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Abstract: Despite speleomycological research going back to the 1960s, the biodiversity of many
specific groups of micromycetes in underground sites still remains unknown, including keratinolytic
and keratinophilic fungi. These fungi are a frequent cause of infections in humans and animals. Since
subterranean ecosystems are inhabited by various animals and are a great tourist attraction, the
goal of our research was to provide the first report of keratinophilic and keratinolytic fungal species
isolated from three caves in Tatra Mts., Slovakia (Brestovská, Demänovská L’adová and Demänovská
Slobody). Speleomycological investigation was carried out inside and outside the explored caves by
combining culture-based techniques with genetic and phenotypic identifications. A total of 67 fungal
isolates were isolated from 24 samples of soil and sediment using Vanbreuseghem hair bait and
identified as 18 different fungal species. The study sites located inside the studied caves displayed
much more fungal species (17 species) than outside the underground (3 species), and the highest
values of the Shannon diversity index of keratinophilic and keratinolytic fungi were noted for the
study sites inside the Demänovská Slobody Cave. Overall, Arthroderma quadrifidum was the most
common fungal species in all soil and/or sediment samples. To the best of our knowledge, our
research has allowed for the first detection of fungal species such as Arthroderma eboreum, Arthroderma
insingulare, Chrysosporium europae, Chrysosporium siglerae, Keratinophyton wagneri, and Penicillium
charlesii in underground sites. We also showed that the temperature of soil and sediments was
negatively correlated with the number of isolated keratinophilic and keratinolytic fungal species in
the investigated caves.

Keywords: caves; Slovakia; micromycetes; dermatophytes

1. Introduction

Underground ecosystems are characterized by unique living conditions [1,2], such
as persistent low temperatures over the year in facilities in Central Europe, oscillating
from 6 to 10 ◦C [3–6], high humidity often close to saturation [7], limited presence of UV
radiation and even light [8], limited or even no air exchange with the external environ-
ment [9], as well as sometimes an increased CO2 content, especially in the deeper parts
of the underground [10,11]. Therefore, cave settlers show peculiar adaptations and cave
mycobiota occur mainly in the form of spores or other propagation structures [12,13].

Fungi belonging to the phylum Ascomycota dominate in underground sites, where
they constitute ca. 69% of all cultured fungi, and some common species found in caves
belong to Alternaria, Aspergillus, Cladosporium, Fusarium, and Penicillium genera [12,14,15].
However, such extreme environments promote caves and other underground structures
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as a source of unique microbial isolates including extremophiles, due to light and car-
bon sources scarcity. Recently, we have gained an insight into cold-adapted aeromycota
in the Brestovská Cave (Slovakia), providing a first report on the occurrence in under-
ground ecosystems of such fungal species as Coniothyrium pyrinum, Cystobasidium laryngis,
Leucosporidium drummii, Mrakia blollopis, Nakazawaea holstii [16]. Probably the cause of this
state of affairs is global warming, which also reaches the interior of underground facilities,
creating more favorable temperature conditions for the development of a wider group
of fungi, as well as anthropogenic factors [17,18]. It should be mentioned that the in-
side temperature of underground ecosystems is correlated with the surface atmospheric
temperature [19].

Wigley and Brown [20] proved that external air penetrating caves reaches an almost
constant temperature within the entrance sectors as a consequence of two factors: namely, a
buffering effect linked to the relative humidity increase, as well as progressive equilibration
with the temperature of rocks [20]. Thus, any alternation in the average annual value of the
outside temperature proportionally affects mean air temperature inside caves [21]. Conse-
quently, the diversity of microbial communities in underground sites is likely to change with
the temperature increase and may lead to the extinction of the cold-adapted in favor of the
more mesophilic and competitive species, including potential pathogens [22–24].

It should be mentioned that the biodiversity of mycobiota among caves is not only lim-
ited by environmental conditions but also by nutrient availability. Underground ecosystems
are seemingly nutrient-poor, which might include organic matter mostly from the outside
environment [1,13,25]. However, the presence of various deposits of animal or human
origin vastly affects nutrient availability and consequently biodiversity [6,26]. Therefore,
Slovak caves have been one of the great examples of fungal biodiversity studies due to
their being important underground localities for Myotis spp. bats [27] and open tourist
attractions [16,28,29].

During most studies of cave mycobiota in Slovak underground environments, the
main focus has been on the diversity of microscopic fungi in cave air [16,27,28,30], rock sur-
faces [26,29] or bat guano [27]. However, from the evaluation of soil and sediment samples
taken in and outside of the Harmanecká Cave, we have recently isolated a dermatophyte
belonging to the Microsporum cookei clade with close affinities to Paraphyton cookei [31].
Dermatophytes are representatives of keratinolytic and keratinophilic fungi, which are able
to dissolve keratin or keratin-bound substances, respectively, and thus may be infectious
towards humans and animals [31–33]. M. cookei strains isolated from Harmanecká Cave
were capable of dissolving keratin during in vitro tests and proliferating within 37 ◦C. Both
traits suggest their potential as mammalian pathogens [31].

This promising report has directed us to continue our research and thus, the present
study provides the first overview of keratinophilic and keratinolytic fungal species isolated
from the Brestovská, Demänovská L’adová and Demänovská Slobody Caves belonging
to the Tatra Mountains in north Slovakia. In order to discuss the potential origin of the
fungal species within those ecosystems, we determined species diversity in both outdoor
and indoor soil and sediment samples.

2. Materials and Methods
2.1. Study Area

All three caves (Brestovská Cave, and Demänovská L’adová and Slobody Caves) in
which speleomycological studies took place are show caves, and the Demänovská Slobody
Cave is the most visited underground site in Slovakia [34].

The Brestovská Cave is located near the Zuberec village in the Tatra National Park in
Slovakia, in the Western Tatra Mountains [35]. With its length of 1890 m, it is the largest
cave in the Orava region and the only one open for tourists (217 m). The exact location of
the cave entrance is 867 m a.s.l. The cave itself is part of a large hydrologic system, with
unique environmental conditions. The inner temperature of 4–6 ◦C and the presence of
a running river inside the cave enables inhabitation by mammals. Nine bat species have
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been described in the Brestovská Cave, and the most common is the greater mouse-eared
bat (Myotis myotis) [36].

On the other hand, the Demänovská L’adová and Slobody Caves are both part of the
Demänovská Cave system, the longest cave system in Slovakia, located on the northern
side of the Low Tatras Mountains, in the national nature reserve Demänovská Valley and in
the territory of the Low Tatras National Park [37]. The entrance of the Demänovská L’adová
Cave is located at 840 m a.s.l. [38], whereas the Demänovská Slobody Cave’s entrance is at
870 m a.s.l. Both caves differ in their environmental conditions. The Demänovská L’adová
Cave’s corridors are 1750 m long (with 650 m available for tourists and a height amplitude
of 57 m). The air temperature in the permanent ice zone oscillates around 0 ◦C, and it rises
to 5.7 ◦C near the cave entrance. The air relative humidity is between 92% and 98%. On
the other hand, the Slobody Cave corridors are 8126 m long (with maximal tourist path of
2150 m, and a height amplitude of 86 m). The air temperature fluctuates between 6.1 and
7.6 ◦C, and the air relative humidity is 94–99% [39,40].

Both caves are important bat-inhabited places in Slovakia. Until now, the presence
of 8 bat species has been noted in the Demänovská L’adová Cave, which seems to be the
wintering place of the northern bat (Eptesicus nilssonii) and the whiskered/Brandt’s bat
(Myotis mystacinus/Myotis brandtii). The Slobody Cave is inhabited by 4 bat species, most
frequently by M. myotis and the whiskered bat (Myotis mystacinus Kuhl) [39,40].

2.2. Temperature Measurement

The soil and sediment temperature was measured nine times at each sampling site,
prior to sampling (From I to VIII; Figure 1). For this purpose, a Checktemp® thermometer
(HANNA Instruments, range: from −50 ◦C to +150 ◦C, accuracy ± 0.2 ◦C) was used.

2.3. Sample Collection

The sediment and soil samples were taken on 23 August (the Demänovská L’adová
Cave) or 24 August (the Brestovská Cave and the Slobody Cave) 2017 from outdoor and
indoor locations of the caves according to Ogórek et al. [31]. Approximately 1000 g of
soil/sediment was collected from each tested site using sterile plastic scoops and placed in
the sterile bags, followed by the transportation (at 10 ± 2.0 ◦C) and storage at 7 ± 0.5 ◦C
until mycological testing (up to 7 days).

2.4. Isolation of Fungi from Samples

Fungi were isolated using Vanbreuseghem hair bait [41]. Briefly, a clump of sterile hu-
man hair and distilled water were placed on the soil and sediment sample in the Petri dish.
Plates were then covered and incubated at 24 ± 1.0 ◦C for 8–12 weeks, with distilled water
supplemented if needed. The mycelium that appeared on the baits were transferred to SGA
(Sabouraud’s glucose agar: 1000 mL distilled water, 10 g peptone, 40 g glucose, and 15 g
agar), supplemented with ampiciline (50 mg·L−1), chloramphenicol (50 mg·L−1), and cyclo-
heximide (100 mg·L−1). The grown colonies of keratinophilic and keratinolytic fungi were
subcultured on PDA (potato dextrose agar, Biomaxima, Poland) and incubated in the dark
at room temperature (25 ± 0.5 ◦C) for 4 weeks. Then, fungi were separated by the single
spore method and subcultured on PDA slants [31]. The grown cultures were inoculated on
PDA plates and such isolates were used for morphological and molecular identification.

2.5. Fungal Identification

Identification was performed by morphological and molecular methods [42–55].
In detail, a molecular analysis was performed, for which DNA was extracted from a
28-day-old culture on PDA using Bead-Beat Micro AX Gravity kit (A&A Biotechnology,
Gdańsk, Poland) according to the manufacturer’s instructions. Fungal internal tran-
scribed spacer regions (ITS) were amplified using two fungal-specific PCR primers: ITS1
(5′-TCCGTAGGTGAACCTGCGG-3′) and ITS4 (5′-TCCTCCGCTTATTGATATGC-3′) [56].
PCR was performed using a T100 Thermal Cycler (Bio-Rad, Berkeley, CA, USA) accord-
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ing to Ogórek et al. 2016. The PCR product was purified using Clean-Up Kit (A&A
Biotechnology, Gdańsk, Poland), and sequenced at Macrogen Europe.
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Figure 1. Geographic location of Slovakia (A) and the studied caves (B). Entry (En) and exit (Ex) from
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Underground corridors with marked sampling locations on the tourist route: location I outside the
caves, and locations II to VIII inside the caves. Scale bars: (A) = 500 km, (B) = 100 km, (C) = 50 m,
(D,E) = 100 m.
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2.6. Data Analyses

Raw sequences were analyzed with the BioEdit Sequence Alignment Editor, and
the obtained PCR products were compared with those deposited in the GenBank of
the National Center for Biotechnology Information (NCBI, Bethesda, Rockville, MD,
USA) using the BLAST algorithm, and submitted into the mentioned database (Table S1).
The isolates were placed in the collection of the Department of Mycology and Genetics,
University of Wrocław.

The data obtained on the soil and sediment temperatures were analyzed using one-
way analysis of variance (ANOVA) and Tukey’s HSD (honest significant difference) test
at α ≤ 0.05 using Statistica 13.0 package (StatSoft Polska Sp. z o.o., Kraków, Poland).,
The Shannon diversity index (H) was used to determine the diversity of fungal species:
H = −∑ Pi(lnPi), where Pi stands for the proportion of each species in the sample [57,58]. The
Pearson correlation coefficient (r) was used to determine the relationship between the number
of keratinophilic and keratinolytic fungal species and the soil/sediment temperatures.

3. Results

Soil and/or sediment temperatures ranged from 10 to 14.7 ◦C outside the caves
(study sites number I) and from 0.8 to 7.4 ◦C inside them (p study sites I, II = 0.000175 for
the Brestovská Cave, p study sites I, VIII = 0.000175 for the Demänovská L’adová Cave and
p study sites I, VI = 0.000175 for the Demänovská Slobody Cave) (Table 1). The lowest temper-
ature of the soil and/or sediment samples was recorded at the study sites VI and VII for
the Brestovská Cave (p study sites II, VI = 0.002538), the study site VII for the Demänovská
L’adová Cave (p study sites III, VII = 0.000175), and in the study site VIII for the Demänovská
Slobody Cave (p study sites III, VIII = 0.030805) (Table 1).

Table 1. The average of temperature of soil/sediment (n = 9) measured in the studied Slovak
caves. 1 See Figure 1 for locations (I—outside underground facilities, II–VIII—inside underground
facilities). 2 Letters refer to the Tukey’s HSD test (α ≤ 0.05) and different letters indicate significant
differences between the temperature of soil and sediment in a given location; they refer to means
along the columns.

Study Sites 1
Temperature of Soil/Sediment (◦C)

Brestovská Cave Demänovská L’adová
Cave

Demänovská Slobody
Cave

I 10.0 a 2 10.8 a 14.7 a
II 6.3 b 3.5 c 7.2 c
III 6.2 bc 2.6 d 6.9 d
IV 6.1 bc 3.5 c 6.9 d
V 6.1 bc 2.7 d 7.1 c
VI 6.0 c 2.8 d 7.4 b
VII 6.0 c 0.8 e 7.2 c
VIII 6.2 bc 4.1 b 6.7 e

A total of 67 keratinophilic and keratinolytic fungal isolates were cultured from
24 samples of soil/sediment collected from the 3 studied caves. Isolates were clustered into
32 major groups through macro- and micro- morphological characteristics (Table S1). In
turn, the ITS sequence of 32 fungi showed that they belonged to 18 different fungal species
(Table 2). PCR products of the nucleotide sequences (ITS rDNA) from 32 tested fungal
cultures ranged from 362 to 536 bps. The sequences were submitted to GenBank under the
accession numbers from OL362050 to OL362081. Based on a BLAST analysis, the E values
were zero, the percentages of the query cover amounted to 100%, and identity ranged from
99.28 to 100% (Table S1).
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Table 2. Keratinophilic and keratinolytic fungal species isolated from soil/sediment samples in the
studied Slovak caves. 1 See Figure 1 for locations (I—outside underground facilities, II–VIII—inside
underground facilities). 2 numbers indicate locations in the particular caves: 3 B—Brestovská Cave,
L—Demänovská L’adová Cave, and S—Demänovská Slobody Cave.

Fungi Study Sites 1

Family Species

Arthrodermataceae

Arthroderma eboreum V 2 S 3, VIII S
Arthroderma insingulare IV L, VII L, VIII L
Arthroderma multifidum VII L, II S, III S, IV S
Arthroderma quadrifidum I B, III B, VII B, III L, IV L, V L, VII L, I S, II S, III S, VII S, VIII S

Aspergillaceae

Aspergillus fumigatus I L

Penicillium brevicompactum VII B, IV L, VI S

Penicillium charlesii V B

Penicillium chrysogenum VII S

Penicillium griseofulvum II L

Clavicipitaceae Metapochonia suchlasporia II B, III B, I L

Cordycipitaceae Cordyceps fumosorosea III B, VIII B

Nectriaceae Cosmospora viridescens VII S

Onygenaceae

Aphanoascus keratinophilus VI S
Chrysosporium europae V B

Chrysosporium merdarium IV B, VI B, III L, V S
Chrysosporium siglerae II L, VII L
Keratinophyton wagneri VII S

Pseudeurotiaceae Pseudogymnoascus pannorum V B, VII B, III L, IV L, V L, VIII L, III S, V S, VI S

All identified keratinophilic and keratinolytic fungal cultures belonged to Ascomycota,
including 7 families (Arthrodermataceae, Aspergillaceae, Clavicipitaceae, Cordycipitaceae,
Nectriaceae, Onygenaceae, and Pseudeurotiaceae), and 10 genera (Aphanoascus, Arthroderma,
Aspergillus, Chrysosporium, Cordyceps, Cosmospora, Keratinophyton, Metapochonia, Penicillium,
and Pseudogymnoascus). Most fungal species belonged to the Aspergillaceae family, and
Arthroderma or Penicillium genera (Table 2).

All fungi were detected inside the caves, except Aspergillus fumigatus, which was the
sole species isolated from the outer study sites of the Demänovská L’adová Cave (Table 2).
Overall, Arthroderma quadrifidum was the most common fungus (12 out of 24 study sites)
in the soil and/or sediments samples collected from inside and outside locations in all of
the three studied caves (Table 2). The propagation structures of this species accounted for
50% of all fungi cultured from the samples outside the underground sites, and 20.8% of all
fungi obtained from the samples inside the caves. Moreover, Pseudogymnoascus pannorum
should also be mentioned, as it accounted for 18.7% of the total from the samples inside the
caves (Figure 2).

In the case of the inner underground sites, Demänovská Slobody was the most en-
riched in fungi (10), whereas in the other two caves the numbers of isolated species were at
the same levels (8 in each cave) (Tables 2 and S2). The Shannon diversity index of fungal
species was 0.784 for Brestovská Cave, 0.814 for Demänovská L’adová Cave, and 0.816
for Demänovská Slobody Cave (Table S2). Arthroderma quadrifidum, Chrysosporium europae,
Ch. merdarium, Cordyceps fumosorosea, Metapochonia suchlasporia, Penicillium brevicompactum,
P. charlesii, and Pseudogymnoascus pannorum were cultured from the internal samples of
the Brestovská Cave, while A. insingulare, A. multifidum, A. quadrifidum, Ch. merdarium,
Ch. siglerae, P. brevicompactum, P. griseofulvum, and P. pannorum were isolated from the
interior of the Demänovská L’adová Cave. On the other hand, soil/sediment samples
taken from the inside of Demänovská Slobody Cave contained keratinophilic and kerati-
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nolytic species such as: Aphanoascus keratinophilus, A. eboreum, A. multifidum, A. quadrifidum,
Ch. merdarium, Cosmospora viridescens, Keratinophyton wagneri, P. brevicompactum, P. chryso-
genum, and P. pannorum (Figure 3).
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Figure 2. The percentage contribution of each isolate from the soil/sediment samples to the total
from all caves.

The most frequently isolated species from the soil/sediment inside the Demänovská
Slobody Cave was A. quadrifidum, and A. quadrifidum and P. pannorum in the case of the
Demänovská L’adová Cave, which accounted for 22.2% and 23.5% of all fungi cultured from
the samples inside these caves, respectively. In turn, the most often isolated species (15% in
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each case) from the interior of the Brestovská Cave were: A. quadrifidum, Ch. merdarium,
C. fumosorosea, M. suchlasporia, and P. pannorum (Figure 3).

Overall, the temperature of soil/sediments correlated negatively with the number
of isolated keratinophilic and keratinolytic fungal species in all tested caves (p < 0.05;
r = −0.30) (Figure 4A). The same negative trend was recorded in the case of individual
caves: namely, the number of fungal species did not increase with increasing temperature
(p < 0.05; r = −0.31 for the Brestovská Cave, r = −0.21 for the Demänovská L’adová Cave,
and r = −0.54 for the Demänovská Slobody Cave) (Figure 4B–D).
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Figure 4. Relationship between the number of keratinophilic and keratinolytic fungal species and
the soil/sediment temperatures (◦C) in all the caves (A) (p < 0.05; r = −0.30); the Brestovská Cave
(B) (p < 0.05; r = −0.31); the Demänovská L’adová Cave (C) (p < 0.05; r = −0.21); and the Demänovská
Slobody Cave (D) (p < 0.05; r = −0.54).
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4. Discussion

Studies on fungal diversity depend on the correct identification of species. Classical
identification relies on direct observation of fungi either in their natural condition or after
culturing in different growth media [31]. However, currently, mycotaxonomy combines the
use of molecular methods along with conventional ones. Such an approach allows discov-
ering new or reinvestigating already known taxa [16,59]. For example, dermatophytes used
to be classified as genera Trichophyton, Epidermophyton and Microsporum. However, com-
binatory molecular analyses (sequencing of ITS rDNA, ribosomal 60S subunit, β-tubulin
fragments, and translation elongation factor 3) allowed for the reclassification of der-
matophytes into the following genera: Trichophyton, Epidermophyton, Nannizia, Paraphyton,
Lophophyton, Microsporum, Arthroderma, Ctenomyces, and Guarromyces [60].

In the present study, we followed this trend by using targeted growth conditions
(Vanbreuseghem hair bait) as well as a combination of classical and molecular identification
approaches in order to report the occurrence of keratin-dependent fungal species in three
studied caves (Brestovská, Demänovská L’adová and Demänovská Slobody) belonging
to the Tatras Mountains in north Slovakia. The interest in soil mycobiota capable of ker-
atin degradation originates in two factors: the biochemical resistance of keratin and the
pathogenic potential of keratinolytic saprophytic species [61]. In the present paper, we
followed the broad definition of keratin-associated fungi, which divides them into ker-
atinolytic and keratinophilic species. Accordingly, keratinolytic fungi are able to utilize
keratin, while keratinophilic fungi utilize non-keratinous components of keratinous sub-
strata or by-products of keratin degradation [62]. In natural environments, the presence
of keratin-associated fungi depends on the availability of keratinic substrata of animal or
human origin [63]. The constant flow of such organic matter has been associated with the
distribution of keratinolytic fungi in environments such as arable soils [64–67], sewage
sludge and river bottom sediments [68,69], compost [70], bird feathers [71], the deposits of
free-living rodents [72], the nests of water birds [73], and pellets of birds of prey [74].

Keratinolytic fungi are classified as dermatophytes and Chrysosporium, or according to
Błyskal (2009) into two orders: Onygenales and Eurotiales [75]. Kunert (2000) emphasized
that fungi belonging to Onygenales are highly specialized in keratin degradation and include
six genera, namely Arthroderma, Aphanoascus, Epidermophyton, Microsporum, Trichophyton, and
Chrysosporium [76]. However, the diversity of keratinolytic species is considered to be much
broader [67,77] and includes species from the genera Trichoderma, Fusarium, Cladosporium,
Phytophthora [78], and Talaromyces [79], as well as Aspergillus niger and Aspergillus fumigatus [71].
In fact, the definition can be even wider as some species or genera are newly reported to be
keratin-dependent, such as Pseudogymnoascus destructans [80].

It should be emphasized that underground objects display harsh living conditions for
microorganisms because they are heterotrophic ecosystems (with few exceptions, e.g., the
Movile Cave “Peştera Movile” in Romania, a sulfur-based chemolitho-313 autotrophic
ecosystem [81]) Despite this fact, in this study we reported the presence of 10 keratin-
dependent genera, namely Aphanoascus, Arthroderma, Aspergillus, Chrysosporium, Cordyceps,
Cosmospora, Keratinophyton, Metapochonia, Penicillium, and Pseudogymnoascus (Table 2). All
of these belong to the phylum Ascomycota, which is in agreement with Vanderwolf [12].

Out of the 18 different fungal species identified herein, the following were already re-
ported by Vanderwolf et al. [12] to colonize underground sites: A. fumigatus, A. quadrifidum,
A. keratinophilus (reported as Chrysosporium keratinophilum), Ch. merdarium, C. fumosorosea (re-
ported as Isaria fumosorosea), M. suchlasporia (reported as Pochonia suchlasporia), P. brevicompactum,
P. chrysogenum, P. griseofulvum, and P. pannorum. Three years later, Vanderwolf et al. [82] re-
ported the presence of C. viridescens in two caves in Canada: Grotte de la Baie de la Tour and
Grotte du lac Maloin [82]. Held et al. [83] reported C. viridescens in an underground iron
ore mine in Soudan (Minnesota, USA). Additionally, we came across a record from the
early 1960s of the presence of A. multifidum (reported as Chryosporium sp.) in a cave in
Romania [84]. The literature has also reported on other species of keratinophilic and kerati-
nolytic fungi that were detected in underground ecosystems such as Arthroderma curreyi,
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Microsporum gypseum, Trichophyton mentagrophytes, T. rubrum, T. terrestre, and M. cookie, a
clade with close affinities to P. cookei [31,85–89]. However, the methodology and results
obtained by Lurie and Way [86] were imprecise (lack of adequate controls); the authors
themselves admitted that they had no data on the animals being free from T. mentagrophytes
or if the proper controls were included. In conclusion, to the best of our knowledge,
A. eboreum, A. insingulare, Ch. europae, Ch. siglerae, K. wagneri, and P. charlesii have not yet
been described in caves nor mines. Thus, we believe that we are the first to report their
occurrence in underground sites.

Arthroderma eboreum and A. insingulare, together with the most abundant Arthroderma
in our research, A. quadrifidum, are representatives of the former Trichophyton terrestre
complex. Arthroderma eboreum was first reported as Trichophyton eboreum in 2005 [90], while
its teleomorph Arthroderma olidum was described the following year [91]. This species
was isolated from the skin of an HIV-positive patient with tinea pedis. Despite being
cured with the topical combination of cyclopiroxolamine and terbinafine [90], it was later
described as fluconazole-resistant [92]. Similarly, A. insingulare is reputed to be involved
in skin inflammatory disorders (including hyperpigmentation) and was described to be
resistant towards griseofulvin [93]. The closely related A. quadrifidum is a known example
of an opportunistic pathogen, the strains of which might demonstrate resistance towards
itraconazole, nystatin, and griseofulvin [94].

Not much is known about Ch. europae, Ch. siglerae (currently known as Keratinophyton
siglerae [95] and K. wagneri. Chrysosporium europae was reported as an isolate from soil
and a children’s sandpit in Slovakia [96]. This species displays a wide range of thermal
tolerance as it was isolated from Antarctic permafrost sediments, but was also reported
to survive heating up to 52 ◦C [97]. In addition, its nutrient requirements must be low
as it is one of the most abundant species isolated from nutrient-poor coal ash heaps in
Sosnowiec (Poland) [98]. Chrysosporium siglerae and K. wagneri, based on ITS phylogeny,
seem to be closely related as they occupy close (but separate) terminal clusters [95]. Already
known distinctive traits include the presence of intercalary conidia in Ch. siglerae, the
ability of Ch. siglerae to grow at 37 ◦C, and much smaller conidium size in the case of
K. wagneri [96]. Reporting their presence in underground sites may be of great importance
in further understanding the biology of these poorly described fungal species.

On the other hand, P. charlesii is a species well-known for its wide metabolic abilities,
and is constantly reported as useful in biotechnology. P. charlesii was reported to produce
tannases—enzymes that catalyze the hydrolysis of ester and depside bonds in hydrolysable
tannins, releasing glucose and gallic acid [99]. Additionally, P. charlesii is a known producer
of alkaline proteases [100] and seven antinematodal and antiparasitic agents, including
paraherquamide and its analogs [101]. Isolation and characterization of novel environmen-
tal strains of microorganisms already known for their biotransformation abilities may lead
to further improving and better understanding biotechnological processes. The potential
usefulness of P. charlesii strains isolated in our study is yet to be investigated.

It should also be mentioned that the survival and biodiversity of micromycetes in dif-
ferent environments are strictly dependent on microclimatic conditions, with temperature
and humidity being the most crucial factors [102]. There is a positive correlation between
the abundance and biodiversity of airborne fungi and air temperature in underground
ecosystems [16]. However, in our research, we have shown that there is no similar rela-
tionship between soil/sediment temperature and the biodiversity of keratinophilic and
keratinolytic fungi in the underground sites (Figure 4), as the number of fungal species
did not increase with increasing temperature in all studied caves. More importantly, the
number of species inside the studied caves was greater than those outside the underground
sites. The species biodiversity of keratinophilic and keratinolytic fungi in the underground
ecosystems, as in the case of fungi in the air, probably also depends on other factors, such
as those of anthropogenic origin (e.g., the number of visitors, the period from which the
object was made available to tourists) as well as the abundance of animals living in this
type of site [6,103–105]. It can also be assumed that the specific microclimate inside the
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caves contributes to the creation of a certain ecological niche in the context of micromycetes
where keratinophilic and keratinolytic species have taken over and thus are so abundant
inside the underground sites.

5. Conclusions

Our study contributes to gaining new knowledge about the diversity of keratinophilic
and keratinolytic fungi inhabiting Slovak caves that are open to tourists in Central Europe.
Overall, we isolated 18 fungal species, 17 of which were present inside the cave, but only 3 of
which were found outdoors. One of the most commonly isolated species was A. quadrifidum,
which belongs to the former T. terrestre complex. To the best of our knowledge, our
research has allowed for the first detection of fungal species in underground ecosystems
(A. eboreum, A. insingulare, Ch. europae, Ch. siglerae, K. wagneri, P. charlesii). Not only have
we provided new insight into the biology of those species, but we also report that some
of them (A. eboreum, A. insingulare) may present a threat towards immunocompromised
patients and animals. Furthermore, we believe that underground sites may be a source
of new strains for biotechnological applications, one example being P. charlesii. We also
showed that the temperature of soil and sediments did not positively correlate with the
number of isolated keratinophilic and keratinolytic fungal species in caves. Therefore, the
species biodiversity of this group of fungi in underground ecosystems most likely depends
on anthropogenic factors as well as the abundance of animals living in this type of site.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/app12031455/s1. Table S1. BLAST analysis of rDNA ITS of
keratinophilic and keratinolytic fungi occuring in selected caves in Slovakia. All E values were
zero). Table S2. Number of keratinophilic and keratinolytic fungal species isolated from the studied
locations of Slovakia caves and the Shannon diversity index for the interior study sites. 1 See Figure 1
for locations (I—outside underground facilities, II–VIII—inside underground facilities).
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31. Ogórek, R.; Piecuch, A.; Višňovská, Z.; Cal, M.; Niedźwiecka, K. First report on the occurence of dermatophytes of Microsporum
cookei clade and cose affinities to Paraphyton cookei in the Harmanecká Cave (Vel’ká Fatra Mts., Slovakia). Diversity 2019, 11, 191.
[CrossRef]

32. Simpanya, M.F. Dermatophytes: Their taxonomy, ecology and pathogenicity. Rev. Iberoam Micol. 2000, 669, 1–12.
33. Gherbawy, Y.A.M.H. Keratinolytic and keratinophilic fungi of mangrove’s soil and air in the city of Qenaand their response to

garlic extract and onion oil treatments. Acta Mycol. 1996, 31, 87–89. [CrossRef]
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