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Abstract
Chromosomenumber change (polyploidy and dysploidy) plays an important role in plant

diversification and speciation. Investigating chromosome number evolution commonly

entails ancestral state reconstructionperformedwithin a phylogenetic framework, which is,

however, prone to uncertainty, whose effects on evolutionary inferences are insufficiently

understood. Using the chromosomally diverse plant genusMelampodium (Asteraceae) as

model group, we assess the impact of reconstructionmethod (maximumparsimony, maxi-

mum likelihood, Bayesian methods), branch length model (phylograms versus chrono-

grams) and phylogenetic uncertainty (topological and branch length uncertainty)on the

inference of chromosomenumber evolution. We also address the suitability of themaximum

clade credibility (MCC) tree as single representative topology for chromosomenumber

reconstruction.Each of the listed factors causes considerable incongruence among chro-

mosome number reconstructions.Discrepancies between inferences on the MCC tree from

thosemade by integrating over a set of trees are moderate for ancestral chromosome num-

bers, but severe for the difference of chromosomegains and losses, a measure of the direc-

tionality of dysploidy. Therefore, reliance on single trees, such as the MCC tree, is strongly

discouraged and model averaging, taking both phylogenetic and model uncertainty into

account, is recommended. For studying chromosome number evolution, dedicatedmodels

implemented in the programCHROMEVOL and orderedmaximum parsimonymay be most

appropriate.Chromosomenumber evolution inMelampodium follows a pattern of bidirec-

tional dysploidy (starting from x = 11 to x = 9 and x = 14, respectively) with no prevailing
direction.
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Introduction
Chromosome number change plays an important role in eukaryotic evolution in general and
in plant diversification and speciation in particular [1, 2]. Several types of chromosome number
change are commonly considered. Dysploidy is the homoploid change of the chromosome
base number via chromosomal rearrangements without significant loss of genetic material [3].
Its evolutionary significance is evident from a high diversity of chromosome numbers even
among closely related groups [1, 4, 5], where the distribution of chromosome base numbers
often correlates with phylogenetic relationships [6–8]. Polyploidy is the multiplication of entire
chromosome sets. It has become a major focus in plant evolutionary biology due to the recog-
nition of the ubiquity of polyploidy in angiosperms via identification of several rounds of
whole genome duplication affecting even small angiosperm genomes [9, 10]. Auto- and espe-
cially allopolyploidy are important drivers of diversification, both in speciation and as a trigger
for genomic and genetic changes (reviewed in [11]), such as in many evolutionarily young
plant crops [12]. Aneuploidy refers to the loss or gain of entire chromosomes and thus of
genetic material, which is rarely tolerated by plants [3]. Like the presence of accessory chromo-
somes (B-chromosomes), aneuploidy is usually transitory and hence plays only a minor role in
evolutionary terms [1].

Prerequisites for a solid analysis of chromosome number change are comprehensive and
unambiguous chromosome number data and sound hypotheses on phylogenetic relationships
[8, 13–15]. Over the last decades, enormous progress has beenmade on both aspects. Chromo-
some numbers are known for a fair number of plants (although with conspicuous gaps in, for
instance, tropical lineages), many of them available in the Chromosome Counts Database [16].
Likewise, phylogenetic hypotheses, established by application of increasingly sophisticated
phylogenetic methods with an increasing amount of data, are available for many plant groups
[17].

Chromosome number evolution (and ancestral character state reconstruction in general)
can be inferred using a number of formal approaches. A commonly usedmethod is maximum
parsimony (e.g., [18, 19]). Whereas unordered parsimony makes no assumptions about state
transitions, ordered parsimony allows only transitions between consecutive chromosome num-
bers, thus implicitly accounting for unobserved intermediate character states. Based on mecha-
nisms of chromosome number change [20], the assumption of ordered states appears to be
more realistic. Among the disadvantages of maximum parsimony are multiple transitions on a
single branch (beyond those implicated by ordered parsimony) that are not accounted for [21]
(if changes in chromosome number are connected to speciation, this may, however, be of lim-
ited concern) and that statistical comparison of different reconstruction schemes is not possible
[22].

Alternative methods are model-based and employ explicit probabilistic models to describe
how character evolution has proceeded [21]. By taking branch lengths into account, thesemod-
els allow for unobserved state changes, i.e., multiple transitions. This may, however, result in
substantial differences in inferences from phylograms, where branch lengths are proportional
to molecular evolution, from those on ultrametric trees (chronograms), where branch lengths
are proportional to (absolute or relative) time despite identical topologies [23]. Although it
may be argued that the only meaningful interpretation of these models is that the probability of
change depends on time, measuring branch lengths in units of “opportunity for selection”,
such as genetic distances [24], should not be disregarded a priori [23]. An advantage of model-
basedmethods over parsimony is that the fit of different models can be readily compared using
statistical model comparison approaches, such as applying information criteria or using Bayes
Factors [25].
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For character state reconstruction,most commonly a continuous-timeMarkov model is
used, which contains maximally n (n − 1) rate parameters, n being the number of character
states, describing the transition between character states [26, 27]; this model is available in
both maximum likelihood and Bayesian implementations. As this model does not account for
character states unobservedamong included samples, its applicability in the context of chro-
mosome number evolution may be compromised. Mayrose et al. [28] introduced a set of con-
tinuous-timeMarkov models, whose parameterization is tailored for the study of chromosome
number evolution. The basic model parameters are the rate of gain and the rate of loss of a sin-
gle chromosome (thus, unobservedchromosome numbers are accounted for) and the rate of
chromosome number duplications. Additional models of dysploid change can be implemented
by incorporating parameters introducing a linear dependency of chromosome gain and loss
from the current chromosome number; additional models of polyploid change can be imple-
mented by incorporating a rate of chromosome number demi-duplication (i.e., a 1.5 fold
increase of the chromosome number) and/or a rate of chromosomemultiplication in general
(controlled by a rate parameter and a parameter describing the monoploid base number: [29]).
Single parameter models (e.g., one including a single rate of dysploid change) are conceivable,
but have not been implemented [28, 29]. For the models of Mayrose et al. [28], no Bayesian
implementation allowing to set priors on the model parameters is available.

Irrespective of reconstructionmethod used, inferences will be affected by phylogenetic
uncertainty, i.e., uncertainty with respect to topology and/or branch lengths (the latter not rele-
vant for parsimony reconstruction).Although this can be accounted for by performing charac-
ter state reconstruction over a set of trees (e.g., the posterior set of trees from a Bayesian
analysis; a bias for overestimating transitions may, however, remain: [30]), reconstructions
often use only a single representative topology, such as the majority-rule consensus tree (e.g.,
[31]) or the maximum clade credibility (MCC) tree (e.g., [32, 33]). It remains, however, unclear
how representative these single trees are.

A well suited system to study chromosome number evolution is the genusMelampodium
(Asteraceae). It comprises 40 species centered in Mexico and Central America, a few reaching
the southwestern United States and South America [34]. Chromosome numbers are known for
all species except one [35]. Apart from 13 exclusively polyploid species, mostly of allopolyploid
origin [34–36], the remaining species are exclusively (23 species) or mostly diploid (four spe-
cies with both diploid and tetraploid cytotypes [35]). In diploids, five chromosome base num-
bers are found (x = 9, 10, 11, 12, 14: [35]), whose distribution largely corresponds with the
delimitation of morphologically and phylogenetically defined sections [34, 37]. Previous intui-
tive analyses suggested x = 10 or x = 11 as the ancestral chromosome base number [35, 38, 39],
but both hypotheses may be flawed, because the presumed outgroups used for character state
polarization,Acanthospermum and Lecocarpus, have recently been shown to be nested within
Melampodium [37].

Here, we assess the impact of reconstructionmethod, branch length model (phylograms
versus chronograms) and phylogenetic uncertainty on the inference of chromosome number
evolution usingMelampodium as model group. To this end, we use ordered parsimony, maxi-
mum likelihood (using both standard Markov models for discrete multistate characters and
the models devised by Mayrose et al. [28]), and a Bayesian method on posterior sets of both
phylograms and chronograms. Althoughmore decisive results on the performance of methods
can be achieved using simulations, we consider the analysis of empirical data using a set of
appropriate methods a valuable complementary approach, as only empirical data sets are
guaranteed to represent realistic settings. By reconstructing ancestral chromosome numbers
and estimating rates of chromosome number change, previous hypotheses concerning chro-
mosome base numbers (x = 10 versus x = 11) inMelampodium and the directionality of
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dysploidy (ascending, i.e., with increasing chromosome base number; descending, i.e., with
decreasing chromosome base number; or bidirectional) can be tested.

Materials andMethods

Phylogenetic analysis
Sequences of the nuclear rDNA region, comprising the 3'-end of the 18S-gene, the Internal
Transcribed Spacer 1, the 5.8S gene, the Internal Transcribed Spacer 2 and the 5'-end of the
26S gene and henceforth jointly referred to as ITS, and the plastid trnK-intron including the
matK-gene, henceforth referred to as matK, were obtained from Blöch et al. [37] (S1 Table).
These data sets include all species ofMelampodium, half (ITS) to one sixth (matK) of
Acanthospermum species and half (ITS) to all (matK) of Lecocarpus species. These datasets
were trimmed to include only diploid accessions becausemost of the polyploids inMelampo-
dium are either of allopolyploid origin [36] or of likely recent origin (in species with both
diploids and polyploids: [35]) with accordingly higher polyploidization rates resulting in poly-
ploidization rate heterogeneity across time, which may bias inference of phylogeny-wide poly-
ploidization rates. Testing any bias, which, as suggested by a reviewer, may actually result
from this very exclusion of recent polyploids, would require simulations going beyond the
scope of this study. Even if a bias exists, this should not affect the comparison of different
reconstructionmethods, as these use the same data sets.Melampodium moctezumum was
excluded from the analyses, because its exact chromosome number is not known. Although
classified as separate genera [34], Acanthospermum and Lecocarpus are phylogenetically
nested inMelampodium [37] and were, therefore, included in the analyses. Each species and
each intraspecific taxon (varieties inM. cinereum andM.montanum) was represented by a
single accession except in cases of intraspecific sequence variation exceeding an ad hoc thresh-
old. Briefly, inter- and intraspecific pairwise distances were calculated using K2P distances
with MEGA 4 [40] and the distance threshold was defined as the median value of interspecific
distances in the distance range, where inter- and intraspecific distances overlapped. The
median value was preferred over alternative cut-offs, such as the mean or the minimum inter-
specific distance, as it avoids unduly strong influence of very small interspecific distances.
Intraspecific sequence data whose pairwise distances exceeded this threshold were kept in the
dataset. The final datasets comprised 39 accessions in the ITS dataset and 34 accessions in the
matK dataset (S1 Table).

Due to highly supported incongruences between nuclear and plastid phylogenies [37] data
sets were analyzed separately. The best fit substitution models were identified using MODELT-
EST 3.6 [41]. For ITS, the dataset was divided into the rDNA partition (partial 18S and 26S
genes, complete 5.8S gene) and the combined spacers (ITS 1 and 2) partition. For the former
there was a high uncertainty concerning the best fit model (20 models until the cumulative
Akaike weight exceeded 0.95) ranging from two to nine free parameters; eventually a moder-
ately complex model was chosen (HKY+Γwith 5 free parameters), incorporating invariable
sites, often parameterized separately as proportion of invariable sites I, in the gamma distribu-
tion (due to identifiability issues: [42]) modeledwith six discrete rate categories. For the spacers
partition, only three models were included with eight to ten free parameters until the cumula-
tive Akaike weight exceeded 0.95, and a GTR+Γmodel was used. Althoughmodel uncertainty
was higher for the trnK-intron partition than for thematK-partition of matK (nine models
with six to nine parameters versus four models with eight to ten parameters, respectively, until
the cumulative Akaike weight exceeded 0.95), for both partitions the GTR+Γmodel was
selected. Phylograms, i.e., trees where branch lengths are proportional to the number of evolu-
tionary events (here substitutions per site), were constructed using MRBAYES 3.1.2 [43]. This
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version of MRBAYES uses branch-length priors that may result in an overestimation of tree-
lengths, but this should not significantly affect relative branch lengths [44]. We employed three
runs with four chains each (three heated ones using a heating parameter of 0.1) for 25 × 106

generations sampling every 15,000th generation. The first 10% were discarded as burn-in,
which was well after the chains had reached stationarity (standard deviations of split frequen-
cies being below 0.01 and ESS values being safely above 1,000), and a final set of 4,500 trees was
used for all further analyses. Trees were rooted usingGalinsoga (x = 8, 9: [45]) andMilleria
(x = 15: [46]), but these outgroups were pruned from the trees prior to ancestral chromosome
number reconstruction analyses. Chronograms, i.e., trees where branch lengths are propor-
tional to (absolute or relative) time, were constructed using BEAST 1.4.x [47] with a speciation
model following a Yule process as tree prior and separate relaxed clocks for each data partition
with calibrations achieved via normal priors on each partition’s substitution rate (given as
mean/standard deviation): rDNA 0.0002/0.0002, based on rate estimates by Kuzoff et al. [48]
for 18S and 26S genes relative to plastid rbcL genes, using rbcL substitution rates for asterids
from Bremer and Gustafsson [49]; ITS spacer 0.005/0.0025, based on ITS substitution rates for
herbaceous plants summarized by Kay et al. [50]; trnK-intron 0.004/0.002 andmatK 0.0022/
0.0011, both based on rate estimates given by Yamane et al. [51]. As our interest here was not
in molecular dating, we neither conducted testing with respect to the used clock models nor
fine-tuned the calibration priors. As the coefficient of rate variation for the rDNA partition of
ITS abutted zero (data not shown), we conducted additional likelihood analyses using a strict
clock model for the rDNA partition; these analyses yielded nearly identical results with respect
to chromosome number reconstructions and the used test statistics (data not shown) and,
hence, were not pursued any further. For each data set, three runs for 50 × 106 generations
sampling every 30,000th generation were employed; again, the first 10% were discarded as
burn-in (ESS values being safely above 1,000), and a final set of 4,500 trees was used for all fur-
ther analyses. Sequence alignments and phylogenetic trees are available from the DryadDigital
Repository at http://dx.doi.org/10.5061/dryad.6r12h.

Ancestral chromosomebase number reconstructions
For the following analyses, haploid chromosome numbers (n) were used. All analyses were per-
formed on each of the four 4,500-tree data sets (i.e, ITS and matK with MRBAYES and BEAST,
henceforth termed ITS-MB, matK-MB, ITS-B and matK-B). Prior to analyses, these trees were
rescaled to an equal length of five, i.e., the number of different character states (the default scal-
ing in CHROMEVOL 2.0).
Test statistics. For comparison of reconstruction uncertainty resulting from differences in

reconstructionmethod we used the proportion of the most frequently reconstructed chromo-
some number and normalized it giving an index of reconstruction precision per node n, RPn,
of

RPn ¼
maxj2XðPjÞ � Pmin

Pmax � Pmin
; ð1Þ

where Pj is the reconstruction proportion of character state j and X is the set of all character
states reconstructedwith probability> 0 (or a user-defined cutoff, here 10−2) at any node of
the tree (or of a set of compared trees), i.e.,X = X1 [ X2 [ . . . [ XN, whereN is the number of
nodes with reconstructions in the tree (or of a set of compared trees). Pmax, the maximum pos-
sible proportion of the most frequently reconstructed character state, is 1; Pmin, the minimum
possible proportion of the most frequently reconstructed character state, is 1/CX, where CX is
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the number of character states in X. Therefore, RPn can be reformulated as

RPn ¼
CX �maxj2XðPjÞ � 1

CX � 1
: ð2Þ

The normalization is necessary, as different nodes of the same tree (or of a set of compared
trees) can have different sets of reconstructed character states, because states may have (nearly)
zero probability at some nodes, but not at others. For example, for a node with chromosome
number reconstruction probabilities of 0.5, 0.5, 0 and 0, RPn will be 4 × 0.5 − 1/(4 − 1) = 0.33.

Reconstructionprecision for an entire tree, RPt, was defined as the arithmetic mean of the
tree’s RPn values. These indices of reconstruction uncertainty ranged from 0 (minimum preci-
sion and maximum uncertainty) to 1 (maximum precision and no uncertainty). Here, we
focused on the RPt value of the 95%majority rule consensus trees and on the range of RPns on
the consensus trees.

For quantifying directionality of dysploidy, we used the difference between the number of
chromosome gains and number of chromosome losses, henceforth abbreviated as G-L. Thus,
positive values indicate prevalence of gains and negative values indicate prevalence of losses for
a particular tree and analytical method.
Maximum Parsimony (MP). The parsimony algorithm was implemented using the pro-

gramMESQUITE 2.75 [52]. Chromosome number was coded as an ordered multistate character.
The inferred state(s) for the nodes in each tree were printed to a single results file using a script
(available from http://mesquiteproject.wikispaces.com/Scripts+%26+Macros). This results file
was parsed and ancestral states for each node were mapped onto the tree using custom python
scripts and the DENDROPY PHYLOGENETIC COMPUTING LIBRARY 3.12.0 [53]. The numbers of gains
and losses were calculated by traversing the tree from root to leaves and summing up the differ-
ence between the parent and child nodes. This method included ambiguous reconstructions by
taking into account all possible transitions for nodes with more than one state.
Maximum Likelihood(ML). Reconstructionsusing model-based approaches and the like-

lihood criterion were performed in two different programs. The first analysis was performed in
CHROMEVOL 2.0 [29], henceforth referred to as ML-CE. This program was developed specifi-
cally to investigate chromosome base number evolution with a number of models available
that include dysploidy (with a constant or a linear rate) without or with polyploidy and, in the
latter case, without or with demi-polyploidy, resulting in a total of eight models. Model fit of
each of these models was assessed using the Akaike Information Criterion (AIC).

The second analysis using maximum likelihoodwas performed in BAYESTRAITS 2.0 [27],
henceforth referred to as ML-BT. Its implementation allows for the specification of arbitrarily
complex models of evolution and is generally applicable for reconstructing the evolution of any
discrete character. For the same reasons given for ordered parsimony, changes were allowed to
occur only between neighboring states (i.e., 9$ 10$ 11$ 12$ 14). Three models were ana-
lyzed differing in the number of rate parameters. The first allowed only one rate class (one-
rate) where all rates were the same, while the second allowed forward and reverse rates to differ
(two-rate) and the third allowed all changes to have a unique rate (multi-rate). Model fit was
accessed using the AIC.

Chromosome number reconstructions takingmodel uncertainty into account were obtained
via model averaging using Akaike weights [54]. Specifically, the model averaged chromosome

number probability, cCN, was calculated as the weighted arithmetic mean of the chromosome
number probabilities using the Akaike weight of the reconstructionmodel they were obtained
from.
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Bayesian Analysis (BI). Bayesian reconstructionswere done using BAYESTRAITS 2.0,
employing the same rate models as used for the BAYESTRAITS maximum-likelihoodanalysis
described above. Prior distributions for the rate parameters were modeled via gamma distribu-
tions, whosemean and variance were describedby hyperpriors with a uniform distribution
bound between 0 and 1, thus safely including the empirical Bayes estimates of mean and vari-
ance derived from plotting the rates from the maximum-likelihoodanalysis over all 4,500 trees
(data not shown). The MCMC chain was run for 4.6 × 107 generations with an initial burn-in
of 106, which is well after the chains had reached stationarity (ESS values being safely above
1,000 with the exception of themulti-rate model analysis of ITS-MB, where ESS values ranged
from 127 to nearly 400). This same procedure was performed using each of the three rate mod-
els described above for the ML-BT analysis.

Model testing was performed using Bayes Factors. Marginal log likelihoodswere approxi-
mated via harmonic means of the log-likelihoodas calculated by BAYESTRAITS. As test statistic
logBF = 2 × (log[HM(model1)] − log[HM(model2)]) was used, with logBF> 2 indicating posi-
tive evidence for model 1 [55]. We acknowledge that better methods for estimating marginal
likelihoods are available [56], but none of these are implemented in BAYESTRAITS.

Chromosome number reconstructions takingmodel uncertainty into account were obtained
via the reversible jump MCMC implemented in BAYESTRAITS [57], henceforth referred to as
BI-RJ. This approach allows searching the posterior distribution of models differing in the
number and assignments of rate classes as well as the posterior distributions of their parame-
ters. To permit sufficient, yet not exhaustive exploration of model space (there are more than
51 trillionmodels for 5 character states and thus 20 rates), the analysis was run for 451 × 106

generations, removing the first 106 generations as burn-in (ESS values above 10,000) and sam-
pling every 500th generation. Prior distributions for the rate parameters were modeled via
gamma distributions, whosemean and variance were describedby hyperpriors with a uniform
distribution bound between 0 and 1.

Results

Phylogenetic resolution
For ITS-B and ITS-MB, 21 and 23 nodes had posterior probabilities of at least 0.95 (Fig 1); as a
fully resolved ITS tree has 38 nodes, 55 and 61% of nodes were well-supported. Of the remain-
ing nodes (i.e., those collapsed to polytomies in Fig 1), seven and eight, respectively, were
within clades with identical chromosome number. For both matK-B and matK-MB, 23 out of
33 nodes (i.e., 70%) had posterior probabilities of at least 0.95 (Fig 1). Of the remaining nodes,
two each were within clades with identical chromosome number. This suggests that phyloge-
netic signal is sufficient to render analyses of chromosome number evolution meaningful.

Model uncertainty
Of the eight models tested in CHROMEVOL (ML-CE), those including dependency of the rates of
dysploid change on current chromosome number were never chosen as best model (ΔAIC to
the best model 1.1100–16.2286; S2 Table). Whereas model uncertainty was negligible for the
matK data set (the CRNDmodel, which has a constant rate of dysploid change and no duplica-
tions, was supported in at least 98.8% of cases), it was more pronounced for the ITS data set,
where the CRNDmodel was chosen in 88.9% (ITS-B) or 60.8% (ITS-MB) of cases, respectively
(Table 1). The secondmost-often best model (CRDD: compared to the CRNDmodel it addi-
tionally includes demi-duplications with the same rate as duplications) accounted for 10.6%
(ITS-B) or 39.2% (ITS-MB) of cases, respectively; it is noteworthy that in about two thirds of
the cases, where CRDDwas supported as the best model, CRNDwas not the second-best
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model (Table 1). Model uncertainty was considerable: average Akaike weights of the best
model ranged from 0.3742 (ITS-MB) to 0.4643 (matK-B) and the average number of least sup-
portedmodels, i.e., those left once the cumulative Akaike weight had reached or exceeded 0.95,
ranged from 1.4 to 2.2 (Table 2). The same was true for model selection uncertainty (i.e., the
confidence in the selectedmodel compared to the other candidate models): average ratios
of Akaike weights of the second best and the best model ranged from 0.3792 (matK-MB) to
0.5947 (ITS-MB; Table 2).

Fig 1. Chromosome number reconstructions inMelampodium.Chromosome number reconstructions plotted on 95%
majority rule-consensus trees from phylogenetic analysis of (A) nuclear sequence data using BEAST (ITS-B, left) and using
MRBAYES (ITS-MB, right) and of (B) plastid sequence data using BEAST (matK-B, left) and usingMRBAYES (matK-MB, right). At
each node, the average and, in case of maximum likelihood reconstructions, model-weighted probabilitiesof ancestral
chromosome base numbers are shown (from top to bottom): orderedmaximumparsimony (MP),maximum likelihood using
CHROMEVOL (ML-CE),maximum likelihood using BAYESTRAITS (ML-BT),Bayesian Inference using Reversible Jump (BI-RJ).
The pie charts represent the fraction of probability that is associated with a particularchromosome number.

doi:10.1371/journal.pone.0162299.g001
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Of the three models tested in BAYESTRAITS (ML-BT), themulti-rate model was never chosen
as best model (ΔAIC to the best model 4.3082–12.8234; S3 Table). Model uncertainty was mod-
erate to low for all data sets, and the one-rate model was supported in 90.1% (ITS-MB) to
96.8% (matK-B) of cases (Table 3). The secondmost-often best model was the two-rate model;
in about one fifth of the cases, where the two-rate model was supported as the best model, the
one-rate model was the least supported (Table 3). Average Akaike weights of the best model
ranged from 0.6074 (ITS-MB) to 0.6735 (matK-B) and average Akaike weights of the second
best model, expressed as proportion of the Akaike weights from the best model, were from
0.4851 (matK-MB) to 0.6480 (ITS-MB); the average number of least supportedmodels, i.e.,
those left once the cumulative Akaike weight had reached or exceeded 0.95, was 1 (Table 4).

Table 1. Minimumandmaximum ΔAICs for the ConstantRate—NoDuplication (CRND)model against other ChromEvol models and, in parenthe-
ses, the proportionof caseswhere they are better than the CRNDmodel.

Dataset Models

CRD CRDD CRDE LRND LRD LRDD LRDE

ITS-B -0.954 -8.609 -7.979 1.038 3.038 -4.045 -3.571

4.543 4.189 5.953 9.094 11.094 11.0943 13.517

(0.02) (10.82) (7.24) (0.27) (0.20)

ITS-MB 1.943 -6.863 -6.234 2.667 4.667 -3.301 -2.648

2.001 2.001 4.521 6.010 7.399 8.010 14.544

(39.24) (28.04) (1.42) (0.36)

matK-B -1.733 -8.274 -7.646 0.344 2.344 -4.368 -3.125

5.682 6.570 7.957 10.158 13.980 13.980 13.611

(0.47) (1.11) (0.64) (0.18) (0.18)

matK-MB -0.584 -7.861 -7.239 0.890 2.890 -4.189 -3.569

4.543 4.662 7.508 7.705 9.862 9.466 11.751

(0.18) (0.84) (0.60) (0.27) (0.20)

Each data set (ITS-B—nuclear sequence data analyzed using BEAST; ITS-MB—nuclear sequence data set analyzed using MRBAYES; matK-B—plastid

sequence data analyzed using BEAST; matK-MB—plastid sequence data analyzed using MRBAYES) has been analyzed under each of eight models

implemented in CHROMEVOL 2. The predominantly supportedmodel (CRND—Constant Rate—NoDuplicationmodel) has been compared against the

remaining models (CRD—Constant Rate—Duplication only; CRDD—Constant Rate—identical Demi-duplication and Duplication; CRDE—Constant Rate—

Demi-duplication Estimated; LRND—Linear Rate—NoDuplication; LRD—Linear Rate—Duplication only; LRDD—Linear Rate—identical Demi-duplication

and Duplication; LRDE—Linear Rate—Demi-duplicationEstimated; see text for details).

doi:10.1371/journal.pone.0162299.t001

Table 2. Model uncertainty andmodel selectionuncertainty inmaximum likelihood analyses using
ChromEvol (values are given as averages and, in parentheses, ranges).

Dataset AkaikeWeight Number of ExcludedModels

Best Model 2nd Best / Best Model

ITS-B 0.447 (0.245–0.737) 0.434 (0.168–1.000) 2.195 (1–6)

ITS-MB 0.374 (0.266–0.493) 0.595 (0.368–1.000) 1.400 (1–4)

matK-B 0.464 (0.234–0.699) 0.388 (0.130–1.000) 2.171 (1–5)

matK-MB 0.454 (0.238–0.650) 0.379 (0.140–1.000) 2.112 (1–4)

For each data set (abbreviations as in Table 1) model uncertaintyhas been quantified using the best model’s

Akaike weight (ranging from 0 to 1: the higher the weight the lower model uncertainty; column “Best Model”);

model selection uncertaintyhas been quantified using the ratio of Akaike weights from the second best

against the best model (ranging from 0 to 1: the higher the value the higher model selection uncertainty;

column “2nd Best / Best Model”).

doi:10.1371/journal.pone.0162299.t002
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In Bayesian analysis (BI), for all data sets Bayes Factors favored the one-rate model over the
two-ratemodel (2logBF of 0.9253 in ITS-B to 1.4190 in matK-B) and over themulti-rate model
(2logBF of 2.1137 in ITS-MB to 3.0787 in ITS-B; S4 Table). In the reversible-jumpMCMC
(BI-RJ; S5 Table), the average number of rate classes with non-zero rates was very similar among
data sets (around 2.7). Likewise, for each data set the number of rates being zero fluctuated con-
siderably (from 0 to 16) with its average ranging from 5.16 to 5.86. Although the number of
times a particular rate was set to zero differed by an order of magnitude between the rarest and
the most frequent one, only in a single data set, matK-MB, two rates (those pertaining to changes
from n = 11 to n = 9 and from n = 11 to n = 10) were set to zero less than 5% of times.

Reconstructionuncertainty
The average and, in case of maximum likelihood reconstructions (ML-CE, ML-BT), model-
weighted probabilities of ancestral chromosome numbers from each analysis are shown on

Table 3. Minimum andmaximum ΔAICs for the one-ratemodel against other BayesTraits models and,
in parentheses, the proportion of caseswhere they are better than the one-ratemodel.

Dataset Models

Mult-Rate vs.One-Rate Two-Rate vs.One-Rate

ITS-B -61.048 -69.774

12.442 2.000

(1.11) (4.82)

ITS-MB -60.881 -70.982

10.498 1.597

(1.80) (9.87)

matK-B -33.241 -43.139

12.823 2.000

(0.44) (3.20)

matK-MB -29.479 -37.926

12.148 2.000

(1.09) (6.36)

Each data set (abbreviations as in Table 1) has been analyzed under each of threemodels implemented in

BAYESTRAITS 2. The predominantly supportedmodel (one-ratemodel) has been compared against the
remaining models (two-ratemodel,multi-ratemodel; see text for details).

doi:10.1371/journal.pone.0162299.t003

Table 4. Model uncertainty andmodel selectionuncertainty inmaximum likelihood analyses using
BayesTraits (values are given as averages and, in parentheses, ranges).

Dataset AkaikeWeight Number of ExcludedModels

Best Model 2nd Best / Best Model

ITS-B 0.662 (0.500–1.000) 0.434 (0.002–0.992) 1.014 (1–2)

ITS-MB 0.607 (0.481–0.995) 0.648 (0.005–1.000) 1.017 (0–2)

matK-B 0.674 (0.499–0.993) 0.485 (0.006–0.995) 1.008 (1–2)

matK-MB 0.650 (0.496–0.996) 0.539 (0.004–1.000) 1.013 (1–2)

For each data set (abbreviations as in Table 1) model uncertainty has been quantified using the best model’s

Akaike weight (ranging from 0 to 1: the higher the weight the lower model uncertainty; column “Best Model”);

model selection uncertaintyhas been quantified using the ratio of Akaike weights from the second best

against the best model (ranging from 0 to 1: the higher the value the higher model selection uncertainty;

column “2nd Best / Best Model”).

doi:10.1371/journal.pone.0162299.t004
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95%majority rule consensus trees, where the pie charts represent the fraction of probability
that is associated with a particular chromosome number (Fig 1). As we only consider clades
with posterior probability of 0.95 or more, the effect of clades lacking in a subset of the poste-
rior trees on the calculation of these probabilities is negligible.

Reconstructionprecision statistics (RPt, minimum and maximum RPn) are provided in
Table 5. Lack of resolution at the backbone (Fig 1) biases reconstruction precision statistics
upwards, because information for basal nodes that are expected to have higher reconstruction
uncertainty is lacking. However, as all reconstructionmethods use the same set of trees, this
systematic bias should affect all methods equally. Tree-wide reconstruction precision was high-
est (and reconstruction uncertainty was lowest) in MP reconstructionswith RPts ranging from
0.978 (ITS-B) to 1.0 (matK-MB). Likewise, node-related reconstructionuncertainty was usually
lowest and varied the least with RPns ranging from 0.741 (ITS-B) to 1.0 (all data sets). In con-
trast, tree-wide reconstruction uncertainty was highest in ML-BT with RPts ranging from 0.926
(ITS-B) to 0.948 (matK-B); also node-related reconstruction uncertainty was highest and var-
ied the most with RPns ranging from 0.413 (ITS-MB) to 1.0 (matK-B). The other two methods,
ML-CE and BI-RJ, had intermediate levels of reconstruction uncertainty. Whereas ML-CE out-
performedBI-RJ with respect to tree-wide reconstruction uncertainty in the ITS data sets (RPt
scores of 0.970 and 0.980 versus 0.949 and 0.937 in ITS-B and ITS-MB, respectively), the
reverse was true for the matK data sets (RPt scores of 0.949 and 0.951 versus 0.954 and 0.967 in
matK-B and matK-MB, respectively);ML-CE always outperformed BI-RJ with respect to both
magnitude and variation of node-wise reconstruction uncertainty (RPn range 0.713–1.0 versus
0.489–1.0). There was no clear relationship between reconstruction uncertainty and branch-
length model (Table 5).

Reconstructionuncertainty integrated over a set of trees can be high due to ambiguous
reconstructions in the input trees (resulting in small RPns in each tree) or due to unambiguous
but contradicting reconstructions in the input trees (resulting in RPns close to 1 in each tree).
In the first case a tight correlation between integrated reconstruction uncertainty (shown on
the nodes of the consensus tree; Fig 1) and individual reconstruction uncertainty (expressed as
the proportion of input trees, where RPn is at or above a certain threshold) is expected. Indeed,
such a correlation was observed (Pearson’s correlation coefficient, r, ranging from 0.847 to 1)
irrespective of the RPn threshold (0.90 or 0.95) used (S6 Table).

G-L distributions
Results are summarized in Table 6 and in Fig 2. As for the ML-CE analyses in the majority of
cases the model with no duplication incorporating dysploid change at a constant rate (CRND)
was the best fit (Table 1), all comparisons were based on the CRNDmodel (for ML-CE) and
the two-rate model (for ML-BT and BI). Variances of G-L distributions were smallest in the
MP analysis, largest in the BI analysis, and intermediate in the ML-CE and ML-BT analyses.
Within the same analysis method, these variances were larger for the BEAST data set than for
the MRBAYES data set (except for matK-B and matK-MB in the MP analysis, where they were
essentially identical), but the narrower G-L distributions from the MRBAYES analyses were
always (nearly) completely nested within the broader G-L distributions from the BEAST analy-
ses. Compared to MP and ML-CE analyses, the means of the G-L distributions from the
ML-BT and particularly the BI analyses were strongly shifted towards smaller values. A poten-
tial cause for this apparent bias towards loss is that a character state must be observed in the
tips to be considered for the ancestral states by BAYESTRAITS, hence neither taking intermediate,
but unobservedchromosome numbers (n = 13 in case ofMelampodium) nor chromosome
numbers outside the range of observednumbers into account. To investigate this, additional
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Table 5. Tree-wide and node-wise reconstruction precision (RPt andRPn).

Dataset Method Reconstruction Precision

RPtMRC RPtMCC RPn Range

ITS-B MP 0.978 0.946 0.741–1.000

ML-CE 0.970 0.984 0.814–1.000

ML-BT 0.926 0.925 0.500–0.999

BI-RJ 0.949 0.954 0.574–1.000

ITS-MB MP 0.992 1.000 0.898–1.000

ML-CE 0.980 0.992 0.871–1.000

ML-BT 0.932 0.928 0.413–1.000

BI-RJ 0.937 0.962 0.489–1.000

matK-B MP 0.996 1.000 0.898–1.000

ML-CE 0.949 0.983 0.720–1.000

ML-BT 0.948 0.956 0.588–1.000

BI-RJ 0.954 0.960 0.612–1.000

matK-MB MP 1.000 1.000 0.993–1.000

ML-CE 0.951 0.979 0.713–1.000

ML-BT 0.947 0.971 0.578–1.000

BI-RJ 0.967 0.978 0.623–1.000

Each data set (abbreviations as in Table 1) has been analyzed using each of four methods (MP—orderedMaximumParsimony; ML-CE—Maximum

Likelihood using CHROMEVOL; ML-BT—Maximum Likelihood using BAYESTRAITS; BI-RJ—Bayesian Inference using Reversible Jump). Tree-wide

reconstruction precision (RPt) has been calculated on the majority rule consensus tree (MRC) and on the maximum clade credibility tree (MCC); node-wise

reconstruction precision (RPn) has been calculated for each of the posterior trees and is given as ranges.

doi:10.1371/journal.pone.0162299.t005

Table 6. Characteristics of the distribution of chromosome gainsminus chromosome losses (G-L).

Dataset Method Mean / Median (Range) Mode MCC Tree

ITS-B MP -0.341 / 0.000 (-4.000–4.000) -3.000 -1.000

ML-CE 0.802 / -0.414 (-5.012–15.900) -2.615 6.365

ML-BT -13.080 / -17.960 (-29.050–25.700) -17.949 -19.394

BI -6.222 / -7.956 (-188.589–151.621) -8.253 n.a.

ITS-MB MP -2.179 / -2.000 (-3.000–2.000) -2.000 -3.000

ML-CE -2.348 / -2.314 (-5.022–0.826) -2.400 -2.474

ML-BT -17.021 / -17.131 (-48.6761–-0.799) -16.476 -16.116

BI -15.262 / -14.203 (-131.142–70.216) -11.441 n.a.

matK-B MP 0.1300 / -0.330 (-2.300–5.670) -0.305 -0.330

ML-CE 3.912 / 5.405 (-4.602–18.620) -1.278 5.924

ML-BT -9.952 / -11.697 (-27.108–52.297) -10.986 -10.506

BI -0.737 / -2.622 (-163.757–130.269) -7.996 n.a.

matK-MB MP -0.327 / -0.330 (-2.330–3.990) -0.239 -1.330

ML-CE -0.229 / -1.500 (-5.233–18.300) -2.262 -0.743

ML-BT -12.690 / -13.720 (-24.560–31.230) -16.276 -13.940

BI -4.957 / -5.899 (-106.285–91.412) -5.303 n.a.

Each data set (abbreviations as in Table 1) has been analyzed using each of four methods (MP—orderedMaximumParsimony; ML-CE—Maximum

Likelihood using CHROMEVOL; ML-BT—Maximum Likelihood using BAYESTRAITS; BI-RJ—Bayesian Inference using Reversible Jump). For the distributions of

the test statistic G-L (difference between chromosomegains and chromosome losses) mean, median, range and mode (calculated using the Chernoffmode

estimatorwith bandwidth of 0.5 as implemented in the R package modeest) are given as well as the G-L values for the maximum clade credibility (MCC)

trees.

doi:10.1371/journal.pone.0162299.t006
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data sets were constructed, whereM. repens, the single species with n = 14, was pruned from
the trees; these data sets were then analyzed with the CRNDmodel, where for CHROMEVOL

additionally minimum and maximum chromosome number were set to 9 and 12, respectively,
to enforce identical dimensions of the transition matrices for both programs. G-L distributions
from these reduced data sets were shifted towards more losses only in the analyses using CHRO-

MEVOL, but variances were reduced irrespective of program used (S1 Fig).
The G-L distributions fromML-CE analyses of ITS-B, matK-MB and maK-B were multi-

modal(Fig 2). Althoughmulti-modality was also observed for ML-BT, it was much weaker and
a single peak—the one visible in Fig 2—dominated; multi-modality became, however, more
pronounced in the truncated data set (S1 Fig). The different modes were found to be highly

Fig 2. Distributions of the number of chromosome gainsminus the number of chromosome losses (G-L) in
Melampodium.G-L distributions reconstructedon phylogenetic trees obtained from analyses of (A) nuclear sequence
data using BEAST (ITS-B), (B) nuclear sequence data usingMRBAYES (ITS-MB), (C) plastid sequence data using BEAST
(matK-B) and (D) plastid sequence data usingMRBAYES (matK-MB). Methods of chromosome number reconstruction are
indicated by colors: black—orderedmaximumparsimony (MP); purple—maximum likelihood using CHROMEVOL (ML-CE;
results are shown for the Constant-Rate No Duplication (CRND)model); white—maximum likelihood using BAYESTRAITS
(ML-BT; results are shown for the two-ratemodel); grey—Bayesian Inference (BI; results are shown for the two-rate
model). Arrows indicate positions of theMaximumClade Credibility (MCC) trees. Inserts show the full G-L distributions
from the BI analysis, which are truncated in themain figure to aid legibility.

doi:10.1371/journal.pone.0162299.g002
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correlated with the inferred root state (S2 Fig). Althoughmulti-modality was not restricted to
the ultrametric trees (ITS-B, matK-B), the effect was more pronounced in comparison to analy-
ses using the phylograms (ITS-MB, matK-MB; Fig 2). To test whether ultrametricization per se
contributes to multi-modality, the originalMRBAYES phylograms were ultrametricizedusing
PATHD8 [58] and then analyzed with the CRNDmodel used for the original data. Indeed,
ultrametricization resulted in either the introduction of multi-modality (ITS-MB) or an accen-
tuation of already existing multi-modality (matK-MB; S3 Fig).

BEAST trees differed significantly fromMRBAYES trees in their imbalance (Table 7), mea-
sured using Colless’ Imbalance Index [59] calculated using MESQUITE 2.75. Specifically, BEAST
trees were more balanced (had smaller index values) than MRBAYES trees (one-tailedWilcoxon
rank-sum test, conducted with the functionWilcox.test in R [60]: W = 5533400, p< 0.001, for
ITS-B versus ITS-MB;W = 15720000, p< 0.001, for matK-B versus matK-MB). Likewise,
BEAST trees differed significantly fromMRBAYES trees in their stemminess (Table 7), measured
using the non-cumulative stemminess index of Rohlf et al. [61]. Specifically, the ultrametric
BEAST trees were less stemmy than the correspondingMRBAYES trees (one-tailedWilcoxon
rank-sum test W = 9858475, p = 0.0153 for ITS-B versus ITS-MB;W = 4034709, p< 0.001 for
matK-B versus matK-MB). Thus, a possible underlying cause for the effect of ultrametriciza-
tion might be a decrease in stemminess. To test this, the stemminess of the non-ultrametricized
trees (ITS-MB, matK-MB) was compared to that of their ultrameticized counterparts using
one-tailedWilcoxon signed-rank tests (Table 7). However, while stemminess decreased for
the matK data set (V = 3272320, p< 0.001), it increased for the ITS data set (V = 7075097,
p< 0.001).

MCC trees
For data sets with low model uncertainty (ITS-B, matK-MB, matK-B) in the ML-CE analyses,
the best-supportedmodel for the MCC tree was the one best-supported over all, but in case of
the data set ITS-MB, where model uncertainty was high, the best-supportedmodel for the
MCC tree was only the second-best supported over all. For the ML-BT analyses, where model
uncertainty was much lower, the best-supportedmodel for the MCC trees was the one best-
supported over all.

For the majority of nodes, node-wise reconstruction precision (RPn) on the MCC tree was a
good representation of RPn integrated over all trees (shown on the consensus tree in Fig 1),
deviations usually being less than 10% (S7 Table). Most exceptions were overestimating recon-
struction precision (up to nearly 45%), a few were underestimating it (twice in BT-ML up to
30%, twice in MP up to 60%). Corresponding to the good fit in node-wise reconstruction

Table 7. Colless Imbalance and Stemminess Indices (given asmean / median and, in parentheses, range) of the phylogenetic trees used in the
analyses.

Dataset Colless Imbalance Stemminess

Original Ultrametricised

ITS-B 0.188 / 0.191 (0.084–0.350) 1.487 / 0.604 (0.104–288.930)

ITS-MB 0.230 / 0.243 (0.115–0.316) 1.302 / 0.589 (0.264–341.094) 1.086 / 0.672 (0.241–262.604)

matK-B 0.162 / 0.153 (0.106–0.311) 1.453 / 0.668 (0.148–689.416)

matK-MB 0.188 / 0.189 (0.117–0.292) 4.687 / 1.279 (0.346–2293.74) 2.567 / 0.809 (0.239–799.423)

For the trees of each data set (abbreviations as in Table 1) Colless Imbalance and Stemminess have been calculated (see text for details), the latter both for

trees with the original branch lengths (column “Original”)and (in case of trees obtained fromMRBAYES) for trees, whose branch lengths have beenmodified

so that trees become ultrametric using PATH D8 (column “Ultrametricized”).

doi:10.1371/journal.pone.0162299.t007
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uncertainty, tree-wide reconstruction uncertainty, RPt, estimated on the MCC tree deviated
from RPt estimated on the majority rule consensus tree by less than 5% (Table 5).

In MP reconstructions, the MCC tree was close to or at the mode of the G-L distribution
(Fig 2, Table 6). This is expected, because clades found in the MCC tree will tend to be those
with high posterior probabilities, i.e., they are frequently present also in other posterior trees.
Whereas under ordered parsimony the location of the MCC tree in the G-L distribution did
not change much across data sets, it was much more variable in the ML-CE and BT-ML analy-
ses (Fig 2). Multi-modality of G-L distributions negatively affected the suitability of the MCC
tree as single representative of the posterior distribution. This was particularly pronounced in
ITS-B, where the MCCwas located off both the mode and the mean of the G-L distribution
(Fig 2, Table 6). Additionally, multi-modality could not be appropriately describedby com-
monly usedmeasures, such as the mean or the confidence interval, especially if distributions
were (nearly) discontinuous as was the case for matK-MB (Fig 2).

Chromosomenumber evolution inMelampodium
The most frequently inferred ancestral chromosome number was n = 11, either unambiguously
(with probabilities above 0.8; ITS-MB and matK-MB) or ambiguously (with probabilities
mostly below 0.8 down to less than 0.5) together with n = 10 (ITS-B and matK-B; Fig 1). Irre-
spective of these uncertainties, chromosome numbers inMelampodium represented a bidirec-
tional dysploid series with neither ascending nor ascending dysploidy dominating (most G-L
distributions contained zero: Fig 2).

Discussion

Chromosomenumber reconstructionunder phylogenetic uncertainty
In evolutionary studies employing ancestral character state reconstruction it is common prac-
tice to use a summary of the posterior distribution of trees from a Bayesian analysis, usually the
Majority-Rule Consensus (MRC) tree, or a single representative of these posterior trees, such
as the Maximum a posteriori (MAP) tree or the Maximum Clade Credibility (MCC) tree [27,
62]. Of those, the MCC tree is most commonly used, because it contains information on branch
lengths. As shown here, ignoring phylogenetic uncertainty and using a single tree, even the
one with highest clade credibility, can be misleading. This is particularly pronounced for the
derived statistics of the number of chromosome gains minus chromosome losses (G-L). Here,
the position of the MCC tree in the G-L distributions was unpredictable, especially in multi-
modal distributions, and inconsistent across tree datasets (Fig 2). The discrepancy between
inferences of ancestral chromosome numbers on the MCC tree from those made by integrating
over a set of trees were less severe, especially in reconstructionsmade with CHROMEVOL

(Table 5).
A second consequence of using a single representative tree is that model uncertainty will be

underestimated, if the best-fit model differs among trees, e.g., those in the set of posterior trees
from a Bayesian analysis (Tables 1 and 3). This and model selection uncertainty (i.e., the confi-
dence in the selectedmodel compared to the other candidate models; Tables 2 and 4) can be
readily accounted for by model averaging [54] using, for instance, Akaike or Schwarz weights
(calculated from AIC and BIC, respectively) in a maximum likelihood framework [63] or
reversible-jumpMCMC [57, 64] in a Bayesian framework (note that model averaging as used
here does not address model heterogeneity, i.e., different best models for different nodes of the
same tree: [65]). The current implementation of reversible-jumpMCMC in BAYESTRAITS does
not allow reduction of model space a priori (for instance, to the three models used in the maxi-
mum likelihood analysis of BAYESTRAITS). Consequently, real data sets may be too small to
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contain sufficient signal to allow decisive discrimination among models. This is likely the case
for the presentMelampodium data set, where nearly none of the rates of dysploid change could
be rejectedwith confidence (S5 Table). In summary, reliance on single trees, such as MCC
trees, is strongly discouraged not only for chromosome number reconstruction (as shown
here), but for ancestral character state reconstruction in general as has been repeatedly sug-
gested before [30, 66–68].

An important source of parameter variability is the branch length model, i.e., whether phy-
lograms or ultrametric trees are used [23, 69]. InMelampodium, this was evident from broader
ranges of G-L and a tendency towards multi-modality of G-L distributions (Fig 2, Table 6),
resulting in higher uncertainty with respect to ancestral chromosome numbers (Fig 1, Table 5)
when using ultrametric trees. These differences are due to ultrametricization per se (S3 Fig),
but not due to higher phylogenetic uncertainty in the posterior set obtained from BEAST
(number of unique topologies 4476 and 4443 in ITS-B and ITS-MB, respectively, but 1929 and
2372 in matK-B and matK-MB, respectively). Cusimano and Renner [23] reported that total
tree length, tree imbalance and particularly tree stemminess contributed to such differences.
Trees in our analyses were scaled to equal length prior to analyses, hence total tree length can-
not account for the observedpattern; this may also explain why we did not find any consistent
relationship with changes in stemminess (Table 7; Cusimano and Renner [23] did not rescale
trees to equal total tree length). Tree imbalance alone cannot explain the observeddifferences
either, as it does not differ between the MRBAYES phylograms and their ultrametricizedcounter-
parts. Although additional, yet untested, tree features that change between a phylogram and an
ultrametric tree might be responsible for these discrepancies, it is more likely that these dis-
crepancies are the result of a combination of tree features (e.g., stemminess) and data features
(e.g., frequency and distribution of character states on the tree). Testing this hypothesis will,
however, require extensive simulation studies.

There is no ready answer whether reconstructions of multistate characters on phylograms
should be preferred over those on ultrametric trees or vice versa [23]. If it cannot be clearly
established whether a given character (here chromosome number) evolves proportional to
time (i.e., in a clock-likemanner) or proportional to genetic distance (i.e., correlating with
molecular evolution), then both types of trees may be used. If results differ, external evidence
such as fossil data or, in the context of chromosome number evolution, cytological evidence for
chromosome number altering chromosome rearrangements [70, 71] can help to decide among
competing scenarios (that may also result from sources other than different branch length
models, e.g., likelihood versus parsimony reconstructions).

Ordered maximum parsimony analyses consistently show the least amount of variation
within and among data sets compared to model-based approaches (Figs 1 and 2, Tables 5 and
6). This is expected given that maximum parsimony reconstructionswill only be affected by
changes in tree topology and not by differences in branch lengths [21]. Althoughmaximum
parsimony reconstructions tend to underestimate the amount of character state change [21],
such a bias may be less severe for chromosome numbers, if anagenetic changes in chromosome
number are rare and changes in chromosome number are frequently connected to speciation
(likely via similar mechanisms as suggested for chromosomal speciation via inversions: [72–
74]). Thus, just as Fitch parsimony has been suggested to be an appropriate model in biogeog-
raphy when dispersal rates are low [75], ordered maximum parsimony continues to be a valid
model when studying chromosome number changes.

Maximum likelihood reconstructions of chromosome numbers differ little between BAYES-

TRAITS and CHROMEVOL (BAYESTRAITS reconstructions tend to be associated with higher uncer-
tainty, if averaged over a set of trees: Fig 1, Table 5), but this is not the case for the inferred
gains and losses and their difference (Fig 2). As we compared the two-rate model of
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BAYESTRAITS with a model of CHROMEVOL that did include neither duplications nor demi-dupli-
cations, this difference in model parameterization cannot explain the discordant results.
Instead, they may be due to the different implementations of continuous-timeMarkov models
in the two programs. In contrast to BAYESTRAITS, CHROMEVOL can take unobservedcharacter
states both within and outside the range of observed chromosome numbers into account [29].
Although results from BAYESTRAITS becomemore similar to those of CHROMEVOL once character
space is contiguous (i.e., after exclusion of the single taxon with n = 14; S1 Fig) and upper and
lower bounds (i.e., maximum and minimum observednumber) are the same for both methods,
the results concerning the difference of gains and losses remain incompatible (Fig 2), indicating
that additional factors are responsible for the observeddiscrepancies. It remains to be tested
whether the usability of BAYESTRAITS (including its Bayesian implementation) in the context of
studying chromosome number evolution may be limited. Although not tested here, the model
limitations described for BAYESTRAITS also apply to stochastic character mapping [76, 77] as
currently implemented (e.g., in SIMMAP: [78]); this method has, however, only been rarely used
for chromosome number reconstruction [79].

Chromosomenumber evolution inMelampodium
Both x = 10 and x = 11 have been proposed as ancestral chromosome base number forMelam-
podium. Support for x = 10 came from higher morphological diversity, higher species number,
and the presence of a conspicuously demarcated sterile ovary in the disc florets, a presumably
primitive character, inMelampodium with x = 10 [34, 38]. On the other hand, the presence of
x = 11 in the closest relatives ofMelampodium, Acanthospermum and Lecocarpus, suggested
x = 11 as ancestral chromosome base number [34]. This latter hypothesis is supported by the
present analyses, although not unambiguously when time-calibrated trees are used (Fig 1).

Chromosome number evolution inMelampodium follows a pattern of bidirectional dys-
ploidy (Fig 1) with no prevailing direction (as evident from G-L distributions containing zero
and the one-rate model being the best supported in BAYESTRAITS: Fig 2, Table 3). In plants,
descending dysploid series have been suggested to be more common than ascending ones [80,
81]. A prevalence of descending dysploidy may be expected, because genome diploidization
after polyploidization is often associated with a reduction in chromosome number [82]. As
shown here forMelampodium and known for other Asteraceae and beyond [6, 14, 83], a view
of a unidirectional progressive dysploid series likely is too simplistic [1].

Change of chromosome base number inMelampodium may have contributed to lineage
divergence, for instance via accelerated genic diversification following chromosomal rearrange-
ments [74, 84]. Judging from species numbers, only the change to x = 10 might have had an
effect on lineage diversification: sect.Melampodium with x = 10 contains more than half of the
Melampodium species, while lineages possessing x = 9 (sect.Zarabellia), 12 (sect. Serratura), or
14 (sect.Bibractiaria) each comprise only one or a few diploid species [34]. It remains to be
tested whether the dysploid change per se or correlated factors could have affected lineage
diversification inMelampodium.

Supporting Information
S1 Fig. Distributions of the number of chromosome gains minus the number of chromo-
some losses (G-L) with and withoutMelampodium repens.G-L distributions reconstructed
using maximum likelihood in CHROMEVOL (ML-CE, grey) and in BAYESTRAITS (ML-BT, shades
of red) on phylogenetic trees obtained from analyses of (A) nuclear sequence data using BEAST
(ITS-B), (B) nuclear sequence data usingMRBAYES (ITS-MB), (C) plastid sequence data using
BEAST (matK-B) and (D) plastid sequence data usingMRBAYES (matK-MB) before (dark grey
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and orange) and after (light grey and red) pruningMelampodium repens, the sole species with
n = 14, and restrictingminimum and maximum chromosome number to 9 and 12, respectively.
(PDF)

S2 Fig. Relationship between root state and the number of chromosome gains minus the
number of chromosome losses (G-L.Relationship between root state and G-L reconstructed
using maximum likelihood in CHROMEVOL (ML-CE) on phylogenetic trees obtained from anal-
yses of (A) nuclear sequence data using BEAST (ITS-B), (B) nuclear sequence data using
MRBAYES (ITS-MB), (C) plastid sequence data using BEAST (matK-B) and (D) plastid
sequence data usingMRBAYES (matK-MB).
(PDF)

S3 Fig. Distributions of the number of chromosome gains minus the number of chromo-
some losses (G-L) before and after ultrametricization.G-L distributions reconstructed using
maximum likelihood in CHROMEVOL (ML-CE) on phylogenetic trees obtained from analyses of
(A) nuclear sequence data using MRBAYES (ITS-MB) and (B) plastid sequence data using
MRBAYES (matK-MB) before (black) and after (grey) ultrametricization using PATHD8.
(PDF)

S1 Table. Species names, chromosome numbers, localities, voucher numbers and GenBank
accession numbers of the analyzed taxa.Chromosome numbers of polyploid cytotypes (not
used in this study) are given in parentheses. Collectiondetails are given in the following format:
Locality and year; Collector (Herbarium: CollectionNumber); herbaria are WU and MEXU,
unless otherwise indicated. The outgroup taxa were used for rooting of phylogenetic trees
obtained with MRBAYES, but were removed from chromosome number reconstruction.
(XLSX)

S2 Table. Minimum andmaximum ΔAICs of the LinearRate models against the best
model.Each data set (ITS-B—nuclear sequence data analyzed using BEAST; ITS-MB—nuclear
sequence data set analyzed usingMRBAYES; matK-B—plastid sequence data analyzed using
BEAST; matK-MB—plastid sequence data analyzed using MRBAYES) has been analyzed under
each of eight models implemented in CHROMEVOL 2. The best supportedmodel has been com-
pared against the models including a dependency of dysploid change on chromosome number
(LRND—Linear Rate—No Duplication; LRD—Linear Rate—Duplication only; LRDD—Linear
Rate—identical Demi-duplication and Duplication; LRDE—Linear Rate—Demi-duplication
Estimated; see main text for details).
(XLSX)

S3 Table. Minimum andmaximum ΔAICs of themulti-ratemodel against the best model.
Each data set (abbreviations as in S2 Table) has been analyzed under each of three models
implemented in BAYESTRAITS 2. The best supported model has been compared against the
multi-rate model (see main text for details).
(XLSX)

S4 Table. Model comparison of one-rate, two-rate andmulti-ratemodel used in a Bayesian
analysis (BI). Each data set (abbreviations as in S2 Table) has been analyzed in a Bayesian
framework under each of three models implemented in BAYESTRAITS 2; models have been com-
pared using BayesFactors.
(XLSX)

S5 Table. Number of rate classes, number of rates being zero and distribution of rates in rate
class zero from the Bayesian Reversible-Jump (BT-RJ) analyses.Each data set (abbreviations
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as in S2 Table) has been analyzed in a Bayesian framework using reversible jump implemented
in BAYESTRAITS 2. Number of rate classes, given as mean (range), and the number of rates being
0, given as mean (range), provide information on model uncertainty. The proportion of the focal
rate (given as ancestral chromosome number! derived chromosome number) provides infor-
mation on the importance of the respective rates; values in bold are proportions smaller than
0.05.
(XLSX)

S6 Table. Correlation between integrated node-wise reconstructionprecision (RPn) and
individual reconstructionprecision.Node-wise reconstruction precision, RPn, has been cal-
culated for those nodes (C0 to C23) present in at least 95% of posterior trees per analysis and
data set (abbreviations of data sets as in S2 Table) by integrating over the input trees (integrated
RPn). For each of these nodes, the proportion of trees, where node-wise reconstruction preci-
sion is at or above a certain threshold (0.9 and 0.95, respectively), has been recorded (individual
RPn). If low integrated reconstruction precision is due to to ambiguous reconstructions in the
input trees (resulting in small RPns in each tree), a close correlation between integrated and
individualRPn is expected. If low integrated reconstruction precision is due to to unambiguous
but contradicting reconstructions in the input trees (resulting in RPns close to 1 in each tree),
no correlation between integrated and individualRPn is expected. These expectations have
been tested using Pearson’s correlation coefficients.
(XLSX)

S7 Table. Comparison of node-wise reconstructionprecision (RPn) of separate trees, inte-
grated over all trees and shown on the consensus tree, and of theMaximumCladeCredibil-
ity (MCC) tree.Node-wise reconstruction precision, RPn, has been calculated for those nodes
(C0 to C23) present in at least 95% of posterior trees per analysis and data set (abbreviations of
data sets as in S2 Table). The fit of the nodewise reconstruction precision integrated over all
tree (columns “consensus”) and the nodewise reconstruction precision of the maximum clade
credibility tree (column “MCC”) has been assessed by their ratio (column “ratio MCC / con-
sensus”). Overestimation and underestimation by 10% or more of node-wise reconstruction
precision on the MCC tree are indicated in red and blue, respectively.
(XLSX)
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