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Introduction: the putative unique 
origin of the Archaeplastida

Glaucophyta Skuja 1954 (or Glaucocystophyta Kies and 
Kremer 1986) [1,2] is a group of photosynthetic eukaryotes 
thought to share a common ancestor with red algae (Rhodo-
plantae; Rhodophyta) and a lineage comprising both green 
algae and land plants (Viridiplantae; Chloroplastida; Fig. 1). 
Different taxonomic schemes unite these three groups in the 
Plantae sensu lato [3] or the Archaeplastida supergroup [4]. 
Hereafter we use the latter term.

The monophyly of the Archaeplastida is supported by 
some molecular phylogenetic analyses and comparative 
studies using nuclear genomic data [5–10]. However, other 
multi-gene phylogenetic studies have failed to recover the 
archaeplastidian lineages in a single clade [11–17]. These 
conflicting phylogenetic signals are possibly caused by intrin-
sic stochastic and systematic biases in the analyzed nuclear 
data, unidentified gene paralogies, rampant endosymbiotic 
gene transfer (EGT) or lineage extinction [10,18–21]. Some 
nucleocytoplasmic traits that support the monophyly of 
Archaeplastida are the shared origin of certain enzymes 

involved in starch biosynthesis [22] and the presence of 
PRONE (plant-specific Rop nucleotide exchanger) guanine 
nucleotide exchange factors (proteins that activate GTPases) 
only in archaeplastidians [23].

While molecular phylogenetics using nuclear data has 
not provided a conclusive history of the Archaeplastida 
nucleocytoplasmic ancestor, diverse organelle and nuclear 
genomic data suggests that the double-membrane-bound 
plastids present in the three archaeplastidian groups evolved 
from a single primary endosymbiosis with a cyanobacte-
rium [24–28] (Fig. 1). Evidence supporting the common 
origin of the Archaeplastida photosynthetic organelles 
include certain conserved operons in the plastid genomes 
[29], common enzyme replacements and recruitments in 
plastid-localized pathways [30,31], shared elements of the 
plastid protein import machinery of host provenance (e.g., 
Toc34 and Tic110) [8,32,33], and the common origin of key 
plastid solute transporters (e.g., ATP/ADP translocator and 
the UhpC-type hexose transporter) [8,34].

The monophyly of the Archaeplastida and the unique 
origin of their plastids, (not necessarily coupled evolution-
ary events – see, for example, alternative views in [35,36]), 
are widely accepted scenarios. However, these prominent 
hypotheses still require conclusive answers to better under-
stand the origin and diversification of the major groups of 
photosynthetic eukaryotes [19,26,27]. A major restriction 
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Abstract

The Glaucophyta is one of the three major lineages of photosynthetic eukaryotes, together with viridiplants and red 
algae, united in the presumed monophyletic supergroup Archaeplastida. Glaucophytes constitute a key algal lineage to 
investigate both the origin of primary plastids and the evolution of algae and plants. Glaucophyte plastids possess exceptional 
characteristics retained from their cyanobacterial ancestor: phycobilisome antennas, a vestigial peptidoglycan wall, and 
carboxysome-like bodies. These latter two traits are unique among the Archaeplastida and have been suggested as evidence 
that the glaucophytes diverged earliest during the diversification of this supergroup. Our knowledge of glaucophytes is 
limited compared to viridiplants and red algae, and this has restricted our capacity to untangle the early evolution of the 
Archaeplastida. However, in recent years novel genomic and functional data are increasing our understanding of glauco-
phyte biology. Diverse comparative studies using information from the nuclear genome of Cyanophora paradoxa and recent 
transcriptomic data from other glaucophyte species provide support for the common origin of Archaeplastida. Molecular 
and ultrastructural studies have revealed previously unrecognized diversity in the genera Cyanophora and Glaucocystis. 
Overall, a series of recent findings are modifying our perspective of glaucophyte diversity and providing fresh approaches 
to investigate the basic biology of this rare algal group in detail.
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when testing current working hypotheses regarding the 
evolution of the Archaeplastida has been the relative scar-
city of information from Glaucophyta [16,30]. The vast 
majority of research efforts on glaucophytes have focused 
on Cyanophora paradoxa, but recent comparative genomic 

[8,10,37], molecular phylogenetic [38,39], proteomic [40,41], 
biochemical [42] and cell biology [43–46] studies have pro-
vided novel insights into the biology of this algal group. Our 
aim here is to provide an overview of the current knowledge 
of glaucophytes.

Phagotrophic
Eukaryote

Cyanobacteria Chlorokybophyceae

Mesostigmatophyceae

Klebsormidiophyceae

Charophyceae

Zygnematophyceae

Coleochaetophyceae

“Embryophytes”

Cyanophora

Gloeochaete

Cyanoptyche

Glaucocystis

Cyanidiophyceae 

Rhodellophyceae

Bangiophyceae

Florideophyceae

Primary
Endosymbiosis

Archaeplastida
comon ancestor

Viridiplantae
or Chloroplastida

Rhodoplantae
or Rhodophyta

Glaucophyta or
Glaucocystophyta

Stylonematophyceae

Porphyridiophyceae

Compsopogonophyceae

Ulvophyceae

Trebouxiophyceae

Chlorophyceae

“Prasinophytes”

Chlorodendrophyceae

Primary
Plastid

Plantae sensu lato or Archaeplastida

Fig. 1 The Archaeplastida common origin hypothesis. The putative “host” Archaeplastida ancestor was a bi-flagellated phagotrophic 
eukaryote that captured photosynthetic cyanobacteria as regular prey. The establishment of a stable primary endosymbiotic relationship 
between the eukaryotic cell and the cyanobacterium involved a series of cellular and molecular events that gave rise to primary plastids 
and the putative photosynthetic common ancestor of the Viridiplantae, Rhodophyta (red algae) and Glaucophyta [26–28]. The common 
origin of the Archaeplastida is a widely accepted idea, and supported by diverse types of genomic and functional data, but there are 
considerable contradictory phylogenetic results that require further investigation. The schematic tree shown in this figure is for illustra-
tive purposes only and does not necessarily represent the true phylogenetic relationships between the different taxa. In the Glaucophyte 
clade only the names of the four known genera are indicated. The names of viridiplant and red algal taxa presented in the illustrative tree 
are based on previously published schemes [138,139].
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The defining characteristics of Glaucophyta

Glaucophyta constitute a monophyletic group recovered 
with strong to full branch support by numerous single- 
[47–49] and multi-locus [5,7,10,50] phylogenetic analyses 
(although we lack molecular data from some putative 
genera, see below). Glaucophyte algae are rarely found in 
large populations and are apparently limited to freshwater 
environments. The most prominent traits of the lineage are 
the exceptional characteristics of their plastids, also called 
cyanelles [51] or muroplasts [52] for historical reasons 
(Fig. 2). The term Glaucophyta, formed from the Greek roots 
glaukos (blue-green) and phyton (plant), refers explicitly 
to the distinctive blue-green color of their photosynthetic 
organelles. This coloration is caused by the presence of 
chlorophyll a and the blue phycobiliproteins (i.e., proteins 
with covalently linked light-capturing molecules called 
bilins) C-phycocyanin and allophycocyanin [53]. Authors 
of seminal studies described the glaucophyte plastids as 
“protoplasm colored bodies”, “endosymbiotic blue-green 
photosynthesizing prokaryotes”, “prokaryotic blue-green 
endocytobionts” or “endocyanomes”. Some of these studies 
even described the blue-green plastids as cyanobacterial 
species [54] and highlighted their “intermediate” charac-
teristics between free-living cells and organelles [55,56]. 
Further molecular studies demonstrated that the glaucophyte 
blue-green “bodies” are photosynthetic organelles [57–59].

Glaucophyte plastids have non-stacked thylakoids, as 
also occur in red algae, but are distinguished from other 
plastids by the presence of a peptidoglycan wall (PGW) 
and carboxysome-like bodies (CLBs; Fig. 2) [54,60]. These 
latter two traits are considered plesiomorphic characters 

for Archaeplastida that have been uniquely retained in 
glaucophytes (extended descriptions of these two traits 
are provided in the section “The blue-green plastids of 
glaucophytes” below). Given the putative ancestral nature 
of both the PGW and the CLBs, glaucophytes have been 
considered as the “earliest diverging” lineage within the Ar-
chaeplastida, and colloquially called “living fossils” [61,62]. 
However, recent comparative genomics and phylogenetic 
studies have not conclusively resolved the branching posi-
tion of the group, and the early branching history of the 
Archaeplastida lineages is still uncertain [8,10,18,19,63]. 
The euglyphid amoeba Paulinella chromatophora Lauterborn 
1895 [64], a member of the Rhizaria supergroup, also harbors 
photosynthetic organelles with PGWs, carboxysomes and 
concentric thylakoids that visually resemble the glaucophyte 
plastids [65], but molecular phylogenetic analyses have 
unambiguously demonstrated the independent origin of 
the cyanobacterial-derived organelles of glaucophytes and 
P. chromatophora [66].

Glaucophyte cells are also characterized by the presence of 
flat vesicles lying underneath the plasma membrane, which 
resemble the cortical alveolar structures of dinoflagellates, 
apicomplexans and ciliates (i.e., Alveolates) [24,67]. Non-
motile vegetative cells of colonial glaucophytes have rigid 
cell walls (composed of cellulose in most species). Motile 
cells harbor two heterodynamic flagella of unequal length 
covered with fibrillar (non-tubular) hairs (Tab. 1). The 
presence of hairs on glaucophyte flagella has been noted 
as a similarity to cryptophyte flagella [68], but the hairs 
in the latter group have a tubular ultrastructure different 
from the fibrillar nature of glaucophyte flagellar hairs [69]. 
Similar to red algae [70], glaucophytes accumulate reserve 
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Fig. 2 Unique plastids traits in glaucophyte plastids. Transmission electron microscopy cross-sections of (a) Cyanoptyche gloeocystis 
(SAG 4.97) and (b) Glaucocystis nostochinearum (SAG 229-2) plastids. The electron-dense carboxysome-like body (Clb) of Cyanoptyche 
gloeocystis, localized in the center of the organelle, has a shell-like structure (black arrow) and a regular polygonal form (a). In contrast, 
the Glaucocystis Clb is localized at one organelle end and shows no presence of a shell-like cover (b). The double-headed arrow highlights 
the electron-dense phycobilosomes arranged in the non-stacked concentric thylakoidal membranes (Thy). Scale bars represent 0.5 μm.
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polysaccharides in their cytoplasm [71], whereas viridiplants 
store polysaccharide granules inside their plastids [72]. 
Both glaucophytes and viridiplants use starch [a ~1:3 ratio 
mixture of amylose (unbranched α-1,4-linked D-glucose 
chains) and amylopectin (α-1,4- D-glucose polymer with 
frequent α-1,6-branching points)] as reserve polysaccharide, 
whereas most red algae store an amylopectin-like compound 
called floridean starch (a α-1,4-linked D-glucose polymer 
with numerous α-1,6 glucosidic branch points) [70,73,74]. 
Glaucophytes undergo open mitosis and longitudinal cy-
tokinesis. Asexual reproduction occurs by generation of 
zoospores (i.e., motile vegetative spores) or non-motile 
autospores (Tab. 1). Sexual reproduction has not yet been 
reported in glaucophytes [2].

Glaucophyte diversity

In the most recent typification of the glaucophyte group 
only eight genera have been described [2] and only isolates 
of Gloeochaete Lagerheim 1883, Glaucocystis Itzigsohn 1868, 
Cyanophora Korshikov 1924, and Cyanoptyche Pascher 1929 
are present in microbial culture collections (Tab. 1; Fig. 3). 
Other presumed members of the Glaucophyta are Peliaina 
cyanea Pascher 1929, Strobilomonas cyaneus Schiller 1954, 
Glaucocystopsis africana Bourrelly 1960 and Chalarodora 

azurea Pascher 1929 [2], but we lack both cell cultures 
and molecular data for these taxa. Specimens identified as 
Chalarodora azurea were recently isolated in Slovakia, but 
attempts to establish cell cultures were unsuccessful. No 
molecular data from these specimens were generated [75].

The four genera in culture collections
The delimitation of the genera Glaucocystis, Cyanoptyche, 

Gloeochaete, and Cyanophora were confirmed in recent 
molecular analyses [38,39]. Here we describe characteristics 
of each genus based on morphological observations of rep-
resentative species available in current microbial collections.

Glaucocystis
Cells occur singly or in a group. When in a group (cluster) 

the cells share a common matrix that is bound by the origi-
nal mother cell wall (Fig. 3a; Tab. 1). Cell complement in a 
cluster is variable, for example, 1, 2, 1+2, 2+2, 1+2+(2+2), 
… etc. The cell shape is typically oval; the mother wall is 
also oval (Fig. 3a), or with lobes, or sloughed. Flagella are 
reported [56,76,77] with microtubule arrangements 9+0 [77] 
or 9+9+0 [56], typical cruciate roots [77] yet “rudimentary” 
[76]. The evidence for flagella in Glaucocystis is unclear and 
requires verification. Plastids are in star-shaped groups 
with the component plastids long and droplet-like, tapered 
proximally (Fig. 2b) and broadened distally.

Cyanophora Cyanoptyche Glaucocystis Gloeochaete

Cell wall - + + +
Mother cell wall - - + -
Zoospores + +  ?1 +
Flagella2,3 + + rudimentary4 +
Setae - - - +
Plastid number / cell 1–2 to ~903 ~9(+) >9
Carboxysome-like body + + + +

Fig. 3 Glaucophyte cells in light microscopy. a Autospores of Glaucocystis (G. nostochinearum strain BBH, UNB culture collection). 
Daughter cell with outer wall (thin arrow) surrounded by a mother wall (thick arrow). The individual plastids are in a star-like cluster. 
b Zoospore of Cyanoptyche (C. gloeocystis SAG 4.97) motile (an arrow points to one of the flagella) at image capture. c A spore rounded 
up of Cyanoptyche (C. gloeocystis SAG 4.97) with thin cellular extensions (arrows) having the appearance of flagella. d Cluster of cells 
of Gloeochaete (G. wittrockiana SAG 46.84) bearing setae (Se). e A cell of Cyanophora (C. cuspidata SAG 45.841) with putative flagella 
(arrow). Scale: 10, 20, and 6.7 μm (a–c, d, and e, respectively); Nomarski differential interference (DIC) optics. 1 Deposited as C. paradoxa, 
described as C. cuspidata [39].

Tab. 1 Characteristics of cells in glaucophyte genera.

1 Kies and Kremer [2]. 2,3 Kies [56,78]. 4 Willison and Brown [76].
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Cyanoptyche
Cells are single or palmella (cells are “at rest” within a 

common matrix) or zoospores (Fig. 3b; Tab. 1). Cell groups 
are not bound by the mother cell wall. A palmelloid cell 
produces a single zoospore of similar or even slightly longer 
dimensions (cells: 24–36 μm in length; zoospores: 32–34 
μm in length [78]). A zoospore swims, slows and takes a 
spherical shape (Fig. 3c). Plastids are rounded to slightly 
elongate but less elongate than in Glaucocystis and single, 
instead of star-like, in arrangement (Fig. 3b).

Gloeochaete
Cells are single or in a group, with two (Fig. 3c; Tab. 1), 

or less than two, setae (bristles or hairs) per cell. The type 
[79] is figured with setae in some of the cells (two or four in 
a group) in a matrix. The margin of the matrix is described 
and figured with indistinct laminations [79]. Plastids occur 
multiply and close together in cells.

Cyanophora
Cells are small (9–16 μm in length × 7 μm in width [80]; 

Fig. 3e; Tab. 1). A cell wall is absent [56]. Bi-flagellate cells 
divide by binary fission and are able to produce round cysts 
[2,80]. One-to-two plastids (Fig. 3e) or a multiple of two 
are present in each cell [39]. Plastids often have a slight 
invagination at mid-periphery sometimes interpreted as 
evidence of organelle division [39]. The appearance of being 
in, or arrested in division is possibly a stable morphology. 
Morphological features explored in the recent delimitation 
of five species of Cyanophora included cell shape, flatness 
(dorsal/ventral), ventral groove, flagellar origin, plastid 
division, and ridged fenestrations (see the “Species diversity 

in glaucophytes” section below) [39]. Flagellar insertion 
(invariant) and fenestrations (overlapping) were not in-
formative at the species level in Cyanophora but would 
be interesting characters to compare among genera of 
glaucophytes.

Species diversity in glaucophytes
Despite the importance of glaucophytes in understanding 

the evolution of photosynthetic eukaryotes, morphological 
and molecular studies of the different genera and species 
of the group are scarce. Recent phylogenetic analyses of 
the largest glaucophyte taxonomic sample to date, based 
on plastid (psbA and rbcL), mitochondrial (cob and cox1) 
and nuclear (ribosomal RNAs and the internal transcribed 
spacer region, ITS) markers, have revealed evidence of 
cryptic species diversity in the genera Cyanophora and 
Glaucocystis [38,39]. Phylogenetic analyses of concatenated 
markers from diverse genomic compartments (psbA, cob, 5S 
and 18S rRNAs) revealed considerable genetic divergence 
between different strains (NIES-763, SAG 29.80, SAG 45.84) 
originally recognized as Cyanophora paradoxa (Fig. 4) 
[38]. Consistent with those findings, another recent study 
proposed the delimitation of five Cyanophora species. The 
novel taxonomic scheme maintains the Cyanophora paradoxa 
name for the “Pringsheim strain” (UTEX LB 555; CCMP 
329; SAG 29.80) and proposes the new names Cyanophora 
cuspidata for the C. paradoxa “Kies strain” (SAG 45.84) and 
Cyanophora kugrensii for the C. paradoxa strain NIES-763. 
Additionally, the new scheme proposes the retention of the 
Cyanophora biloba name for the strain UTEX LB 2766 and 
the new denomination Cyanophora sudae for the strain 
NIES-764 (Fig. 4) [39].
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Fig. 4 Cryptic species diversity in Cyanophora and Glaucocystis. Maximum likelihood (ML) phylogenetic tree estimated from a con-
catenated data set of psbA (plastid gene), cob (mitochondrial gene) and the nuclear 5.8S and 18S rRNAs sequences. Numbers near nodes 
indicate bootstrap proportion support values >50% and thick branches indicate Bayesian posterior probabilities ≥0.95. Tree branch 
lengths are proportional to the number of substitutions per site indicated by the scale bar (see Chong et al. [38] for detailed methods).
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Insights into Archaeplastida and Glaucophyta 
evolution from comparative genomics

Phylogenomics of Cyanophora paradoxa
During the last decade numerous green-algal nuclear 

genomes have been completely sequenced, with others in 
process (see Genomes OnLine Database; https://gold.jgi-psf.
org/index) [81], and genomic information from several red 
algae has been recently published [82–85]. However, only 
the Cyanophora paradoxa nuclear genome (ca. 70 Mbp) has 
been sequenced thus far from glaucophytes [8,63]. A central 
aim of sequencing the Cyanophora nuclear genome was to 
investigate the early evolution of photosynthetic eukaryotes 
and the presumed common origin of Archaeplastida.

Of more than 27 000 predicted proteins in the Cyanophora 
nuclear genome, only 4628 had identifiable homologs from 
either prokaryotes or other eukaryotes. Phylogenetic analyses 
of 4445 of these sequences reveal that more than 60% of the 
Cyanophora proteins branch (≥90% bootstrap support) as 
sister to red algal and/or viridiplant homologs. Some of these 
clades containing representatives of the Archaeplastida also 
include sequences from eukaryotes with secondary plastids 
of red or green algal origin (e.g., diatoms, haptophytes, 
euglenophytes). This likely reflects cases of EGT from the sec-
ondary endosymbionts [8]. Overall, the large proportion of 
single-protein phylogenetic trees that recover Archaeplastida 
monophyly has been interpreted as evidence of the common 
origin of this supergroup [8]. However, the fact that several 
multi-locus phylogenetic studies have failed to definitively 
recover the Archaeplastida monophyly has directed us to the 
use of complementary analyses of genomic data to identify 
unique shared signatures. For example, exploring the pres-
ence of common gene families or pathways exclusively shared 
between the three Archaeplastida lineages may provide 
data to evaluate and compare competing hypotheses, such 
as the common ancestry scenario versus the possibility of 
different origins.

Prior to genome-scale sequencing efforts for glauco-
phytes, the similar subunit composition and the common 
origin of key components of the plastid protein import ap-
paratus, constituted by the translocons of the outer (TOC) 
and inner (TIC) membranes, were suggested as evidence 
of the single origin of the Archaeplastida photosynthetic 
organelles [32]. The main components of the TOC-TIC 
apparatus (Toc75, Tic110 and Toc34) [86,87] encoded in the 
Cyanophora nuclear genome are homologous to red algal 
and viridiplant counterparts [8], supporting the idea that the 
“assembly” of the plastid protein import machinery occurred 
in the common ancestor of the Archaeplastida. Overall, 
the TOC-TIC complexes of the three archaeplastidian 
lineages comprise both protein components evolved from 
the plastid cyanobacterial ancestor (e.g., Toc75 and Tic20) 
and, importantly, proteins recruited from the host collection 
(Tic110 and Toc34) [8]. This shared phylogenetic mosaicism 
(i.e., common recruitments of non-cyanobacterial proteins) 
of the Archaeplastida TOC-TIC components favors the 
unique origin of primary plastids over the possibility of 
multiple independent origins (but see [88–90]). Shared 
phylogenetic mosaicism is also seen in other key plastid-
localized biochemical pathways in glaucophytes, red algae 

and viridiplants. For example, certain plastid-targeted 
enzymes participating in the Calvin–Benson cycle [30] 
and the biosynthesis of histidine and aromatic amino acids 
[31] have the same non-cyanobacterial origin in all three 
Archaeplastida groups. These putative common enzyme 
recruitments (or replacements) suggest that the common 
ancestor of the Archaeplastida enlisted proteins for plastid 
functions before the diversification of the three descendant 
lineages. Detailed phylogenetic surveys suggest that several 
of these proteins are products of genes acquired by the 
eukaryote host from diverse bacterial sources via HGT 
[30,31,91,92].

A controversial bacterial signature identified in Archae-
plastida genomes, recently corroborated by the inclusion 
of the Cyanophora genome data, is the dozens (between 
50 and 70) of genes putatively acquired from Chlamydiae-
like bacteria via gene transfer early in the evolution of this 
eukaryote supergroup [8,22,93–95]. Interestingly, some of 
these Chlamydiae-derived proteins are plastid-localized, or 
contain predicted plastid-targeting signals [93,94]. The list of 
putative plastid Chlamydiae-derived proteins includes key 
proteins shared by glaucophytes, red algae and viridiplants. 
They include the ATP/ADP translocator (NTT), which 
regulates the critical exchange of organellar ADP for ATP 
from cytoplasmic pools, and UhpC-type hexose-phosphate 
transporters [8,34]. Other prominent cases of proteins of 
Chlamydiae origin encoded in the Archaeplastida genomes 
are the cytosolic glycogen debranching enzyme (isoamylase; 
GlgX) and the ADP-glucose dependent starch synthase 
(GlgA) [8,22]. Some authors have proposed that the latter 
two enzymes, now essential components of the Archaeplas-
tida starch biosynthesis pathway, played key roles in the 
successful establishment of the eukaryote–cyanobacterium 
endosymbiosis that led to the origin of the Archaeplastida 
ancestor. Briefly, this hypothesis postulates that the meta-
bolic interaction of three symbiotic partners (i.e., eukaryote, 
Chlamydiae-like, and cyanobacterium) established a steady 
flux of carbon compounds, which resulted in a key event to 
consolidate a stable eukaryote–cyanobacterium endosym-
biosis [22,96]. A recent review published in Acta Societatis 
Botanicorum Poloniae thoroughly discusses diverse aspects 
of this tripartite hypothesis [95].

Importantly, some authors consider that the evolutionary 
scenario offered by the tripartite symbiosis hypothesis is 
not a compelling explanation for the Chlamydiae-derived 
genes present in the Archaeplastida genomes. An alternative 
scenario notes that the number of Chlamydiae-like genes is 
relatively small and lower than the number of Archaeplastida 
genes that are likely derived from other bacterial groups 
(e.g., a few hundreds from diverse proteobacteria and acti-
nobacteria), and that typical HGT from free-living bacteria 
better explains the presence of Chlamydiae-like sequences 
[97]. Regardless of the likelihood of the proposed tripartite 
scenario, the significant physiological roles of some of the 
Chlamydiae-derived proteins in plastid functions (e.g., 
NTT and UhpC-type transporter) and polysaccharide me-
tabolism (e.g., GlgA), shared by glaucophytes, red algae and 
viridiplants, suggests that the recruitment of these proteins 
from Chlamydiae occurred in the common ancestor of the 
Archaeplastida [93–95].

https://gold.jgi-psf.org/index
https://gold.jgi-psf.org/index
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Subsequent studies of the Cyanophora genomic repertoire 
have revealed certain glaucophyte genes with homologous 
sequences present in other major eukaryote groups (e.g., 
opisthokonts, amoebozoans, rhizarians, excavates, strameno-
piles), but absent from viridiplant and red algal genomes. 
Some examples are the genes encoding the mitochondrial-
targeted porin Mdm10, which is part of the endoplasmic 
reticulum–mitochondria encounter structure (ERMES) 
[98], and proteins involved in the calcium signaling ma-
chinery (Ca2+SM), such as CatSper-like (cation channels 
of sperm), CaV (membrane voltage-gated Ca2+) and TRP 
(transient receptor potential) channels [99]. The presence 
of the ERMES and the Ca2+SM in diverse major eukaryotic 
groups, now including glaucophytes, suggest an ancient 
origin of these pathways. Likewise, a recent analysis of the 
archaeplastidian collection of Rab GTPases, which are key 
regulators of the intracellular membrane traffic, indicates 
that the GTPase Rab14 is encoded in glaucophyte genomes 
but not present in the red algal and virdiplant repertoires 
[100]. The widespread presence of Rab14 in other major 
eukaryote groups suggests that this protein was part of 
the Rab GTPase collection of the Archeaplastida common 
ancestor [100]. Further comparative investigations compris-
ing other glaucophyte complete genomes will be important 
to understand if those glaucophyte genes associated with 
ERMES, Ca2+SM and part of the Rab GTPase family were 
lost in red algae and viridiplants.

The endosymbiotic gene collection
A recurrent question in plant evolutionary genomics is 

the count of genes that were transferred from the cyano-
bacterial plastid ancestor into the nuclear genome of the 
host (i.e., endosymbiotic gene transfer, EGT) [97,101–104]. 
Analyses of complete Archaeplastida nuclear genomes have 
provided varying estimates of the number of cyanobacterial-
derived genes, ranging from 600 to 1700 sequences in 
different species of land plants (e.g., Oryza sativa, 637 
cyanobacterial-derived genes out of 26 712 total sequences; 
Arabidopsis thaliana, between 801 and 1700 out of 30 897 
and Physcomitrella patens, 903 out of 35 468) [97,101,105], 
400 to 900 in unicellular green algae (e.g., Chlamydomonas 
reinhardtii, between 478 and 897 out of 14 200 genes; Ostreo-
coccus tauri, 403 out of 7715) [97,103] and 300 to 700 in the 
extremophile red alga Cyanidioschyzon merolae (~4700 total 
genes) [97,105]. The phylogenomic survey of the Cyanophora 
genome suggests that only 274 of the 4628 proteins with 
identified homologs have a putative cyanobacterial origin 
[8]. If we exclusively consider phylogenomic results from 
unicellular Archaeplastida, it seems that the ancestral cyano-
bacterial EGT imprint was in the order of several hundreds 
of transferred genes (300–900), and that later independent 
evolutionary events, such as complete genome duplica-
tions (which occur relatively frequently in land plants) or 
adaptive genome reductions (e.g., pico-prasinophytes and 
hyperthermophilic Cyanidiales), expanded or reduced the 
total number of cyanobacterial-derived genes in each lineage. 
Protein targeting predictions for Cyanophora nuclear gene 
products indicate that the cyanobacterial contribution to 
the ancestral Archaeplastida genome mostly comprised 
genes encoding proteins important for the function and 

housekeeping of the photosynthetic organelle [8,102], and 
that subsequently some cyanobacterium-derived proteins 
acquired novel non-plastidic roles [101].

The diversity and origin of phytochromes in glaucophytes
Phytochromes are widely distributed multi-domain 

proteins with covalently linked bilin chromophores (i.e., 
linear tetrapyrroles such as biliverdin, phycoerythrobilin or 
phycocyanobilin). They act as photoreceptors and play key 
roles in signal mechanisms regulating numerous physiologi-
cal responses, such as the gene networks involved in photo-
synthetic activity and circadian rhythms. Phytochromes have 
been studied largely in land plants and diverse bacteria, but 
recent comparative and experimental studies have revealed 
the presence of phytochromes in diverse photosynthetic 
eukaryotes, including cryptophytes, diatoms, brown algae, 
prasinophytes, and now, glaucophytes, thus considerably 
expanding the catalog of these photosensory proteins in the 
eukaryote lineage [45,46].

Typical land plant phytochromes sense light in the red/
far-red region (615–740 nm), but some of the phytochromes 
recently identified in diverse algae are able to capture energy 
from other wavelengths in addition to the red/far-red window 
[46]. For example, phytochromes from certain prasinophyte 
algae absorb orange and yellow light (590–615 nm), whereas 
phytochromes of the brown alga Ectocarpus siliculosus absorb 
in the green spectrum region (510–570 nm) and those from 
glaucophyte sense blue light (410–480 nm). Together, these 
diverse phytochromes encompass most of the visual spec-
trum, raising questions about the physiological roles of the 
different phytochromes in the diverse algal groups [45,46]. 
Surveys of the Cyanophora paradoxa genome and Gloeochaete 
wittrockiana transcriptomic data have identified several phy-
tochrome genes in each of these glaucophyte species. Studies 
of the light absorption properties of some phytochromes from 
Cyanophora (CparGPS1) and Gloeochaete (GwitGPS1) have 
revealed photosensory characteristics not yet observed in 
other eukaryote phytochromes, such as the capacity to sense 
blue light, as also seen in some cyanobacterial phytochromes. 
There are certain differences between the photocycles (i.e., the 
different conformational states of the chromophore molecule 
depending on the wavelength of the absorbed light) of the 
analyzed Cyanophora and Gloeochaete phytochromes, which 
show blue/far-red and red/blue photocycles, respectively, 
indicating considerable diversity in the photosensory proper-
ties of the glaucophyte phytochromes [46]. The physiological 
role and relevance of the peculiar glaucophyte phytochromes 
is still to be thoroughly investigated.

Phylogenetic analysis of the phytochrome multi-do-
main region “PAS–GAF–PHY” from diverse bacterial 
and eukaryote lineages shows that the glaucophyte and 
viridiplant phytochromes have a common origin, separate 
from stramenopile and fungal homologs and independent 
of cyanobacteria [45]. In contrast to this common origin, 
the phylogeny of the phytochrome histidine kinase-related 
output module (HKM) region is not well resolved but sug-
gests a different origin of the glaucophyte and viridiplant 
sequences, indicating possible replacements of phytochrome 
domains during the evolution of Archaeplastida. No red algal 
phytochromes have been reported yet [45].
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The blue-green plastids of glaucophytes

The plastid genome of Cyanophora paradoxa
The plastid genome (ptDNA) of Cyanophora paradoxa 

(strain UTEX LB 555) is the only complete glaucophyte 
ptDNA deposited in public repositories thus far [59] 
(Tab. 2), but near-complete ptDNA data from Glaucocystis 
nostochinearum is reported [8,106]. Comparisons of the 
C. paradoxa and G. nostochinearum ptDNAs show that both 
the gene content and genome organization are very similar 
[106]. If multiple gene copies in the inverted repeats are not 
considered, the total number of protein-coding genes in the 
C. paradoxa ptDNA is 146 (Tab. 2). This number of genes 
is higher than the vast majority of viridiplant ptDNAs, but 
lower than most known red algal ptDNAs (e.g., 233 in the 
florideophyceaen Grateloupia taiwanensis, and 213 and 224 
in the bangiophycean Pyropia yezoensis and Porphyridium 
purpureum, respectively) [107–109]. Multi-locus phyloge-
netic analyses of plastid genes suggest the single origin of 
primary plastids and, indirectly, the common ancestry of 
the Archaeplastida [5,9]. However, this last inference has to 
be taken with caution as the absence of data from plastid-
lacking eukaryote lineages limits potential conclusions from 
plastid phylogenomics.

The phycobilisomes of Cyanophora
Phycobilisomes are light-harvesting antenna complexes 

attached to the stromal face of the thylakoid membranes of 
cyanobacteria and the plastids of red algae and glaucophytes 
[110,111] (Fig. 5). Antenna complexes play a central role in 
photosynthesis by capturing light energy and transferring it 
to the reaction centers of photosystems I and II. The putative 
unique origin of primary plastids from a cyanobacterium 
suggests that phycobilisomes were present in the photosyn-
thetic organelles of the common ancestor of the Archae-
plastida, and were later independently lost in the viridiplant 
branch [112]. Phycobilisomes are proteinaceous complexes 
composed of a series of rods (6 to 8) connected to a central 
core [40]. The core and rods are made up of phycobiliprotein 
molecules aggregated in trimeric or hexameric disks, which 
are organized in cylindrical macrostructures connected and 
stabilized by unpigmented linker proteins [113] (Fig. 5).

Genomic data from Cyanophora paradoxa reveals that the 
unpigmented components of the phycobilisomes, comprising 
the rod-core (CpcG1 and CpcG2), rod-linker (CpcK1, CpcK2 
and CpcD) and core-linker (ApcC1, ApcC2) proteins, are 
encoded in the nucleus of this alga, whereas the complete 
set of phycobiliprotein subunits (ApcA, ApcB, ApcD, ApcE, 
ApcF, CpcA and CpcB) are encoded in the plastid genome 
[40,62]. Glaucophyte phycobilisomes show certain com-
positional and structural differences compared to those of 
red algae. The most conspicuous difference is the absence 
of phycoerythrin in the glaucophyte phycobilosomes, which 
is the most abundant phycobiliprotein in red algal plastids 
[62]. Structural studies of the Cyanophora paradoxa phyco-
bilisomes suggest that the protein components are arranged 
in two unusual sub-complexes (organized as ApcE/CpcK1/
CpcG2/ApcA/ApcB/CpcD and ApcE/CpcK2/CpcG1/ApcA/
ApcB), which connect the core and rod sections and serve 
as a structural framework for the phycobilisome assembly 
(Fig. 5) [40].

Interestingly, the typical rod-linker protein CpcC, in-
volved in the formation of phycocyanin rods of cyanobac-
terial and red algal phycobilisomes, has not been found in 
different Cyanophora paradoxa strains (CCMP329 and NIES 
547) [40]. This suggests that the novel Cyanophora proteins 
CpcK1 and CpcK2, which harbor phycocyanin linker do-
mains, play the role of linking the phycocyanin disks during 
elongation of the phycobilisome rod (Fig. 5). Phylogenetic 
analyses of the rod-core (CpcG1 and CpcG2) and the rod-
linker (CpcK1 and CpcK2) proteins of Cyanophora indicate 
that these proteins are products of gene duplications, which 
probably occurred only in glaucophytes [40]. Further struc-
tural and functional studies in other glaucophyte genera 
will be important to better understand the apparent unique 
characteristics of the Cyanophora phycobilisomes and their 
role in the light-harvesting function.

The light harvesting proteins of glaucophytes
Following the origin of primary plastids, the history of 

the photosynthetic apparatus in Archaeplastida has involved 
the intricate evolution of different proteins carrying bound 
chromophores (i.e., molecules able to absorb certain wave-
lengths of visible light and to transmit others) to perform 
light-harvesting roles [114,115]. Based on the presence of 
chlorophyll-binding motifs in transmembrane regions, most 
of these chromophore-binding proteins are grouped in the 
extended light-harvesting complex protein superfamily, 
which comprises, among other groups, the light-harvesting 
complex (LHC), the photosystem II subunit S (PSBS) and 
the LHC-like protein families [114–116].

The Cyanophora nuclear genome exclusively contains 
genes encoding proteins of the LHC-like family. These in-
clude a plastid genome-encoded protein and related nuclear 
genome-encoded proteins (OHP1 and OHP2) of the high 
light-inducible (HLIP) subfamily [59] and sequences with 
domain similarity to proteins belonging to the two-helix 
stress-enhanced (SEP) subfamily [8,114]. Interestingly, the 
typical red algal and viridiplant three-helix LHC proteins 
are apparently absent in Cyanophora and Glaucocystis, but 
the three Archaeplastida groups share the presence of two-
helix SEP-like proteins. These latter data add some support 

Size (kb) 135.6
Shape (map) circular
Protein coding genes1 146

Unidentified ORFs 11
Hypothetical proteins 13

23S rRNA1 1
16S rRNA1 1
5S rRNA1 1
Transfer RNAs 36
A + T content (%) 69.5
Type-I intron 1

1 Excluding extra copies.

Tab. 2 Characteristics of Cyanophora paradoxa plastid genome 
[59].
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to the controversial “early diverging” split of glaucophytes 
from the Archaeplastida stem [114,117] and suggest that the 
“red” and “green” three-helix LHC families probably evolved 
from SEP-like paralogues just after the presumed separation 
of the glaucophyte lineage. The remarkable diversity of the 
extended LHC protein superfamily in the Archaeplastida 
depicts a very complex evolutionary scenario that presum-
ably involved numerous gene and domain duplications.

The peptidoglycan wall of the glaucophyte plastid
Peptidoglycan, or murein, is a hetero-polymer composed 

of chains of monosaccharides (N-acetylmuramic acid and 
N-acetylglucosamine) cross-linked by short peptide chains 
(3–5 amino acid residues). It forms a mesh surrounding the 
plasma membrane of most bacteria [118,119]. The rigidity of 
the peptidoglycan cell wall counteracts the osmotic pressure 
of the cytoplasm, preserving the cell integrity; the peptido-
glycan cell wall also participates in bacterial division [118].

The peptidoglycan of the glaucophyte plastid PGW [120] 
is characterized by the presence of N-acetylputrescine as the 
chemical substituent in half of the 1-carboxyl groups of the 
glutamic acid residues of the peptide chains [121,122]. Ex-
perimental studies have demonstrated that the biosynthesis 
of the peptidoglycan precursor (UDP-N-acetylmuramyl-
pentapeptide) occurs in the glaucophyte plastid stroma, 
and that the assembly of the polymer network occurs in 
the periplasmic space [60,123]. The vast majority of the 
enzymes typically involved in peptidoglycan synthesis are 
not encoded in the Cyanophora plastid genome (with the 
exception of the putative lipid flippase FtsW) and they must 
be imported into the photosynthetic organelle [60,123]. As 
predicted [123], the Cyanophora paradoxa nuclear genome 
encodes numerous enzymes (at least 19) that presumably 
participate in peptidoglycan biosynthesis, with some of these 

sequences possessing putative transit- and signal- peptides 
characteristic of plastid-targeted proteins that will be im-
ported into the periplasmic space [63]. The identified genes 
encode homologs of most of the enzymes involved in the 
synthesis of the stromal precursors UDP-N-acetylmuramyl-
pentapeptide and UDP-N-acetylglucosamine (murA–F), 
production of the lipid-linked intermediaries Lipid I and 
Lipid II (murG, mraY), as well as several penicillin-binding 
proteins (PBPs) that catalyze polymerization and cross-
linking of the glycan strands [8,63]. As occurs frequently 
in plastid-localized pathways, the evolutionary history of 
peptidoglycan biosynthesis involves protein losses and 
replacements: not all the putative plastid-targeted enzymes 
have a cyanobacterial origin, suggesting that enzymes 
from other bacteria, presumably acquired via HGT, were 
recruited during the evolution of the glaucophyte plastid 
proteome [63].

During plastid division in glaucophytes the PGW forms 
the dividing septum that leads the membrane invagination 
in early steps of organelle division [124]. This role of the 
PGW was demonstrated by the inhibitory effect of diverse 
antibiotics (peptidoglycan biosynthesis inhibitors) on glau-
cophyte plastid division [125–127]. Due to the presence 
of the peptidoglycan layer, the molecular mechanisms for 
plastid division in glaucophytes are different from those 
of plastids from other members of the Archaeplastida. In 
red algal and viridiplant photosynthetic organelles two 
annular macromolecular structures are typically observed: 
the cytosolic plastid-dividing ring on the cytosolic side of 
the outer membrane and the stromal ring on the stromal 
side of the inner membrane [128]. In contrast, glaucophyte 
plastid division involves only a single stromal structure 
called “cyanelle ring”, which is presumably a homolog of the 
“red” and “green” stromal ring. The dynamin-related protein 

      CpcD
(rod-capping Lp)
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        (core Lp)
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     disks

Rod
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      (rod-core Lp)
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        ApcE
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Fig. 5 Schematic model of the Cyanophora paradoxa phycobilisome antenna complex. A single rod and core section (a) illustrates the 
suggested arrangement of the phycobilisome cylinders (shapes in blue and turquoise) and the skeleton formed by the different linker 
proteins (Lp) of Cyanophora. The proteins CpcK1 or CpcK2 are novel rod linker proteins probably participating in the connection of 
phycocyanin disks, substituting for the typical cyanobacterial-like rod-linker protein CpcC, which is apparently absent in Cyanophora. The 
fan-like structure of the phycobilisome complex attached to the stromal side of the thylakoidal membrane (b) shows the core composed of 
three allophycocyanin cylinders (turquoise) with their longitudinal axes organized in a triangular arrangement. Six rods composed of six 
phycocyanin cylinders (blue) are attached to the core. The light energy efficiently captured by the phycobilosme antenna is then transferred 
to the reaction centers of the photosystems II (PS II) and I (PS I). This illustration is based on the model suggested by Watanabe et al. [40].
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DRP5B and the glycosyltransferase PDR1 (plastid dividing 
ring 1), which are involved in the synthesis of the cytosolic 
plastid-dividing ring in red algae and viridiplants, are not 
encoded in the Cyanophora genome [129]. The cytosolic 
ring possibly evolved as a mechanical replacement of the 
peptidoglycan septum after the loss of the PGW in red algae 
and viridiplants [127]. Even though the presence of a PGW 
has not been reported in viridiplant plastids, several enzymes 
involved in peptidoglycan biosynthesis are still encoded in 
the genomes of some land plants and actively participate in 
plastid division in mosses [129].

Carboxysome-like structures in glaucophyte plastids
Early immunoelectron microscopy studies demonstrated 

that electron dense structures surrounded by thylakoids 
in diverse glaucophytes (Fig. 2) [54,56,78,130] contained 
high concentrations of the enzyme ribulose 1,5-bispho-
sphate carboxylase/oxygenase (RuBisCO), resembling 
the appearance of carboxysomes found in cyanobacteria 
[131]. Carboxysomes are bacterial microcompartments 
that accumulate RuBisCO and other enzymes within a 
protein shell and constitute part of the CO2-concentrating 
mechanisms (CO2-CMs) that increase the catalytic efficiency 
of the RuBisCO carboxylation reaction (RuBP + CO2 → 2 
molecules of 3-phosphoglycerate) [131,132]. Similarly, many 
photosynthetic eukaryotes with plastid-based CO2-CMs 
accumulate RuBisCO molecules in microcompartments 
called pyrenoids. In contrast to carboxysomes, pyrenoids do 
not have a protein shell. There are also basic ultrastructural 
differences between carboxysomes and pyrenoids, as the 
latter are often traversed by thylakoids whereas carboxy-
somes are not penetrated by membrane components [61]. 
As with carboxysomes, pyrenoid-based CO2-CMs generate 
a localized increase in CO2 concentration in the proximity 
of the accumulated RuBisCO molecules increasing the 
catalytic efficiency of the RuBisCO carboxylation reaction 
while limiting the competing oxygenation reaction (RuBP 
+ O2 → 3-phosphoglycerate + 2-phosphoglycolate) [133]. 
Physiological experiments and gene expression data from 
Cyanophora suggest that the glaucophyte carboxysome-like 
bodies (CLBs) are indeed part of an inducible CO2-CM ap-
paratus [132,134]. Interestingly, the Cyanophora CLBs have 
no apparent protein shells, similar to eukaryotic pyrenoids, 
but are not traversed by thylakoids, similar in this respect 
to cyanobacterial carboxysomes.

It has been hypothesized that the co-occurrence of 
both the CLBs and the PGW in glaucophyte plastids is the 
evolutionary outcome of their reciprocal role in a puta-
tive carboxysome-based CO2-CM [135]. Importantly, this 
hypothesis posits that if the glaucophyte CLBs are carboxy-
somes, then high concentrations (higher than in other plastid 
CO2-CM) of inorganic carbon (HCO3

−) would be present 
inside the plastid [135]. This putative high concentration 
of HCO3

− in the glaucophyte plastid stroma would produce 
significant differences between the osmolarities of the cytosol 
and the plastid interior, compromising the integrity of the 
organelle membranes. Consequently, the presence of a rigid 
plastid PGW would be a critical low-energy-cost mechanism 
to stabilize the volume and membranes of the glaucophyte 
hyperosmotic plastids [135]. In contrast, photosynthetic 

eukaryotes with pyrenoid-based CO2-CMs and plastids 
lacking a PGW have evolved active energy-dependent water 
efflux mechanisms (i.e., membrane solute co-transporters 
and channels) to cope with osmotic stress [135]. To our 
knowledge there are no direct data comparing glaucophyte 
plastid osmolarity levels to levels in plastids with pyrenoids. 
Further physiological investigations are required to explore 
important aspects of this hypothesis.

The ultrastructural similarities of the Cyanophora CLBs 
with both cyanobacterial carboxysomes and eukaryotic py-
renoids have raised questions about the specific biochemical 
mechanisms of the Cyanophora CO2-CM [61,63]. Further, 
it has been questioned whether the Cyanophora CLBs are 
in fact bona fide carboxysomes, as key components of typi-
cal carboxysomes, such as genes for the proteins forming 
the semi-permeable shell that encapsulates RuBisCO and 
plastid-targeted carbonic anhydrases, are not present in the 
Cyanophora genome [8,61]. The absence of these typical car-
boxysome components suggests that the Cyanophora CLBs 
are possibly pyrenoid-like compartments [61,63]. Interest-
ingly, there are also apparent structural differences between 
the CLBs of the different glaucophyte genera. For example, 
in the case of Gloeochaete and Cyanoptyche it is possible to 
distinguish CLBs with regular polyhedral shapes, presumably 
surrounded by protein shell-like structures (Fig. 2a), whereas 
in Glaucocystis (Fig. 2b) the CLBs has relatively irregular 
shape consistent with the absence of carboxysome shell 
proteins [63]. These ultrastructural data suggest that some 
structural, and possibly functional, divergence between the 
cyanobacterial-like CLBs (in Gloeochaete and Cyanoptyche) 
and the pyrenoid-like forms (those of Cyanophora and Glau-
cocystis) has occurred during glaucophyte evolution [63]. It 
remains to be investigated if these structural differences are 
related to functional peculiarities in the CO2 concentrating 
mechanisms of the different glaucophyte lineages.

The glaucophyte mitochondrial genomes

Complete mitochondrial genomes (mtDNAs) are now 
available for four glaucophyte species from four different gen-
era: Cyanophora paradoxa (strain UTEX LB 555) and Glau-
cocystis nostochinearum (UTEX 64) [8], and Cyanoptyche 
gloeocystis (strain SAG 4.97) and Gloeochaete wittrockiana 
(SAG 48.84) [10]. Similar to the mtDNA of many Archae-
plastida, glaucophyte mtDNAs are circular-mapping with no 
apparent unusual gene or genome structures (Fig. 6a). The 
mtDNA gene complement is very similar across the differ-
ent genera and comparable to the most gene-rich mtDNAs 
known in green and red algae [8] (Tab. 3). It includes genes 
for transfer RNAs (tRNAs) that are capable of servicing all 
the codons in the mitochondrial genes, with the exception of 
ACN codons (threonine). The Gloeochaete wittrockiana and 
Glaucocystis nostochinearum mtDNAs lack a tRNA to decode 
ACA and ACG codons, whereas Cyanophora paradoxa and 
Cyanoptyche gloeocystis lack trnT genes entirely. Therefore, 
glaucophytes might rely on import of cytoplasmic trnT, or 
differential RNA editing of the anticodon might produce 
two tRNAs from a single mitochondrial gene as reported 
in opossum [136]. No 5S ribosomal RNA gene (rrn5) was 
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detected in the Gloeochaete wittrockiana mtDNA using 
different approaches [10,137]. A single group I intron is 
present in the Cyanoptyche gloeocystis large subunit rRNA 
gene, whereas no introns have been detected for any gene 
in any other glaucophyte species [10].

An unusual feature of Cyanophora paradoxa mtDNA 
genes is the exceptionally high substitution rate they have 
undergone, relative to plastid and nuclear genes. Com-
parison of synonymous-site divergence in two Cyanophora 
paradoxa isolates (strains UTEX LB 555 and NIES-763; the 
latter now renamed as Cyanophora kugrensii [39]) reveals a 
substitution rate 4–5-fold higher in mtDNA genes compared 
to those in the other two genomic compartments [37]. This 
pattern is consistent with data from other Archaeplastida 
lineages, where (with the exception of most seed-plants) 
the mtDNA mutation rate is usually similar to or higher 
than the ptDNA mutation rate. Only limited conclusions 
can be drawn at present, however, as sufficient sequence 
data from all three genomes is only available from a small 
number of taxa.

As noted above, substantial evidence suggests that the 
glaucophytes, red algae and viridiplants share a common 
ancestor, but some phylogenetic analyses do not recover 
these three lineages as a monophyletic clade. Multi-locus 
phylogenetic analyses using mtDNA genes from a broad 
sample of major eukaryote lineages, including data from 
seven glaucophytes (four Cyanophora species/strains, 
Gloeochaete wittrockiana, Glaucocystis nostochinearum 

and Cyanoptyche gloeocystis), do recover a clade uniting the 
three Archaeplastida groups with high Bayesian posterior 
probability but maximum-likelihood bootstrap support 
<50% [10] (Fig. 6b). This recovery is dependent on the 
expanded glaucophyte taxon sampling undertaken in the 
study. The Archaeplastida monophyly is resolved only when 
excavates sequences (i.e. jakobids, malawimonads and the 
long-branch heterolobosean Naegleria) are excluded from 
the phylogenetic analysis [10].

Concluding remarks: perspectives 
on glaucophyte research

A central aim behind the sequencing of a glaucophyte 
nuclear genome was to test different hypotheses regarding 
the putative common origin of red algae, viridiplants and 
glaucophytes. The phylogenetic survey of the Cyanophora 
genome has certainly provided some support for the mono-
phyly of Archaeplastida, but the small glaucophyte sample 
in most phylogenetic trees (just a single species) is still a 
limiting factor in providing conclusive answers. Phylogenetic 
analyses using mitochondrial genes have demonstrated the 
importance of a large glaucophyte taxon sampling in multi-
locus analyses when testing the Archaeplastida monophyly, 
emphasizing that further research efforts in that direction 
should rely on a broader genomic knowledge base of diverse 
glaucophyte taxa.

Fig. 6 Mitochondrial genomes of Glaucophyta. a Circular maps of the Gloeochaeate wittrockiana, Cyanoptyche gloeocystis, Cyanophora 
paradoxa and Glaucocystis nostochinearum mitochondrial genomes. Color bars identify types of genes/ORFs: ribosomal RNAs (red), 
transfer RNA genes (blue), ribosomal proteins (purple), complex I (yellow), complex II (pink), complex III and IV (dark gray), complex V 
(green), unidentified ORFs (orange). Red arrowheads indicate overlaps between genes. Note that all Cyanoptyche gloeocystis genes are 
encoded in the same DNA strand. b ML phylogenetic tree estimated from conceptual translations of the mitochondrial genes atp6, atp9, 
cob, cox1, cox2, cox3, nad1, nad2, nad3, nad4, nad4L, nad5, nad6 and nad7. Numbers in black represent bootstrap proportion support (BS) 
and values in red are Bayesian posterior probabilities (PP), respectively. The phylogenetic tree was arbitrarily rooted defining the “unikont” 
(i.e., opisthokonts and amoebozoans) lineages as outgroup. Thick branches are supported by both BS and PP values >95. Branch lengths 
are proportional to the number of substitutions per site indicated with scale bar (see Jackson and Reyes-Prieto [10] for detailed methods).

Cyanoptyche 
gloeocystis

Gloeochaete 
wittrockiana

Cyanophora 
paradoxa

Glaucocystis 
nostochinearum

Size (kb) 33.24 36.05 51.6 34.1
Shape (map) circular circular circular circular
Protein coding genes 33 33 34 34
Unidentified ORFs 6 6 10 2
23S rRNA 1 1 1 1
16S rRNA 1 1 1 1
5S rRNA 1 not detected 1 1
Transfer RNAs 23 26 24 23
A + T content (%) 71.5 69.5 74.0 74.3
Intergenic sequence (%) 3.9 7.4 15.3 5.3
Genetic code standard standard standard standard

Tab. 3 Characteristics of glaucophyte mitochondrial genomes.
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Recent studies of species diversity in glaucophytes have 
provided a new perspective to investigate the overall diversity 
of the group. Some important questions that require answers 
are: what are the phylogenetic relationships among the 
known genera? What is the level of species diversity within 
the poorly studied genera Cyanoptyche and Gloeochaete? 
Are the genomic and physiological repertoires of differ-
ent glaucophyte genera similar? Some current efforts are 
employing high-throughput strategies, such as fluorescence 
activated cell sorting (FACS) and environmental genom-
ics, to investigate glaucophyte diversity, abundance and 
geographic distribution. For example, the possible presence 
of glaucophytes in marine environments is being explored.

Other important directions for further research have 
been identified after recent comparative investigations. 
These include studies to understand the function of the 
glaucophyte photosynthetic apparatus in the absence of 
typical LHC proteins, investigations of the physiological 
roles of the peculiar phytochromes found in Cyanophora and 
Gloeochaete, and analyses of the biochemical characteristics 
of the plastid CO2-CMs from diverse glaucophyte species 
to untangle the carboxysome versus pyrenoid debate. The 
recent findings in diverse research areas have considerably 
expanded our knowledge of glaucophytes and motivated 
comprehensive studies of the basic biology of this poorly 
studied, but fascinating, algal group.
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