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Abstract
Epizoanthus species are generally found in association with other marine invertebrates such as hermit crabs 
and gastropods. Although Epizoanthus spp. are relatively common, there is limited information about 
their diversity and ecology due to their habitats or hosts, often being below the depths of SCUBA diving 
(>~50 m). In particular, the Epizoanthus fauna of the Indo-Pacific Ocean remains poorly understood. In 
this study, the diversity of Epizoanthus species associated with eunicid worm tubes from shallow waters in 
the Pacific Ocean we investigated using molecular analyses (mitochondrial cytochrome oxidase subunit 1 
= COI, mitochondrial 16S ribosomal DNA = mt 16S-rDNA, nuclear internal transcribed spacer region 
of ribosomal DNA = ITS-rDNA) combined with morphological and ecological data. The combined data 
set leads us to describe two new species; Epizoanthus inazuma sp. n. and Epizoanthus beriber sp. n. Both 
new species are found in low-light environments: E. inazuma sp. n. on mesophotic coral reef slopes and 
reef floors, or on the sides of overhangs; E. beriber sp. n. has only been found in caves. Morphological 
characteristics of these two new species are very similar to E. illoricatus Tischbierek, 1930 but the two new 
species are genetically distinct. Mesentery numbers and coloration of polyps may be useful diagnostic 
characteristics among eunicid-associated Epizoanthus species. These results demonstrate that there is high 
potential for other potentially undescribed zoantharian species, particularly in underwater cave habitats. 
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Introduction

The order Zoantharia is currently separated into two suborders (Haddon and Shackleton 
1891): Macrocnemina and Brachycnemina. The suborders are distinguished by differ-
ences in the fifth pair of mesenteries from the dorsal directive, which are complete in the 
suborder Macrocnemina and incomplete in the suborder Brachycnemina. The suborder 
Macrocnemina is currently composed of five families: Epizoanthidae, Hydrozoanthidae, 
Microzoanthidae, Nanozoanthidae, and Parazoanthidae. Most species of Macrocnemina 
to the exception of Microzoanthidae and Nanozoanthidae are often found in association 
with other marine invertebrates. The family Epizoanthidae can be distinguished from 
other macrocnemic zoantharians by the presence of a simple mesogloeal sphincter muscle.

The family Epizoanthidae consists of three genera: Epizoanthus, Palaeozoanthus, 
and Thoracactis. The genus Palaeozoanthus has not been found or examined in detail 
since its original description (Carlgren 1924), while Thoracactis topsenti Gravier, 1918 
is the sole representative of its genus and is an epibiont on sponges at 800-1100 me-
ters around the Cape Verde Islands (Gravier 1918). The type genus of Epizoanthidae, 
Epizoanthus, includes species that have epibiotic associations with hermit crabs (Muir-
hed et al. 1986; Ates 2003; Reimer et al. 2010a; Schejter and Mantelatto 2011), mol-
luscs (Rees 1967), eunicid worms (Sinniger et al. 2005), or the stalks of glass sponges 
(hexactinellids) (Beaulieu 2001). Epizoanthus spp. have been reported worldwide, in-
cluding from the northeast Atlantic (Muirhead et al. 1986), the Caribbean Sea (Du-
erden 1898), and both the eastern (Carlgren 1899; Philipp and Fautin 2009; Sinniger 
et al. 2009) and western Pacific (Haddon and Shackleton 1891; Reimer et al. 2010a). 

Although Epizoanthus spp. are relatively common, little research has been con-
ducted on the ecology and taxonomy of this genus (Ates 2003). Many Epizoanthus 
species are known from below the depth limits safe for SCUBA diving (>~50 m), 
making collection and observation difficult. Epizoanthus species are also often difficult 
to identify due to lack of external diagnostic characteristics, and data are often limited 
to polyp size, oral disk color, and tentacle count (Reimer et al. 2010a). It is often dif-
ficult to observe zoantharian internal morphology due to sand encrustation in their 
epithelial/endodermal tissue, making thin cross sections difficult without compromis-
ing histology (Reimer et al. 2010b). Molecular phylogenetic analyses have been used 
to overcome these issues and to help understand zoantharian diversity and taxonomy 
(e.g. Burnett 1997; Reimer et al. 2006; Sinniger et al. 2008; Fujii and Reimer 2011). 
For example, Epizoanthus species diversity in Japan has been preliminarily investigated 
by using molecular methods and potentially undescribed species were found (Sinniger 
et al. 2009; Reimer et al. 2010a). Thus, molecular methods are an effective tool to help 
clarify the taxonomy and diversity of Epizoanthus species.
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There are several described Epizoanthus species which are free-living, carcinoecium-
forming, or epizoic on gastropods or glass sponges from the Pacific Ocean, such as 
E. paguriphilus Verrill, 1883 from the East China Sea; E. stellaris Hertwig, 1888 from 
the Philippines; E. patagonichus Carlgren, 1899 from Chile; E. indicus (Lwowsky, 
1913) from the East China Sea; E. illoricatus Tischbierek, 1930 from Manila; 
E.  ramosus Carlgren, 1936 from the East China Sea; E. scotinus Wood, 1957 from 
the Pacific Northwest; E. sabulosus Cutress, 1971 from Australia; E. giveni Philipp & 
Fautin, 2009 from California, and E. fiordicus Sinniger & Haussermann, 2009 from 
Chile. For Epizoanthus spp. attached to zig-zag shaped eunicid worm tubes, all have 
been identified as E. illoricatus since the species’ original description. Eunicid worms 
are distributed in marine benthic environments around the world and are especially 
common in shallow tropical waters (Fauchald 1992). The family Eunicidae is currently 
composed of eight valid genera and ~330 species (Zanol et al. 2013), some of which 
are known to have associations with various marine invertebrates such as cnidarians, 
sponges and mollusks (Martin and Britayev 1998; Neves and Omena 2003). Recently, 
Reimer et al. (2014) investigated the diversity of zoantharians in the central Indo-
Pacific and suggested that there are may be at least two species within E. illoricatus. 
However, no taxonomic conclusions were reached in this study.

In the current study the diversity of Epizoanthus species attached to eunicid worm 
tubes we investigated via molecular phylogenetic analyses utilizing three DNA mark-
ers; nuclear internal transcribed spacer of ribosomal DNA (ITS-rDNA), mitochon-
drial 16S ribosomal DNA (mt 16S-rDNA), and cytochrome oxidase subunit I (COI), 
and nuclear internal transcribed spacer of ribosomal DNA (ITS-rDNA). We then 
combined molecular results with morphological data (polyp dimensions, polyp ar-
rangement and density within colonies, external colony and oral disk color, cnidae 
analyses, mesenterial patterns and numbers). The combined results of this research 
indicated the presence of two phylogenetically distinct and previously undescribed 
species of Epizoanthus associated with eunicid worm tubes in the Pacific Ocean, which 
we formally describe herein. 

Materials and methods

Specimen collection

Epizoanthus specimens were collected from three localities in Okinawa, Japan, seven lo-
calities in Palau, and one location each in New Caledonia and Papua New Guinea (Fig-
ure 1). In total 70 specimens were collected, of which 69 specimens were collected by 
SCUBA at 10 to 40 m depth, with one additional specimen collected using the Japan 
Agency for Marine-Earth Science and Technology (JAMSTEC)’s ROV Hyper-Dolphin 
from 114 m during a research cruise in southern Japan in 2012. Collected specimens 
were preserved in 70–99.5% ethanol for molecular analyses and/or fixed in 5–10% 
seawater formalin and then later preserved in 70% ethanol for morphological analyses.
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Figure 1. Sampling location in the Pacific Ocean of specimens used in this study. Location of specimens 
collected in this study represented by closed symbols. a Cape Zanpa b Cape Manzamo c Bise d Siaes 
Corner e Siaes Tunnel f Blue Hole g Blue Corner h Turtle Cove i Short Drop-off j Ngeruangel k Mas-
cot Channel l Loyalty Islands m Kodakara Islands. Location in bold indicate type localities as follows: 
b (Cape Manzamo, Onna, Okinawa, Japan) = E. inazuma sp. n. e (Turtle Cove, Palau) = E. beriber sp. n. 

Morphological analyses

The lengths and diameters of individual polyps, tentacle lengths and numbers, color 
of polyps, and diameters of oral disks were measured using in situ images or a dissect-
ing microscope. Additionally, polyp densities of colonies attached to identically sized 
eunicid worm tubes (9 cm in length) were calculated using a counter under a dissect-
ing microscope. For internal morphological analyses, some specimens’ polyps were cut 
into 7 µm cross-sections using a microtome after paraffin embedding following Reimer 
et al. (2010b), and these sections were subsequently stained with hematoxylin and 
eosin. Specimens to examine were selected from each phylogenetic clade (n = 3/clade) 
recovered in the molecular analyses.
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Cnidae

Cnidae classification basically followed England (1991) and Ryland and Lancaster 
(2004). However, Schmidt (1974), Hidaka et al. (1987), Hidaka (1992), Fujii and Re-
imer (2011), and Montenegro et al. (2015) have referred to basitrichs and microbasic 
b-mastigophores as the same type of nematocysts and therefore in this study, these two 
types were pooled together. We used a Nikon Eclipse80i stereomicroscope (Nikon, To-
kyo) to count and examine undischarged cnidae, which were measured using ImageJ 
software (National Institute of Health, Bethesda, Maryland, Nikon Eclipse80i, Nikon, 
Tokyo). Specimens to be examined were selected from each phylogenetic clade recov-
ered from the molecular analyses.

DNA extraction, PCR amplification and sequence

DNA was extracted from tissue preserved in 99.5% ethanol by following a guanidine 
extraction protocol (Sinniger et al. 2010) or using a spin-column DNEasy Blood and 
Tissue Extraction kit (Qiagen, Tokyo). PCR amplification using Hot Star Taq Plus 
Master Mix Kit (Qiagen, Tokyo) was performed for each of ITS-rDNA (nuclear inter-
nal transcribed spacer region of ribosomal DNA), mt 16S-rDNA (mitochondrial 16S 
ribosomal DNA), and COI (cytochrome oxidase subunit I). The ITS-rDNA region 
was amplified using the specific primer set ITSf (5’-CTA GTA AGC GCG AGT CAT 
CAG C-3’) and ITSr (5’-GGT AGC CTT GCC TGA TCT GA-3’) (Swain 2009). mt 
16S-rDNA was amplified using the universal primer 16Sar (5’-CGC CTG TTT ATC 
AAA AAC AT-3’) (Palumbi et al. 1996) and the specific primer 16SBmoH (5’-CGA 
ACA GCC AAC CCT TGG3’) (Sinniger et al. 2005). The COI gene was amplified 
using the universal primer set LCO1490 (5’-GGT CAA CAA ATC ATA AAG ATA 
TTG G-3’) and HCO2198 (5’-TAA ACT TCA GGG TGA CCA AAA AAT CA-3’) 
(Folmer et al. 1994). All DNA markers were amplified following the thermal-cycle 
conditions described in Fujii and Reimer (2011). PCR products were checked us-
ing 1.0% agarose gel electrophoresis. The positive PCR products were cleaned using 
shrimp alkaline phosphatase (SAP) and Exonuclease I (Takara Bio Inc., Shiga, Japan), 
and then sequenced by Fasmac (Kanagawa, Japan).

Phylogenetic analyses

Obtained DNA sequences were initially checked using the Basic Local Alignment 
Search Tool (BLAST, National Center for Biotechnology Information). Obtained 
nucleotide sequences for the COI gene, mt 16S-rDNA and ITS-rDNA were aligned 
by CLUSTAL W ver. 1.83 (Thompson et al. 1994) on default settings supplied by 
Bioedit ver. 7.0.9.0. (http://www.mbio.ncsu.edu/Bioedit/page2.html). The align-
ments were inspected by eye and manually edited in Bioedit. Sequences belonging 

http://www.mbio.ncsu.edu/Bioedit/page2.html
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to the family Hydrozoanthidae were used as outgroups. In this manner three aligned 
datasets were generated. All sequence datasets are available upon request from the 
corresponding author. 

For the phylogenetic analyses of ITS-rDNA, mt 16S-rDNA and COI, the same 
methods were independently applied. The neighbor-joining (NJ) method (Saitou and 
Nei 1987) was performed using MEGA6 (Tamura et al. 2013), with 1000 replicates 
of bootstrapping. Maximum-likelihood (ML) analyses were performed using PhyML 
online (Guindon and Gascuel 2003). PhyML was performed using an input tree gen-
erated by BIONJ with the general time-reversible model (Rodriguez et al. 1990) of 
nucleotide substitution incorporating invariable sites and a discrete gamma distribu-
tion (eight categories) (GTR+I+C). The proportion of invariable sites, a discrete gam-
ma distribution, and base frequencies of the model were estimated from the dataset. 
PhyML bootstrap trees (1000 replicates) were constructed using the same parameters 
as the individual ML trees. Bayesian trees were constructed in Mr Bayes 3.1.2 (Ron-
quist and Huelsenbesk 2003) under the GTR + I + I- model. One cold and three 
heated Markov chain Monte Carlo (MCMC) chains with temperature of 0.2 were 
run for 1,500,000 generations, subsampling frequency of 200 and a burn in length of 
700,000 for all alignments. 

Results

Systematics

Phylum Cnidaria Hatschek, 1888
Class Anthozoa Ehrenberg, 1831
Subclass Hexacorallia Haeckel, 1896
Order Zoantharia Gray, 1832
Suborder Macrocnemina Haddon & Shackleton, 1891
Family Epizoanthidae Delage & Hérouard, 1901
Genus Epizoanthus Gray, 1867

Epizoanthus Gray, 1867

Type species. Epizoanthus papillosus Johnston, 1842. 
Synonym. Epizoanthus incrustatus (Dueben & Koren, 1847) (ICZN 1991: case 

2750).
Remark. Herein, we choose to use the ordinal name Zoantharia Gray, 1832 as in 

the World Register of Marine Species (Hoeksema and Reimer, 2015). Although Zo-
antharia Gray, 1832, has identical spelling with the supraordinal name Zoantharia de 
Blainville, 1830, the latter name has fallen from common use—Hexacorallia Haeckel, 
1896, being favoured.
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Epizoanthus inazuma sp. n.
http://zoobank.org/0B91DB0E-A5AC-41CB-B78F-C8E7B8D44C2A

Material examined. Holotype. NSMT-Co1574 (MISE-HK54), 26°30'18.3"N, 
127°51'02.3"E, Cape Manzamo, Onna Village, Okinawa, Japan, depth 24 m, collected 
by Hiroki Kise, July 21, 2014, divided in two pieces, one portion fixed in 99.5% EtOH 
and the other in 5–10% saltwater formalin, deposited in National Museum of Nature 
and Science, Tokyo, Japan. Paratype 1. RMNH 42100 (MISE-HK9) 26°30'18.3"N, 
127°51'02.3"E, Cape Manzamo, Onna Village, Okinawa, Japan, depth 25 m, col-
lected by James D. Reimer, October 21, 2008, fixed in 99.5% EtOH, deposited in 
Naturalis Biodiversity Center, Leiden, The Netherlands. Paratype 2. USNM 1296757 
(MISE-HK66) 26°26'26.5"N, 127°42'43.7"E Cape Zanpa, Yomitan Town, Okinawa, 
Japan, depth 34 m, collected by Hiroki Kise, August 5, 2014, fixed in 99.5% EtOH, 
deposited in Smithsonian Institution National Museum of Natural History, Washing-
ton, D.C., USA. Other material. MISE-HK43 26°30'18.3"N, 127°51'02.3"E, Cape 
Manzamo, Onna Village, Okinawa, Japan, depth 30 m, collected by Hiroki Kise, April 
5, 2014, fixed in 99.5% EtOH.

Description of holotype. Colony of approximately 140 polyps connected by thin, 
under-developed coenenchyme on eunicid worm tubes. The tubes are made of a chi-
tin-like substance. Polyps approximately 0.7 to 1.2 mm high (=length) from coenen-
chyme, and 1.0 to 1.65 mm in diameter. Polyps were attached from base to proximal 
extremity of zig-zag shaped tubes of eunicid worms, and attached to not only bent sec-
tions but also to other locations. Polyp external coloration black, oral disk light brown 
to brown, lighter nearer the oral opening and darker around oral disk edges. Polyps 
encrusted with sand and silica particles in their coenenchyme and ectodermal tissue; 
with few sand particles in the mesoglea.

Diagnosis. Morphology. Polyps connected by thin, under-developed coenenchyme 
on eunicid worms belonging to family Eunicidae. Maximum diameter of polyps ap-
proximately 4 mm, maximum height approximately 5 mm in situ. Epizoanthus ina-
zuma sp. n. has 20-22 tentacles that are cylindrical and either as long or longer in 
comparison to oral disk diameter.

Internal anatomy. While the 5th mesentery from dorsal directive is obviously a 
complete mesentery (macrocnemic arrangement), the 6th mesentery is also a complete 
mesentery (Figure 2b). Azooxanthellate. Mesogleal thickness approximately 75 µm.

Cnidae. Holotrichs, basitrichs, microbasic p-mastigophores, spirocysts (see Table 1 
into this paper, Figure 3).

Etymology. Epizoanthus inazuma sp. n. is named after the Japanese word ‘inazu-
ma’ meaning ‘lightning’, as colonies of this species are attached to eunicid worm tubes, 
and the worm tube shape resembles a classic lightning-bolt shape. Common Japanese 
name. ‘Inazuma-yadori-sunaginchaku’ (new Japanese name).

Distribution and habitat. Epizoanthus inazuma sp. n. is found in low-light en-
vironments such as on mesophotic coral reef slopes and reef floors, or on the sides of 
overhangs. Specimens were collected from 10 to 40 m depth.

http://zoobank.org/0B91DB0E-A5AC-41CB-B78F-C8E7B8D44C2A
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Figure 2. Cross-sections of Epizoanthus illoricatus and E. inazuma sp. n. a E. illoricatus; 6th mesentery 
is incomplete from dorsal directive b E. inazuma sp. n. 6th mesentery is complete from dorsal directive. 
Dd  dorsal directive A actinopharnx Im incomplete mesentery Cm complete mesentery M mesoglea; 5th, 
5th mesentery from dorsal directive. Scale bars: 200 μm.

Epizoanthus inazuma sp. n. is currently known only from Okinawa (Figure 1). 
However, it may be distributed in other locations in the Pacific Ocean, as it is likely 
this species has been confused with E. illoricatus and/or E. beriber sp. n. in the past due 
to their similar external morphology. E. illoricatus has been found in many areas of the 
western Pacific Ocean such as in New Caledonia (Sinniger 2006; Sinniger et al. 2009), 
the Yellow Sea, China (Pei 1999), Papua New Guinea (BW Hoeksema, pers. comm.), 
Australia (Lindsay et al. 2012), Taiwan (Reimer et al. 2013), and Palau (Reimer et al. 
2014), and E. inazuma sp. n. may be similarly distributed.

Remarks. Epizoanthus inazuma sp. n., E. beriber, and E. illoricatus can be distin-
guished from most other Epizoanthus species by their specific substrate (eunicid worm 
tubes) in the Pacific Ocean. Acrozoanthus australiae (family Zoanthidae) is also associ-
ated with eunicid worm tubes, but E. inazuma sp. n. can be distinguished from A. 
australiae due to its mesenterial arrangement (the family Zoanthidae is within the sub-
order Brachycnemina), as well as by many obvious external features such as coloration, 
polyp size, and by being azooxanthellate (A. australiae is zooxanthellate). E. inazuma 
sp. n. is very similar to E. illoricatus (Figure 4a, b, c, f ), but can be distinguished by 
differing mesenterial arrangement (6th mesentery is complete as opposed to 6th mes-
entery being incomplete in E. illoricatus) (Figure 2). Epizoanthus inazuma sp. n. has 
different coloration than E. beriber sp. n., which is pale white. Epizoanthus inazuma sp. 
n. and E. illoricatus can have the same external coloration (black), but the cnidomes of 
these two species are different; E. illoricatus has large holotrichs in the column, pharynx 
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Figure 3. Cnidae in tentacles, column, pharynx, filaments of Epizoanthus illoricatus, E. inazuma sp. n. 
and E. beriber sp. n. respectively. HL holotrichs large HM holotrichs medium HS holotrichs small B 
basitrichs pM microbasic p-mastigophores S spirocysts.

and mesenterial filaments, while E. inazuma sp. n. does not have any large holotrichs 
in the column, pharynx, or mesenterial filaments. As well, there are also differences in 
sizes of some nematocyst types of these two species (e.g. bastrichs in the pharynx or 
mesenterial filaments). The cnidome composition of E. inazuma sp. n. is different from 
E. beriber sp. n. and E. illoricatus, and E. beriber’s sp. n. cnidome is similar to that of E. 
illoricatus (see Table 1; Figure 3).

All Indo-Pacific Epizoanthus species that are obligate epibionts on eunicid worm 
tubes until now have been identified as E. illoricatus, which was originally described 
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from Manila, the Philippines. The type specimens of E. illoricatus were likely lost dur-
ing World War II when the Zoologische Staatssammlung Museum in München was 
burned down. Additionally, no specific type locality was given except ‘Manila’ in the 
original description and Manila is now a very altered environment compared to 1930. 
Therefore, it is difficult to find and identify E. illoricatus’ exact type locality. However, 
E. illoricatus can be clearly separated from E. inazuma sp. n. and E. beriber sp. n. by 
both morphological and molecular data. 

Epizoanthus beriber sp. n.
http://zoobank.org/7F0A1F6F-4922-4C2C-AF62-33948394AC97

Material examined. Holotype. NSMT-Co1575 (MISE-HK129), 7°5'01.0"N, 
134°15'80.0"E, Turtle Cove, Palau, depth 20 m, collected by Hiroki Kise, May 
6, 2015, divided in two pieces, one portion fixed in 99.5% EtOH and the other 
in 5–10% saltwater formalin, deposited in National Museum of Nature and Sci-
ence, Tokyo, Japan. Paratype 1. RMNH 42101 (MISE-HK126), 7°8'29.4"N, 
134°13'23.3"E, Blue Hole, Palau, depth 36 m, collected by Hiroki Kise, May 5, 
2015, divided in two pieces, one portion fixed in 99.5% EtOH and other in 5–10% 
saltwater formalin, deposited in Naturalis Biodiversity Center, Leiden, The Nether-
lands. Paratype 2. USNM 1296758, USNM 1296759 (MISE-HK113), 7°18'54.8"N, 
134°13'13.3"E, Siaes Tunnel, Palau, depth 30 m, collected by Hiroki Kise, April 28, 
2015, divided in two pieces, one portion fixed in 99.5% EtOH and other in 5–10% 
saltwater formalin, deposited in Smithsonian Institution National Museum of Natu-
ral History, Washington, D.C., USA. Other material. MISE-HK112, 7°18'54.8"N, 
134°13'13.3"E, Siaes Tunnel, Palau, depth 37 m, collected by Hiroki Kise, April 28, 
2015, divided in two pieces and fixed in 99.5% EtOH and 5–10% saltwater forma-
lin, respectively; MISE-HK116, 7°18'54.8"N, 134°13'13.3"E, Siaes Tunnel, Palau, 
depth unknown, collected by Hiroki Kise, April 28, 2015, divided in two pieces and 
fixed in 99.5% EtOH and 5–10% saltwater formalin, respectively; MISE-HK117, 
7°18'54.8"N, 134°13'13.3"E, Siaes Tunnel, Palau, depth unknown, collected by 
Hiroki Kise, April 28, 2015, fixed in 99.5% EtOH; MISE-HK118, 7°18'54.8"N, 
134°13'13.3"E, Siaes Tunnel, Palau, depth unknown, collected by Hiroki Kise, April 
28, 2015, fixed in 99.5% EtOH; MISE-HK119, 7°18'54.8"N, 134°13'13.3"E, Si-
aes Tunnel, Palau, depth 19 m, collected by Hiroki Kise, April 28, 2015, fixed in 
99.5%; MISE-HK120, 7°18'54.8"N, 134°13'13.3"E, Siaes Tunnel, Palau, depth 
unknown, collected by Hiroki Kise, April 28, 2015, fixed in 99.5% EtOH; MISE-
HK124, 8°19'00.0"N, 134°63'00.0"E, Negruangel, Palau, depth 27 m, collected 
by Hiroki Kise, April 29, 2015, fixed in 99.5% EtOH; MISE-HK125, 7°8'29.4"N, 
134°13'23.3"E, Blue Hole, Palau, depth 32 m, collected by Hiroki Kise, May 5, 
2015, divided in two pieces and fixed in 99.5% EtOH and 5–10% saltwater for-
malin, respectively; MISE-HK127 7°8'29.4"N, 134°13'23.3"E, Blue Hole, Palau, 
depth 36 m, collected by Hiroki Kise, May 5, 2015, fixed in 99.5% EtOH; HK128 

http://zoobank.org/7F0A1F6F-4922-4C2C-AF62-33948394AC97
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7°8'12.3"N, 134°13'16.5"E, Blue Corner, Palau, depth 29 m, collected by Hiroki 
Kise, May 5, 2015, fixed in 99.5% EtOH. 

Description of holotype. Colony of approximately 75 polyps connected by mod-
erately developed coenenchyme on eunicid worm tubes. Polyps were attached to from 
base to proximal extremity of zig-zag shaped tubes of eunicid worms, and attached to 
not only bent sections but also to other locations. Polyps approximately 1.4 to 1.9 mm 
high from coenenchyme, and 0.7-1.0 mm in diameter. Azooxanthellate. Polyp external 
coloration is white, oral disk solid in color, ranging from light brown to brown (Figure 
4d). Tentacles are transparent and approximately 20-22 in number. 

Diagnosis. Morphology. Polyps connected by moderately developed coenenchyme 
on eunicid worm tubes belonging to the genus Eunice, as are Epizoanthus illoricatus 
and E. inazuma sp. n. Polyps are either circular cones or cylindrical, and approximately 
0.5 to 2.1 mm high from coenenchyme (=length) and 1.1 to 2.1 mm diameter (in 
5–10% seawater formalin). Maximum diameter of polyps is approximately 3 mm, 
maximum height approximately 5 mm in situ. Polyps have 20-22 tentacles that are 
longer than oral disk diameter. In addition, polyp external color is white while oral 
disk is light brown to brown. 

Internal anatomy. Mesogleal thickness approximately 80 µm. We could not ob-
tain cross-sections or images to observe mesentery arrangement due to heavy sand 
encrustation.

Cnidae. Holotrichs, basitrichs, microbasic p-mastigophores, spirocysts (see Table 1, 
Figure 3).

Etymology. Epizoanthus beriber sp. n. is named after the legendary Beriber of Pa-
lauan folklore, who lived in a cave at Oikuul in Airai State, as this species has been 
found only in caves. Common Japanese name. ‘Ziguzagu-yadori-sunaginchaku’ (new 
Japanese name).

Distribution and habitat. Epizoanthus beriber sp. n. is found only on the floor or 
sides of caves, and always in association with eunicid worm tubes (Figure 4d, e). Speci-
mens were collected from 20-40 m in this study. E. beriber sp. n. is known from Palau 
and Papua New Guinea (Figure 1). However, it may be distributed around the Pacific 
Ocean as we have speculated for E. inazuma sp. n.

Remarks. Epizoanthus beriber sp. n. can be distinguished from E. illoricatus and 
E. inazuma sp. n. by habitat and coloration. E. beriber sp. n. was found only in caves 
while E. inazuma sp. n. and E. illoricatus were found on reef slopes or flat reef floors. 
E. beriber sp. n. has white colonial polyps with a moderately developed coenenchyme 
(Figure 4d, e) while E. inazuma sp. n. has black colonial polyps with a well-developed 
coenenchyme and E. illoricatus has gray, yellow or black colonial polyps with a either 
poorly developed or well-developed coenenchyme (Figure 4a–c, f ). 

The holotype of E. illoricatus was presumably collected by dredging or net as there 
was no SCUBA in the 1930s; and it can be inferred that the holotype of E. illoricatus 
lived in a location where it could be collected by such a method, such as on a reef flat 
or reef slope. E. inazuma sp. n. is also found in such areas. However, E. beriber sp. n. 
is only known from underwater caves that cannot be easily accessed from the surface.
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Figure 4. In situ images of Epizoanthus illoricatus, E. inazuma sp. n. and E. beriber sp. n. a E. illoricatus; 
with highly developed coenenchyme and high density of polyps. Image taken on September 12, 2014, at 
Siaes Tunnel, Palau. Specimen number HK67. Image taken by J. D. Reimer b E. illoricatus; with poorly 
developed coenenchyme and low density of polyps. Image taken on July 19, 2014, at Cape Manzamo, 
Okinawa, Japan. Specimen number HK53 c E. illoricatus; yellow colored colonies. Image taken on No-
vember 21, 2015, at Cape Manzamo, Okinawa, Japan. Specimen number HK100 d E. beriber sp. n.; 
with low density polyps. Image taken on May 6, 2015, at Turtle Cove, Palau. Specimen number HK129 
(holotype) e E. beriber sp. n.; open polyps. Image taken on April 28, 2015, at Siaes Tunnel, Palau. Speci-
men number HK113 f E. inazuma sp. n.; black colored colony. Image taken on April 5, 2014, at Cape 
Manzamo, Okinawa, Japan. Specimen number HK54 (holotype). All images excepting specimen number 
HK67 taken by H. Kise. Scale bars: 3 cm.
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Phylogenetic analyses

Sequences from Epizoanthus spp. specimens attached to eunicid worm tubes formed 
a large monophyletic clade along with other Epizoanthus spp. in the phylogenetic tree 
of all three DNA markers (Figures 5–7). The phylogenetic trees’ topologies were very 
similar for all three DNA markers. 

Although the morphological features of Epizoanthus inazuma sp. n. and E. beriber 
sp. n. were generally very similar to those of E. illoricatus, sequences were clearly sepa-
rated into three monophyletic clades in the ITS-rDNA tree (Figure 5); all sequences 
of E. inazuma sp. n. were contained in a monophyletic clade with very strong sup-
port (ML = 99%; NJ = 100%; Bayes = 1), and all sequences of E. beriber sp. n. were 
also contained in another monophyletic clade with very strong support (ML = 100%; 

Figure 5. Maximum likelihood (ML) tree based on internal transcribed spacer region of ribosomal 
DNA sequence. Numbers on nodes represent ML and neighbor-joining (NJ) bootstrap values (> 50% 
are shown). Bold branches indicate high supports of Bayesian posterior probabilities (> 0.95). Sequences 
obtained from GenBank are shown with accession numbers. 
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Figure 6. Maximum likelihood (ML) tree based on mitochondrial 16S ribosomal DNA sequence. Num-
bers on nodes represent ML and neighbor-joining (NJ) bootstrap values (> 50% are shown). Bold branch-
es indicate high supports of Bayesian posterior probabilities (> 0.95). Sequences obtained from GenBank 
are shown with accession numbers.

NJ = 100%; Bayes = 1). All sequences of E. illoricatus, including previously reported 
sequences from GenBank, were contained in another monophyletic clade with strong 
support (ML = 95%; NJ = 97%; Bayes = 0.86).

The resulting trees from mt 16S-rDNA and COI sequences from specimens in this 
study also demonstrated that all three species were different (Figures 6-7, respectively); 
E. inazuma sp. n. and E. beriber sp. n. were each contained in monophyletic clades with 
moderate to strong support (COI: ML = 98%; NJ = 100%; Bayes = 1; and ML = 84%; 
NJ = 75%; Bayes = 0.97: mt 16S-rDNA: ML = 96%; NJ = 97%; Bayes = 0.99; and 
ML = 68; NJ = 78: Bayes = 0.98; respectively). There were 5-6 bp differences between 
E. beriber sp. n. and E. illoricatus in the each of the mt 16S-rDNA and COI regions. 

Previously reported sequences of Epizoanthus aff. illoricatus (ITS-rDNA: 
GQ464895; mt 16S-rDNA: GQ464866) from Station M, Monterey Bay, California, 

http://www.ncbi.nlm.nih.gov/nuccore/GQ464895
http://www.ncbi.nlm.nih.gov/nuccore/GQ464866
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Figure 7. Maximum likelihood (ML) tree based on mitochondrial cytochrome oxidase subunit I se-
quence. Numbers on nodes represent ML and neighbor-joining (NJ) bootstrap values (> 50% are shown). 
Bold branches indicate high supports of Bayesian posterior probabilities (> 0.95). Sequences obtained 
from GenBank are shown with accession numbers.

USA were also contained within the clade of Epizoanthus spp. attached to eunicid 
worm tubes (Figures 5–6), although it is not clear which host this specimen was at-
tached to (T. Swain, MorphBank collection number 477931 [MorphBank 2015]). 
In the ITS-rDNA tree, the sequence from this specimen was sister to a clade consist-
ing of E. illoricatus and E. beriber sp. n. sequences with poor support (ML = < 50%; 
NJ = 55%; Bayes = 0.79) (Figure 5), and was sister to the large E. illoricatus+E. inazuma 
sp. n. +E. beriber sp. n. clade in the mt 16S-rDNA tree (Figure 6). Previously reported 
sequences of Epizoanthus sp. ‘Deep Mediterranea’ 1 (mt 16S-rDNA: EF672678; COI: 
EF687817) were also contained in the clade of Epizoanthus spp. attached to eunicid 
worm tubes (Figures 6-7), although this specimen was apparently not associated with 
any living substrate (F. Sinniger, personal communication). This sequence was sister to 
a large, moderately well supported clade of E. illoricatus, E. inazuma sp. n., and E. beri-
ber sp. n. (ML = 64%; NJ = 85%; Bayes = 0.55) in the mt 16S-rDNA tree (Figure 6), 
and was contained in a clade with E. illoricatus sequences in the COI tree (Figure 7).

http://www.ncbi.nlm.nih.gov/nuccore/EF672678
http://www.ncbi.nlm.nih.gov/nuccore/EF687817
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Discussion

Shallow Epizoanthus species associated with eunicid worm tubes are relatively common 
in the Pacific Ocean. However, until now there has been limited information about 
their diversity, and overall Epizoanthus species diversity is still relatively unknown and 
may be higher than has been originally thought (Reimer et al. 2010a). In this study 
two new species have been described, E. inazuma sp. n. and E. beriber sp. n. Based on 
these and previous findings (Sinniger et al. 2009; Reimer et al. 2010a), we believe there 
is a high potential of undescribed species being contained within already described 
Epizoanthus species. In this study, E. beriber sp. n. was only found in caves. Similarly, 
two Palythoa species that live in similar habitats have recently been described from 
Okinawa (Irei et al. 2015), and an azooxanthellate scleractinian coral species was also 
discovered in similar habitats in various Indo-West Pacific localities, including Palau 
(Hoeksema 2012). Such findings indicate that there may be high potential of the ex-
istence of more undescribed species in underwater caves or other ‘cryptic’ environ-
ments associated with coral reefs, and continued investigations of such environments 
are needed. 

Distinguishing characters of different Epizoanthus species attached to eunicid 
worm tubes

Epizoanthus illoricatus has high levels of intraspecific morphological variation of some 
characters, such as external coloration, coenenchyme thickness, and polyp density (Fig-
ure 4a-c). Therefore, it may be easy to mistake different morphotypes as undescribed 
or potentially novel species by basing decisions only on morphological analyses, as has 
been suggested in other zoantharians (e.g. Burnett et al. 1997). In fact, although we 
collected some E. illoricatus specimens that had poorly developed coenenchymes with a 
low density of polyps, other specimens had a thin, highly developed coenenchyme with 
a high density of polyps (Figure 4a–b), and these two different morphotypes were not 
consistently recovered in different phylogenetic clades. Thus, although these two mor-
photypes had recently been speculated to be different species (Reimer et al. 2014), this 
does not appear to be an accurate delineation of species. Additionally, E. inazuma sp. n. 
looks very similar externally to E. illoricatus. Thus, E. illoricatus and E. inazuma sp. n. 
may be easily mistaken for each other due to these similar morphological characteristics.

However, phylogenetic analyses clearly showed that E. illoricatus and E. inazuma 
sp. n. are clearly distinct and each is within a well-supported monophyly (Figures 5–7), 
with genetic distances of 0.4% to 1.3% in mt 16S-rDNA and COI regions separating 
them. Previous literature has shown such genetic distances to be in line with interspe-
cific differences among other zoantharian congeners (Reimer et al. 2006, 2010a; Sin-
niger et al. 2008; Irei et al. 2015). 

Between E. illoricatus and E. inazuma sp. n. we found notable differences in mes-
enteriel arrangements (Figure 2) and in cnidae; and in particular clear differences based 
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on the presence/absence of large holotrichs (Table 1, Figure 3). Mesenterial arrange-
ment is usually used as a taxonomic character to divide suborders, however our mor-
phological analyses in this study indicate that mesenterial arrangement is an unreliable 
indicator of suborder. The results of our study also suggest that in some cases mesente-
rial arrangement may be useful for species-level identification when combined with 
molecular analyses and data from other morphological characteristics.

Epizoanthus beriber sp. n. can be easily distinguished from E. illoricatus and E. 
inazuma sp. n. by habitat and polyp coloration (Figure 4a–f ). In general, species 
identification based on coloration has been thought of as not generally reliable for 
brachycneminic zoantharians as much intraspecific variation is present (Burnett et al. 
1995, 1997; Reimer et al. 2004), while it has been supposed that coloration may be 
considered useful for identification of some macrocnemic zoantharians (Sinniger et al. 
2009, 2010). Here, we consider coloration of polyps as a potentially useful taxonomic 
characteristic in these Epizoanthus species when utilized in combination with habitat 
data and molecular analyses.

Relationship between Epizoanthus spp. and eunicid worm tubes

Epizoanthus illoricatus, E. inazuma sp. n. and E. beriber sp. n. are obligate epibionts on 
eunicid worms. Members of Eunicidae that host these Epizoanthus spp. make chitin-
like zigzag tubes (Tischbierek 1930), and some colonies of E. illoricatus completely 
covered this substrate. In this study, we observed no E. illoricatus attached to tubes that 
did not have living eunicid worms inside. This means that E. illoricatus apparently has 
some kind of association with living eunicid worms; commensalism, mutualism, or 
parasitism. To understand this relationship, observations of the survival rate of Epizo-
anthus colonies with or without eunicid worms in both controlled laboratory settings 
and in situ are necessary. E. illoricatus and the two new species in this study do not 
produce tube-like structures such as a carcinoecium (Figure 4a–f ), which is a corneous 
shell-like structure that has been observed in other Epizoanthus species’ associations 
(e.g. hermit crabs; Schejter and Mantelatto 2011). In addition, because there are few 
morphological differences despite clearly distinct phylogenetic signals between E. il-
loricatus and E. inazuma sp. n., it is possible that the substrate consisting of eunicid 
worm tubes may be made by different host taxa (genus/species). Further research using 
molecular and morphological analyses of not only Epizoanthus but also of the Eunice 
host species are needed to understand these relationships better.
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