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Abstract: Anxiety is the most prevalent psychiatric disorder worldwide, causing a substantial
economic burden due to the associated healthcare costs. Given that commercial anxiolytic treatments
may cause important side effects and have medical restrictions for prescription and high costs, the
search for new natural and safer treatments is gaining attention. Since lupin protein hydrolysate
(LPH) has been shown to be safe and exert anti-inflammatory and antioxidant effects, key risk factors
for the anxiety process and memory impairment, we evaluated in this study the potential effects of
LPH on anxiety and spatial memory in a Western diet (WD)-induced anxiety model in ApoE−/−

mice. We showed that 20.86% of the 278 identified LPH peptides have biological activity related to
anxiolytic/analgesic effects; the principal motifs found were the following: VPL, PGP, YL, and GQ.
Moreover, 14 weeks of intragastrical LPH treatment (100 mg/kg) restored the WD-induced anxiety
effects, reestablishing the anxiety levels observed in the standard diet (SD)-fed mice since they spent
less time in the anxiety zones of the elevated plus maze (EPM). Furthermore, a significant increase
in the number of head dips was recorded in LPH-treated mice, which indicates a greater exploration
capacity and less fear due to lower levels of anxiety. Interestingly, the LPH group showed similar
thigmotaxis, a well-established indicator of animal anxiety and fear, to the SD group, counteracting
the WD effect. This is the first study to show that LPH treatment has anxiolytic effects, pointing to
LPH as a potential component of future nutritional therapies in patients with anxiety.

Keywords: lupin; peptides; protein hydrolysates; anxiety; ApoE−/−; functional foods; peptidomics

1. Introduction

Anxiety disorders (AnxDs), characterized by anxiety and fear, are the most common
mental disorder worldwide [1]. They affect 33.7% of the global population during their
lifetime, generating an important economic burden due to enormous healthcare expen-
diture [2]. AnxDs have serious consequences on physical and mental health (headache,
irritability, breathing problems, depression, fatigue, etc.), affecting the course of normal
daily activities of patients and reducing their quality of life [3]. Numerous studies have
shown a strong relationship between anxiety and the consumption of diets rich in refined
sugars and saturated fats [4,5]. Furthermore, the intake of these types of diet is the main risk
factor for the generation of chronic diseases (diabetes, high blood pressure, cardiovascular
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diseases (CVDs), Alzheimer’s disease, and chronic obstructive pulmonary disease), which
in turn have been shown to be closely related to the presence of anxiety [6–11]. Thus,
anxiety is highly prevalent in patients with chronic diseases and can also increase the risk
of worsening functional impairment, comorbidities, and mortality [12–14]. Within chronic
diseases, there is a close connection between anxiety and memory loss. Thus, several pieces
of evidence have shown how acute stress can hinder the memorization process [15,16]. For
these reasons, anxiety is postulated to be a modifiable risk factor for chronic diseases.

Nutrition is considered a major risk factor for chronic diseases. Scientific evidence
supports the view that diet changes have positive or negative effects on health [17]. Thus,
fine control of the diet can be useful in preventing the onset of some diseases. In this regard,
dietary supplementation has been considered a strategy to modulate different metabolic
pathways [18,19]. In particular, nutritional psychiatry, based on diet improvement for the
prevention and treatment of mental disorders, including anxiety, is gaining attention in the
scientific community, which uses animal models to assess the influence of new nutritional
strategies and pharmacological interventions [20].

There are several commercial treatments to reduce anxiety (selective serotonin reup-
take inhibitors, barbiturates, benzodiazepines, analogues of benzodiazepine, etc.); however,
many of them have important side effects that affect quality of life, such as drowsiness,
sedation, confusion, and headache [21]. Therefore, the search for new natural and safer
treatments has been of great interest over the last few years. The dietary supplementation
with proteins and peptides have shown beneficial effects in human health modulating
and/or optimizing several physiological processes and diseases such as hypertension,
obesity, atherosclerosis, neurological dysfunctions, and other metabolic disorders [22–27].
There are many peptides from different foods that have also shown anxiolytic and anti-
amnesic activity [28]. Soymorphin-5 (YPFVV), soymorphin-6 (YPFVVN), and soymorphin-7
(YPFVVNA) [29], derived from soybean β-conglycinin, as well as rubiscolin-6 (YPLDLF)
and rubimetide (MRW) [30], obtained from ribulose-1,5-bisphosphate carboxylase-oxygenase
(RuBisCO) [31], have been shown to possess anxiolytic-like effects in mouse models. More-
over, ovolin (VYLPR) [32] from ovoalbumine, and peptides from αs1-casein [33,34] and
β-lactoglobulin [35], have also been shown to reduce anxiety. Numerous peptides with
antiamnesic effects from β-lactoglobulin have also been identified [36].

On the other hand, several studies have reported high levels of anxiety and spatial
cognitive deficits (memory loss) in apolipoprotein E (ApoE) knockout mice (ApoE−/−)
compared to wild-type mice [37–39]. ApoE deficiency results in an age-dependent dysreg-
ulation of the hypothalamic-pituitary-adrenal (HPA) axis through a mechanism that affects
primarily the adrenal gland. The HPA axis regulates the secretion of glucocorticoids (GCs),
which play important roles in several brain functions, including cognition. Dysregulation
of the HPA axis has also been associated with behavioral alterations. Thus, ApoE−/−

mice show higher anxiety values than wild-type animals by using the elevated plus maze
(EPM) test [40]. In addition, anxiety and memory loss can be accelerated and increased in
ApoE−/− fed a high-fat diet by oxidant and inflammatory effects [37,38]. Moreover, recent
studies have shown a strong link between high cholesterol levels and anxiety [4,41].

Oxidative stress and inflammation play a key role in the anxiety process and memory
impairment. In fact, alteration in redox balance, increased reactive oxygen species (ROS)
production and high circulating inflammatory cytokines such as interleukin (IL)-1, IL-6, and
tumor necrosis factor (TNF) have been detected both in anxiety patients and stressed animal
models of anxiety [42–44]. In this line, our group has previously described that a Lupinus
angustifolius protein hydrolysate (LPH) exerts hypocholesterolemic, anti-inflammatory and
antioxidant effects in in vitro [45] and in vivo [46,47] models. In light of these considera-
tions, this study aimed to identify LPH peptides with potential anxiolytic and antiamnesic
effects and to evaluate the potential effects of LPH.
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2. Results
2.1. Characterization of LPH
2.1.1. Chemical Analysis of LPH

The molecular weights of the detected peptides ranged from 0.76 to 3.11 kDa. Specifi-
cally, the percentage of peptides identified with a molecular weight of <1 kDa, 1–1.5 kDa,
1.5–2.0 kDa, 2.0–2.5 kDa, and >2.5 kDa were 5.05%, 41.00%, 39.20%, 11.15%, and 3.60%,
respectively (Figure 1A). LPH contained peptides with hydrophobicity <+10 kcal/mol
(10.43%), +10–15 kcal/mol (19.42%), +15–20 kcal/mol (36.33%), +20–30 kcal/mol (21.94%),
and >+30 kcal/mol (11.87%) (Figure 1A). Furthermore, the peptides consisted of 7–26 amino
acid (aa) residues, being the most frequent peptides (83.10%) containing between 10–19 aa
(Figure 1B). Regarding the aa composition, glutamic acid, leucine, and isoleucine were
the most represented (12.90%, 10.30% and 8.00%, respectively), while tryptophan, and
methionine were the least (0.4%, and 0.5%) (Table 1).
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Table 1. Amino acid composition of the identified peptides in the LPH.

Amino Acid No. %

Glu (E) 493 12.9
Leu (L) 396 10.3
Ile (I) 307 8.0

Pro (P) 307 8.0
Arg (R) 287 7.5
Asp (D) 275 7.2
Val (V) 249 6.5
Gly (G) 224 5.8
Ser (S) 202 5.3
Gln (Q) 196 5.1
Asn (N) 185 4.8
Lys (K) 151 3.9
Ala (A) 130 3.4
Thr (T) 130 3.4
Phe (F) 122 3.2
Tyr (Y) 84 2.2
His (H) 60 1.6
Trp (W) 19 0.5
Met (M) 16 0.4
Cys (C) 0 0.0

Ala, alanine; Arg, arginine; Asn, asparagine; Asp, aspartic acid; Cys, cysteine; Gln, glutamine; Glu, glutamic acid;
Gly, glycine; His, histidine; Ile, isoleucine; Leu, leucine; Lys, lysine; Met, methionine; Phe, phenylalanine; Pro,
proline; Ser, serine; Thr, threonine; Trp, tryptophan; Tyr, tyrosine; Val, valine.

Finally, the bioactivity analysis of the LPH showed that 51 of the 278 sequences
(18.34%) possess a score value greater than 0.5 threshold (Figure 1C).

2.1.2. LPH Contains Peptides with Anxiolytic and Antiamnesic Effects

There were 278 peptides with an area greater than 107 identified in LPH (Supplementary
Table S3). These peptides belonged mainly to conglutins, the main storage protein in lupin
seed. Of the 278 identified sequences, 58 peptides (20.86%) with potential biological
activity related to anxiolytic/analgesic effects were identified. In particular, 49 (17.62%)
sequences contained a demonstrated antiamnesic motif and 9 (3.24%) sequences contained
a demonstrated anxiolytic motif (Table 2).

Table 2. The number of identified LPH peptides with anti-amnesic and anxiolytic activity.

Effect Bioactive
Peptide Motif a

BIOPEP-UWM
ID b Origin Protein c Accession

Number c N. Peptides Reference

anti-amnesic VPL 3166 Non-conglutin proteins 1 [48]

PGP 3459 α-Conglutin F5B8V7 3 [49]
PG 3460
GP 3461

β-Conglutin F5B8W1 14
F5B8W2
F5B8W3

Non-conglutin proteins 31

anxiolytic YL 8310 α-Conglutin F5B8V6 4 [50]
Non-conglutin proteins 1

GQ 2890 α-Conglutin F5B8V6 3 [51]
F5B8V7

Non-conglutin proteins 1

TOTAL 58
a 1-letter amino acid code. b ID number present in the BIOPEP-UWM database [52]. c Accession number present
in “UniProtKB” (http://www.uniprot.org/, accessed on 1 April 2022).

http://www.uniprot.org/
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Of these 58 peptides, 41.38% were peptides from conglutin proteins, whereas 58.62%
were from non-conglutin proteins. The tripeptides VPL and PGP, and the dipeptides PG
and GP, were the sequences related to antiamnesic effects and identified with the BIOPEP-
UWM IDs 3166, 3459, 3460, and 3461, respectively. The dipeptides YL and GQ were the
sequences associated with anxiolytic effects and identified with the following IDs, 8310 and
2890, respectively. The physicochemical properties and primary structures of the identified
motifs are shown in Figure 2.
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2.2. In Vivo Experiments
2.2.1. LPH Treatment Does Not Alter the Body Weight of Mice

To find the differences in weight changes between mice fed different diets and treated
or not with LPH, the body weights of the mice were measured throughout the experiment.
As shown in Table 3, there were no significant differences in the baseline body weight
(BBW) at the beginning of the experiment among the experimental groups. Furthermore,
after 16 weeks of diet, there were no differences in the final body weight (FBW) and in the
body weight gain (BWG) between the groups fed WD and SD. In addition, 14 weeks of
LPH treatment did not generate changes in the FBW and BWG of the mice, compared to
the groups fed WD or SD.

Table 3. Body weight parameters.

Parameter (g)
Experimental Group

SD WD WD + LPH

BBW 20.35 ± 0.41 20.98 ± 0.36 20.88 ± 0.49
FBW 26.20 ± 0.87 26.50 ± 0.54 27.15 ± 0.69
BWG 5.85 ± 1.18 5.53 ± 0.65 6.28 ± 1.09

Baseline body weight (BBW), final body weight (FBW) and body weight gain (BWG) in ApoE−/− mice. Values
are shown as the mean and standard error of the mean of each group. SD, standard diet fed-mice; WD, Western
diet-fed mice; WD + LPH, Western diet-fed mice treated with LPH. No statistical differences were observed
between the groups for each weight parameter.

2.2.2. LPH Palliates the Anxious Effects Induced by WD Ingestion

As shown in Figure 3B, WD-fed mice spent significantly less time in the open arms
of the elevated plus maze and more in the closed arms compared to the SD group. This
effect was overcome by LPH treatment. Furthermore, the time spent in the center was
significantly shorter in WD compared to SD and WD + LPH. Representative images of the
tracks of the mice in EPM are shown in Figure 3A. Other anxiety-related behaviors, such as
head dips and rears, were also evaluated. As shown in Figure 3C, the number of head dips
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was significantly lower in the WD group compared to the SD and WD + LPH groups, while
no differences in the rears were observed among groups.
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Figure 3. Representative images of the tracks of mice in the elevated plus maze (A). Time spent in
opened arms, closed arms, and center zone (B), head dips and rears (C). Values are shown as the mean
and standard deviation of each group. * p ≤ 0.05; ** p ≤ 0.01; n.s., not significant; SD, standard diet
fed-mice; WD, Western diet-fed mice; WD + LPH, Western diet-fed mice treated with LPH; LPH,
lupin protein hydrolysate.

2.2.3. LPH Treatment Does Not Improve Spatial Memory but Modulates WD-Induced
Thigmotaxis, an Anxiety-Related Behavior

To study spatial learning and memory, the platform in the Morris water maze (MWM)
was placed according to the Figure 4A. During nonvisible platform sessions (days 1–5), all
groups learned to reach the submerged platform, due to the decrease in the mean latency
over the consecutive five days of the learning period in all groups (Figure 4B). There were
no significant differences between the groups in the latency time. After the removal of the
platform (trial phase), there were also no differences in the time spent in the platform zone
among the groups (Figure 4D), but curiously, there was a decrease in the total distance
traveled for the WD-fed mice compared to the SD-fed mice (Figure 4E). This effect was
overcome by the LPH treatment. Moreover, thigmotaxis was significantly higher in the
WD diet group compared to the SD group, while LPH was able to reverse this increase,
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reducing thigmotaxis to values significantly different to the WD group, both considering
the number of times animals approached the walls of the pool (Figure 4F) and the time
spent in the outer area of the pool (Figure 4G). Representative images of the tracks of mice
in the trial phase are shown in Figure 4C.
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Figure 4. Representative image of the acquisition phase of the Morris water maze (A); latency of
the mice during the five days (B). Representative images of the trial phase (C); time in the platform
zone (D), distance traveled (E) and thigmotaxis (F,G). Values are shown as the mean and standard
deviation of each group. * p ≤ 0.05; ** p ≤ 0.01; *** p ≤ 0.001; n.s., not significant; SD, standard
diet-fed mice; WD, Western diet-fed mice; WD + LPH, Western diet-fed mice treated with LPH; LPH,
lupine protein hydrolysate.

3. Discussion

LPH is a mixture of low molecular weight peptides obtained after hydrolysis of L.
angustifolius proteins with Alcalase®, which have shown beneficial effects on oxidant and
inflammatory status in different models [45–47]. Due to inflammation and oxidative stress
are key processes in anxiety and memory impairment, the present work aimed to study the
potential anxiolytic and antiamnesic effects of LPH. To achieve this goal, a multidisciplinary
study has been conducted using a combination of analytical, molecular, biochemical, and
behavioral techniques.
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Since the bioactivity of food-derived peptides depends on their physicochemical
features, such as length, hydrophobicity, and amino acid sequence, our first objective
was to identify the composition of LPH peptides. Mass spectrometry analysis revealed
the presence of 278 sequences from the L. angustifolius database in LPH, of which 58%
derive from conglutins, the main seed storage proteins in lupin [53]. Furthermore, we
found that approximately 20% of LPH peptides are potentially bioactive. In addition, the
physical-chemical analysis showed that LPH mainly contains small-sized and hydrophobic
peptides. Both are important features of peptides that determine their interaction with
several physiological targets and their bioactivities, and these factors have also been
demonstrated to influence peptide self-assembly, emulsifying capacity, and other properties,
including biostability and potentially bioavailability [54].

The peptides analysis allowed us to identify sequences containing some known anxi-
olytic and antiamnesic motifs. Specifically, we identified 4 peptides (VPL, PGP, PG, and
GP) present in 49 different sequences with antiamnesic effects and 2 peptides (YL and
GQ) in 9 different sequences with anxiolytic effects. LPH contained 5 different sequences
that present the YL dipeptide, which is able to activate the 5-hydroxytryptamine (sero-
tonin) receptor 1A, the dopamine D1 receptor, and the type A receptor of c-amino butyric
acid in mice, which play a pivotal role in anxiety. On the other hand, dipeptide YL has
shown comparable effects to diazepam in equal doses [50], while PGP, PG, and GP have
been demonstrated to enhance memory consolidation processes in the central nervous
system [49]. In accordance with these data, the present study reports the beneficial effects
of 14 weeks of LPH treatment on WD consumption-induced anxiety in ApoE−/− mice. In
fact, WD-fed ApoE−/− mice have previously been demonstrated to successfully reproduce
spatial cognitive deficits (memory loss) and anxiety status through a dysregulation of the
HPA axis that regulates GCs synthesis, which plays an important role in several brain
functions [38,39]. LPH exhibited anxiolytic-like activity, with no differences in learning
or spatial memory, and its effects were not related to change in body weight, since mice
belonging to different groups did not show a significant difference in BWG.

It is well known that high-fat and high-free-sugar diets are part of the environmental
factors that can aggravate or favor the development of anxiety [55,56]; many reports have
shown that a high-fat diet accelerates cognitive deficits and anxiety in ApoE−/− mice [37].
To study anxiety, we used the EPM, a well-established test to evaluate anxiolytic/anxiety-
like behaviors. In the EPM, mice experience the natural conflict between exploring a new
place and the tendency to avoid a dangerous area [57]. We observed that WD significantly
increases anxiety behavior since WD-fed mice remained less time on the opened arms and
the center of the platform in the EPM compared to SD-fed mice. Opened arms and center
areas are considered anxiety zones because rodents have an innate fear of elevated open
spaces and tend to spend less time in them [58,59]. Thus, mice treated with anxiolytic drugs
(i.e., diazepam) remained longer in the opened arms and in the center of the EPM [60].
Interestingly, WD-fed mice treated with LPH remained longer in the opened arms and in the
center zone, and less time in the closed arms compared to the WD group. In addition, mice
fed with WD showed fewer head dips in comparison to the control group. This behavior,
which consists of lowering the head over the sides of the opened arms toward the floor, is
considered exploratory and is related to a lower level of anxiety and fear [61]. These results
are consistent with previous studies in humans [62] and mice [63], in which the anxiogenic
power of a high-fat diet is also demonstrated. Interestingly, a significant increase in the
number of head dips was recorded in LPH-treated mice, pointing to a higher exploration
capacity and less fear, all caused by lower levels of anxiety.

The results obtained in the MWM revealed no impairment in memory or spatial
learning after WD consumption. There were no differences in latency time or time spent
in targeted section between mice fed with SD and WD. This fact could be associated with
the age of the mice and the time of WD consumption. Janssen et al. concluded that
ApoE−/− mice perform MWM with better results than wild-type ones and demonstrated
that WD does not alter the results in ApoE−/− mice [64]. Furthermore, Champagne et al.
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showed that older ApoE−/− mice obtain the worst results in MWM [65]. Apart from
that, the present study shows that WD-fed mice covered less distance than mice from
SD and LPH groups. Several pieces of evidence have shown that changes in distance
may be due to alterations in the motivation to find the platform and greater capacity for
exploration [66], but also due to lower activity or worse fitness [67]. Furthermore, WD-
treated mice exhibited more thigmotaxis than the LPH group. Moreover, LPH-treated mice
showed similar thigmotaxis to the SD group. This behavior is a well-established indicator of
animal anxiety and fear [68,69]. This fact is consistent with the results observed in the EPM,
strengthening the protective effect of LPH on WD-induced anxiety.

Although bioactive peptides from white eggs [70], salmon [71], bovine casein [72], or
soy [29] have been described to exert anti-anxiety activity, to our knowledge, this is the
first study to report the anxiolytic-like properties of a protein hydrolysate from lupin. High
levels of oxidative stress and inflammation in the brain have been widely reported to be two
of the main contributing factors involved in the development of anxiety [42–44]. Moreover,
recent studies have shown a strong link between high cholesterol levels and anxiety [69].
Our group has previously shown that LPH exerts anti-inflammatory, antioxidant, and lipid-
lowering effects both in ApoE−/− mice [47,73] and humans [45,46]. Therefore, we suggest
that these LPH properties may also be directly or indirectly responsible for the anxiolytic-
like effects. In addition, the presence of peptides in the LPH with already demonstrated
anxiolytic effects similar to those of diazepam, such as YL and GQ, could also be the cause
of the demonstrated anxiolytic effects. However, the presence of other peptides in the LPH
that have not yet proved their anxiolytic effects cannot be ruled out.

As in each study, this has certain solvable limitations. The number of mice used was
limited (n = 4 per group); however, i) a small number of mice was sufficient to achieve
significant differences, ii) two different anxiety analyses were performed to confirm the
effect, and iii) the Cohen’s test analysis shows a large size effect on each variable studied
(Supplementary Table S2). We also consider important to highlight that an SD + LPH group
has not been included in the study, since SD mice do not exhibit anxious behaviors. In fact,
the only reason we used an SD group was to check that WD consumption generates anxiety.

The main strength of this work is the multidisciplinary strategy used. First, a detailed
chemical characterization of the LPH composition was performed by using nano-HPLC-
MS/MS and UHPLC-HRMS to identify its peptide composition. Afterward, an in silico
study was carried out for the identification of anxiolytic and antiamnesic peptides. Finally,
an in vivo study confirmed through two different tests (EPM and thigmotaxis during the
MWM) that LPH treatment palliates the anxious effects generated by the ingestion of WD.
This study is the first to show the in vivo anxiolytic-like effect of a plant-derived total
protein hydrolysate.

4. Materials and Methods
4.1. LPH Preparation

LPH was produced at the Instituto de la Grasa (CSIC, Seville, Spain), as previously de-
scribed [45]. Briefly, the lupin protein isolate was resuspended in distilled water (10% w/v)
and hydrolyzed in a bioreactor at pH 8 and temperature 50 ◦C using Alcalase® 2.4 L
(2.4 AU/g; Novozymes, Bagsvaerd, Denmark) for 15 min. The enzyme was inactivated by
heating at 85 ◦C for 15 min; after centrifugation at 8000 rpm for 15 min, the supernatant
containing LPH was collected and lyophilized. Finally, it was dissolved in 0.9% saline
solution to obtain the LPH necessary for the duration of the experiment, filtered, auto-
claved, aliquoted, and stored at −80 ◦C. The chemical stability and characterization of LPH
were checked out at the several steps of this process through HPLC, no differences were
observed (data not shown).

4.2. Purification and Concentration of Peptides

An amount of 1 mg of LPH was acidified with aqueous trifluoroacetic acid (TFA) at
pH 2.5, loaded into the Bond Elut C18 EWP cartridge (Aligent, Santa Clara, CA, USA)
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(previously washed with acetonitrile (ACN) and conditioned with 0.1% TFA), and washed
with 3 mL of 0.1% TFA. The elution was carried out with 0.5 mL ACN/H2O (50:50, v/v)
containing 0.1% TFA, and the peptides were dried in a Speed Vac SC250 Express (Thermo
Savant, Holbrook, NT, USA). The dry residue was reconstituted in 150 µL of 0.1% formic
acid in H2O.

4.3. Peptides’ Analysis and Identification by Mass Spectrometry

The peptides were studied by nano-HPLC using an Ultimate 3000 coupled to an
Orbitrap Elite mass spectrometer (Thermo Fisher Scientific, Bremen, Germany), as previ-
ously described [74]. The preconcentration of the samples (20 µL) was performed on a
µ-precolumn (Thermo, 300 µm i.d. 5 mm Acclaim PepMap 100 C18, 5 µm particle size, 100 Å
pore size) using H2O/ACN (99:1 v/v) with 0.1% TFA (v/v) at a flow rate of 10 µL/min. The
peptides were dispersed on an EASY-Spray column (Thermo, 15 cm × 75 µm i.d. PepMap
C18, 3 µm particles, 100 Å pore size).

The peptide spectra were obtained using the same parameters described in our previous
work [73]. The protein sequence database of L. angustifolius (31,386 sequences) was down-
loaded from UnitProt and used for the identification of raw data spectra using Proteome
Discoverer v1.3 (Thermo) in combination with the Mascot search engine v2.3.02. Precur-
sor ion tolerance and the fragment ion tolerance were 10 ppm and 0.05 Da, respectively;
no enzyme was used for digestion and methionine oxidation was considered as dynamic
modification. The decoy function, set at 1%, was used for false discovery rate calculations.

4.4. Bioactivities Peptide Analysis

The physicochemical properties (molecular weight, amino acid composition, and hy-
drophobicity) of the peptides were obtained using the open access ProtParam tool (https:
//web.expasy.org/protparam/, accessed on 1 April 2022) [75]. The peptide Ranker tool
(http://distilldeep.ucd.ie/PeptideRanker/, accessed on 1 April 2022) was used to predict the
bioactivity of LPH [76]. It provides scores in the range of 0−1, being 1 the most active. The
threshold was fixed at 0.5; therefore, peptides with scores above 0.5 were labeled as ‘bioactive’.
To identify sequences with demonstrated bioactive motifs, the peptides were analyzed using
the BIOPEP-UWM database (http://www.uwm.edu.pl/biochemia/index.php/pl/biopep/,
accessed on 1 April 2022) [52]. In addition, the primary structure of the motifs was drawn
using the PepDraw tool (https://pepdraw.com/, accessed on 1 June 2022).

4.5. Animals and Experimental Design

The experimental design is shown in Supplementary Figure S1. Twelve male ApoE−/−

mice (B6.129P2-ApoEtm1Unc/J) were housed in the animal facility of the Faculty of Psy-
chology (University of Seville, Seville, Spain) under specific pathogen-free conditions in
a room with controlled temperature (22 ± 2 ◦C), humidity (<55%), and a 12-h light–dark
cycle with free access to water and food. The mice were housed in a sealsafe® 1285L cage
(Tecniplast, Italy) [77] with a floor area of 542 cm2 and a maximum air speed at the animal
level of 0.05 m/s. Four mice were housed per cage. The particular characteristics of these
cages allow no air drafts at the animal level, avoiding the risk of stress and heat loss. The
animals were initially classified into two groups: mice fed a standard diet (SD, n = 4, Teklad
Global 14% Protein Rodent Maintenance Diet, ENVIGO, Indianapolis, IN, USA) [78] and
mice fed a Western diet (WD, n = 8, 58V8-45 kcal% fat, TestDiet, St. Louis, MO, USA) [79]
from the Special Diets Production Section of the University of Granada (Granada, Spain).
The composition of each diet is specified in Supplementary Table S1.

Six-week-old mice from the WD group were randomly divided into two groups and
treated intragastrically with LPH (100 mg/kg, n = 4) or vehicle (n = 4) for 14 weeks,
respectively. Thus, the experimental groups were set as follows: SD-fed mice group (SD,
n = 4), WD-fed group (WD, n = 4), and WD-fed and LPH-treated (100 mg/kg) mice group
(WD + LPH, n = 4). SD-fed mice were also intragastrically treated with vehicle. The dose
of LPH was selected based on our previous studies [45–47,73]. Individual body weight

https://web.expasy.org/protparam/
https://web.expasy.org/protparam/
http://distilldeep.ucd.ie/PeptideRanker/
http://www.uwm.edu.pl/biochemia/index.php/pl/biopep/
https://pepdraw.com/
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was measured and recorded weekly. Behavioral tests were performed at the Laboratory of
Animal Behavior & Neuroscience (a specific installation inside the Animal Facility of the
Faculty of Psychology), where the animals were placed a week earlier for their habituation.
The tests were carried out with a 10-day inter-test interval.

The experimental procedures were approved by the Ethics Committee of the Vir-
gen Macarena-Virgen del Rocío University Hospital (reference number 21/06/2016/105)
and were carried out under Spanish legislation and the EU Directive 2010/63/EU for
animal experiments.

4.6. Behavioral Tests
4.6.1. Elevated Plus Maze

Anxiety-like behavior was evaluated using the EPM test. It was performed as previ-
ously described [32]. Briefly, the maze consists of four arms made out of polyvinyl chloride;
two non-consecutive opened arms (30 cm long × 5 cm wide) and two closed arms that
generate a common center zone (5 × 5 cm). The EPM was placed 60 cm above the floor in
the center of a room (286 × 288 × 320 cm; w-l-h respectively) illuminated by four 100-W
halogen lamps. The characteristics of the EPM are shown in Figure 5. In order to minimize
exploratory behavior and facilitate habituation to the context, mice were placed in the room
for 45 min prior to the test. To start the test, each mouse was placed in one of the opened
arms facing the opposite direction to the center and was free to move for 5 min. All sessions
were recorded using a camera located over the maze. For the trials, the experimenter re-
mained in an adjoining zone to control the video tracking system. Additionally, the observer
could see the performance of the animal in real time on a monitor. Other anxiety-related
behaviors, such as head dips and rears, and the number of times that mice showed them,
were also annotated and recorded. The test started at 11:30 a.m. during the light phase
of the light-dark cycle, and none of the researchers stayed in the room while the test took
place. The floor of the elevated plus maze apparatus was cleaned with 10% ethanol between
tests. Subsequently, the recording was processed using the Animal Tracker plugin for ImageJ
v. 1.53k software (National Institutes of Health-NIH-, Bethesda, MD, USA) and the time
spent in the arms and center of the maze was measured. Opened arms and center areas
are considered anxiety zones according to [58,59]. Analyses were carried out under blind
conditions by three investigators. Representative videos are available in Videos S1–S3.

Int. J. Mol. Sci. 2022, 23, 9828 13 of 18 
 

 

 
Figure 5. Characteristics of the Elevated Plus Maze. The maze consists of four arms: two non-con-
secutive open arms (30 cm long × 5 cm wide) and two closed arms that generate a common center 
zone (5 × 5 cm). The EPM was placed 60 cm above the floor. To start the test, each mouse was placed 
in one of the opened arms facing the opposite direction of the center and was free to move for 5 min. 
All sessions were recorded using a camera located over the maze. Figure created by BioRender.com. 

4.6.2. Morris Water Maze 
The MWM was designed as a method to study spatial memory and learning pro-

cesses. The experimental procedures were performed as described by Janseen et al. [64]. 
Briefly, the test consists of a circular pool (100 cm in diameter) filled with water (at 25 °C) 
and a circular platform (8 cm in diameter, 20 cm in height) located in a specific quadrant 
of the pool. It was virtually divided into four different sections, and different visual clues 
were located on the walls of the room (characteristics of the MWM are shown in Figure 
6). The test was carried out for 5 consecutive days. To avoid the use of possible intramaze 
cues to solve the task, the experimental apparatus was randomly rotated between ses-
sions. On day 0, mice received two habituation trainings; animals were located in two 
different sections and allowed to swim for 90 s until they reached the visible platform (2 
cm above the water surface). Once on the platform, the mice stand there for 15 s. On days 
1–5, animals were placed in each section and allowed to swim for 90 s or until they reached 
the non-visible platform. In this phase, the water was opaque by adding a white dye (lime) 
and the time between tests was 45 min. Finally, on the fifth day, the platform was re-
moved, and the mice were placed in the pool for 90 s (the scheme of the Morris Water 
Maze protocol is shown in Supplementary Figure S2). All sessions were recorded with a 
video tracking system that overlooked the pool from above. The test started at 11:30 a.m. 
during the light phase of the light–dark cycle, and the experimenter stayed in an adjoining 
zone for the test. The latency time, distance traveled, and time spent in each quadrant 
were analyzed using the Animal Tracker plugin for ImageJ software (NIH). In addition, 
thigmotaxis, considered as the times the animal approaches the walls of the pool and the 
time spent in the outer area (15% of the apparatus) of the pool, was calculated. Analyses 
were carried out under blind conditions by three investigators. Representative videos are 
available in Videos S4–S6. 

Figure 5. Characteristics of the Elevated Plus Maze. The maze consists of four arms: two non-
consecutive open arms (30 cm long × 5 cm wide) and two closed arms that generate a common center
zone (5 × 5 cm). The EPM was placed 60 cm above the floor. To start the test, each mouse was placed
in one of the opened arms facing the opposite direction of the center and was free to move for 5 min.
All sessions were recorded using a camera located over the maze. Figure created by BioRender.com.
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4.6.2. Morris Water Maze

The MWM was designed as a method to study spatial memory and learning processes.
The experimental procedures were performed as described by Janseen et al. [64]. Briefly,
the test consists of a circular pool (100 cm in diameter) filled with water (at 25 ◦C) and a
circular platform (8 cm in diameter, 20 cm in height) located in a specific quadrant of the
pool. It was virtually divided into four different sections, and different visual clues were
located on the walls of the room (characteristics of the MWM are shown in Figure 6). The
test was carried out for 5 consecutive days. To avoid the use of possible intramaze cues to
solve the task, the experimental apparatus was randomly rotated between sessions. On day
0, mice received two habituation trainings; animals were located in two different sections
and allowed to swim for 90 s until they reached the visible platform (2 cm above the water
surface). Once on the platform, the mice stand there for 15 s. On days 1–5, animals were
placed in each section and allowed to swim for 90 s or until they reached the non-visible
platform. In this phase, the water was opaque by adding a white dye (lime) and the time
between tests was 45 min. Finally, on the fifth day, the platform was removed, and the mice
were placed in the pool for 90 s (the scheme of the Morris Water Maze protocol is shown in
Supplementary Figure S2). All sessions were recorded with a video tracking system that
overlooked the pool from above. The test started at 11:30 a.m. during the light phase of the
light–dark cycle, and the experimenter stayed in an adjoining zone for the test. The latency
time, distance traveled, and time spent in each quadrant were analyzed using the Animal
Tracker plugin for ImageJ software (NIH). In addition, thigmotaxis, considered as the times
the animal approaches the walls of the pool and the time spent in the outer area (15% of the
apparatus) of the pool, was calculated. Analyses were carried out under blind conditions
by three investigators. Representative videos are available in Videos S4–S6.
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5. Conclusions

In conclusion, this is the first study to show the in vivo anxiolytic effects of a lupin
protein hydrolysate. Moreover, several sequences containing peptide motifs associated
with anxiolytic effects were identified within the LPH mixture. Future studies will be
needed to investigate the molecular mechanisms that cause the anxiolytic effect of LPH, as
well as to compare this effect with an anxiolytic drug such as diazepam. In addition, several
strategies, such as the incorporation of peptides into biocompatible vehicles to enhance their
stability and bioavailability during transepithelial transport, are recommended for future
investigation. The present study confirms the pleiotropic effects of the peptide mixture,
including anxiolytic effects, pointing to LPH as a potential component of future nutritional
therapies in patients with anxiety, being a possible strategy to reduce the consumption of
drugs with side effects.
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