fields [167]. In a simplistic manner, the WGCNA approach
transforms the data of gene expression into modules of co-expression, allowing a better
understanding of potential signalling pathways that might be strongly linked with phe-
notypes of interest [158,167]. It is speculated that WGCNA has the important advantage
to correlate co-expression modules with clinically relevant traits, perhaps leading to re-
sults with a more meaningful biological significance [158,167]. This robust data analysis
methodology has also been employed in metabolomics, proteomics and lipidomics stud-
ies [168,169]. In the study conducted by Wan et al., using the TCGA data, their WGCNA
analysis yielded 21 different and relevant co-expression gene modules in UM [148]. Out of
these 21 co-expression modules, four were demonstrated to be correlated with life status of
the UM patient, recurrence and recurrence time [148]. The four distinct hub genes identified
were ABTB1, ADPRHL1, NTRK2 and SLC17A7 [148]. Given that the four hub genes were
basically oncogenes (NTRK2) and genes involved in tumour suppressing pathways (ABTB1,
ADPRHL1 and SLC17A7), the authors speculated that they might play a vital role in UM
reappearance and, thus, constitute important diagnostic and prognostic markers worth
studying for UM recurrence detection [148].

In 2019, Xue et al. used the TCGA genomic data to identify a gene signature that
could accurately predict the prognosis of UM patients through a methodology involv-
ing glmnet COX model and COX regression analysis [149]. After initially identifying
4388 genes with significant prognostic significance in the 80 UM samples included in the
TCGA cohort, they developed a robust model involving 18 genes (AC010442.3, AC023790.2,
AC092821.1, AL137784.1, CA12, FABP5P1, FAM189A2, GRIN2A, MGLL, MIR4655, MMP9,
PARP8, RNF208, S100A13, SIRT3, TCTN1, ZBED1 and ZNF497), which allowed the early
identification of UM patients with poor and good prognosis [149]. The Kaplan–Meier
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overall survival (OS) curves of the 18 selected genes prognostic genes showed that high
expression of AC092821.1, FAM189A2, RNF208, SIRT3, TCTN1, ZBED1 and ZNF497, as well
as lower expression of the genes AC010442.3, AC023790.2, AL137784.1, CA12, FABP5P1,
GRIN2A, MGLL, MIR4655, PARP8 and S100A13 were positively associated with OS in UM
patients; meanwhile, the MMP9 expression levels had no significant influence in the sur-
vival of poor and good prognosis patients [149]. Later, the Gene Set Enrichment Analysis
(GSEA) allowed the identification, among others, of an enriched p53 signalling pathway in
the high risk UM group [149], in line with previous pioneer studies establishing that p53
expression in UM cases tends to be correlated with an unfavourable outcome [170].

In 2019, Ni et al. used the TCGA mRNA expression data and performed WGCNA
among other complex analytic methods on a group of 5000 genes, which permitted the
generation of potential modules involving co-expressed genes and then correlated those
modules with clinical and pathological relevant features [150]. The authors were able to
find a selection of groups of genes whose expression was associated with tumour-free
survival (ABHD3, APOM, CALHM2, CENPV, CHAC1, HTR2B, HTRA3, LZTFL1, UBE2W,
VCPIP1, ZNF391, ZNF415, ZNF667-AS1 and ZNF835) and metastasis status (ABHD3, APOM,
ARFGEF1, CALHM2, CHAC1, CENPV, DLL4, HTR2B, LZTFL1, MTUS1, NF835, SLC25A26,
UBE2V2, UBE2W, VCPIP1, ZNF391, ZNF415 and ZNF-667-AS1) [150]. Using a Least Ab-
solute Shrinkage and Selection Operator (LASSO) cox regression model, a 14 validated
hub-gene model (ABHD3, APOM, CALHM2, CENPV, CHAC1, HTR2B, HTRA3, LZTFL1,
UBE2W, VCPIP1, ZNF391, ZNF415, ZNF667-AS1 and ZNF835) was used to build signatures
for prediction of OS and recurrence-free survival (RFS), which were later externally vali-
dated using the GEO dataset (GSE27831), in which equivalent results were obtained [150].
The authors demonstrated that in comparison to other robust clinicopathological prognostic
parameters, such as TNM classification, chromosomal status or LBD; their 14-gene risk
model was superior in predicting OS and RFS [150]. For example, a recent in vitro study
involving UM cell lines showed that CHAC1 downregulation significantly decreased the
proliferation and mobility of UM cells [171]. Another interesting piece of data arising
from the Ni et al. study was that the KEGG pathway analysis mainly identified pathways
related with immune regulation, showing that chromosome 6p gain and chromosome 8q
gain, which are associated with reduced UM survival, could have a correlation with a
dysfunctional immune system in UM patients, leading to a worse prognosis [150].

In their study, Choi et al. used the TCGA and GEO data (GSE22138 and GSE39717)
cohorts and included only patients who died of UM and excluded patients without infor-
mation on survival status [151]. In a universe of 159 UM patients [TCGA (n = 67); GSE22138
(n = 63) and GSE39717 (n = 29)], the authors used Kaplan–Meier survival analysis with
log-rank test to identify genes of prognostic significance that were common among the
three distinct cohorts of UM patients [151]. An initial array of 14 genes that had low
expression and 37 genes that high expression was identified as being associated with
dismal prognosis [151]. Subsequently, a complex protein-protein analysis was performed,
demonstrating that three oncogene-like genes (CYC1, NDUFB9 and NDUFV2) and one
tumour suppressor-like gene (CTNNB1) were main hub genes and significant molecular
predictors in UM [151]. Across the three independent cohorts, high expression of CYC1,
NDUFB9 and NDUFV2, as well as low expression of CTNNB1 were systematically asso-
ciated with decreased survival of UM patients [151]. For example, CTNNB1 is the gene
encoding for β-catenin and the deregulation of the WNT/CTNNB1 (β-catenin) pathway is a
well-established event in the carcinogenic process in several neoplasias, including colorectal
cancer [172–174], hepatocellular carcinoma [175–177] and cutaneous melanoma [178–180],
among others.

In 2020, Luo et al. used the TCGA cohort gene data of 80 UM patients to develop
a 10-gene signature based model for UM prognosis, which was later validated using the
GSE22138 data, which includes a group of 63 UM patients [152]. Kaplan–Meier survival
analysis and univariate COX regression models were initially employed to screen for
genes with prognostic value [152]. Afterwards, COX regression analysis coupled with
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LASSO methodology was used to achieve the minimum 10-gene prognostic (metastases-
free survival) signature, which includes the following genes: ANXA2P2, CA12, HMCES,
POMGNT2, RNF208, SIRT3, SLC44A3, STPG1, TCTN1 and ULBP1 [152]. In patients classi-
fied has having high-risk score and, thus, shorter survival, they observed a high expression
of ANXA2P2, CA12 and ULBP1 and a low expression of HMCES, POMGNT2, RNF208,
SIRT3, SLC44A3, STPG1 and TCTN1 [152]. This 10-gene signature also robustly predicted
metastases-free survival (MFS) in the validation GSE22138 cohort [152]. Besides this, the
10-gene risk model was superior in predicting OS when compared to the normally used
clinical prognostic parameters, such as TNM classification or LBD [152]. Furthermore,
when correlated with UM chromosomal abnormalities, the 10-gene risk model proposed
by Luo et al. was shown to have a positive correlation with chromosome 8q copy number
and a negative correlation with chromosome 3, 6q and 6p copy numbers [152]. In the
high-risk group, the GSEA analysis showed a gene set enrichment in pathways related
with immune response, inflammatory response, p53 signalling, proteasome and natural
killer cells, among others [152]. This pointed towards a close relationship with tumour
microenvironment, which is a theme of increasing interest in UM, given its relevance in
UM carcinogenesis and potential therapeutic strategies (please see Section 8) [152].

In 2020, Wan et al. proposed an even more reduced gene signature model for UM
prognostication, which encompasses only six genes (CREG1, HIST1H4E, LZTS1, NIPA1,
SH2D3A and TMEM201), with multivariate analysis showing it to be a 5-year independent
prognostic factor for OS [153]. In brief, the authors used the genomic information of
80 UM patients in the TCGA database and randomly created two datasets [dataset 1
(n = 39 patients) and dataset 2 (n = 41 patients)] for internal validation [153]. Univariate
COX regression analysis allowed the identification of 2010 survival related genes out of a
universe of 15,187 genes [153]. Gene functional analysis demonstrated that the identified
genes were predominantly connected with mRNA processing, RNA splicing, spliceosome
and proteolysis mediated by ubiquitin [153]. A robust likelihood-based survival model
methodology was later employed to define the 6-gene signature (CREG1, HIST1H4E, LZTS1,
NIPA1, SH2D3A and TMEM201) [153]. High expression of CREG1, HIST1H4E, NIPA1,
SH2D3A, as well as low expression of LZTS1 and TMEM201 were demonstrated to be
significantly associated with decreased lifetime for UM patients [153]. These results and,
thus, the ability of the 6-gene signature to predict 5-year OS in UM patients was also
externally validated using two GEO datasets (GSE42656 and GSE84976) [153].

Recently, Tang and Cai generated a model for UM prognosis prediction based on the
data of the gene expression microarray GEO data set GSE22138, which comprised a cohort
of 63 patients UM patients [154]. Initially, they used WGCNA and identified 41 hub genes
that are associated with UM metastases [154]. Afterwards, they applied a LASSO COX
regression methodology to identify relevant genes and build a gene expression signature
with prognostic significance, which comprises eight genes (EIF1B, MEGF10, PHLDA1,
RPL10A, RPL15, SLC25A38, TFDP2 and TIPARP) and named Uveal Melanoma Metastasis
Prediction Score (UMPS) [154]. The individual coefficient by LASSO COX regression of
RPL10A was demonstrated to be associated with a high risk of metastases, whereas the
remainder seven genes were shown to be protective [154]. GSEA analysis showed that
the high-risk of metastasis group was associated with complement, E2F targets, G2M
checkpoints and unfolded protein response pathways, while no differences in the immune
cell proportions were registered between low and high risk groups [154]. The UMPS
model was later externally validated using the 80-patient TCGA cohort and the 29-patient
GSE27831 cohort of UM patients [154]. The eight-gene expression signature UMPS model
was not only able to predict MFS, but was also able to significantly increase the 3-year
and 5-year disease-free survival (DFS) prediction accuracy of currently established clinical
predictors, such as the AJCC TNM staging [154].

Finally, in a recently published study, Jun Liu et al. proposed a novel six-gene based
signature (ARPC1B, BTBD6, GUSB, KRTCAP2, RHBDD3 and SLC39A4) for survival predic-
tion and risk stratification in UM [155]. In brief, using the TCGA database, they initially
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found that glycolysis and immune response were the most relevant hallmarks for UM
related survival [155]. Subsequently, they employed WGCNA, Cox regression analyses
and a LASSO algorithm to identify significant hub genes related to glycolysis and immune
response, which were used to build the risk model to predict OS of UM patients [155]. The
TCGA database constituted the training dataset, while the GEO databases GSE22138 and
GSE84976 were used to validate the newly developed prognostic model [155]. Survival
analysis demonstrated that the OS of the group with high glycolysis and high immune
response Z-scores was lower comparatively to the group with low glycolysis and low
immune response Z-scores, respectively [155]. Regarding the immune profile, a higher
infiltration of B cells, CD4+ T cells and monocytes was evident in the low-risk group,
while the high-risk group had high infiltration by M2-macrophages and myeloid dendritic
cells [155]. Their six-gene signature was shown to be an independent and robust prognostic
predictor of OS for UM patients [155]. Indeed, ROC curve analysis revealed an AUC above
0.9 for 5-year survival prediction, further validating the six-gene signature as a good model
for forecasting the survival of UM patients [155]. Albeit using only six genes, the model
was demonstrated to be non-inferior to the 10-gene signature developed by Luo et al.
described above for predicting OS [155]. A nomogram based on the six-gene signature was
established and might constitute soon, after rigorous validation, a useful tool to develop a
personalized therapeutic approach for UM patients [155].

6. Immunohistochemistry-Based Novel Prognostic Biomarkers in Uveal Melanoma

Immunohistochemistry is a powerful laboratory technique that has revolutionized
Anatomic Pathology over the past decades [181,182]. It is a relatively affordable method
to evaluate protein expression and it is readily available and reproducible in most labora-
tories worldwide [182]. Similarly to other fields within Pathology, researchers in Ocular
Pathology have aimed to find protein markers that can be studied through IHC and that
can be of prognostic relevance: as previously mentioned, BAP1 is a good example of such
marker [140,183]. In the past three years, approximately 20 novel IHC-based prognostic
biomarkers in UM have emerged in the literature (Table 4). A review of these biomarkers
and respective research in UM is presented below (Table 4).

Table 4. Novel promising prognostic immunohistochemistry-based biomarkers in primary uveal
melanoma. The new prognostic markers for uveal melanoma highlighted below were published in
the past three years.

Protein Function Relevant Conclusions of the Study

ABCB5
(ATP-binding cassette sub-family B member 5)

[184]

P-glycoprotein involved in the transport of
molecules across membranes

Cancer stem cell marker

Higher expression of ABCB5 is associated with
metastases development and worse prognosis

Adiponectin [185] Anti-carcinogenic and
insulin-sensitizing actions

Expression of Adiponectin and its receptor
Adipor1 was decreased in cases of UM with

M3, suggesting that the lower levels of
adiponectin could boost the metastatic

potential of UM

ATR
(ataxia telangiectasia and Rad3-related) [186]

Member of the DNA damage response (DDR)
protein machinery

Loss of nuclear ATR is associated with
well-established markers of poor prognosis in

UM (epithelioid cell morphology, increased
tumour thickness, higher number of mitotic

figures and BAP1 loss)

ATM
(ataxia-telangiectasia mutated) [187]

Member of the DNA damage response (DDR)
protein machinery

Loss of nuclear ATM is associated with
well-established markers of poor prognosis in
UM (epithelioid cell morphology, large tumour
diameter above 10 mm, TILs and nuclear BAP1

loss) and a significant shorter DFS
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Table 4. Cont.

Protein Function Relevant Conclusions of the Study

Beclin-1 [188] Protein involved in autophagy
Higher expression of Beclin-1 was correlated

with a decreased risk of metastases and
increased DFS times

BNIP3
(BCL2 19 kD protein-interacting protein 3)

[189]

Mitochondrial protein involved in regulation
of cell death, autophagy and

cellular protection

Higher expression of BNIP3 was correlated
with a shorter survival

BTNL9
(Butyrophilin-like protein 9) [190]

Modulator of T-cell mediated
immune function

Higher expression of BTNL9 was significantly
correlated with a better OS

c-Rel [191]

Member of the NF-κB pathway, which
regulates a large array of genes implicated in

cell survival, inflammatory disorders, response
to infection, autoimmune disorders and cancer,

among other processes

Nuclear expression of c-Rel expression was
significantly associated with inferior survival

EphA1
(Eph-A1 receptor,

erythropoietin-producing
human hepatocellular

receptor A1) [192]

Member of the Ephrin receptors, which are
receptor tyrosine kinases (RTKs) that play a

myriad of roles during the embryonic
development (for example, in axon guidance,
cell migration, segmentation and formation of

tissue boundaries) and adulthood (for
example, in angiogenesis, stem cell

differentiation, regulation of the immune
system and in cancer development)

Lower expression of EphA1 is associated with
a worse prognosis

EphA5
(Eph-A5 receptor,

erythropoietin-producing
human hepatocellular

receptor A5) [192]

Member of the Ephrin receptors, which are
receptor tyrosine kinases (RTKs) that play a

myriad of roles during the embryonic
development (for example, in axon guidance,
cell migration, segmentation and formation of

tissue boundaries) and adulthood (for
example, in angiogenesis, stem cell

differentiation, regulation of the immune
system and in cancer development)

Lower expression of EphA5 is associated with
a worse prognosis

HDAC-2
(Histone Deacetylase 2) [193]

Regulation cellular proliferation,
differentiation, angiogenesis and cell death,

being implicated in neurodegeneration
and cancer

Higher expression of HDAC-2 is an
independent factor of better survival in UM

Nestin [194]
Intermediate filament protein marker of stem

cells in the central nervous system and a
cancer stem cell marker

Correlation between nestin positivity and
well-established markers of bad prognosis

(epithelioid cell morphology, higher mitotic
counts, M3 and chromosome 8q gain)

Nestin positivity in UM is associated with a
worse prognosis

p50 [195]

Member of the NF-κB pathway, which
regulates a large array of genes implicated in

cell survival, inflammatory disorders, response
to infection, autoimmune disorders and cancer,

among other processes

Nuclear immunoreactivity of p50 significantly
correlated with metastases development

p52 [196]

Member of the NF-κB pathway, which
regulates a large array of genes implicated in

cell survival, inflammatory disorders, response
to infection, autoimmune disorders and cancer,

among other processes

Expression of p52 was associated with
BAP1 loss

Higher p52 expression was associated with
worse MFS and OS

p65 [195]

Member of the NF-κB pathway, which
regulates a large array of genes implicated in

cell survival, inflammatory disorders, response
to infection, autoimmune disorders and cancer,

among other processes

Nuclear immunoreactivity of p65 significantly
correlated with metastases development

PARP1
[Poly(ADP-ribose) polymerase 1)] [197]

Involved in DNA repair and programmed
cell death

Higher expression of PARP-1 is associated
with decreased DFS and OS

PD-1
(Programmed cell death receptor-1) [198] Involved in immune regulation High expression of PD-1 in UM cells is

associated with decreased DFS and OS
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Table 4. Cont.

Protein Function Relevant Conclusions of the Study

PD-L1
(Programmed cell death-ligand 1) [199] Involved in immune regulation PD-L1 immunoexpression was a significant

prognostic factor of a reduced DFS

PLK-1
(Polio-like kinase 1) [200] Kinase involved in the regulation of cell cycle

Low expression of PLK-1 was correlated with
a higher TNM staging and a significantly

decreased OS

PRDX3
(thioredoxin-dependent peroxidase reductase)

[201]

Mitochondria protein with a fundamental role
in the antioxidant defence of the cell

High PRDX3 expression is correlated with
metastatic disease development and

reduced OS

RelB [196]

Member of the NF-κB pathway, which
regulates a large array of genes implicated in

cell survival, inflammatory disorders, response
to infection, autoimmune disorders and cancer,

among other processes

Expression of RelB was associated with BAP1
loss and with inferior MFS

SPANX-C
(Sperm protein associated with the nucleus on

the X chromosome protein C) [202]

Belongs to a family of proteins expressed in
the testis during spermatogenesis

Higher expression of SPANX-C in primary UM
is associated with a decreased MFS

ATP-binding cassette sub-family B member 5 (ABCB5) is a P-glycoprotein actively
engaged in the transport of a myriad of molecules across membranes, including anti-
neoplastic molecules [203,204]. ABCB5 is a marker of cancer stem cells and its expression
was found increased in different types of neoplasias, including colon cancer [205], cutaneous
melanoma [206,207], hepatocellular carcinoma [208] and Merkel cell carcinoma [209]. It is a
molecule demonstrated to be implicated in the neoplastic transformation process, tumour
expansion and invasiveness [205,207]. For example, in cutaneous melanoma ABCB5 was
shown to promote neoplastic invasion and distant metastases through the NF-kB pathway,
in a process likely mediated through MMP9, which is involved in cancer invasion and
metastasis [207]. In addition, ABCB5 is involved in processes that lead to the resistance
of cancer cells to anti-neoplastic agents [204,210]. The expression of ABCB5 was recently
evaluated in 32 primary UM cases without associated metastases and 23 primary UM cases
with metastases [184]. A higher expression of ABCB5 was observed in the primary UM
cases associated with metastases and the authors also showed that these higher levels were
correlated with a shorter time to metastases development and, thus, a worse prognosis [184].
Future studies are needed to better understand the role of ABCB5 in UM, its prognostic
value and its potential as a therapeutic target.

In the past couple of years, a great interest has been devoted to the expression of
Adiponectin in UM, which is a hormone encoded by a gene in chromosome 3, possessing
anti-carcinogenic and insulin-sensitizing actions [185]. Tura et al. showed recently that
immunoreactivity of Adiponectin and its receptor Adipor1 was decreased in UM cases with
M3, suggesting that the lower levels of adiponectin could boost the metastatic potential
of UM with that chromosomal abnormality and curb tumour dormancy [185]. Ultimately,
adiponectin could be used as a prognostic marker in UM and a potential increase in serum
adiponectin levels could be explored as a possible therapy to delay the onset of metastases
in UM patients [185]. Interestingly, there was no difference in BAP1 expression between
UM cases with low or high levels of Adiponectin and Adipor1 [185].

The role of DDR protein machinery in UM pathobiology remains to be established. The
nuclear expression of the ataxia telangiectasia and Rad3-related (ATR) protein, a member
of the family of DDR proteins which is encoded in a gene in chromosome 3, similarly to
BAP1, was recently evaluated in 69 UM cases [186]. A loss of nuclear ATR expression was
documented in nearly 75% of the cases, which was associated with an epithelioid UM cell
morphology, increased tumour thickness, increased number of mitotic figures and loss of
nuclear BAP1 expression, which are all well-established markers of poor prognosis in UM
(Table 2) [186]. This led the authors to conclude that ATR could constitute a novel potential
prognostic marker and therapeutic target in UM [186].
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Another DDR protein whose expression was recently evaluated in UM is ataxia-
telangiectasia mutated (ATM) protein, in a study conducted in 69 UM samples [187]. A
loss of nuclear expression of ATM was observed in nearly 65% of the cases and it was
significantly correlated with an epithelioid morphology of the UM cells, large tumour
diameter above 10 mm, presence of TILs and nuclear BAP1 loss [187]. In addition, patients
with absence of nuclear ATM expression had a significant shorter DFS, suggesting that
nuclear ATM could constitute a novel biomarker of increased metastatic risk in UM [187].
The correlation between nuclear ATM expression loss with shorter OS could not be es-
tablished since death was only documented in 2 out of the 69 patients involved in the
study [187]. The loss of ATM expression has been observed in other cancer types, namely,
breast [211], colon [212] or lung cancers [213], being a strong indicator of a dismal prognosis.
Interestingly, the TCGA study showed that DDR proteins were in general upregulated in
UM cases with M3 and BAP1 mutations, comparatively to cases preserving two copies of
chromosome 3 and harbouring SF3B1 mutations [40].

Autophagy is a natural, homeostatic and complex multi-step cellular process through
which the cell eliminates dysfunctional or superfluous components, including lipids,
nucleic acids, proteins or organelles, through a lysosome-dependent regulated mecha-
nism [214,215]. Thus, it is fundamental for the orderly degradation and recycling of cellular
components, being instrumental for adequate cellular differentiation and survival, as well
as tissue development [214–216]. Autophagy has a dual role in cancer, since it is important
in tumour suppression in early states of the neoplastic development process, while in more
advanced neoplastic states it is upregulated leading to a pro-survival and tumourigenic
effect in neoplastic cells, enhanced proliferation and metastases [216–218]. The role of
autophagy in UM development is poorly understood. Recently, the expression of three pro-
teins [autophagy-related gene 7 (ATG7), Beclin-1 and p62] belonging to the vast family of
proteins involved in autophagy was assessed through IHC in a cohort of 85 cases of primary
UM [188]. Higher expression of Beclin-1 was correlated with a decreased risk of metastases
and extended DFS times, establishing Beclin-1 as a significant positive prognostic factor
in UM [188]. Contrarily, the expression of ATG7 and p62 did not impact significantly on
the prognosis of UM patients [188]. Together, these results open novel avenues towards
the evaluation of autophagy-related molecules as prognostic factors in UM and also as
potential innovative therapeutic strategies.

BCL2 19 kD protein-interacting protein 3 (BNIP3) is a mitochondrial protein belonging
to the BCL-2 family, which has been demonstrated to be involved in the complex regulation
of cell death, autophagy and cellular protection [219,220]. Regulation of BNIP3 levels
has been implicated in different types of neoplasias, namely, breast cancer [221], lung
cancer [222], salivary adenoid cystic carcinoma [223] and skin melanoma [224], being
associated with progression of the disease and prognosis. In a recent study, the expression
of BNIP3 was evaluated through IHC in a cohort of 47 primary UM cases and the authors
demonstrated that higher levels of BNIP3 were correlated with a shorter survival [189].
Given that BNIP3 has both cell death and cell survival promoting effects, novel studies will
be needed to elucidate the role of this marker in UM.

Butyrophilin (BTN) and butyrophilin-like (BTNL) family of proteins are structurally
related with B7-molecules and like-B7 molecules, being all critical in the modulation of T-cell
mediated immune function [225,226]. Even though our knowledge on the regulation of T-
cells by BTN and BTNL proteins is still scarce, they appear to be involved in inflammatory
diseases and cancer [225,226]. The mRNA expression of BTNL9, one member of the
family, was demonstrated to be low in colon cancer comparatively to normal colon [225].
In addition, in a recent study, researchers took advantage of the TCGA database and
verified that the expression of BTNL9 was downregulated in breast cancer [226]. The lower
expression of BTNL9 in breast cancer was significantly correlated with a worse DFS and
OS [226]. Later, by studying breast cancer cell lines they demonstrated that BTNL9 might
have an anti-cancer role in breast cancer by inhibiting proliferation and metastasis [226]. A
more recent study on breast cancer, involving a multiomics approach, also showed that
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higher mRNA levels of BTNL9 and of other family members in the BTN/BTNL family were
associated with a more favourable DFS and extended OS [227]. The expression of BTNL9
was also recently evaluated in a cohort of 62 primary UM cases [190]. A higher expression
of BTNL9 was significantly correlated with a better OS, suggesting that BTNL9 is a marker
of good prognosis in UM [190]. This study has opened the prospect of modulating BTNL9
expression as a possible therapeutic option for UM. Comprehensive studies are needed to
better understand the role of BTNL9 expression in UM, as well as the possible interplay
between BTNL9 expression in UM cells and immune regulation.

The expression of Ephrin receptors has been studied in different tumours with data
indicating that they might have an important role as prognostic factors [228,229]. They
constitute the largest known subfamily of receptor tyrosine kinases (RTKs), which play
critical roles during the embryonic development, such as axon guidance, cell migration,
segmentation and formation of tissue boundaries [230–233]. In addition, during adulthood,
they have roles in angiogenesis, stem cell differentiation, immune system regulation and in
cancer development, among others [228,229]. Our knowledge on the expression of Ephrin
receptors in UM expanded recently with a study where the expression of EphA1, EphA5
and EphA7 was evaluated in 94 UM enucleation samples without previous treatment [192].
A decreased expression of EphA1 and EphA5 was associated with a worse prognosis
for UM patients, while a prognostic role could not be firmly established for EphA7 ex-
pression [192]. Indeed, a smaller tumour size, decreased mitotic activity and absence of
extrascleral extension were positively correlated with increased EphA1 expression, whereas
higher EphA5 expression was linked to absence of metastases and decreased likelihood of
chromosome 3 loss [192]. This study established that EphA1 and EphA5 are potentially
important prognostic markers in UM patients and also opened the prospect of using small
molecules addressing the Eph/ephrin signalling as candidate therapies for UM [192,234].

Histone Deacetylases (HDACs) are known to have fundamental roles in the regulation
of cellular proliferation, differentiation, angiogenesis and cell death, being implicated in
neurodegeneration [235,236] and different forms of cancer, including lung cancer [237,238],
skin melanoma [239] and lymphoma [240], among others. Consequently, HDAC inhibitors
have constituted promising anti-neurodegeneration and anti-cancer therapies [241,242].
The prognostic significance of HDAC expression in UM was recently evaluated in a study
involving 75 UM cases [193]. In line with previous studies, which confirmed HDAC
gene [243,244] and protein [245] expression in UM, the authors evaluated HDAC-1, HDAC-
2, HDAC-4 and HDAC-6 through IHC and aimed to determine their role as prognostic
factors [193]. HDAC-1 and HDAC-2 had both nuclear and cytoplasmic expression, whereas
HDAC-4 and HDAC-6 were mostly expressed in the cytoplasm of UM cells [193]. Among
the four studied HDACs isoforms, HDAC-2 was the most frequently expressed, with
a more significant nuclear expression pattern, and the expression of HDAC-2 the only
proven to be an independent factor of better survival in UM [193]. This study provides
additional evidence on the potential role of HDACs in UM development and progression,
suggesting that inhibition of HDAC could constitute a relevant therapeutic strategy [241].
In a recent phase 2 clinical trial involving 28 patients with metastatic UM, Entinostat
(HDAC inhibitor small molecule) was tested combined with Pembrolizumab (inhibitor of
PD-1) [246]. Encouraging positive responses in terms of progression-free survival (PFS)
and OS were observed in a well-defined subset of mestastic UM patients, namely, patients
with BAP1-preserved tumours and one patient with iris melanoma containing a UV-related
gene signature [246]. There is an ongoing phase 2 clinical trial in metastatic UM involving
the HDAC inhibitor Vorinostat as monotherapy (ClinicalTrials.gov: NCT01587352), which
will give us important pilot data on the efficacy of this therapeutic avenue in UM.

Nestin is a well-known intermediate filament protein family member, constituting
a putative marker of stem cells in the CNS [247,248], an established cancer stem cell
marker [249,250] and a prognostic marker in different tumours, including breast can-
cer [251], colorectal cancer [252] and lung cancer [253], among others. In fact, the increased
expression of nestin in these tumours was associated with an immature stem-cell like pheno-
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type, chemoresistance and enhanced capacity for invasiveness [250,254]. Recently, the team
of Sarah Coupland studied the expression of nestin in 141 cases of primary UM and found
a correlation between nestin positivity (defined as expression above a cut-off value of ≥10%
positively stained UM cells) and well-established factors of bad prognosis in UM, such as
epithelioid morphology, higher mitotic counts, M3 and chromosome 8q gain [194]. Besides
this, the Kaplan–Meier survival analysis also confirmed that primary UM cases displaying
nestin positivity had a worse survival comparatively to nestin-negative cases [194], a find-
ing that has also been corroborated by nestin expression analysis in the TCGA cohort by
the same research group [255]. The expression of nestin in UM metastases was also studied
and expression of the marker was consistently found in nearly 80% of the cases [194]. Inter-
estingly, the expression of nestin was not observed in the normal choroidal melanocytes,
which suggests that in line with other cancer types, the tumourigenic process in UM might
involve transformation into a more immature/stem-cell-like phenotype [194]. Together,
these results show that high expression of nestin is associated with a more aggressive UM
phenotype, displaying enhanced capacity for development of metastases and a significantly
decreased survival after diagnosis [194].

The NF-κB (nuclear factor kappa-light-chain-enhancer of activated B cells) comprises
a family of transcription factors that finely regulate a large array of genes involved in
cell survival, inflammatory disorders, response to infection, autoimmune disorders and
cancer, among other processes [256–258]. Five main structurally related members compose
that family: p50 (also named NF-κB1), p52 (also named NF-κB2), p65 (also named RelA),
RelB and c-Rel [257,258]. A family of inhibitory proteins normally sequesters the different
NF-κB proteins in the cytoplasm [257,258]. The adequate activation of the major NF-κB
pathway involves two major signalling pathways, the canonical and non-canonical (or
alternative) pathways, both being instrumental to regulate the cellular processes governed
by NF-κB [256,259]. In the past two decades our knowledge on the NF-κB pathway
has considerably expanded, positioning this pathway as an instrumental orchestrator in
the regulation of inflammation and in the development of different tumours, including
UM [257,260,261]. Using IHC, in 75 UM cases, Singh et al. evaluated the expression of p52
and RelB members of the NF-κB family [196]. They showed that the expression of p52 and
RelB was associated with BAP1 loss [196]. Furthermore, in metastatic cases with LBD above
15 mm, tumour thickness exceeding 8 mm and higher tumour staging, the expression of p52
and RelB was significantly increased [196]. The MFS time was decreased in cases positive
for p52, RelB, and p52/RelB co-expression [196]. Cases with higher p52 expression and
p52/RelB co-expression had worst OS [196]. In another study, they evaluated the expression
of three members of the canonical NF-κB pathway in UM: p50, p65 and c-Rel [195]. Nuclear
immunoreactivity of p65, p50, and c-Rel significantly correlated with well-established
prognostic factors, such as, LBD > 12 mm, tumour height > 8 mm, microvascular density,
TILs, TIMs and, more importantly, metastases development [195]. The presence of nuclear
p50 and p65 immunorreactivity was associated with a lower survival for UM patients,
while the expression of c-Rel was not shown to impact on the OS [195]. The multivariate
analysis later established nuclear p50 and p65 expression as independent UM prognostic
factors [195]. Interestingly, in a subsequent study, the expression of c-Rel was assessed
in 75 UM cases [191]. Nuclear expression of the c-Rel protein, which suggests NF-κB
activation, was observed in 56% of the studied UM cases [191]. The nuclear expression
of c-Rel was significantly correlated with an epithelioid UM cell morphology, invasion of
the ciliary body and iris, as well as scleral invasion [191]. In line with this, patients with
nuclear c-Rel expression had an inferior survival [191]. Together, these results show that
different proteins in the NF-κB pathway can constitute novel prognostic factors in UM
and that promising novel anti-neoplastic approaches in UM might be explored through
regulation of this pathway.

Poly(ADP-ribose) polymerases (PARP) constitute an important protein family with
fundamental roles in different cellular processes, including DNA repair and programmed
cell death, being implicated in cancer development and therapy [262,263]. One of the most
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extensively studied members of this family is PARP-1, whose expression in UM was recently
evaluated through IHC in a study involving 91 enucleation samples [197]. An increased
tumour size, higher histopathological grade and higher chromosome 3 loss frequency were
significantly correlated with increased expression of PARP-1 [197]. Furthermore, smaller
DFS and OS were associated with higher expression of PARP-1, suggesting that this protein
could constitute a novel relevant biomarker of poor prognosis in UM [197] and that PARP
inhibitory therapies could be evaluated in UM treatment [264].

Immune checkpoint inhibitor therapies have successfully revolutionized the land-
scape of therapeutic weapons in different types of cancer, namely, lung cancer [265], skin
melanoma [266], head and neck cancer [267], among others, and is being envisioned as one
of the current most promising strategies to tackle cancer. Programmed cell death receptor-1
(PD-1), one of the best studied and most advanced immune checkpoint inhibition targets,
is expressed in lymphocytes (T and B cells), macrophages and natural killer cells and their
effector function is halted when it binds its co-ligands programmed cell death-ligand 1
(PD-L1) and programmed cell death-ligand 2 (PD-L2), which are expressed in contacting
cells, including antigen-presenting cells, regulatory T-cells and neoplastic cells [268,269].
However, the expression of PD-1 has also been documented in human melanoma cells,
even in the absence of a tumour microenvironment, leading to enhancement of tumour
growth [270]. Our understanding of the role of immunotherapy in UM is still in its in-
fancy, especially since the blockade of the PD-1/PD-L1 axis has not yielded significant
results in this type of tumour [271–273] (please see Section 8). The expression of PD-1 in
UM was recently evaluated through IHC in a tissue microarray cohort of 82 primary UM
cases [198]. Patients with a high expression of PD-1 in the tumoural cells had a smaller DFS
and decreased OS [198]. In the same study, the author overexpressed PD-1 in UM cell lines
and found that cells had an enhanced proliferative capacity, which was halted when PD-1
expression was downregulated using shRNA [198]. However, in the hands of others [199]
and in our hands (data not shown), PD-1 expression in primary UM cases, through IHC, has
not been observed, being only present in infiltrating inflammatory cells. In a subsequent
study, Singh et al. evaluated the expression of PD-1 and PD-L1 in 71 UM cases [199]. They
observed expression of PD-1 in TILs in 30/71 cases, while PD-L1 was expressed mostly in
UM cells in 44/71 cases [199]. In the multivariate analysis, PD-1 and PD-L1 immunoexpres-
sion were shown to be significant prognostic factors of a reduced DFS [199]. However, in
this cohort, patients without TILs displaying PD-L1 expression had an extended DFS and,
thus, a better prognosis [199]. This data is in accordance with an earlier study involving
67 primary UM cases, in which PD-L1 expression in more than 5% of tumoural cells was
associated with lower number of TILs and a lengthier MFS [274]. Interestingly, expression
of PD-L1 in immune infiltrating cells did not significantly impact on the prognosis of the
studied cohort [274]. On the multivariate analysis, the UM patient sub-group with PD-L1
expression in more than 5% of UM cells and in immune cells infiltrating the UM had a
longer period free of metastasis and, thus, a less adverse prognosis [274]. These results
suggest that PD-L1 expression in UM could signal a more positive outcome [274]. Novel
studies are needed to further elucidate the role of PD-1/PD-L1 axis in UM development
and metastization, as well as to optimize supplementary strategies to turn checkpoint
inhibition into an effective therapeutic strategy for UM (please see Section 8).

Polio-like kinase 1 (PLK-1) expression in UM was also recently reported [200]. PLK-
1 is a conserved kinase mainly involved in the regulation of cell cycle [275–277] and
increased expression of PLK-1 was described in breast cancer [278], lung cancer [279] and
lymphoma [280], among others, and is being considered a potential molecular target in
anti-cancer therapies [281,282]. Berus et al. performed IHC for PLK-1 in 158 UM cases and
found that 30% of the tumours had low expression of PLK-1, which was correlated with
a higher TNM staging and, thus, a significantly decreased OS [200]. A firm correlation
between PLK-1 levels and DFS could not be determined in this study [200]. Even though,
contrarily to what was described in other tumours, lower expression of PLK-1 seems to
point towards a decreased life expectancy in UM patients [200].
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The thioredoxin-dependent peroxidase reductase (PRDX3) is an enzyme localized in
the mitochondria which has a fundamental role in the antioxidant defence of cells [283,284].
The enhanced expression of PRDX3 has been reported in different types of cancers [283],
but its expression in UM was only recently unravelled [201]. PRDX3 IHC was performed
in tissue microarrays of 92 UM samples. A significant strong correlation between high
PRDX3 expression and metastatic disease development and reduced OS was demonstrated,
proposing that high PRDX3 expression in UM is also a marker of poor prognosis [201].

Sperm proteins associated with the nucleus on the X chromosome (SPANX) family
members (SPANX-A, -B, -C and -D) are normally expressed in the testis during spermato-
genesis [285–287]. Interestingly, numerous studies also demonstrated the involvement
of SPANX proteins in cancer development, namely, in breast cancer [288] and cutaneous
melanoma [289,290], among others. The role of this protein in cancer development remains
to be firmly understood, but the available studies suggest a role in promoting cancer growth
and invasiveness [288–290]. The expression of SPANX-C was also recently evaluated in 55
primary UM cases [202]. The research team demonstrated a higher expression of SPANX-C
in UM that had developed metastases [202]. In addition, patients with a higher expression
of SPANX-C in the primary tumour had a decreased MFS [202]. Thus, higher levels of
SPANX-C in UM could constitute a new marker of dismal prognosis [202].

7. Additional Novel Promising Molecular Biomarkers in Uveal Melanoma with
Prognostic Relevance

Comprehensive proteomic analysis has started to contribute to better define the
prognosis of UM patients. The largest study involving proteomic analysis of primary
UM patients using a LC MS/MS iTRAQ methodology was unveiled recently, involv-
ing 53 metastasizing and 47 non-metastasizing cases [291]. In all studied cases, nearly
3935 different proteins were evaluated and bioinformatics analyses allowed the identifica-
tion of 191 differentially expressed proteins elevated in metastatic cases and 211 differen-
tially expressed proteins elevated in non-metastatic cases [291]. Reactome pathway analysis
of proteins preferentially elevated in metastatic UM showed mostly an overrepresentation
of immune system pathways, but also pathways associated with vesicle-mediated traf-
ficking, extracellular matrix organization, metabolism of proteins and homeostasis [291].
On the other hand, in non-metastatic cases, the authors demonstrated a preponderance
of pathways connected with metabolism, but also cellular response to external stimuli
and developmental biology [291]. Interestingly, the over-representation of proteins of the
immune system pathways was more relevant in metastatic cases, while housekeeping path-
ways were over-represented in non-metastatic cases [291]. This study helped to highlight
the immune suppressive nature in primary UM, demonstrating a rather low abundance
of immune checkpoint regulator molecules [291]. Yet, some molecules, like CDH1 and
HLA-DPA1, as well as 15 kinases and phosphatases emerged as novel candidates for im-
mune checkpoint inhibition therapies [291]. Finally, the authors developed a robust model
incorporating 32 proteins which was able to predict metastases development with a 93%
discriminatory accuracy [291]. Interestingly, studies like this can lead to the development
of innovative immunoassays for the non-invasive UM diagnosis using blood or other
biological samples [292–294]. Ensuing studies involving larger cohorts of UM patients will
be of fundamental value to better define the potential of prognostic protein profiles based
on proteomics of primary UM cases.

8. Current Challenges and Future Perspectives in Uveal Melanoma

The comprehensive work carried out in the field of Ocular Oncology over the past
years has considerably increased our knowledge on Uveal Melanoma. However, our
capacity to prevent UM metastization and UM-related death has not changed considerably
over the past years [9,48]. Below, we highlight the most relevant current challenges in UM
and anticipate some of the future avenues in UM research and UM patient management.
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8.1. Need for Accurate and Robust Models for Prognostication in Uveal Melanoma

In uveal melanoma research, most reported studies involve a limited collection of pa-
tient samples, as it became evident, for example, in the description of the novel IHC-based
markers that have been reported recently. In addition, the methodology of analysis is also
rich and heterogeneous, as it was observed in the recent efforts to find gene signatures with
prognostic relevance in UM. Therefore, this poses enormous challenges in the validation
and generalization of the obtained results for a wider community of UM patients. One
approach could be the stimulation of the widespread sharing of pre-clinical and clinical
data, similarly to the history of The Collaborative Ocular Melanoma Study (COMS) ini-
tiative, which yielded impactful and groundbreaking contributions to field [295]. The
assembly of comprehensive UM patient databases through collaborative efforts could sig-
nificantly and positively impact on UM research. Indeed, taking advantage of large clinical
databases, together with genetic information and pre-clinical data, coupled with artificial
intelligence (AI)-based strategies, it will be possible to develop novel robust artificial neural
network-based systems to confidently predict patient survival and stratify UM patients
for follow-up, therapy and possibly enrolment in clinical trials. Ultimately, this has the
prospect to lead to the long-aimed development of a model of UM patient prognostication
that is widely accepted and employed by the UM community worldwide. In line with
this, among the first successful tools developed is the Liverpool Uveal Melanoma Prog-
nosticator Online (LUMPO), a bioinformatic tool established from the data gathered from
patients in the United Kingdom, assembling clinical, histological and genetic data [143,296].
LUMPO is available online, allowing a reliable prognostication of individual UM patients
through determination of the risk of metastases and estimation of survival time [143,296].
A subsequent web-based tool created for UM patient prognostication is the Prediction of
Risk of Metastasis in Uveal Melanoma (PRiMeUM), established from data obtained mainly
from UM patients in the United States of America (USA) [297]. PRiMeUM allows a reliable
personalized determination of the metastatic risk at 48 months post-initial diagnosis by
combining clinical features (age, sex, tumour location, LBD and TT) and detailed informa-
tion on chromosomal analysis (chromosome 1p, 3, 6p, 6q, 8p and 8q status) [297]. Even
though both tools are able to ascertain the metastatic risk of patients, none can determine
accurately when the metastases will develop [143,296,297].

8.2. The Promise of Liquid Biopsies for Uveal Melanoma

Liquid biopsies (LBs) have opened unprecedented avenues in the field of cancer, by
allowing a non-invasive approach for diagnosis, identification of relevant mutations, dis-
ease progression monitoring, early disease recurrence detection and evaluation of response
to therapies, among others [298–300]. They are based on the testing of blood or other
body fluids (for example, the aqueous humour) and constitute an alternative reproducible
method to the classical tissue biopsy, which can be used to detect circulating tumour DNA
(ctDNA), circulating tumour cells (CTCs), exosomes, cytokines and microRNAs, among
other components [298,300,301]. LBs have been particularly promising in different solid tu-
mours, including lung cancer, with some studies demonstrating encouraging results in their
usage in the daily practice [302,303], despite some current technical limitations [304–306].
In UM, the LB technology is not yet as developed as it is for other types of cancers and there
are no currently available LB systems approved by both the European Medicines Agency
(EMA) and Food and Drug Administration (FDA) [298]. However, there is a hope that LBs
will become a solid alternative to intraocular biopsies, avoiding the risks of the procedure,
including possible tumour dissemination [298,307–309]. For example, in a recent published
study including 21 patients with UM metastatic disease in a cohort of 135 UM patients,
the authors showed that ctDNA was detectable in the plasma of 17 of the 21 metastatic
patients [310]. More importantly, by analysing GNAQ/GNA11 mutations using deep
amplicon sequencing, in 10 of those UM patients the detection of ctDNA occurred at least
2 months up to 10 months before the clinical detection of metastases, further emphasizing
the extraordinary potential of this innovative diagnostic methodology [310].



Cancers 2022, 14, 96 25 of 44

Previous studies revealed that in UM an inflammatory microenvironment, including in-
filtration by lymphocytes and macrophages, portends a bad prognosis for patients [122,311].
Knowing that a myriad of proteins can be robustly identified in the anterior chamber fluid
and vitreous, Wierenga et al. recently evaluated whether the aqueous humour could be
used to measure cytokines and, consequently, define cytokine profiles that could establish
an accurate prognosis for UM patients [312]. The analysis of the aqueous humour as a
substitute of tumour biopsy has been previous successfully employed in cases of retinoblas-
toma for diagnosis using cell free DNA [313,314], as well as for detecting the expression
of IL-10 and IL-6 as biomarkers for the diagnosis of intraocular lymphoma [315,316]. The
study conducted by Wierenga et al. involved 84 UM enucleation samples, from which
aqueous humour was immediately collected after surgery [312]. The Proximity Extension
Assay (PEA) technology that was employed allowed the detection of 92 proteins using
only 1 µL of sample [312]. The study of 84 cytokines in the aqueous humour which were
consistently above the limits of detection of the assay, led to the definition of three main
clusters: a cluster with few cytokines (cluster 1; n = 37), a cluster with an intermediate
number of cytokines expressed (cluster 2; n = 36) and a cluster enriched in several cy-
tokines (cluster 3; n = 11) [312]. Adenosine deaminase (ADA), CD244, CD40, galactin-9
(Gal-9), monocyte-chemotactic protein 3 (MCP-3), PD-L1, tumour necrosis factor receptor
superfamily 21 (TNFRSF21) and tumour necrosis factor-related apoptosis inducing lig-
and (TRAIL) were the most differentially expressed cytokines among the three defined
clusters [312]. High levels of CD40, Gal-9, tumour necrosis factor receptor superfamily 9
(TNFRSF9), TNFRSF21 and Fas Ligand (FASLG) were registered in the aqueous humour
of patients who had worst survival [312]. Interestingly, the majority of these cytokines are
involved in the regulation/induction of apoptosis [312]. When the authors correlated the
clinicopathological data with the cytokine cluster analysis, they observed that clusters 2
and 3 were associated with worse prognostic features [312]. Interestingly, cluster 1 patients
were shown to have better survival than cluster 2 and cluster 3 patients, while there were
no significant survival differences between clusters 2 and 3 patients [312]. Interestingly, in
another study involving a cohort of 35 UM patients, the authors found significant higher
levels of interleukin-6 (IL-6), interleukin-8 (IL-8), regulated upon activation normal T cell
expressed and secreted (RANTES), epidermal growth factor (EGF), basic fibroblast growth
factor (bFGF), macrophage migration inhibitory factor (MIF) and monocyte chemoattrac-
tant protein-1 (MCP-1) in the aqueous humour of UM patients when compared to control
patients [317]. A positive correlation between IL-6 levels and the degree of retinal detach-
ment, as well as between IL-8 levels and tumour thickness was established, which proposes
that the levels of these cytokines could hint a more advanced disease stage [317]. Survival
analysis was not performed; however, the described pro-inflammatory environment could
be linked with an enhanced tumour growth and infiltration by immune cells, which are
both associated with a poor survival [317]. Comprehensive studies, with larger cohorts
of UM, will be instrumental to define prognostic profiles based on biomarkers present in
the aqueous humour. Altogether, these pioneer studies demonstrate that the continuous
development in the technological procedures employed in LBs has the potential to soon
critically change the paradigm of UM diagnosis and follow-up.

8.3. The Relevance of Non-Coding RNAs (ncRNAs) in Uveal Melanoma

Non-coding RNAs (ncRNAs), which comprise a vast family of very small molecules,
including long non-coding RNAs (lncRNAs) and microRNAs (miRNAs), influence and
regulate genes at the post-transcriptional level, being involved in different cell types in
the fine-tuned control of cell proliferation, cell differentiation and cell death, among other
processes [318,319]. Similarly to other cancers, such as lung cancer [320] or cutaneous
melanoma [321], in UM ncRNAs constitute emerging molecular players given that aberra-
tions in their expression have been implicated in the development and progression of the
disease [322,323]. For example, miRNAs were shown to have both tumour-suppressing
and tumour-promoting roles, which are being increasingly unveiled [324,325]. Researchers
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have tried to uncover miRNAs differentially expressed in cases of primary UM with low
and high risk of metastases, with a recent research pooling results from different stud-
ies showing consistently in the high-metastatic risk group upregulation of the miRNAs
let-7b, miR-20a, miR-124, miR-142, miR-155, miR-199 and miR-224, while only miR-181a
and miR-211 were constantly downregulated [324]. The MAPK and PI3K-Akt signaling
pathways appear to be altered in light of the dysregulation of the different collection of
miRNAs in UM [324,326]. Besides constituting biomarkers of the disease, miRNAs could
also become soon promising therapeutic targets in metastatic UM [326–328]. Larger studies,
involving well-established methodologies will be of fundamental importance to institute
meaningful signatures of ncRNAs in UM.

8.4. Dissecting the Role of Tumour Infiltrating Immune Cells in Uveal Melanoma

Mounting evidence points towards a unique biological behaviour in UM, with in-
filtration by immune cells strongly linked with a tumour growth stimulatory effect, in-
stead of a tumour suppressing effect, which is normally present in other types of neo-
plasias [272,311,329]. In addition, unlike in cutaneous melanoma, immune checkpoint
inhibition has not yielded meaningful results for the majority of UM patients [123,330,331].
Together, these results highlight the presence of a strongly immunosuppressive microenvi-
ronment in primary UM, and our knowledge on this distinctive phenomenon remains in its
infancy [329,332,333]. Interestingly, an association between BAP1 loss and the infiltration of
the tumoural microenvironment by lymphocytes and macrophages, with concomitant over-
expression of genes involved in immunosuppression has been established [332]. Classically
and well-established checkpoint inhibitor molecules such as CTLA4 and PD-1 seem to be
relevant only for limited subsets of UM patients [123,330,331]. On the other hand, a recent
study involving single cell RNA sequencing demonstrated that an emerging checkpoint
inhibitor molecule, lymphocyte-activation gene-3 (LAG3), is expressed at high levels in
most of T-CD8+ cytotoxic UM TILs [334]. Furthermore, increased expression of LAG3 in
UM is linked with M3/BAP1 loss (associated with the highest risk of metastasis develop-
ment) and strongly correlated with a high metastases rate and a worst survival [335]. The
expression of LAG3 was proven to be positively correlated with the expression of several
of its ligands, namely, Galectin-3 and several molecules in the HLA class II family [335].
LAG3-expressing lymphocytes were also documented in the liver metastases of UM pa-
tients [334]. Thus, LAG-3 could be among the most relevant immune checkpoint molecules
in UM and, similarly to cutaneous melanoma, anti-LAG3 directed therapies could soon
have a role in the treatment of UM patients [334,335].

Cluster of differentiation 47 (CD47) is a transmembrane integrin associated protein of
the immunoglobulin superfamily that acts as a “do not eat me” signal for macrophages
through binding to the signal regulatory protein (SIRP) on antigen presenting cells [336,337].
The levels of CD47 are normally decreased in damaged or senescent cells, priming their
clearance by macrophages [336,337]. In contrast, CD47 was demonstrated to be over-
expressed in different cancer types, constituting a strong independent marker of poor
prognosis [338–340]. The expression of CD47 in UM patients was studied using the TCGA
database [341]. Patients with lower CD47 levels had a better PFS, even though there were
no major survival differences between patients with low and high CD47 levels [341]. In
addition, higher levels of CD47 were associated with a higher immune score, namely,
an increase in the number of TILs (CD4+ and CD8+ T cells), proposing that anti-CD47
therapies could also constitute a novel and relevant therapeutic avenue in UM [341,342].

The adequate evaluation of the expression of established (PD-1/PD-L1, CTLA-4) and
emerging immune checkpoints molecules [B7 homolog 3 protein (B7-H3), inducible T cell
costimulatory (ICOS), indoleamine 2,3-dioxygenase (IDO), LAG3, T cell immunoreceptor
with Ig and ITIM domains (TIGIT), T cell immunoglobulin-3 (TIM-3), V-domain Ig sup-
pressor of T cell activation (VISTA), among others] [333,343,344], as well as other immune
relevant proteins will be instrumental for the development of novel therapies for UM,
which will likely be based on the well-thought combination of different immune blocking
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antibodies rather than a single miracle antibody approach [273,345]. In this regard, the
advent and optimization of laboratory techniques such as multiplexed IHC will critically
impact in our ability to identify specific protein markers of interest and/or molecular
abnormalities, allowing a more accurate assessment of the in vivo interplay between the
different cells of the immune system and tumoural UM cells [346,347].

8.5. Unravelling the Mystery of Preferential UM Metastization to the Liver

The leading cause of death in patients with UM is metastization, which preferen-
tially occurs to the liver (Table 1) [24]. Our knowledge on the mechanisms underlying the
exquisitely preference of UM cells for the liver microenvironment is still scarce [9]. In the
liver, metastasizing UM cells can display two fundamental patterns of growth: nodular
periportal or infiltrative sinusoidal [9,348,349]. The periportal nodular growth pattern is
characterized by the presence of UM cells concentrated in the periportal areas, which then
become hypoxic, leading to angiogenesis promoted by vascular endothelial growth factor
(VEGF), which is produced by the neoplastic cells [348,349]. On the other hand, the infiltra-
tive pattern is characterized by UM cells that occupy the sinusoidal spaces, with a lesser
degree of hypoxia and that also develop their own circulation through a process which
involves hepatic stellate cells [348,349]. The expression of cMET by UM cells is a plausible
explanation for their preferential homing to the liver, since hepatic stellate cells produce
the hepatocyte growth factor (HGF), the ligand of cMET [9,350]. Similarly, UM cells also
express CXCR4 and hepatic sinusoidal endothelial cells and hepatic stellate cells produce
its ligand CXCR12 [9,350]. Interestingly, the blockade of both axes in rodent models also
prevented UM metastization [9,350]. Mounting evidence also demonstrates that immune
related mechanisms are involved in the promotion of growth of UM cells in the liver mi-
croenvironment [291,329]. For example, there is a preponderance of M2-TAMs infiltration
in UM metastatic to the liver [329]. Interestingly, the metastatic UM cells in the liver upreg-
ulate the expression of an array of genes (BCL2, CD44, CD146/MCAM/MUC18, DUSP4,
IGF1R, IRF4/MUM1, LGALS3/Galectin-3, MFGE8/lactadherin, PNMA1 and PRAME),
which is likely to contribute to an immunosuppressive tumoural microenvironment [329].
In a recent study, the metastatic tissues of a UM patient with liver metastasis were submit-
ted to a comprehensive single-cell RNA sequencing (scRNA-seq) study, which exposed an
extensive intra- and inter-tumoural heterogeneity, further highlighting the diversity and
complexity of UM even in a single individual [351]. Interestingly, a high degree of intra-
tumoural heterogeneity has also been demonstrated in primary UM [352,353]. A deeper
understanding of the mechanisms involved in the development of liver metastases by UM,
including the role of intratumoural heterogeneity, will be fundamental for the generation of
robust therapeutic strategies aiming at preventing UM metastases and approaches directed
to ablate those metastases with the ultimate aim to significantly increase the life expectancy
of patients diagnosed with UM [353].

8.6. Novel In Vitro Cancer Models Will Likely Boost Research Efforts in Uveal Melanoma

The capacity to culture in vitro cells of human origin has dramatically changed the
landscape of medical research over the past decades [354,355]. The first human cell line
was the HeLa cell line, established in 1951 from a biopsy sample of Henrietta Lacks, who
had an aggressive adenocarcinoma of the cervix [356]. Since then, a myriad of different
immortalized cell lines and cell culturing approaches from patient-derived tissue have
made possible the study of human cells in vitro, both in simple monolayer cultures and
in more complex 3D models. Cell lines have been instrumental to unravel important UM
biological mechanisms and also allowed the testing of some drugs [357–359]. Even though
successful culturing in vitro from primary UM cells has been achieved, a standard proce-
dure remains to be established and different groups use their own approaches [357–360].
Furthermore, reliable animal models remain to be established [361,362]. One appealing
strategy can be the usage of human induced pluripotent cells (hiPSCs, efficiently generated
from reprogramming of somatic cells obtained from donors), which similarly to human
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embryonic stem cells (hESCs), are successfully cultured in vitro and are able to differentiate
into all three embryonic germ layers (ectoderm, mesoderm and endoderm) and give rise
to virtually all cell types of the body in inexhaustible manners [355,363]. In the case of
hiPSCs, they retain the genetic background of the donor [363]. Both hiPSCs and hESCs
have allowed the study of human cells which are not normally accessible to study in the
human body (for example, neurons and glial cells of the human CNS) and, therefore, have
boosted the possibilities in medical research employing human cell lines, permitting the
study of mechanisms of human development [363,364]; in vitro disease modelling, includ-
ing in cancer research [365–367]; in the development of assays and platforms for drug
screening campaigns [355,368,369]; in patient stratification and in the development of cell
replacement strategies [355,363]. The pioneer monolayer cultures gave way to organoids,
spheroids, organ-on-a-chip approaches and more recently assembloids, which employ
single cell types or a multitude of different cellular types [355,360,370–373]. One such
example is the recently developed model of 3D cortico-motor assembloids by Paşca and
collaborators, which has brought this technology into a new state of development [374],
allowing the efficient combination of 3D structures analogous to the cerebral cortex and/or
the hindbrain/spinal cord with human skeletal muscle spheroids, generating a functional
nervous circuit in vitro [374]. These innovative 3D cortico-motor assembloids established
the conditions for unprecedented opportunities in terms of disease modelling and drug
discovery in motor neuron disorders [374,375]. Hopefully, our increased ability to grow
different cell types in vitro will lead in the near future to the development of UM 3D models
that capture the organization, tumour microenvironment and cellular milieu of the UM
patient. Those models will have far reaching impact in our understanding of the disease, in
patient stratification and prognostication, as well as in drug discovery and development. In
this respect, for example, models of blood–eye barrier and UM-liver co-cultures will offer
unprecedented possibilities.

8.7. The Need for Novel Effective Therapeutics for Metastatic Uveal Melanoma

The OS of patients diagnosed with UM has not dramatically changed over the
past decades given that there are only limited therapeutic possibilities once widespread
metastatic disease develops. In the past year, promising results on the usage of Tebentafusp
for UM have been published [376,377]. Tebentafusp is an innovative engineered fusion pro-
tein belonging to a new class of promising therapeutic agents termed immune-mobilizing
monoclonal T-cell receptors against cancer (ImmTAC) [376,377]. It is a construct composed
of a soluble affinity-enhanced HLA-A*02:01–restricted T-cell receptor specific for the gly-
coprotein 100 (gp100) peptide YLEPGPVTA which is fused to an anti-CD3 single-chain
variable fragment [376,378]. Thus, ImmTACs like Tebentafusp, are able to target any protein
presented as a peptide–HLA complex on the surface of the target-cell, including intracel-
lular antigens [379,380]. The binding of ImmTAC molecules to their target-cell surface
specific peptide–HLA complexes initiates the recruitment and activation of polyclonal T
cells, mediated through CD3, which efficiently leads to the release of cytokines and other
cytolytic mediators to the target cells [379,380]. In a recent phase 3 clinical trial involving
378 previously untreated HLAA*02:01–positive metastatic UM patients, stratified based
on lactate dehydrogenase (LDH) levels, treatment with Tebentafusp was associated with a
higher PFS and a 1-year OS of 73%, while in the control group (single agent pembrolizumab,
ipilimumab, or dacarbazine) the observed 1-year OS was only 59% [376]. Even though
Tebentafusp showed promising results in all UM patients, new studies will be instrumental
to better define which UM biomarkers could be helpful to predict an enhanced positive
response to this promising drug. Our increased knowledge on the mechanisms underlying
UM development, including aspects of metabolomics [381] and of immune checkpoint
inhibition, coupled with novel drug screening efforts taking advantage of robust pre-clinical
models will hopefully, in the near future, lead to the development of efficacious therapeutic
approaches against UM.
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9. Conclusions

UM is a rare and complex neoplastic disease with a distinctive biological behaviour.
For the majority of patients, the prognosis is dismal after metastases develop in the liver
or other sites, since there are currently limited therapeutic strategies for the widespread
disease. Indeed, despite extensive research over the past decades our ability to extend the
survival of UM patients has not dramatically changed. The continuous efforts to find better
estimators of prognosis for UM has led to the recent discovery of novel promising proteins,
genomic and proteomic signatures with prognostic implication for UM patients, which
complement the list of already well-established prognostic factors in UM. However, a uni-
fying and optimized prognostic model, encompassing clinical and molecular information,
widely accepted by the UM community is still lacking. The development of such model is
an imminent challenge and could decisively positively impact in a personalized medicine
approach, leading to patient-directed surveillance plans and patient-tailored therapies. In
this regard, diagnostic methods that allow an earlier disease relapse detection, such as LB,
coupled with better pre-clinical models of research which allow a more comprehensive
understanding of the UM unique biology, UM metastization and enhanced capacity for
in vitro drug testing, as well as a more comprehensive insight on the interplay between
different immune infiltrating cells and UM cells will soon help to accelerate the process of
therapy development for UM. Hopefully, in the near future we will be able to slow or halt
disease progression or even cure UM.
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