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Abstract: In the valuable orchid genus Cypripedium, the section Irapeana consists of a distinctive
group of Mesoamerican species that is formed by Cypripedium dickinsonianum Hágsater, C. irapeanum
Lex., and C. molle Lindl. All lady slipper orchids exhibit different distributions and abundances.
Data analysis that used herbarium accessions and field investigations indicated that the habitats
of these three species have been dramatically reduced. Prospecting for suitable habitats based on
climatic, vegetation, and soil parameters allows us to predict potential distributions. Conservation
strategies, such as ex situ propagation by asymbiotic and symbiotic approaches, have indicated that
the culture media used are a determining factor for seedling development. Mycorrhizal isolates play
a main role in the compatibility and further development of germinated seeds. The fungi isolated
from adult plants belong to two different families, which makes it possible that widely distributed
C. irapeanum populations will be fungal-specific as well as restricted for C. molle. Root mycorrhization
patterns occur high on the secondary roots. In contrast with other species of the genus, in situ
germination can occur over a short period of two months, but we have documented periods as
long as ten years. Cypripedium is a highly problematic genus for ex situ conservation because the
germination requirements and cultures are poorly documented, and there is great urgency for in situ
conservation to develop strategies for identifying hotspot habitats and actualize the protection status
to avoid extinction of this genus.

Keywords: habitat destruction; in vitro germination; orchid conservation; orchid mycorrhiza

1. Introduction

The terrestrial genus Cypripedium is one of the most appreciated in the orchid family
and is found in the natural environment, botanical gardens, natural parks, and scientific
and private collections [1,2]. The origin of the name comes from the Greek root Cypris
that refers to Aphrodite’s sandal pedilon because of the globose-sac-shaped flower lips.
Along with modifications of sepals and petals, columns with two anthers and the pres-
ence of staminodes make them unique relative to all other orchids. The genus contains
approximately 50 species that are distributed in the Northern Hemisphere in mountain
woodlands, grasslands, shrubs, or swamps, and is mainly associated with Quercus or Pinus
forests [2–9]. All species are endangered by overcollection, anthropogenic activities, and
climate change [10,11].

Mesoamerica has been postulated to be the origin center of the genus Cypripedium with
the section Irapeana, which is a sister clade to the other members of this taxa [2,4,7,12–14].
The section contains three species, namely, C. dickinsonianum Hágsater, C. irapeanum Lex.,
and C. molle Lindl. [8]. C. irapeanum from Irapeo, which is located in Michoacán State
of Mexico, is the type species, but the type locality no longer exists [13–15]. There is re-
markable morphological variability among C. irapeanum populations, which are likely to
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consist of a complex of species to be resolved by using molecular markers [16]. Morpho-
logical variations, mainly in size, are also observed in C. dickinsonianum populations from
the northeastern Sierra Madre compared to those in the Chiapas and Guatemala Sierras.
Mesoamerican Cypripedium flowers show remarkable morphological characteristics: the
largest flowers are found for taller C. irapeanum plants, and the smallest flowers are found
for C. dickinsonianum (Figure 1a–c). The colors vary from a striking pale-yellow to canary
yellow, and the staminode (sterile stamen) is often showy to welcome the insect, which
makes its way to a backdoor exit into the pouch. The dorsal sepals are generally not as
wide as those in the rest of the cypripediums, and the petals are wider and have slightly
smaller synsepals. C. irapeanum and C. molle also show distinctive sepia-reddish staining
inside the lobes, and they have small transparent “windows” over the lip surfaces. The
local name of the genus is “pichohuaxtle”, derived from the Náhuatl dialect, which means
“bulls’ eggs” [17]. Mexican children crush the showy inflated lip of the flowers for use as
whistles or balloons [4,14,18].
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Figure 1. Mesoamerican Cypripedium: (a) C. dickinsonianum, (a) C. irapeanum and (a) C. molle, pictures 
taken by Javier Fortanelli, Mauricio Moreno, and Octavio Gabriel in the years 2014, 2010 and 2019, 
respectively.  

The Mesoamerican species have dissimilar distributions. C. dickinsonianum is re-
stricted to small populations in the Mexican states of Queretaro and Chiapas and in Gua-
temala and grows on light slopes with Juniperus, and is sometimes sympatric with C. 
irapeanum [13,14,18]. In contrast, C. irapeanum is widely distributed in shrubs and grass-
lands or is associated with Quercus and Pinus in several Mexican states (e.g., Chiapas, Pue-
bla, Mexico, Morelos, Michoacán, Guerrero, Colima, Nayarit, Sinaloa, and Veracruz), and 
is found in some locations in Guatemala. Cypripedium molle is restricted to the Mexican 
state of Oaxaca and grows in similar forest associations as C. irapeanum, but with a differ-
ence wherein it develops close to disturbed sites such as roadsides [19] (Figure 2). 

Figure 1. Mesoamerican Cypripedium: (a) C. dickinsonianum, (b) C. irapeanum and (c) C. molle, pic-
tures taken by Javier Fortanelli, Mauricio Moreno, and Octavio Gabriel in the years 2014, 2010 and
2019, respectively.

The Mesoamerican species have dissimilar distributions. C. dickinsonianum is re-
stricted to small populations in the Mexican states of Queretaro and Chiapas and in
Guatemala and grows on light slopes with Juniperus, and is sometimes sympatric with
C. irapeanum [13,14,18]. In contrast, C. irapeanum is widely distributed in shrubs and grass-
lands or is associated with Quercus and Pinus in several Mexican states (e.g., Chiapas,
Puebla, Mexico, Morelos, Michoacán, Guerrero, Colima, Nayarit, Sinaloa, and Veracruz),
and is found in some locations in Guatemala. Cypripedium molle is restricted to the Mex-
ican state of Oaxaca and grows in similar forest associations as C. irapeanum, but with a
difference wherein it develops close to disturbed sites such as roadsides [19] (Figure 2).
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EN, while the status of C. molle is unconsidered [21]. However, the actual endangered 
status of all Mesoamerican species is more serious: by using georeferenced entries from 
Mexican National herbarium records from 1954 to 2013 (176 entries) (Salazar-Chávez, G., 
personal database), data from previous papers [18], and confirmed records from the web-
site inaturalist.org [22], we obtained 11 records for C. dickinsonianum, 102 for C. irapeanum, 
and 57 records for C. molle. We determined by using geographic information system tech-
niques, satellite images, georeferenced databases [23], and ecological niche modeling pro-
jections [24] that only 3, 43, and 27 of the records, respectively, maintained their original 
habitats, with a loss of 58% for both C. dickinsonianum and C. irapeanum and 53% for C. 
molle (Figure 3). Most of the remnants confirmed that populations are endangered due to 
their proximity to urban sites or sites with probable habitat transformation: from field 
investigations conducted in 2018 and 2019, we visited 27 recorded C. molle populations, 
and only 3 of them could be found, while the others had been destroyed at the end of 2019 
by Agave angustifolia plantations used for mezcal production, an alcoholic drink, whose 
consumption has popularized since the Appellation of Origin was obtained by only the 
Mexican state of Oaxaca [25]. In the case of C. irapeanum, two of five studied populations 
were subjected to pillage of flowers and plants. Additional threats come from habitat 
transformation due to road expansion and the establishment of illegal trash dumps. C. 
dickinsonianum is the most vulnerable, and the remaining four populations, which repre-
sent half of the total number of records, are near highways and urban centers. 

Figure 2. Actual distribution of Mesoamerican Cypripediums from herbarium data. Cypripedium
irapeanum = yellow points, C. molle = red points, and C. dickinsonianum = blue points.

2. Mesoamerican Slipper Orchids: Unique and Critically Endangered

Many factors increase the risk of loss of these species and developing strategies for
their conservation is extremely urgent. International treatment CITES (Convention on Inter-
national Trade in Endangered Species of Wild Fauna and Flora) considers C. dickinsonianum
as endangered (EN), C. irapeanum as vulnerable (VU), and C. molle as near threatened
(NT) [20]. Mexican policies recognize C. dickinsonianum as protected and C. irapeanum as
EN, while the status of C. molle is unconsidered [21]. However, the actual endangered
status of all Mesoamerican species is more serious: by using georeferenced entries from
Mexican National herbarium records from 1954 to 2013 (176 entries) (Salazar-Chávez, G.,
personal database), data from previous papers [18], and confirmed records from the web-
site inaturalist.org [22], we obtained 11 records for C. dickinsonianum, 102 for C. irapeanum,
and 57 records for C. molle. We determined by using geographic information system
techniques, satellite images, georeferenced databases [23], and ecological niche model-
ing projections [24] that only 3, 43, and 27 of the records, respectively, maintained their
original habitats, with a loss of 58% for both C. dickinsonianum and C. irapeanum and 53%
for C. molle (Figure 3). Most of the remnants confirmed that populations are endangered
due to their proximity to urban sites or sites with probable habitat transformation: from
field investigations conducted in 2018 and 2019, we visited 27 recorded C. molle popula-
tions, and only 3 of them could be found, while the others had been destroyed at the end
of 2019 by Agave angustifolia plantations used for mezcal production, an alcoholic drink,
whose consumption has popularized since the Appellation of Origin was obtained by
only the Mexican state of Oaxaca [25]. In the case of C. irapeanum, two of five studied
populations were subjected to pillage of flowers and plants. Additional threats come
from habitat transformation due to road expansion and the establishment of illegal trash
dumps. C. dickinsonianum is the most vulnerable, and the remaining four populations,
which represent half of the total number of records, are near highways and urban centers.
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the transition from oak to cloud forest habitat. (c) Fire destruction of oak forest habitat in limestone. 
(d) Habitat destruction by an outdoor dump. (e) Population vulnerability next to the road subject to 
any perturbation process. (f) Land use change of deciduous forest transitions for mango cultivars 
(white arrow shows the disappeared population). a-e, photos taken by Mauricio Moreno in 2019; f, 
INEGI [23] and Google Earth ©, 2020. 

Due to the swift loss of natural habitats for these Mesoamerican species, identification 
of potential habitats was achieved to identify possible new locations to find or reintroduce 
populations in the future. Some climatic factors may strongly determine their distribu-
tions [18], so ecological preferences and ecological niche modeling have been studied by 
using the WorldClim-Global Climate Data, which include the temperature seasonality, 
mean annual precipitation, annual temperature range, mean temperature in the coldest 
quarter, annual mean precipitation, and precipitation seasonality [26]. We obtained hypo-
thetical projections for the three species by using the maximum entropy algorithm calcu-
lated with MAXENT software [27]. To estimate the model, we used herbarium and online 
records obtained from the website inaturalist.org [22], climatic variables, soil conditions’ 
layers (e.g., total carbon and nitrogen, bulk density, water-holding capacity, moisture con-
tent, and wilting point) [28], altitudinal records, and vegetation types [23] (Table S1), and 
these data had previously been transformed to compatible formats in ArcGIS© [29]. 

The resulting projections of the potential habitats for each species indicate that C. 
irapeanum and C. dickinsonianum are sympatric in some habitats, whereas certain potential 

Figure 3. Destroyed habitats of Mesoamerican Cypripedium molle in Oaxaca State (a–d) and
C. irapeanum in Nayarit State (e–f). (a) Land use change for Agave angustifolia cultivation for mezcal
production (white arrow indicates a remaining C. molle plant). (b) Deforestation of a pine forest in
the transition from oak to cloud forest habitat. (c) Fire destruction of oak forest habitat in limestone.
(d) Habitat destruction by an outdoor dump. (e) Population vulnerability next to the road subject to
any perturbation process. (f) Land use change of deciduous forest transitions for mango cultivars
(white arrow shows the disappeared population). (a–e), photos taken by Mauricio Moreno in 2019;
(f), INEGI [23] and Google Earth ©, 2020.

Due to the swift loss of natural habitats for these Mesoamerican species, identification
of potential habitats was achieved to identify possible new locations to find or reintroduce
populations in the future. Some climatic factors may strongly determine their distribu-
tions [18], so ecological preferences and ecological niche modeling have been studied by
using the WorldClim-Global Climate Data, which include the temperature seasonality, mean
annual precipitation, annual temperature range, mean temperature in the coldest quarter,
annual mean precipitation, and precipitation seasonality [26]. We obtained hypothetical
projections for the three species by using the maximum entropy algorithm calculated with
MAXENT software [27]. To estimate the model, we used herbarium and online records
obtained from the website inaturalist.org [22], climatic variables, soil conditions’ layers
(e.g., total carbon and nitrogen, bulk density, water-holding capacity, moisture content, and
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wilting point) [28], altitudinal records, and vegetation types [23] (Table S1), and these data
had previously been transformed to compatible formats in ArcGIS© [29].

The resulting projections of the potential habitats for each species indicate that
C. irapeanum and C. dickinsonianum are sympatric in some habitats, whereas certain po-
tential distribution habitats have not yet been recorded (Figure 4a,b). For C. molle, the
estimated distribution is restricted to the gap located between the union of the eastern and
south Sierra Madre located in the physiographic province of Oaxaca´s Sierras Centrales
(Figure 4c). The inclusion of soil conditions generates more robust models for suitable
habitat projections; however, it is not clear whether soil conditions have a direct impact
on plant requirements or the associated microorganisms, such as orchid mycorrhizal fungi
(OMF), as we conduct further research [30].
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Figure 4. Distribution of suitable habitats of Mesoamerican Cypripedium based on the most reliable
Maxent model. Rasters generated in Maxent [27]. Maps were generated in ArcGIS© 10.5 (ESRI,
https://www.esri.com/en-us/home (accessed on 1 April 2022)) (a) C. dickinsonianum, (b) C. irapeanum,
and (c) C. molle.

3. Underground Growth Pattern in Different Habitats

We analyzed the underground rhizome growth after conducting the field investiga-
tions for three habitats: two for C. irapeanum (Quercus forest in the states of Mexico, Morelos,
and Puebla, and Tropical Deciduous Forest (TDF) in Veracruz State) and one for C. molle
(Quercus forest in Oaxaca State). Both species show consistent patterns of underground root
growth that are generally less than 10 cm-deep and are located between an undecomposed
litter layer and a layer with high organic matter content that is very similar to the growth of
other Cypripedium species [4,31] (Figure 5). Mesoamerican species develop short rhizomes
and an annual stem with several large roots that can persist for years by storing carbohy-
drates in the form of starch. For other species in the genus, the root systems may live for
nearly 14 years, which allows these plants to remain dormant for long periods without
aerial shots until adequate conditions for vegetative growth are met. Many years (e.g., ca.
7–16) are necessary to develop full-grown flowering plants from seedlings of lady slipper
orchid species [4,32–34]. For C. irapeanum, the populations in Quercus forest grow under
layers rich in organic matter on volcanic-derived acidic soils (pH of 5.6), while populations
in TDF grow in poor soils, with high levels of calcium, little organic matter, and a pH of
approximately 7.5 [14,35]. Both populations develop under seasonally dry environments. It
is worth mentioning that in five years of study on these populations, only one germination
event was recorded for each population (Figure 6a,b). The incidence of in situ germination
has been estimated to be extremely low (e.g., approximately 0.001%) [8] and can occur over
a period of two months (Figure 6c–e) or ten years after seed dispersion (Figure 6f–h). It
is not clear whether these scarce germination events depend on the potential of a habitat
to provide a germination niche (for example, until colonization by compatible symbiotic
fungi) or on the natural long-term dormancy of seeds as a survival mechanism. OMFs are
needed for germination and carbon acquisition throughout life to support survival during
dormant states, quite common in the genus Cypripedium [4,32,36–39]. In general, the in situ
germination requirements for this genus are poorly understood, and long-term studies are
needed [40]. Both C. irapeanum and C. molle grow on different soils, such as reddish, clayey,
lateritic, limestone soils or volcanic-derived soils, and this indicates that a broad range of
diverse conditions can meet the requirements for germination and increases the potential
habitats and probability of establishing new populations [41]. The genus is considered
highly dependent on mycorrhizal fungi, and this could be the reason why asymbiotic
propagation methods have not been completely established for many species [42–44].

https://www.esri.com/en-us/home
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phyllous shoot (red arrow) of an emerging plant sprouting due to the deep litter where roots de-
velop in the humic horizon. (c) Lateral shoot emerging from a near meristematic node (green arrow) 
and short rhizome development with roots surrounded by mycelial cords (dashed red arrow) with 
short-distance exploration mycelium (double-line red arrow). (d) Multiple points of emergence of 
annual plants showing a node with growth of several years (white arrows) and the remainder of a 
dried shoot from the previous year (blue arrow). (e) Plants usually associated with Bletia orchids (B. 
purpurea, white arrow). (f) Association with an eight-year-old Bletia punctata plant showing the 
emerging shoots of the first two submerged bulbs. These belong to the first and second bulbs that 
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by Mauricio Moreno in the year 2019. 

Figure 5. In situ development of Cypripedium molle (a,b) in an oak forest in Oaxaca State and
C. irapeanum (c–f) in an oak forest in Mexico State and in a tropical dry forest in Veracruz State.
(a) Long, little-branched roots longer than 30 cm under abundant litter (white arrow). (b) Achloro-
phyllous shoot (red arrow) of an emerging plant sprouting due to the deep litter where roots develop
in the humic horizon. (c) Lateral shoot emerging from a near meristematic node (green arrow) and
short rhizome development with roots surrounded by mycelial cords (dashed red arrow) with short-
distance exploration mycelium (double-line red arrow). (d) Multiple points of emergence of annual
plants showing a node with growth of several years (white arrows) and the remainder of a dried shoot
from the previous year (blue arrow). (e) Plants usually associated with Bletia orchids (B. purpurea,
white arrow). (f) Association with an eight-year-old Bletia punctata plant showing the emerging
shoots of the first two submerged bulbs. These belong to the first and second bulbs that developed
after germination and the emerging shoots after eight years (white arrow). A dried C. irapeanum
shoot from the previous year next to a new emerging shoot (yellow arrow). Photos taken by Mauricio
Moreno in the year 2019.
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Figure 6. In situ germination of Cypripedium irapeanum from Veracruz State in a tropical dry forest
(a,b) and an oak forest in Mexico State (c–h). (a) Seedling less than 3 cm long. (b). Emergence
of multiple large roots from seedlings (white arrow). (c) Seed imbibition (white arrow) after the
second month of baiting placement (upper right picture), showing that the sand grain sizes are
larger than those of the seeds and brown fungal hyphae (scale bar = 500 µm). (d,e) Two-month
achlorophyllous protocorms in the baiting showing development of the shoot apical apex (scale
bar = 500 µm). (f) Germinated seed after 10 years of baiting in August 2018 with a root that is several
times larger than the undeveloped shoot (white arrow) (scale bar = 16 mm). (g) Detail of a root
emerging from an undeveloped shoot of the same seedling showing testa remains (white arrow)
(scale bar = 500 µm). (h) Comparative size of seedlings regarding baiting dispositive (see (c)) (scale
bar = 2 mm). Photos taken by Mauricio Moreno (a,b) in 2020; Jesus Colín (c) in 2012 and M.P. Ortega
(d–h) in 2018.

4. Mycorrhiza Studies for Conservation Purposes

Cypripedium species, like other orchids, have two main symbiotic relationships: with
insects for pollination and seed production and with OMF for germination and nutrient
transfer. For pollination, there are several genera of insects that can function as Cypripedium
pollinators, and despite the different reports on these insects, few actual successful pollinia
removal events have been recorded [45–47]. In the case of Mesoamerican C. irapeanum
and C. molle, Halictideae wasps have been considered as pollinators for both, and the only
pollinator for C. irapeanum is considered as Lasioglossum nyctere, while C. dickinsonianum
has been recognized as self-pollinating [13,14].

However, mycorrhizal symbiotic associations have more effectively studied for several
species in adult plants, and scarce and erratic patterns of root colonization [37,48]. We
confirm two main patterns of mycorrhiza development for Mesoamerican C. irapeanum and
C. molle: On the main roots, colonization is scarce and can remain for years with highly
degraded hyphal coils and large numbers of starch granules [37,48,49]. In contrast, the
secondary roots, which are usually short and numerous (ca. 2–3 cm), lack starch reserves
because they are actively growing and are highly colonized by hyphal coils in diverse
stages of digestion, while most of them are undigested (Figure 7). Seedlings that develop
by in situ germination of both species are always colonized with the same pattern as the
secondary roots.

There have only been three successful attempts to isolate OMF on Cypripedium, for
C. macranthos var. rebunense [43] and Mesoamerican C. irapeanum [35] and C. molle (Moreno-
Camarena and Ortega-Larrocea, submitted). The mycorrhizal endophytes that were ob-
tained from the roots of adult C. irapeanum plants from two habitats belong to the anamor-
phic genus Epulorhiza (hyphae less than 4 µm, pearly monilioid cells, creamy submerged
colonies on PDA, and slow growth rates ca. 0.2 mm per day). Endophytes that were
obtained from C. molle show characteristics of the anamorph Ceratorhiza (hyphae of more
than 4 µm, barrel-shaped monilioid cells, brownish colonies on PDA, aerial mycelium,
and growth rates of 0.5 mm/day) (Figure 8, Table 1) [50]. The isolation and long-term
conservation of these isolates was achieved only on Green Pea Agar medium [51], AWA
(Acidic Water Agar), and FIM (Fungal Isolation Medium) [52]. In media such as PDA
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(potato dextrose agar) or OMA (oatmeal agar), which are usually used for OMF cultivation,
no long-term growth was achieved, and the isolates lost viability in both cases.
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Figure 7. Mycorrhizal root colonization of Mesoamerican Cypripedium. View of one of the main roots
(black arrows) and secondary roots (white arrows) of Cypripedium irapeanum (a–e) and C. molle (f–j).
Cortical colonization by mycorrhizal fungi occurs in patches on the main roots with long sections
without fungal colonization and starch grains (b,c) and some with very dense colonization with
digested pelotons (f,g). SR are always densely colonized with undigested and partially digested
pelotons (d,e and h,i). Bars in c, e, g, i = 10 µm and bars in b, d, f, h = 100 µm. Bar in a = 10 cm. Photos
taken by Mauricio Moreno in year 2019.
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Figure 8. Mycorrhizal isolates of Mesoamerican Cypripedium. Isolate from Cypripedium irapeanum
(a–d) and from C. molle (e–h). (a) Colony view of Epulorhiza sp. (Tulasnella sp.) from a tropical dry
forest in Veracruz State showing a submerged mycelium, yellow-creamy color, and waxy surface.
(b) Superficial growth after 5 days of incubation of straight hyphae obtained from a peloton after
sowing on GPA medium showing 90◦ bifurcation of the hyphae (black arrow). Bar = 100 µm.
(c) Mycelium from an isolated culture showing less than 4 µm hyphae and straight basal septa
(black asterisk). Bar = 10 µm. (d) Monilioid cells. Bar = 10 µm. (e) Colony view of Ceratorhiza
sp. (Ceratobasidium sp.) that was isolated from a Quercus forest in Oaxaca State showing an aerial
mycelium, brownish-creamy color, and cottony superficial aspect. (f) View of hyphae growing from a
submerged peloton with a knobby appearance after 3 days of incubation. Bar = 10 µm. (g) Mycelium
from an isolated culture showing hyphae longer than 4 µm and constrained basal septa (black
asterisk). Bar = 10 µm. (h) Monilioid cells. Bar = 10 µm. Photos taken by Mauricio Moreno in 2020.
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Table 1. Micromorphological characteristics of Cypripedium spp. Mycorrhizal endophytes
(mean ± standard deviation). Different letters represent significant differences at p ≤ 0.05.
See Figure 8.

Plant Species
Mean Day

Growth on PDA
Medium

Basal Septa (µm)
Diameter of

Hyphae (µm) Monilioid Cells (µm)

Mean ± SD Width Length

Cypripedium irapeanum
(Tropical deciduous

forest, Veracruz)
1.14 ± 0.22a 1.794 ± 1.280a 3.3 ± 1.1a 7.7 ± 2.0a 16.1 ± 4.5a

C. irapeanum (Quercus forest,
Mexico State) 0.44 ± 0.25b 1.439 ± 0.384a 2.7 ± 0.4a 7.8 ± 1.2a 18.5 ± 4.2a

C. molle (Quercus forest, Oaxaca) 2.50 ± 1.20c 7.368 ± 1.679b 12.6 ± 1.2b 20.0 ± 1.9b 36.2 ± 8.4b

Since OMF isolation has been difficult for Cypripedium species, using molecular tools
to identify the relevant fungi is usually conducted by using the fungal coils of adult roots.
The genomic regions studied are the ITS (internal transcribed spacer), LSU (large subunit),
and SSU (short subunit) [53–55]. Molecular identifications indicate that the genera are
sometimes associated with distant phylogenetic fungal groups (Table S2) [56]. In addi-
tion, some of the identified fungal partners may be incidental inhabitants, pathogens,
or temporal successors [36]. The most common OMFs associated with Cypripedium be-
long to the family Tulasnellaceae: Tulasnella cystidiophora, T. calospora, and T. deliquescens,
which were found in 28, 12, and 5 species, respectively. The family Ceratobasidiaceae
(Ceratobasidium cornigerum) has also been identified in C. californicum [37,44,48,57]. How-
ever, most of these identifications have been conducted on adult plants, since symbiotic
germination is poorly documented and the identification of fungal germination promoters
is needed [42,43,58].

To analyze the relationships among fungi that were isolated from the adult roots of
C. irapeanum (Quercus forest in Mexico State and TDF in Veracruz State) and plantlets of
C. molle (Quercus forest in Oaxaca State), we amplified their ITS regions by using the primer
combination ITS 1/ITS 4 [36,37,48,51,57,59], and the resulting sequences were assembled
and edited with Geneious (2021.0.3). The sequences are deposited in the GenBank-NCBI
database. A search for the most similar sequences was conducted by using the BLAST
algorithm [60,61], and alignments were conducted using MAFFT [62]. Both algorithms are
contained in the Geneious software. Phylogenetic reconstruction was carried out using
PHYML plugin [60,63] by using the maximum likelihood method and the Tamura-Nei
model with bootstrap support of 1000 replicates (Figure 9).

Significant results were observed from the phylogenetic reconstruction. The isolates
from C. molle plantlets belong to Ceratobasidiaceae in a clade that consists of terrestrial endo-
phytes of Vanilla spp. from Puerto Rico and Cephalanthera rubra from France [64] (Figure 9).
Conversely, the isolates of the widespread C. irapeanum were recovered from different
habitats (e.g., Quercus forest and TDF) and belong to Tulasnellaceae in a clade that includes
a terrestrial endophyte from Vanilla [50], which indicates a probable high level of specificity
to a widely distributed soil generalist fungal clade (Figure 9). This behavior is opposite to
that of the North American C. californicum, a soil specialist (always grows on serpentine
soils) but is associated with various species of the genus Tulasnella [48]. The same is true for
the terrestrial Dichromanthus that form specific associations with a particular mycorrhizal
endophyte when the species are widely distributed in several habitats and soil conditions.
However, in one restricted habitat, the species were associated with several clades of the
same fungal family (López-Reyes and Ortega-Larrocea, personal communication).
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Figure 9. Phylogenetic relationships of endophytes isolated from Mesoamerican Cypripedium. The
pink clade represents isolates from Cypripedium irapeanum from a tropical dry forest and Quercus
forest. The blue clade contains the isolate from C. molle, which was inferred by using the maximum
likelihood method and the Tamura-Nei model log likelihood of –3241.26. The branch length labels
represent the bootstrap proportions. Analyses were conducted in Geneious (2021.0.3).

The fact that plantlets of C. molle associate with Ceratobasidiaceae may indicate that
the fungi from this family are germination promoters, as was proposed for C. calceolus [65].
This could explain why endophytes isolated from adult plants do not promote good ger-
mination, as has been observed in C. irapeanum [35] and previously in C. macranthos var.
rebunense [51]. The isolation and identification of fungi from other populations and plant
stages together with cultivation by asymbiotic and symbiotic methods would provide
a better understanding of germination, specificity, fungal succession during plant life-
times, distribution of populations, and microhabitat requirements to develop conservation
strategies for these unique species.
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5. Symbiotic and Asymbiotic Germination and Development

Seeds of Cypripedium spp. have tests that consist of a hydrophobic double-layer rich
in lignin that allows them to float on water [66,67]. At maturity, these seeds have high
concentrations of abscisic acid (ABA) that can delay germination [68,69] which are probably
involved in long-term survival through the years and persist for at least four years to
form seed banks in soils [4,42,70]. In situ germination relies on mycorrhizal fungi that can
penetrate the testa and induce germination [42,43]. Symbiotic germination under in situ
conditions is poorly studied in Cypripedium and probably occurs in spring or early summer
at 2–5 cm soil depths in moisture-stable sites within a pH range from 5.3 to 8.1 [31]. In some
species of the genus, germination is stimulated by cold (e.g., C. calceolus, C. lentiginosum,
C. macranthos var. rebunense) because they grow in temperate regions [42,43,68,71].

In vitro germination of Mesoamerican species has been studied using symbiotic and
asymbiotic approaches. Asymbiotic germination was tested on PhytamaxTM (SIGMA) with
sucrose 2% [72], Murashige and Skoog [73], Norstog [74], and oatmeal agar [52] at pH 5.6
after the seeds were stimulated by cold storage (4 ◦C) for four months to break dormancy
(Moreno-Camarena and Ortega-Larrocea, in process). However, seedlings developed only
on Norstog medium (Figure 10). It is worth mentioning that while Asian or European
Cypripedium species germinate at 4 to 54 months after sowing [42,58], C. irapeanum can
germinate at 12–14 days after sowing (das) [35]. Germination development, in vitro or in
situ, begins when the testa splits and the embryo swells, which gives rise to a protocorm
with a promeristematic zone (Figure 10a–c). From this, the apex begins to grow, which is
followed by root formation on the opposite point of the protocorm (Figure 10d–f). The
protocorms are greenish and usually have long rhizoids [31,42], except for C. irapeanum,
which does not develop rhizoids under asymbiotic in vitro conditions (Figure 10d–g).
Roots emerge after shoot differentiation of two foliar sheets (Figure 10g). This root system
continues to grow faster over the shoot leaves and develops into several small sheets and
lateral shoots (Figure 10h–k).

Symbiotic germination was tested on C. irapeanum seeds that were obtained from a
population located in an oak forest in Puebla State. Two mycorrhizal endophytes (e.g.,
Epulorhiza spp.) that were isolated from adult plants from two different sites (e.g., a Quercus
forest from Mexico State and a TDF from Veracruz State) were tested, and they exhibited
35% and 20% germination rates, respectively (Table 2). While the isolate from Mexico State
promoted a higher germination percentage, the Epulorhiza isolate from Veracruz promoted
a more compatible and advanced developmental stage (Figure 11). Shimura and Koda [43]
state that symbiotic germination begins after some weeks of incubation in C. macranthos var.
rebunense after cool storage, at which time the embryo is imbibed and develops rhizoids
that serve as the entry points for fungal colonization. In the case of C. irapeanum, rhizoids
did not develop under either asymbiotic or symbiotic conditions (Figure 11a–f), with
mycorrhizal colonization likely beginning from the micropylar end (Figure 11d). This
colonization is also suitable for water and nutrient absorption [75,76], even if suspensor
cells are degraded in the C. calceolus and Mesoamerican hybrid Cypripedium × fred-mulleri
to form spherical embryos [18,67]. However, neither of the two identified isolates allow
protocorms to develop seedlings (stage 6), as in asymbiotic germination (Figure 10). This
incompatibility after symbiotic germination is observed when complete cells that form
the protocorm are invaded by fungi, which prevents the apical meristematic cells from
undergoing division and growth (Figure 11f–h). This phenomenon could be due to the
origin of the isolates, since all were obtained from adult plants [51] or because Cypripedium
compatibility with mycorrhizal fungi is low under natural conditions and resulted in the
low recruitment observed. Shimura and Koda [43] achieved seedling formation with shoots
after cultivation of symbiotic germinated protocorms in an antifungal medium, which
indicated that autotrophic plants cannot regulate the symbiotic balance. Other attempts to
obtain symbiotic plants have been reported and were without success [65,77].



Plants 2022, 11, 1554 14 of 19
Plants 2022, 11, x FOR PEER REVIEW 14 of 21 

 

 
Figure 10. Asymbiotic in vitro germination of Cypripedium irapeanum in Norstog medium. (a) Devel-
opment stage 0 on day of sowing (black arrows show immature and undeveloped seeds and white 
arrows show mature seeds). (b) Imbibed seeds two days after sowing (das) (white arrow) (develop-
ment stage 1). (c) Imbibed seed with rupture of testa 12 das (white arrow) (development stage 2). 
(d) Protocorm polarization with apical meristem at 45 das (upper structure) (developmental stage 
3). (e) Protocorm development with leaf blade at 54 das (developmental stage 4). (f) Pre-seedling 
showing radical meristem (black dashed arrow) and a long achlorophyllous leaf 96 das (develop-
mental stage 5). Other chlorophyll pre-seedlings with two leaf blades are located at the bottom left. 
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300 das with lateral shoots and remnant testa (black dashed arrow) from the first shoot and two 
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das with long roots and one seedling with two shoots (black dashed arrow). The white arrow shows 
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Seedling at 365 das with three shoots and two elongated and exfoliant rhizodermic roots. Scale bars 
= 100 µm. 
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Figure 10. Asymbiotic in vitro germination of Cypripedium irapeanum in Norstog medium. (a) De-
velopment stage 0 on day of sowing (black arrows show immature and undeveloped seeds and
white arrows show mature seeds). (b) Imbibed seeds two days after sowing (das) (white arrow)
(development stage 1). (c) Imbibed seed with rupture of testa 12 das (white arrow) (development
stage 2). (d) Protocorm polarization with apical meristem at 45 das (upper structure) (developmental
stage 3). (e) Protocorm development with leaf blade at 54 das (developmental stage 4). (f) Pre-
seedling showing radical meristem (black dashed arrow) and a long achlorophyllous leaf 96 das
(developmental stage 5). Other chlorophyll pre-seedlings with two leaf blades are located at the
bottom left. (g) Seedling development with two incipient roots at 122 das (black dashed arrow)
(developmental stage 6). (h) Seedling 187 das with four leaves and a greater ratio between root and
shoot. (i) Seedling 300 das with lateral shoots and remnant testa (black dashed arrow) from the first
shoot and two radical sprouts. The white arrow shows two oxidized pre-seedlings at stage 4. (j) Four
seedlings 300 das with long roots and one seedling with two shoots (black dashed arrow). The white
arrow shows a protocorm with irregular protuberances, such as rhizoids, or a protocorm-like body
(PLB). (k) Seedling at 365 das with three shoots and two elongated and exfoliant rhizodermic roots.
Scale bars = 100 µm.

By comparing asymbiotic and symbiotic development under in vitro conditions, imbi-
bition, rupture of the testa, and tissue differentiation (polarization) occur at similar times
after sowing. The multiple lateral shoot induction observed in asymbiotic seedlings pro-
duced in vitro could be a consequence of growth under an artificial environment because
in situ seedlings developed only one shoot. Unfortunately, there is not yet a successful
protocol for propagating lady slipper orchids under either approach.
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Table 2. Asymbiotic (1–4 treatments) and symbiotic (5–6 treatments) germination and development
of Cypripedium irapeanum seeds after 256 days of sowing. MS = Murashige and Skoog [73], Modified
Phytamax ™ [72], Norstog [59], OMA = Oatmeal agar [52]. Stages can be appreciated in Figures 8 and 9.

Treatments

STAGES (%)

E0 E1 E2–3 E4 E5 E6

Immature and
Ungerminated Seeds with

Embryos
Imbibition Rupture of the Testa and

Polarization of the Embryo
Foliar

Elongation

Root
Meristematic

Differentiation
Seedling

MS 49 99 0 1 0 0
Phytamax ™ 71 88 10 0 2 0

Norstog 52 91 1 3 1 4
OMA 49 86 14 0 0 0

TDF isolate 29 81 19 1 0 0
Quercus forest

isolate 26 65 24 11 0 0
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Figure 11. Symbiotic in vitro germination of Cypripedium irapeanum with two Epulorhiza spp.
(Tulasnella spp.) isolates obtained from an oak forest in Mexico State and a tropical deciduous forest
in Veracruz State with seeds from Puebla State. (a) Seed imbibition (stage 1) before fungal contact at
2 days after sowing (das) (white arrow shows immature and ungerminated seeds with embryos) with
a Mexico State isolate. (b) Mycorrhizal contact during seed imbibition at 12 das with the Veracruz
isolate. (c) Symbiotic protocorms surrounded by mycelium (not rhizoids) at stages 2 (white arrow)
and 3 developing rhizoids (black arrow) at 12 das with a Veracruz isolate. (d) Protocorm out of testa
at 12 das stained with acid fuchsine showing pelotons at the micropillar seed region (black arrow)
and hyphae growing in medium. (e,f) Symbiotic protocorms at stages 3 (e) and 4 (f) at 22 and 54 das,
respectively, with the Veracruz isolate showing early vitrification and fungal incompatibility (black
arrows). (g,h) Histological staining evidence of the fungal incompatibility, where pelotons invade
apical meristematic tissue cells (black arrows) at stage 3 (g) and stage 4 (h), both at 109 das with an
isolate from Mexico State. (i) Symbiotic protocorms at 187 das showing fungal compatibility that are
located in a brownish tissue in the micropylar zone (black dashed arrow) with the Veracruz isolate.
(j) Histological view of a stained mycorrhized protocorm with dense pink pelotons (black arrow) at
the micropylar pole and with intact leaf vascular bundles (white arrow) at 96 das. (k,l) Symbiotic
mixotrophic protocorms at stage 4 (with two foliar sheets) at 72 and 109 das with the Veracruz isolate.
Scale bar = 100 µm. Photos taken by Mauricio Moreno in 2015.
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6. Final Remarks

Mesoamerican Cypripedium species represent an interesting group for study due to
their phylogenetic importance as a sister ancestral group to the rest of the genus and because
all Cypripedium species are endangered and have some degree of importance. As seen here,
their mycorrhizal preferences differ from other species in the genus, and it is probable that
they have ecological preferences and, consequently, their morphological variations could
be derived from these. The high endangered status of the remaining populations prompts
the generation of information on the OMF that promotes in situ germination to develop
priority mechanisms for the conservation of hotspot habitats.

Since orchids depend on symbiotic associations, conservation of these species depends
on an understanding of the biological and ecological factors that drive the distributions
of mainly fungal partners [78,79]. Some aspects may be more determinant than others
in species establishment, such as the distributions of suitable mycorrhizal germination-
promoting fungi [80]. This contribution provides a partial view of some aspects of the
biology of Mesoamerican Cypripedium; however, the successful pollinators, in situ symbiotic
germination, and OMF specificity remain unknown. The destruction of habitats urges ex
situ conservation strategies that must include not only seed collections but also mycorrhizal
fungi that can promote compatible germination or facilitate adaptation. Clarifying the
structures of the mycorrhizal fungal communities and isolating germination-promoting
fungi would help to determine suitable habitats to conserve or re-establish the studied
species and the viability and persistence of in situ seed banks. Asymbiotic propagation in
suitable media is a promising tool, but little is known about asymbiotic plant ex vitro adap-
tation. Both approaches would ensure long-term conservation of these highly endangered
species before most of their habitats disappear.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/plants11121554/s1, Supplementary Table S1. Habitat charac-
teristics of Cypripedium spp. remnant populations used for projection of niche ecological model.
Supplementary Table S2. Some studies in Cypripedium endophytes using metabarcoding or traditional
approaches, entries are ordered in chronological descendent order.
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