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Abstract: Over the last decades, many naturally occurring peptides have attracted the attention of
medicinal chemists due to their promising applicability as pharmaceuticals or as models for drugs
used in therapeutics. Marine peptides are chiral molecules comprising different amino acid residues.
Therefore, it is essential to establish the configuration of the stereogenic carbon of their amino acid
constituents for a total characterization and further synthesis to obtain higher amount of the bioactive
marine peptides or as a basis for structural modifications for more potent derivatives. Moreover, it is
also a crucial issue taking into account the mechanisms of molecular recognition and the influence of
molecular three-dimensionality in this process. In this review, a literature survey covering the report
on the determination of absolute configuration of the amino acid residues of diverse marine peptides
by chromatographic methodologies is presented. A brief summary of their biological activities was
also included emphasizing to the most promising marine peptides. A case study describing an
experience of our group was also included.

Keywords: absolute configuration; bioactivity; chiral HPLC; Marfey’s method; marine
peptides; stereochemistry

1. Introduction

In recent years, it has become well known that the oceans represent a rich source of
structurally unique bioactive compounds from the perspective of potential therapeutic agents [1,2].
Bioactive compounds can be isolated from a myriad of marine invertebrates such as mollusks, sponges,
tunicates and bryozoans, in addition to algae and marine microorganisms, especially cyanobacteria,
bacteria and fungi [3–5].

Over the last decades, novel bioactive compounds from marine organisms with important
bioactivities, such as antifungal, antibacterial, cytotoxic and anti-inflammatory properties, have been
widely explored, and many of them are considered as lead compounds for drug discovery as well as
biologically useful agents in pharmaceutical research [6–10]. In fact, owing to their pharmacological

Molecules 2018, 23, 306; doi:10.3390/molecules23020306 www.mdpi.com/journal/molecules

http://www.mdpi.com/journal/molecules
http://www.mdpi.com
https://orcid.org/0000-0002-7493-9796
https://orcid.org/0000-0002-5185-3930
https://orcid.org/0000-0002-3321-1061
https://orcid.org/0000-0002-4676-1409
http://dx.doi.org/10.3390/molecules23020306
http://www.mdpi.com/journal/molecules


Molecules 2018, 23, 306 2 of 51

potential, either directly as drugs or as models for molecular modifications and/or total synthesis,
marine natural products are certainly an interesting source, exploited by many researchers [11].

Ziconotide (Prialt®), a peptide first isolated from the venom of the cone snail (Conus magus),
and trabectedin (Yondelis®), an alkaloid originally isolated from a marine tunicate Ectenascidia turbinata
and now obtained by semisynthesis, are examples of marine natural products that have already
been approved as human therapeutics [3,12–14]. Ziconotide is an analgesic used for treatment of
patients suffering from chronic pain, and trabectedin for the treatment of soft tissue sarcomas and
ovarian cancer.

In terms of the overall number of marine natural products, peptides are one of the most described
due to their novel chemistry and diverse biological properties [15]. Actually, marine peptides are
known to exhibit various biological activities such as antiviral, antiproliferative, antioxidant, anticancer,
antidiabetic, anti-obesity, anticoagulant, antihypertensive, and calcium-binding activities [6,15–17].

Marine peptides are chiral molecules comprising different amino acid residue subunits. For their
total characterization, and taking into account the mechanisms of molecular recognition and the
influence of molecular three-dimensionality in this process, it is essential to define the configuration
of the amino acids components of the peptide fractions, isolated from marine sources. Besides, it is
also crucial to obtain the bioactive marine peptides by synthesis in order to achieve higher amount of
compound for future assays or as a basis for structural modifications to obtain more potent derivatives.

Nowadays, there are different methodologies for the determination of the absolute configuration
of amino acids, such as X-ray crystallography, NMR techniques, vibrational circular dichroism (VCD),
enantioselective chromatography, optical rotatory dispersion (ORD), among others [18–26].

For the determination of the absolute configuration of amino acid residues of marine peptides,
separation methodologies by using Marfey’s method, chiral high performance liquid chromatography
(HPLC) analysis or both have proved to be suitable and the most described, as will be shown in this
review. Regardless of the method used, the evaluation of peptides stereochemistry is based on the
determination of the amino acid composition in peptide hydrolysates. Two main steps are involved,
specifically the total or partial hydrolysis of peptides to obtain amino acid residues followed by their
analysis by comparison with appropriated standards [27] (Figure 1).

Marfey’s method was first reported by Marfey in 1984 [28]. After the acid hydrolysis of
peptides, the amino acid residues are derivatized with chiral Marfey’s reagents such as 1-fluoro-2-4-
dinitrophenyl-5-D,L-alanine amide (FDAA) or 1-fluoro-2-4-dinitrophenyl-5-D,L-leucine amide (FDLA).
Subsequent analysis via reverse phase liquid chromatography (LC), using generally C18 columns, and
by comparison the retention times of the derivatized amino acids with suitable standards, afforded the
stereochemistry of the peptides [29–31]. This method is often used for determination of the absolute
configuration of amino acids, mainly because it is a simple method, offering a better resolution when
compared to chiral HPLC methodologies; furthermore, several derivatization agents, such as FDAA
and FDLA, are commercially available. However, this methodology has some disadvantages, including
low availability of some standards, and the possibility of occurring racemization of the analyte during
the derivatization reaction, prior to the chromatographic analysis [30,31].

The chiral analysis by HPLC is based on a formation of transient diastereomeric complexes
between the amino acids present in the hydrolysates and the chiral stationary phase (CSP) employed,
being the less stable complex the first to elute [32]. There are several types of CSPs, such as
polysaccharide-based, Pirkle-type, protein-based, macrocyclic antibiotic-based, crown ether-based,
ligand exchange type, among others [33–35]; however, the last three types are the most used for the
separation of primary amine-containing compounds and amino acids [36,37]. Chiral HPLC offers
several advantages, when comparing to Marfey’s method, including the direct analysis of the amino
acid hydrolysates without further derivatization; moreover, the analysis often provides quicker results.
However, poor chemical sensitivity, low sample capacity, and low availability and expensiveness of
commercial chiral columns are some of the disadvantages of chiral HPLC method [38].
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Figure 1. Schematic presentation of the methodologies generally used for determination of the 
configuration of amino acid residues of marine peptides. HPLC—High Performance Liquid 
Chromatography; CSP—Chiral Stationary Phase; FDAA—1-Fluoro-2-4-dinitrophenyl-5-D,L-alanine 
amide; FDLA—1-Fluoro-2-4-dinitrophenyl-5-D,L-leucine amide. 

A number of reviews on marine peptides have appeared in recent years, focusing mainly on 
their biological activities, applications and biosynthesis as well as isolation procedures [16,39–57].  
In this review, several works related to the methods used for determination of the absolute 
configuration of marine peptides by chromatographic methods are presented in different sections 
according to the source of the marine peptides. Diverse types of peptides such as cyclic peptides, 
cyclic depsipeptides and lipopeptides are reported. A literature survey covering all the reports on 
liquid chromatographic methods (Marfey’s method and chiral HPLC) is presented (from 1996 to 
2017). Furthermore, a case study describing an experience of our group is included. 

2. Peptides from Marine Cyanobacteria and Other Bacteria 

Cyanobacteria (blue-green algae), the most ancient known microorganisms on Earth, are a rich 
source of novel secondary metabolites possessing a broad spectrum of biological activities including 
antitumor, antibacterial, anticoagulant, antifungal, antiviral, antimalarial, antiprotozoal, and anti-
inflammatory activities [58]. Currently, cyanobacteria are one of the most interesting sources of novel 
marine compounds [59]. Actually, the number of biologically active cyclic peptides, depsipeptides, 
lipopeptides, and other acyclic or small peptides, many of which containing unusual amino acid 
residues or modified amino acid units, is impressive. In addition to cyanobacteria, this type of 
compounds has also been isolated from other marine-derived bacteria. 

Figure 1. Schematic presentation of the methodologies generally used for determination of the
configuration of amino acid residues of marine peptides. HPLC—High Performance Liquid
Chromatography; CSP—Chiral Stationary Phase; FDAA—1-Fluoro-2-4-dinitrophenyl-5-D,L-alanine
amide; FDLA—1-Fluoro-2-4-dinitrophenyl-5-D,L-leucine amide.

A number of reviews on marine peptides have appeared in recent years, focusing mainly on their
biological activities, applications and biosynthesis as well as isolation procedures [16,39–57]. In this
review, several works related to the methods used for determination of the absolute configuration
of marine peptides by chromatographic methods are presented in different sections according to the
source of the marine peptides. Diverse types of peptides such as cyclic peptides, cyclic depsipeptides
and lipopeptides are reported. A literature survey covering all the reports on liquid chromatographic
methods (Marfey’s method and chiral HPLC) is presented (from 1996 to 2017). Furthermore, a case
study describing an experience of our group is included.

2. Peptides from Marine Cyanobacteria and Other Bacteria

Cyanobacteria (blue-green algae), the most ancient known microorganisms on Earth, are a
rich source of novel secondary metabolites possessing a broad spectrum of biological activities
including antitumor, antibacterial, anticoagulant, antifungal, antiviral, antimalarial, antiprotozoal,
and anti-inflammatory activities [58]. Currently, cyanobacteria are one of the most interesting
sources of novel marine compounds [59]. Actually, the number of biologically active cyclic peptides,
depsipeptides, lipopeptides, and other acyclic or small peptides, many of which containing unusual
amino acid residues or modified amino acid units, is impressive. In addition to cyanobacteria, this
type of compounds has also been isolated from other marine-derived bacteria.
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2.1. Cyclic Peptides

Scattered publications concerning the stereochemistry determination of the amino acid residues of
several cyclic peptides, isolated from marine cyanobacteria and other bacteria, were reported (Table 1).
Marfey’s method, using FDAA as derivatization reagent, allowed the successful determination of the
absolute configuration of the amino acid residues of cyclic peptides 1–4 (Figure 2).

For the new cyclic tetrapeptide 1 isolated from the bacterium Nocardiopsis sp. [60], the absolute
configuration of all the amino acid residues was found to be L. Similarly, the absolute configuration
of the amino acid residues of three novel anabaenopeptins labeled NZ825 (2), NZ841 (3), and NZ857
(4) [61], were successfully determined by Marfey’s method combined with HPLC.

However, as Marfey’s method was not accurate enough to determine the absolute configuration
of all the amino acid residues of some cyclic peptides 5–16 (Figure 2), it was necessary to associate this
method with chiral HPLC.
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This strategy, i.e., using a ligand exchange-type CSP in chiral HPLC associated with
Marfey’s method, was used for the determination of amino acids stereochemistry of several cyclic
peptides, including aurilide B (5) and C (6), isolated from the cyanobacterium Lyngbya majuscula [62],
urukthapelstatin A (7), isolated from a culture broth of thermoactinomycetaceae bacterium
Mechercharimyces asporophorigenens YM11-542 [63], pompanoeptpins A (8) and B (9), isolated from
the cyanobacterium Lyngbya confervoides [64], marthiapeptide A (10) isolated from the deep South
China Sea-derived Marinactinospora thermotolerance SCSIO 00652 [65], norcardiamides A (11) and B
(12), isolated from the marine-derived actinomycete Nocardiopsis sp. CNX037 [66], destomides B–D
(13–15), isolated from the deep South China Sea-derived Streptomyces scopuliridis SCSIO ZJ46 [67],
and jandolide (16) isolated from the marine cyanobacterium Okeania sp. [68].

The cyclic peptides aurilides B (5) and C (6) were reported to have the in vitro cytotoxicity toward
NCl-H460, human lung tumor, and neuro-2a mouse neuroblastoma cell lines, with lethal concentration
50 (LC50) values between 0.01 and 0.13 µM [62]. Aurilide B (5) was evaluated in the NCl 60 cell
line panel and was found to exhibit a high level of cytotoxicity, particularly against leukemia, renal,
and prostate cancer cell lines [62]. The cyclic peptide pompanopeptpin A (8) was shown to exhibit
trypsin inhibitory activity with an IC50 value of 2.4 ± 0.4 µg/mL [64]. A polythiazole cyclopeptide,
marthiapeptide A (10) showed antibacterial activity against a panel of Gram-positive bacteria with
minimum inhibitory concentration (MIC) values ranging from 2.0 to 8.0 µg/mL, and strong cytotoxicity
against a panel of human cancer cell lines with IC50 values ranging from 0.38 to 0.52 µM [65].
The cyclohexapeptide destomide B (13) also showed antimicrobial activity against Staphylococcus aureus
ATCC 29213, Streptococcus pneumoniae NCTC 7466 and MRSE shhs-E1 with MIC values of 16.0, 12.5,
32.0 µg/mL, respectively [67]. A cyclic polyketide-peptide hybrid, janadolide (16) exhibited potent
antitrypanosomal activity with an IC50 value of 47 nM [68].

Recently, the configuration of the amino acids of a cytotoxic cyanobactin, wewakazole B (17),
isolated from the cyanobacterium Moorea producens (Figure 3), was determined using only chiral
HPLC [69]. Two different types of CSPs, under reverse phase mode, were used to perform the analysis.
A macrocyclic antibiotic-based CSP afforded the assignment of the L-configuration for its Ala, Phe,
and Pro residues, while a ligand exchange type CSP clearly identified the presence of L-Ile, which could
not be distinguished by the first CSP [69].
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Table 1. Cyclic peptides from marine cyanobacteria and other bacteria.

Peptide Source aa Composition Chromatographic Conditions Biological Activities Refs.

Tetrapeptide (1) Bacterium
Nocardiopsis sp. L-Ile, L-Leu, L-Pro

Marfey’s method (FDAA) combined with HPLC
C18 (YMC-ODS-A) (4.5 × 250 mm)
Flow rate: 0.8 mL/min; UV detection at 340 nm
MP: ACN(aq) (0–50% (v/v)) with 0.1% TFA

Cytotoxicity toward the leukemia
cell-line K-562 [60]

Anabaenopeptins
NZ825, NZ841,
NZ857 (2–4)

Cyanobacterium
Anabaena sp.

L-Ile, D-Lys, L-Phe;
2: L-Hph; 3: L-Hph, L-Hty;
4: L-Hty

Marfey’s method (FDAA) combined with HPLC
Merck Chromolith performance RP-18e, (4.6 × 100 mm)
MP: 50 mM TEAP buffer (pH 3)/ACN (9:1 to 1:1 v/v)

No inhibition of serine proteases [61]

Aurilides B (5) and
C (6)

Cyanobacterium
Lyngbya majuscula

L-Val, N-Me-L-Ile, L-Ile

Ligand Exchange Type CSP; Phenomenex Chirex 3126 (D)
(4.6 × 250 mm); Flow rate: 1.0 mL/min; UV detection at 254 nm;
MP: 2 mM CuSO4 in ACN/H2O (5/95 v/v) or 2 mM CuSO4 in
ACN/H2O (15/85 v/v)

Cytotoxicity against NCl-H460
and neuro-2a mouse
neuroblastoma cell lines
5: also active against leukemia,
renal, and prostate cancer
cell lines

[62]
N-Me-L-Ala
6: N-Me-L-allo-Ile,
D-Hiva

Marfey’s method (FDAA) combined with HPLC
Microsob-MV C18 (4.6 × 250 mm)
Flow rate: 1.0 mL/min; UV detection at 254 nm
MP: 50 mM TEAP buffer pH 3/ACN (9:1 to 1:1 v/v)

Urukthapelstatin
A (7)

Marine Derived
Mechercharimyces
asporophorigenens
YM11-542

L-Ala

Marfey’s method (FDAA) combined with HPLC
ODS-80Ts column (4.6 × 150 mm)
Flow rate:1.0 mL/min; UV detection at 340 nm
MP: MeOH, 0.1% TFA containing ACN or H2O

Growth inhibition of human lung
cancer A549 cells, cytotoxicity
against a human cancer cell
line panel

[63,70]

D-allo-Ile

Ligand Exchange Type CSP
Sumichiral OA-5000 column (4.6 × 150 mm)
Flow rate: 1.0 mL/min; UV detection at 254 nm
MP: 5% IPA containing 2 mM CuSO4

Pompanopeptins
A (8) and B (9)

Cyanobacterium
Lyngbya confervoides

8: L-Val, L-Thr, L-Met (O),
S-Ahp, L-Ile, L-Arg
9: L-Ile

Ligand Exchange Type CSP; Phenomenex Chirex 3126
N,S-dioctyl-(D)-penicillamine, 5 µm (4.6 × 250 mm)
Flow rate: 1.0 mL/min; UV detection at 254 nm
MP: 2 mM CuSO4 or 2 mM CuSO4/ACN (95:5 v/v)

8: Trypsin inhibitory activity [64]8: N,O-diMe-Br-L-Tyr

Marfey’s method (FDLA) combined with HPLC-MS
Phenomenex Synergi 4u Hydro RP 80A (2 × 340 nm)
Flow rate: 0.15 mL/min; UV detection at 254 nm
MP: ACN/HCOOH (10–90:0.1 v/v) in gradient

9: D-Lys, L-Val, D-Glu

Marfey’s method (FDLA) combined with HPLC-MS
Alltech Altima HP C18 HL 54 (250 × 4.6 mm)
Flow rate: 1.0 mL/min; PDA detection from 200–500 nm
MP: ACN/aq TFA (30–70:0.1 v/v) in gradient
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Table 1. Cont.

Peptide Source aa Composition Chromatographic Conditions Biological Activities Refs.

Marthiapeptide
A (10)

Deep sea-derived
Marinactinospora
thermotolerans
SCSIO 00652

L-Ile
Ligand Exchange Type CSP; MCIGELCR10W (4.6 × 150 mm);
Flow rate: 0.5 mL/min; UV detection at 254 nm;
MP: 2 mM CuSO6 solution Antibacterial and

cytotoxic activities [65]

D-Phe, L-Ile Marfey’s method (FDAA) combined with HPLC
Zorbax SB-C8 column, 5 µm (2.1 × 30 mm)

Nocardiamides A
(11) and B (12)

Marine-derived
Actinomycete
Nocardiopsis sp.
CNX037

L-Tyr, D-Leu,
D- and L-Val

Marfey’s method (FDAA or FDLA) combined with HPLC;
Conditions not described Antimicrobial activity and no

cytotoxicity against HCT-116
cell line

[66]

11: L-Ile
Ligand Exchange Type CSP; MCIGELCRS10W, (4.6 × 250 mm);
Flow rate: 0.5 mL/min; UV detection at 254 nm;
MP: 2 mM CuSO4/H2O

Destomides B–D
(13–15)

Deep sea-derived
Streptomyces
scopuliridis SCSIO
ZJ46

L-Asn, D-Leu
13: L-Trp, L-Val, L-Leu;
14: L-Gly, L-Ile,
15: L-Gly, L-Ile, L-Leu

Marfey’s method (FDAA) combined with HPLC
Phenomenex ODS column, 5 µm (4.6 × 150 mm)
Flow rate: 1.0 mL/min; UV detection at 340 nm
MP: ACN:H2O:TFA (15:85:0.1 to 90:10:0.1)

13: Antimicrobial activity against
staphylococcus aureus ATCC 29213,
Streptococcus pneumoniae NCTC
7466 and MRSE shhs-E1
13–15: no cytotoxicity

[67]

15: L-Kyn
Ligand Exchange Type CSP; MCIGELCRS10W column, 3 µm
(4.6 × 50 mm); Flow rate: 0.5 mL/min; UV detection at 254 nm;
MP: 2 mM CuSO4 aqueous solution

Janadolide (16)
Cyanobacterium
Okeania sp.

N-Me-L-Leu, L-Pro,
L-Val

Ligand Exchange Type CSP; Diacel CHIRALPAK (MA+)
(4.6 × 50 mm); Flow rate: 1.0 mL/min; UV detection at 254 nm;
MP: 2.0 mM CuSO4

Antitrypanosomal activity [68]

N-Me-L-Ala

Marfey’s method (FDAA) combined with HPLC
Cosmosil Cholester (4.6 × 50 mm);
Flow rate: 1.0 mL/min; UV detection at 340 nm
MP: 0.02 M NaOAc(aq)/MeOH (45/55 v/v)

Wewakazole B (17)
Cyanobacterium
Moorea producens

L-Ala, L-Phe, L-Pro

Macrocyclic Antibiotic type CSP
Chirobiotic TAG (2.1 × 250 mm);
Flow rate: 0.3 mL/min; UV detection at 340 nm;
MP: 0.1% aq. HCOOH and 1% (v/v) NH4OAc in MeOH

Cytotoxicity against MCF7 and
human 460 lung cancer cell lines [69]

L-Ile
Ligand Exchange type CSP; Sumichiral OA-5000 (4.6 × 150 mm);
Flow rate: 1.0 mL/min; UV Detection at 254 nm;
MP: MeOH/2.0 mM CuSO4 in H2O (5/95 v/v)

aa—Amino acid; FDAA—1-Fluoro-2-4-dinitrophenyl-5-L-alanine amide; ESI—Electrospray Ionization; LC—Liquid Chromatography; MS—Mass spectrometry; HPLC—High Performance
Liquid Chromatography; MP—Mobile Phase; TEAP—Triethylammonium phosphate; ACN—Acetonitrile; CPA—Carboxypeptidase A; TFA—Trifluoracetic acid; MeOH—Methanol;
TEA—Triethylamine; IPA—Isopropyl alcohol; FDLA—1-fluoro-2-4-dinitrophenyl-5-D,L-leucine amide; NaOAc—Sodium acetate; NH4OAc—Ammonium acetate.
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2.2. Cyclic Depsipeptides

As mentioned above, there are many publications describing the isolation and characterization,
including the determination of the stereochemistry of their amino acids, of new cyclic depsipeptides
from marine cyanobacteria and other bacteria (Table 2). However, contrary to cyclic peptides, several
works reported the use of chiral HPLC as the only method for determination of the configuration
of amino acids. Figure 4 shows the structure of cyclic depsipeptides 18–46, isolated from marine
cyanobacteria and other bacteria, whose stereochemistry of the amino acids was determined only by
this method.

The ligand exchange-type CSPs were the most widely used by different research groups.
Cai et al. employed a penicillamine ligand exchange-type CSP to determine the absolute configuration
of the amino acids constituent of malevamide B (18) and C (19) isolated from the cyanobacterium
Symploca laete-viridis [71]. Three different mobile phases in reverse phase elution mode were used.
Nevertheless, the stereochemistry of Amha and Amoa residues present in both compounds were
not determined [71]. The same CSP was employed to establish that all the amino acids of the
cytotoxic depsipeptide lyngbyapeptin B (20) [72], tasipeptins A (21) and B (22) [73], wewakamide
A (23) [74], cocosamide A (24) and B (25) [75], and the antiparasitic depsipeptides dudawelamides
A–D (26–29) [76], isolated from cyanobacteria Lyngbya majuscula, Symploca sp., Lyngbya semiplena,
Lyngbya majuscula, and Moorea producens, respectively, has L-configuration. The only exception was
for allo-Hiva amino acid of dudawelamide C (29), which has D-configuration [76]. The configuration
of the amino acids of the cyclic depsipeptides pitipeptolides A (30) and B (31), isolated from
cyanobacterium Lyngbya majuscula, was assigned to be L by a ligand exchange-type CSP comprising
N,N-dioctyl-L-alanine as chiral selector (Chiralpack MA (+) from Daicel) and different proportion of
CuSO4:ACN as mobile phase [77]. By using the same CSP, the absolute configuration of three new
cyclic depsipeptides, kohamamides A–C (32–34) were also successfully established [78].

Zhou et al. [79] described the determination of the absolute configuration of new
anti-infective cycloheptadepsipeptides marformycins A–F (35–40), produced by the deep sea-derived
Streptomyces drozdowiczii SCSIO 1014, using a ligand exchange type CSP containing the same chiral
selector as the previous ones (N,N-dioctyl-L(or D)-alanine) but purchased from Mitsubishi Chemical
Corporation (MCI GEL CRS10W). Another type of CSP, specifically the macrocyclic antibiotic-based
Chirobiotic TAG, confirmed the presence of L-Pro and L-Val in an unusual cyclic depsipeptide,
pitiprolamide (41), isolated from Lyngbya majuscula [80]. Interestingly, in some works, more than one
CSP were employed to elucidate the configuration of all the amino acids contained in the hydrolysates
of cyclic depsipeptides. For example, two different types of ligand exchange type CSPs were used to
elucidate the stereochemistry of the amino acid residues of palau’amide (42), depsipeptide with strong
cytotoxicity against KB cell line (IC50 value of 13 nM) [81].

In the case of pitipeptolides C–F (43–46), which were isolated from the cyanobacterium
Lyngbya majuscula, the configuration of most of the amino acid residues was determined using
the macrocyclic antibiotic-based Chirobiotic TAG under reverse phase elution conditions [82].
Then, the N,N-dioctyl-L-alanine ligand exchange CSP Chiralpack MA (+), under the same elution
mode, was used for the assignment of S configuration for Hiva residue [82].
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Table 2. Cyclic depsipeptides from marine cyanobacteria and other bacteria.

Peptide Source aa Composition Chromatographic Conditions Biological Activities Refs.

Malevamides
B (18) and C (19)

Cyanobacterium
Symploca laete-viridis

L-Pro, N-Me-L-Val, N-Me-L-Phe
18: L-Ile, N-Me-L-Ala, N-Me-D-Val,
L-Val, (R)-Hiva; 19: L-Ala,
N-diMe-L-Ser, L-Leu, N-Me-D-Ala,
N-Me-L-Ile, (S)-Hiva

Ligand Exchange Type CSP; Chirex (D) Penicillamine, Phenomenex
00G-3126E0 (4.6 × 250 mm)
MP: 1.7 mM CuSO4 in ACN/H2O (14:86 v/v), 1.9 mM CuSO4 in
ACN/H2O (5:95 v/v) or 2.0 mM CuSO4 in H2O
Flow rate: 1.0 and 0.8 mL/min; UV detection at 245 nm

Inactive against P-388,
A-549 and HT-29
cancer cells

[71]

Lyngbyapeptin B (20) Cyanobacterium
Lyngbya majuscula

N-Me-L-Ile, N-Me-L-Leu,
N,O-diMe-L-Tyr

Ligand Exchange Type CSP; Chirex (D) Penicillamine, Phenomenex
00G-3126E0 (4.6 × 250 mm)
MP: 2 mM CuSO4
Flow: 0.8 mL/min; UV detection at 254 nm

Cytotoxicity against KB and
LoVo cells [72]

Tasipeptins A (21) and
B (22)

Cyanobacterium
Symploca sp.

L-Thr, L-Val, L-Leu, L-Glu,
N-Me-L-Phe

Ligand Exchange Type CSP; Phenomenex Chirex Phase 3126 (D)
(4.6 × 250 mm)
MP: 2 mM CuSO4; 2 mM CuSO4/ACN (95:5 or 85:15 v/v)
UV detection at 254 nm

Cytotoxicity toward
KB cells [73]

Wewakamide A (23)
Cyanobacteria
Lyngbya semiplena and
Lyngbya majuscula

L-M-Ala, L-Pro, L-Val, L-Me-Leu, L-Phe,
L-Me-ILe, L-Hiv

Ligand Exchange Type CSP; Phenomenex Chirex 3126 (D)
(4.6 × 250 mm);
MP: 2 mM CuSO4 in H2O or 2 mM CuSO4 in
ACN/H2O (15:85 or 5:95 v/v)
Flow rate: 0.7, 0.8, 1.0 mL/min; UV detection at 254 nm

Brine shrimp toxicity [74]

Cocosamide A (24)
and B (25)

Cyanobacterium
Lyngbya majuscula L-Pro, L-Val, N-Me-L-Phe

Ligand Exchange Type CSP; Phenomenex Chirex (D), Penicillamine,
5 µm (4.6 × 250 mm)
MP: 2.0 mM CuSO4/ACN (85:15 or 90:10 v/v)
Flow rate: 1.0 mL/min; UV detection at 254 nm

Cytotoxicity against MCF-7
(breast cancer) and HT-29
(colon cancer) cells

[75]

Dudawalamides A–D
(26–29)

Cyanobacterium
Moorea producens

L-Dhoya, L-Hiva, L-Val
29: D-allo-Hiva

Ligand Exchange Type CSP; Chirex Phase 3126 (D) 5 µm
(4.6 × 250 mm);
MP: 2 mM CuSO4-ACN (95:5 or 85:15 v/v or 87.5:12.5 v/v/v),
ACN-H2O-HCOOH (30:70:0.1 or 70:30:0.1 v/v/v)
Flow rate: 0.8 mL/min; UV detection at 340 nm

Antiparasitic activity [76]

Pitipeptolides
A (30) and B (31)

Cyanobacterium
Lyngbya majuscula

L-Gly, L-Pro, L-Val, L-Ile, N-Me-L-Phe,
(2S,3S)-Hmp

Ligand Exchange Type CSP; Chiralpak MA (+) (4.6 × 50 mm);
MP: 2 mM CuSO4: ACN (90:10 or 85:15 v/v)
Flow rate: 1.0 mL/min; UV detection at 254 nm

Cytotoxic,
antimycobacterial and
elastase inhibitory activities

[77]

Kohamamides A–C
(32–34)

Cyanobacterium
Okeania sp.

L-Pro, L-Ala, L-Val, N-Me-L-Val, L-Leu;
32: L-Ile

Ligand Exchange Type CSP; Chiralpak MA (+) (4.6 × 250 mm);
MP: 2 mM CuSO4, ACN: 2 mM CuSO4 (15:85 v/v);
Flow rate: 1.0 mL/min; UV detection at 254 nm

No growth inhibition
against HeLa and
HL60 cells

[78]

Marformycins A–F
(35–40)

Deep sea-derived
Streptomyces
drozdowiczii

35: D-allo-Ile, L-Val; 36: D-allo-Ile,
L-allo-Ile; 37: D-Val, L-allo-Ile; 38:
D-allo-Ile, L-allo-Ile, L-Leu; 39 and 40:
L-Thr, L-Val, D-Val, L-Leu

Ligand Exchange Type CSP; MCIGELCRS10W (4.6 × 50 mm);
MP: 2 mM CuSO4 in H2O
Flow rate: 0.5 mL/min; UV detection at 254 nm

Anti-infective activity
against Micrococcus luteus [79]
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Table 2. Cont.

Peptide Source aa Composition Chromatographic Conditions Biological Activities Refs.

Pitiprolamide (41) Cyanobacterium
Lyngbya majuscula L-Pro, L-Val

Macrocyclic Antibiotic Type CSP; Chirobiotic TAG
(4.6 × 250 mm); MP: MeOH/10 mM NH4OAc (40:60 v/v) (pH 5.6)
Flow rate: 0.5 mL/min

Cytotoxicity against CT116
and MCF7 cancer cell lines
and antibacterial activity

[80]

Palau’amide (42) Cyanobacterium
Lyngbya sp.

L-Ala, L-Ile, N-Me-L-Ala, N-Me-D-Phe
and D-hydroxyisocaproic acid

Ligand Exchange Type CSP; Phenomenex Chirex Phase 3126 (D)
(4.6 × 250 mm)
MP: 1 mM CuSO4; 2 mM CuSO4/ACN (95:5 or 85:15 v/v)
Flow rate: 0.8 mL/min; UV detection at 254 nm

Cytotoxicity against KB
cell line [81]

Pitipeptolides C–F
(43–46)

Cyanobacterium
Lyngbya majuscula

L-Pro, L-Val, L-Ile, L-Phe,
N-Me-L-Phe

Macrocyclic Antibiotic Type CSP; Chirobiotic TAG (4.6 × 250 mm);
MP: MeOH/10 mM NH4OAc (40:60 v/v) (pH 5.6);
Flow rate: 0.5 mL/min
Detection by EIMS in positive ion mode (MRM scan)

46: Active against
Mycobacterium tuberculosis [82]

Ulongapeptin (47) Cyanobacterium
Lyngbya sp.

L-lactic acid, L-Val, N-Me-L-Val,
N-Me-D-Val, N-Me-D-Phe

Ligand Exchange Type CSP;
Phenomenex Chirex Phase 3126 (D), 4.6 × 250 mm
MP: 2 mM CuSO4; 2 mM CuSO4/ACN (95:5 or 85:15 v/v)
Flow rate: 1.00 mL/min; UV detection at 254 nm

Cytotoxicity against
KB cells

[83]
L-Val, N-Me-L-Val, N-Me-D-Val

Marfey’s method (FDLA) combined with HPLC
YMC-Pack AQ-ODS (10 × 250 mm); MP: 50% ACN in 0.01 N TFA
Flow rate: 2.5 mL/min; UV detection at 254 nm

2-hydroxy-3-methylvaleric acid
N-Me-L-Ala

Ligand Exchange Type CSP; CHIRALPAK MA (+) (4.6 × 50 mm);
MP: 1 mM CuSO4; 2 mM CuSO4/ACN (95:5 or 85:15 v/v)
Flow rate: 0.7 mL/min; UV detection at 254 nm

Largamides A–H
(48–55)

Cyanobacterium
Oscillatoria sp.

48: L-Val, L-Thr, L-Ala, L-Leu, D-Gln,
D-Tyr; 49: L-Val, L-Thr, L-Ala, L-Ahppa,
D-Gln, D-Tyr; 50: L-Val, L-Thr, L-Ala,
L-Ahpha, D-Gln, D-Tyr; 51: L-Val, L-Thr,
L-Ala, L-Leu, L-Ahp, N-MeBr-L-Tyr,
L-Ahppa; 52: L-Val, L-Thr, L-Ala, L-Leu,
L-Ahp, N-MeCl-L-Tyr; 53: L-Val, L-Thr,
L-Ala, L-Tyr, L-Ahp, N-MeCl-L-Tyr; 54:
L-Val, L-Thr, L-Ala, L-hTyr, L-Ahp,
N-MeCl-L-Tyr; 55: L-Val, L-Thr, L-Ala,
L-Amppa, L-Gln, N-Me-L-Asn

Marfey’s method (FDLA) combined with HPLC
Phenomenex Jupiter Proteo C12 column, 4 µm (4.6 × 150 mm);
MP: ACN containing 0.01 M TFA
Flow 0.5 mL/min; UV detection at 254 nm 51–54:

Chymotrypsin inhibition [84]

D-Glyceric acid

Ligand Exchange Type CSP; Phenomenex Chirex 3126 (D)
(4.6 × 150 mm);
MP: 2 mM CuSO4:ACN (90/10 v/v);
Flow 0.5 mL/min; UV detection at 254 nm
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Table 2. Cont.

Peptide Source aa Composition Chromatographic Conditions Biological Activities Refs.

Trungapeptins
A–C (56–58)

Cyanobacterium
Lyngbya majuscula

L-Val, L-N-MeVal, L-alloLeu,
L-Pro

Marfey’s method (FDLA) combined with HPLC. Alltech Econosil C18;
MP A:40% ACN with 0.04%TFA. MP B: 37.5% ACN with 0.05%TFA.
Flow rate: 1.0 mL/min; UV detection at 254 nm Brine shrimp toxicity

and ichthyotoxicity [85]

Phenyllactic acid (S)
Ligand Exchange Type CSP; CHIRALPAK MA (+) (4.6 × 50 mm);
MP: 2 mM CuSO4/ACN (85:15)
Flow rate: 0.5 mL/min; UV detection at 254 nm

Carriebowmide (59)
Cyanbacterium
Lyngbya polychroa

L-Ala, N-Me-L-Leu, N-Me-D-Phe,
L-Phe, L-Met

Ligand Exchange Type CSP; Phenomenex, Chirex (D) Penicillamine,
5 µm (4.6 × 250 mm)
MP: 2.0 mM CuSO4-ACN (95:5, 90:10, or 85:15 v/v)
Flow rate: 0.8 or 1.0 mL/min; UV detection at 254 nm

Lipophilic extract reduced
feeding on agar food pellets [86]

R-Hmba
Ligand Exchange Type CSP; Chiralpak MA (+) (4.6 × 250 mm);
MP: 2.0 mM CuSO4-ACN (90:10 v/v)
Flow rate: 1.0 mL/min; UV detection at 254 nm

L-Aba

Ligand Exchange Type CSP; Phenomenex, Chirex (D) Penicillamine,
5 µm (4.6 × 250 mm);
MP: 2.0 mM CuSO4
Flow rate:1.0 mL/min; UV detection at 254 nm

(2R,3R)-Amha

Marfey’s method (FDAA) combined with HPLC
Atlantis, C18, (3.0 × 250 mm);
MP: 50 mM NH4COOCH3(aq)-ACN (70:30 v/v)
Flow rate: 1.0 mL/min; UV detection at 254 nm

Symplocamide A (60) Cyanobacterium
Symploca sp.

L-Val, L-Thr, L-Ile, L-Cit, L-Gln, L-Btyr,
L-But

Marfey’s method (FDAA) combined with HPLC
Phenomenex Jupiter C18 column (4.6 × 250 mm)
MP: ACN:H2O:HOAc (15:85:0.02 to 1:1:0.02 v/v/v)
Flow rate: 0.5 mL/min; UV detection at 340 nm

Cytotoxicity and
antimicrobial
activities
Chymotrypsin inhibitor

[87]

Kempopeptins A (61)
and B (62)

Cyanobacterium
Lyngbya sp.

61: N-O-diMe-Br-L-Tyr Marfey’s method (FDLA) combined with HPLC
Conditions not described

61: Elastase and
chymotrypsin inhibition
62: Trypsin inhibition

[88]61: N-Me-L-Tyr, L-Val, L-Thr-2, L-Pro,
L-Phe, L-Ahp, L-Leu
62: L-Lys, L-Thr, L-Val, L-Ile

Ligand Exchange Type CSP; Phenomenex Chirex Phase 3126
N,S-dioctyl-(D)-penicillamine column, 5 µm (4.6 × 250 mm);
MP: 2 mM CuSO4 in H2O:ACN (95:5 v/v) or 2 mM CuSO4
Flow rate: 1.0 mL/min; UV detection at 254 nm
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Table 2. Cont.

Peptide Source aa Composition Chromatographic Conditions Biological Activities Refs.

Tiglicamides A–C
(63–65)

Cyanobacterium
Lyngbya confervoides

L-Ala, L-Thr, L-Val, D-Glu, D-Tyr; 63:
L-Htyr; 65: L-Met (O)

Ligand Exchange Type CSP; Phenomenex, Chirex 3126,
5 µm (4.6 × 250 mm); Mobile Phase: 2 mM CuSO4
Flow rate: 1.0 mL/min; UV detection at 254 nm

Porcine pancreatic
elastase inhibition

[89]

65: L-Phe

Marfey’s method (FDLA) combined with HPLC
Alltech Alltima HP C18, 5µm (4.6 × 250 mm)
MP: 50–100% MeOH in 0.1% (v/v) aqueous TFA
Flow rate: 0.8 mL/min; PDA detection at 200–500 nm

Hantupeptin B (66) Cyanobacterium
Lyngbya majuscula

L-Pro, L-Val, N-Me-L-Val,
N-Me-L-Ile

Marfey’s method (FDAA) combined with HPLC
Phenomenex, Luna, 5 µm, (2.0 × 150 mm);
MP: ACN in 0.1% (v/v) aqueous HCOOH;
Flow rate: 0.2 mL/min

Cytotoxicity against
MOLT-4 (leukemic) and
MCF-7 (breast cancer)
cell lines

[90]

L-3-phenyllactic acid (S)
Ligand Exchange Type CSP; Chiralpak MA (+) (4.6 × 500 mm)
MP: 2 mM CuSO4/ACN (85:15 v/v)
Flow rate: 0.7 mL/min; UV detection at 218 nm

Palmyramide A (67)

Cyanobacterium
(Lyngbya majuscula)
and a red alga
Centroceras sp.
complex

L-Val, N-Me-L-Val, L-Pro

Marfey’s method (FDAA) combined with HPLC/MS on a Merck
LiChrospher 100 RP-18 (4.0 × 125 mm)
MP: ACN:H2O:HCOOH (30:70:0.1 to 70:30:0.1 v/v/v) or 2.0 mM
CuSO4 in H2O
Flow rate: 0.7 mL/min; UV detection at 254 nm

Sodium channel blocking
activity in neuro-2a cells
and cytotoxic activity in
H-460 (human lung
carcinoma) cells

[91]

L-Lac, L-Pla Ligand Exchange Type CSP; Phenomenex Chirex 3126 (4.6 × 250 mm);
Conditions not described

Veraguamides A–G
(68–74)

Cyanobacterium
Symploca cf. hydnoides

68–71, 73 and 74: L-Val, N-Me-L-Val,
L-Pro; 70: (2S,3R) Br-Hmoya; 71:
N-Me-L-Ile; 72: L-Ile, N-Me-L-Val,
N-Me-L-Ile, L-Pro

Macrocyclic Antibiotic Type CSP; Chirobiotic TAG (4.6 × 250 mm);
MP: MeOH/10 mM NH4OAc (40:60 v/v) (pH 5.6);
Flow rate: 0.5 mL/min Cytotoxic activity against

HT29 (colorectal
adenocarcinoma) and HeLa
(cervical carcinoma)
cell lines

[92]

74: 2S:3R dpv
2R:3R Dml

Marfey’s method (FDAA) combined with HPLC-MS
Phenomenex Synergi Hydro-RP (4.6 × 150 mm)
MP: MeOH:H2O:HCOOH (40–100% MeOH: 0.1% HCOOH);
Flow rate: 0.5 mL/min
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Table 2. Cont.

Peptide Source aa Composition Chromatographic Conditions Biological Activities Refs.

Porpoisamides A (75)
and B (76)

Cyanobacterium
Lyngbya sp.

75 and 76: L-Ala, L-Pro, N-Me-D-Phe,
(2S,3S)-Hmpa

Ligand Exchange Type CSP; Phenomenex Chirex 3126 (4.6 × 250 mm);
MP: 5% or 15% ACN in 2 mM CuSO4 in H2O;
Flow rate: 1.0 mL/min

Cytotoxicity against HCT
116 (colorectal carcinoma)
and U2OS
(osteosarcoma) cells

[93]

75: (2S,3R)-Amoa
76: (2R,3R)-Amoa

Ligand Exchange Type CSP; Chiralpak MA (+) (4.6 × 50 mm);
MP: 15% ACN in 2 mM CuSO4 in H2O
Flow rate: 1.0 mL/min

(2R,3R) 3-NH2-2-Me-octanoic acid

Marfey’s method (FDAA) combined with HPLC
YMC-Pack AQ-ODS (10 × 250 mm)
MP: ACN:H2O: N-TFA (57:43:0.1 v/v/v)
Flow rate: 2.5 mL/min; UV detection at 340 nm

76: (2S)-Hiva
Ligand Exchange Type CSP; CHIRALPAK MA (+) (4.6 × 50 mm);
MP: ACN/2 mM CuSO4 (10:90 v/v)
Flow: 1.0 mL/min; UV detection at 254 nm

Companeramides A
(77) and B (78)

Cyanobacterial
assemblage collected
from Coiba National
Park, Panama

77: L-Ala, N-Me-L-Ala, L-Pro, L-Ile,
N-Me-L-Leu, and N-Me-L-Val; 78:
L-Pro, N-Me-L-Val, L-Val, L-Ile, D- and
N-Me-L-Ala

Marfey’s method (FDAA) combined with HPLC
C18 column (3.9 × 150 mm)
MP: 40 mM NH4OAc (pH 5.2):ACN (9:1 to 1:1 v/v)
Flow rate: 1.0 mL/min; UV detection at 340 nm Antiplasmodial activity

against Plasmodium falciparum [94]

S-Hiva

Ligand Exchange Type CSP; Phenomenex Chirex 3126 (D)
(4.6 × 250 mm);
MP: CuSO4/ACN
Flow: 1.0 mL/min; UV detection at 254 nm

Piperazimycins A–C
(79–81)

Fermentation broth of
a Streptomyces sp.

(S)-AMNA, (S,S)-OHPip1,
(R,R)-γOHPip2, 79: (S)-αMeSer

Marfey’s method (FDAA) combined with HPLC
C18; MP: ACN in H2O (10–100%)
Flow rate: 1.0 mL/min; UV detection: 210, 254, 340 nm

79: Active against diverse
cancer cell lines [95]

Grassypeptolides D
(82) and E (83)

Red sea
cyanobacterium
Leptolyngbya sp.

D-allo-Thr, N-Me-D-Leu, L-Thr,
N-Me-L-Leu

Marfey’s method (FDAA) combined with HPLC
Gemini C18 110 A, 5 µm (4.6 × 250 mm)

Cytotoxicity against HeLa
and mouse neuro-2a
blastoma cells

[96]
L-PLa, N-Me-L-Val, L-Pro, N-Me-L-Phe,
(2S)-MeCysA, D-Aba, L-Cya,
(2R,3R)-Maba

Marfey’s method (FDAA) combined with HPLC
Kinetex XB-C18, 110 A, 2.6 µm (4.6 × 100 mm)
MP: ACN:H2O:HCOOH (30:70:0.1 to 70:30:0.1 v/v/v) or
ACN:H2O:TFA (30:70:0.1 to 70:30:0.1 v/v/v);
Flow rate: 0.2 mL/min; UV detection at 340 nm and ESIMS
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Table 2. Cont.

Peptide Source aa Composition Chromatographic Conditions Biological Activities Refs.

Fijimycins A–C
(84–86)

Fermentation broth of
Streptomyces sp. strain
CNS-575

84: D-PhSar, L-Ala, L-DiMe-Leu, Sar,
D-Hyp, D-Leu, L-Thr; 85: L-N-MeLeu,
L-Ala, L-DiMeLeu, Sar, D-Hyp, D-Leu,
L-Thr; 86: L-PhSar, L-Ser, L-DiMeLeu,
Sar, D-Hyp, D-Leu, L-Thr

Marfey’s method (FDAA) combined with HPLC
C18 column, Luna (4.6 × 100 mm)
MP: ACN:H2O:TFA (10:90:1 to 50:50:1 v/v/v)
Flow rate: 0.7 mL/min; UV detection at 340 nm

Antibacterial activity
against three MRSA strains
of Staphylococcus aureus

[97]

Itralamides A (87)
and B (88), and
Carriebowmide
sulfone (89)

Cyanobacterium
Lyngbya majuscula

87: L-Ala, D-Ala, N-Me-L-Ala,
N-Me-D-Phe, N-Me-L-Thr,
N-Me-L-Val

Marfey’s method (FDLA) combined with HPLC
Eclipse XDB-18, Agilent (4.6 × 150 mm)
MP: ACN:H2O:HCOOH (20:80:0.1 to 80:20:0.1 v/v/v)
Flow rate: 0.8 mL/min; Detection by ESI-MS

88: Cytotoxicity against
HEK293 (human embryonic
kidney) cell line

[98]88: N-Me-L-Ala, N-Me-D-Phe,
N-Me-L-Thr, D-Val

Marfey’s method (FDLA) combined with HPLC
Luna C18, Phenomenex, 5 µm (4.6 × 250 mm)
MP: ACN:H2O:HCOOH (20:80:0.1 to 90:10:0.1 v/v/v)
Flow rate: 0.8 mL/min

89: (2S,3R)-AMHA
Marfey’s method (FDLA) combined with HPLC-PDA
dC18, 5 µm (3.0 × 250 mm); MP: ACN:H2O:HCOOH (0:100:0.1 to
50:50:0.1 v/v/v); Flow rate: 0.3 mL/min

Viequeamide A (90)
Marine button
cyanobacterium
Rivularia sp.

L-Val, L-Thr, N-Me-L-Val, L-Pro Marfey’s method (FDLA) combined with HPLC
Conditions not described

Highly toxic to H460
(human lung cancer) cells [99]

Ngercheumicin
F–I (91–94)

Photobacterium
related to
P. halotolerans

L-Ser, L-allo-Thr, D-Ser, D-Thr, L-Leu,
D-Leu

Marfey’s method (FDLA) combined with HPLC
Dionex RSLC Ultimate 300 with a diode array detector
Kinetex C18 column, 2.6 µm at 60 ◦C (2.1 × 150 mm)
ACN:H2O:TFA (0:100:0.1 to 50:50:0.1 v/v/v)
Flow rate: 0.8 mL/min

91–93: rnaIII
inhibiting activities [100]

aa—Amino acid; FDAA—1-Fluoro-2-4-dinitrophenyl-5-L-alanine amide; LC—Liquid Chromatography; MS—Mass Spectrometry; HPLC—High Performance Liquid Chromatography;
MP—Mobile Phase; TEAP—Triethylammonium phosphate; ACN—Acetonitrile; TFA—Trifluoracetic acid; MeOH—Methanol; TEA—Triethylamine; IPA—Isopropyl alcohol;
FDLA—1-Fluoro-2-4-dinitrophenyl-5-D,L-leucine amide; NaOAc—Sodium acetate; NH4OAc—Ammonium acetate.
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The concurrent applicability of chiral HPLC and Marfey’s methods for determination of the
absolute configuration of all the amino acid residues of cyclic depsipeptides 47–78 (Figure 5) was also
described in several reports, among which ten described the use of ligand exchange-type CSPs to
perform the analysis in association with Marfey’s method [71,72,74–76,78,79,81]. Furthermore, the use
of macrocyclic antibiotic-based CSPs was reported by Montaser et al. [82].

Considering the biological activities of cyclic depsipeptides, whose stereochemistry of the amino
acids was determined by a combination of Marfey’s method and chiral HPLC, it is worth mentioning
the following compounds. Ulongapeptin (47), isolated from a Palauan marine cyanobacterium
Lyngbya sp. displayed significant cytotoxic activity against KB cells with IC50 value of 0.63 µM [83].
Largamides A–H (48–55), isolated from the marine cyanobacterium Oscillatoria sp., inhibited
chymotrypsin with IC50 values ranging from 4 to 25 µM [84]. Symplocamide A (60), isolated from the
marine cyanobacterium Symploca sp., showed cytotoxicity against NCI-460, non-small cell lung cancer
cells (IC50 = 40 nM), and neuro-2a mouse neuroblastoma cells (IC50 = 29 nM). It was also reported that
60 was active against three tropical parasites: malaria (Plasmodium falciparum, IC50 = 0.95 µM), chagas
disease, (Trypanasoma cruzi, IC50 > 9.5 µM), and leishmaniasis (Leishmania donovani, IC50 > 9.5 µM) [87].
It was found that, kempopeptins A (61) and B (62), isolated from the marine cyanobacterium
Lyngbya sp., exhibited inhibitory activity against elastase and chymotrypsin with IC50 values of
0.32 µM and 2.6 µM, respectively [88]. Palmyramide A (67), isolated from the marine cyanobacterium
Lyngbya majuscula, showed sodium channel blocking activity in the neuro-2a cells as well as cytotoxic
activity in H-460 human lung carcinoma cell line [91]. Companeramides A (77) and B (78), isolated from
a marine cyanobacterial assemblage comprising a small filament Leptolyngbya species, showed high
nanomolar in vitro antiplasmodial activity against Plasmodium falciparum strains D6, Dd2, and 7G8 [94].

Moreover, HPLC analysis after derivatization with a Marfey’s reagent has been reported as the
only method to determine the stereochemistry of the amino acid residues of cyclic depsipeptides
79–94 (Figure 6). FDAA was used as derivatization reagent for piperazimycins A–C (79–81), cyclic
hexadepsipeptides isolated from the fermentation broth of a marine-derived bacterium Streptomyces sp.
Strain, collected from a sediment [95], grassypeptolides D (82) and E (83), cyclic depsipeptides isolated
from the marine cyanobacterium Leptolyngbya sp. [96], fijimycins A–C (84–86), cyclic depsipeptides
isolated from a marine bacteria Streptomyces sp. [97]. The Marfey’s reagent FDLA was employed
for the assignment of the absolute configuration of the amino acid residues of several cyclic
depsipeptides such as itralamide A (87) and B (88) and carriebowmide sulfone (89), isolated from the
marine cyanobacterium Lyngbya majuscula [98], viequeamide A (90), isolated from the marine button
cyanobacterium (Rivularia sp.) [99], ngercheumicins F–I (91–94) [100].

Many cyclic depsipeptides whose stereochemistry of their amino acids was determined only by
Marfey’s method, exhibited various interesting biological activities. Thus, piperazimycin A (79) was
found to exhibit potent cytotoxicity against a panel of sixty cancer cell lines (mean values of growth
inhibition (GI50) = 100 nM, and LC50 = 2 µM) [95]. While, grassypeptolides D (82) and E (83) exhibited
significant cytotoxicity to HeLa (IC50 = 335 and 192 nM, respectively) and mouse neuro-2a blastoma
(IC50 = 559 and 407 nM, respectively) cell lines [96], itralamide B (88) was active against HEK293 cells
(IC50 value of 6 ± 1 µM) [98]. Fijimycins A–C (84–86) exhibited strong growth inhibitory activity
against three MRSA strains in a concentration range of 4–32 µg/mL−1 [97].

2.3. Lipopeptides

To the best of our knowledge, there are only two reports describing simultaneously the isolation
and characterization of lipopeptides from marine cyanobacteria (Figure 7) as well as the stereochemistry
determination of the amino acids present in their hydrolysates (Table 3).
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whose stereochemistry of their amino acids was determined by Marfey’s method.

The configuration of N-Me-Hph of the lipopeptide antillatoxin B (95), isolated from the
cyanobacterium Lyngbya majuscula, was assigned as L using FDAA as Marfey’s derivatization
reagent [101]. Compound 95 exhibited significant sodium channel activation (EC50 = 1.77 µM) and
ichthyotoxicity (LC50 = 1 µM) [101]. The hydrolysates of lipopeptides lobocyclamides A–C (96–98),
isolated from the cyanobacterium Lyngbya confervoides, were analyzed by either direct chiral HPLC,
using the D-penicillamine ligand exchange type CSP or by prior derivatization by Marfey’s method
and reverse phase HPLC [102]. Both compounds displayed modest in vitro antifungal activity against
a panel of Candida sp., including two fluconazole-resistant strains. Interestingly, synergistic antifungal
activity was also observed [102].
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Table 3. Lipopeptides from marine cyanobacteria.

Peptide Source aa Composition Chromatographic Conditions Biological
Activities Ref.

Antillatoxin B (95) Cyanobacterium
Lyngbya majuscula N-Me-L-Hph

Marfey’s method (FDAA) combined
with HPLC Waters Nova-Pak C18
(3.9 × 150 mm),
MP: 10 to 50% ACN in H2O with
0.05% TFA, UV detection at 340 nm

Sodium
channel-activating
and ichthyotoxic
activities

[101]

Lobocyclami-des
A–C (96–98)

Cyanobacterium
Lyngbya confervoides

96: S-Ile, S-allo-Ile,
S-Leu, R-β-Aoa,
S-Ser, R-Tyr, S-Hse,
R-Hpr

Ligand Exchange Type CSP Chirex
3126 (D)-penicillamine column;
MP: 2 mM aq CuSO4/ACN (1:99,
95:5 or 86:14 v/v);
Flow rate: 1.15–1.20 mL/min, UV
detection at 254 nm

Antifungal
activity against a
panel of
Candida sp.

[102]
97: S-Ala, S-Thr,
N-Me-S-Ile, R-Aoa,
R-Ada,
2R,3R-4-OH-Hth,
2R,3S-3-OH-Leu,
trans-3-OH-Pro

Marfey’s method (FDAA) combined
with HPLCC18 column
(4.8 × 250 mm);
MP: ACN: 0.1% aq. TFA buffer
(pH 3) (1:9 to 1:1 v/v)
Flow rate: 1.0 mL/min; UV
detection at 340 nm

aa—Amino acid; FDAA—1-Fluoro-2-4-dinitrophenyl-5-L-alanine amide; HPLC—High Performance Liquid
Chromatography; MP—Mobile Phase; ACN—Acetonitrile; TFA—Trifluoracetic acid.

3. Peptides from Marine-Derived Fungi

Marine fungi have been isolated from various marine sources like algae, marine invertebrates,
sediment or water, mangroves and sponges. Most of the fungal species isolated from marine sponges
are related to the genera Aspergillus and Penicillium [103]. Marine fungi are a rich source of structurally
unique and biologically active compounds with a wide range of biological activities, such as
antimalarial, anticancer, antifungal, antibacterial, cytotoxicity and among others [104]. More than
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1000 compounds have been already isolated from marine derived fungi and among them around
150–200 new compounds were bioactive [103,104].

3.1. Cyclic Peptides

A large number of cyclic peptides have been isolated from marine-derived fungi (Figure 8) and
Table 4 shows the marine fungal cyclic peptides whose stereochemistry of their amino acid residues
were determined. To the best of our knowledge, only three reports described the use of FDAA and
FDLA as Marfey’s derivatization reagents, specifically for analysis of the peptides 99–112.

The cyclic peptide cyclo-(L-leucyl)-trans-4-hydroxyl-L-prolyl-D-leucyl-trans-4-hydroxy-L-proline)
(99), isolated from the marine mangrove-derived fungi Phomopsis sp. K38, and Alternaria sp. E33,
was found to exhibit antifungal activity, particularly the fungus Helminthosporium sativum. By using
a combination of Marfey’s method and a reverse phase HPLC, the presence of 4-OH-L-Pro and
both L- and D-Leu residues in its structure was confirmed [105]. Scytalidamides A (100) and
B (101), and clonostachysins A (102) and B (103), isolated from marine sponge derived fungus
Clonostachys rogersoniana strain HJK9, were found to comprise L-configuration for all their amino
acids [106,107]. Scytalidamides A (100) and B (101) showed cytotoxicity against human colon carcinoma
tumor cell line (HCT-116) with IC50 values of 2.7 and 11.0 µM, respectively, and the NCI 60 cell-line,
with 7.9 and 4.1 µM GI-50, respectively [106], while clonostachysins A (102) and B (103) exhibited
inhibitory effect on the Prorocentrum micans alga at concentration higher than 30 µM [107].
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Table 4. Cyclic peptides from marine-derived fungi.

Peptide Source aa Composition Chromatographic Conditions Biological Activities Ref.

Cyclo-(L-leucyl-trans-4-
hydroxyl-L-prolyl-D-leucyl-
trans-4-hydroxy-L-proline)
(99)

Marine mangrove-derived
fungi Phomopsis sp. K38 and
Alternaria sp. E33

4-OH-L-Pro, D-Leu, L-Leu

Marfey’s method (FDAA) combined with LC/MS
Alltima C18 column, 5 µm; (4.6 × 250 mm)
MP: MeOH:H2O:HCOOH (60:40:0.05 to 10:90:0.05 v/v/v);
Flow rate: 0.6 mL/min

Inhibition against four
crop-threatening fungi [105]

Scytalidamides A (100) and
B (101)

Marine Fungus of the
genus Scytalidium

L-Phe, N-Me-L-Phe, L-Leu,
N-Me-L-Leu, L-Pro,
3-Me-L-Pro

Marfey’s method (FDLA) combined with HPLC
Agilent Hypersil ODS column, 5 µm (4.6 × 100 mm);
MP: ACN 25 to 65%; Flow rate: 0.7 mL/min

Cytotoxicity against HCT-116
and NCI 60 cell lines [106]

Clonostachysins A (102)
and B (103)

Marine sponge-derived
fungus Clonostachys
rogersoniana strain HJK9

N-Me-L-Ile, N-Me-L-Leu,
L-Pro, L-Gly, N-Me-L-Tyr,
N-Me-L-Ala
102: N-Me-L-Val;
103: N-Me-L-Ile

Marfey’s method (FDLA) combined with LC-ESI MS/MS;
Conditions not described

Inhibitory effect on
dinoflagellate
Prorocentrum micans

[107]

Asperterrestide A (104)
Marine-derived fungus
Aspergillus terreus
SCSGAF0162

D-Ala

Marfey’s method (FDAA) combined with HPLC
Alltima C18 column, 5 µm (4.6 × 250 mm);
MP: ACN:H2O:TFA (15:85:0.1 to 90:10:0.1 v/v/v);
Flow rate: 0.5 mL/min; UV detection at 254 nm

Cytotoxicity against U937 and
MOLT4 human carcinoma cell
lines and inhibitory effects on
influenza virus

[108]

Ligand Exchange Type CSP; MCI GELCRS 10 W
(4.6 × 50 mm); MP: 2 mM CuSO4:H2O solution
Flow rate: 1.0 mL/min; UV detection at 254 nm

Sclerotides A (105) and B
(106)

Marine-derived fungus,
Aspergillus sclerotiorum
PT06-1

L-Thr, L-Ala, D-Phe, D-Ser Crown Ether CSP; Crownpak CR (+); MP: aq HClO4 pH 2.0;
Flow rate: 0.4 mL/min; UV detection at 200 nm

105 and 106: Antifungal activity
106: Cytotoxicity and
antibacterial activity

[109]

Cordyheptapeptides C–E
(107–109)

Marine-derived fungus
Acremonium persicinum
SCSIO 115

N-Me-L-Tyr, L-Phe, L-Pro,
L-Leu
107–109: N-Me-D-Phe, L-Val
109: N-Me-L-Gly,
N-Me-D-Tyr, L-allo-Ile

Crown Ether Chiral CSP; Crownpak CR (+)
MP: 2.0 mM CuSO4:ACN (95:5 v/v)
Flow rate: 1.0 mL/min; UV detection at 254 nm

107 and 109: Cytotoxicity
against SF-268, MCF-7, and
NCI-460 tumor cell lines

[110]

Similanamide (110)

Marine sponge-associated
fungus
Aspergillus similanensis
KUFA 0013

L-Ala, D-Leu, L-Val,
N-Me-L-Leu,
D-pipecolic acid

Macrocyclic Antibiotic Type CSP; Chirobiotic T, 5 µm
(4.6 × 150 mm); MP: MeOH:H2O:CH3COOH (70:30:0.02 v/v/v);
Flow rate: 1.0 mL/min; UV detection at 210 nm

Cytotoxicity against
MCF-7, NCI-H460 and A373
tumor cell lines

[111]

Sartoryglabramide A (111)
and B (112)

Marine sponge-associated
fungus Neosartorya glabra
KUFA 0702

L-Phe, L-Pro
112: L-Trp

Macrocyclic Antibiotic Type CSP; Chirobiotic T, 5 µm
(4.6 × 150 mm); MP: MeOH:H2O (80:20 v/v)
Flow rate: 1.0 mL/min; UV detection at 210 nm

Neither antibacterial nor
antifungal activity [112]

aa—Amino acid; FDAA—1-Fluoro-2-4-dinitrophenyl-5-L-alanine amide; HPLC—High Performance Liquid Chromatography; MP—Mobile Phase; ACN—Acetonitrile; TFA—Trifluoracetic
acid; MeOH—Methanol; FDLA—1-fluoro-2-4-dinitrophenyl-5-D,L-leucine amide.
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Both Marfey’s method and chiral HPLC analysis were also used for the analysis of the absolute
configuration of the amino acids of asperterrestide A (104), a cyclic peptide isolated from the
marine-derived fungus Aspergillus terreus SCSGAF0162 which revealed the presence of D-Ala in its
structure [108]. Nevertheless, it was not possible to distinguish between D-Ile and D-allo-Ile. Compound
104 showed promising inhibitory effects to the influenza virus strains A/WSN/33, and A/Hong
Kong/8/68 (IC50 values of 15 and 8.1 µM, respectively) as well as cytotoxicity against U937 and
MOLT4 cell lines (IC50 values of 6.5 and 6.2 µM, respectively) [108].

There are some reports describing the application of different types of CSPs, including crown
ethers and macrocyclic antibiotics, for a chiral HPLC as the only method for analysis of the absolute
configuration of the amino acids of peptides. Thus, the determination of the stereochemistry of the
amino acids in the cyclic peptides sclerotides A (105) and B (106), isolated from the marine-derived
fungus Aspergillus sclerotiorum PT06-1 [109], and cordyheptapeptides C–E (107–109), isolated from the
marine-derived fungus Acremonium persicinum SCSIO 115 [110], was achieved via chiral HPLC analysis
of the hydrolysates using the crown ether-based CSP Crownpak CR (+). Sclerotides A (105) and B (106)
were found to comprise L-Thr, L-Ala, D-Phe, and D-Ser [109]. Moreover, the presence of N-Me-D-Gly,
and L-Val in cordyheptapeptides C (107) and D (108) and N-Me-L-Gly, N-Me-D-Tyr, and L-allo-Ile in
cordyheptapeptide E (109) was confirmed, in addition to the present of other amino acids common
to the three cyclic peptides [110]. Sclerotides A (105) and B (106) displayed antifungal activity
against Candida albicans, with MIC values of 7.0 and 3.5 µM, respectively. Furthermore, sclerotide
B (106) also exhibited cytotoxicity against HL-60 cell line as well as antibacterial activity against
Pseudomonas aeruginosa [109] whereas cordyheptapeptides C (107) and E (109) exhibited cytotoxic
activity against SF-268 (IC50 values of 3.7 and 3.2 µM, respectively), MCF-7 (IC50 values of 3.0
and 2.7 µM, respectively), and NCI-H460 (IC50 values of 11.6 and 4.5 µM, respectively) tumor
cell lines [110]. Recently, the macrocyclic antibiotic-based CSP Chirobiotic T was employed in
our group to determine the stereochemistry of amino acid residues of a new cyclic hexapeptide,
similanamide (110), isolated from a marine sponge-associated fungus Aspergillus similanensis KUFA
0013 [111] which confirmed the presence of L-Ala, D-Leu, L-Val and D-pipecolic acid as its amino acids
constituent. By using a similar approach, the absolute configuration of all the amino acids of two new
cyclotetrapeptides, sartoryglabramides A (111) and B (112), isolated from the marine sponge-associated
fungus Neosartorya glabra KUFA 0702, were assigned to be L-configuration in both cyclic peptides [112].
Further details are described in the case-study presented below.

3.2. Cyclic Depsipeptides

Most of the works describing the stereochemistry determination of amino acid residues of cyclic
depsipeptides, isolated from marine fungus (Figure 9), employed Marfey’s method coupled with
HPLC, using FDAA or FDLA as derivatization reagents (Table 5).

The structures of exumolides A (113) and B (114), cyclic depsipeptides isolated from the marine
fungus of the genus Scytalidium, were confirmed to have L-Pro, L-Phe and N-Me-L-Leu in their
composition [113]. Moreover, guangomide A (115), isolated from an unidentified sponge-derived
fungus, was found to comprise N-Me-D-Phe [114]. The absolute configuration of common amino
acid residues in destruxin E chlorohydrin (116) and pseudodestruxin C (117), isolated from the
marine-derived fungus Beauveria felina, indicated the presence of N-Me-L-Ala and L-Ile in 116,
L-Phe in 117, and N-Me-L-Val in both cyclic depsipeptides [115]. Furthermore, the absolute
configuration of amino acid residues in zygosporamide (118), isolated from the marine-derived
fungus Zygosporium masonii [116], petriellin A (119), isolated from the coprophilous fungus
Petriella sordida [117], alternaramdie (120), isolated from the marine derived fungus Alternaria sp.
SF-5016 [118], petrosifungins A (121) and B (122), isolated from a Penicillum brevicompac-tum strain
of the Mediterranean sponge Petrosia ficiformis Poiret [119], were also successfully determined by
Marfey’s method coupled with HPLC. Zygosporamide (118) displayed cytotoxic activity against RXF
393 and SF-268 cancer cell lines, with mean values of GI-50 of 6.0 and <5.6 nM, respectively [116]
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whereas guangomide A (115) [114] and alternaramdie (120) [118] showed antibacterial activity against
Staphylococcus epidermidis and Staphylococcus aureus, respectively.

In the last few years, ultra-high-pressure liquid chromatography (UHPLC) is becoming an
essential technique for ultra-fast separations, since it offers many benefits, including high efficiency
in short analysis time and low solvent consumption [120,121]. Thus, the absolute configuration of
the amino acid residues of oryzamides A–E (123–127), isolated from the sponge-derived fungus
Nigrospora oryzae PF18, was achieved by Marfey’s analysis with FDLA, combined with UHPLC [122].
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Table 5. Cyclic depsipeptides from marine-derived fungi.

Peptide Source aa Composition Chromatographic Conditions Biological Activities Ref.

Exumolides A (113)
and B (114)

Fungus of the genus
Scytalidium sp.

L-Pro, L-Phe,
N-Me-L-Leu

Marfey’s method (FDAA) combined with HPLC
Hewlett Packard 1090 Diode Array, 5 µm
(10 × 250 mm); MP: 10–50% aq ACN (0.1% TFA)
Flow rate: 1.0 mL/min; UV detection at 340 nm

Antimicroalgal activity against
unicellular chlorophyte Dunaliella sp [113]

Guangomide A (115) Sponge-derived fungus N-Me-D-Phe

Marfey’s method (FDAA) combined with HPLC
Alltech Altima C18 column, 5 µm (10 × 250 mm)
MP: ACN:H2O (4:1 to 1:1 v/v); Flow rate: 1.0 mL/min;
UV detection at 340 nm

Antibacterial activity against
Staphylococcus epidermidis and
Enterococcus durans

[114]

Destruxin E chlorohydrin
(116) and pseudodestruxin
C (117)

Marine-derived fungus
Beauveria felina

N-Me-L-Val
116: N-Me-L-Ala, L-Ile
117: L-Phe

Marfey’s method (FDAA) combined with HPLC
C18 column, 5 µm (4.6 × 250 mm);
MP: 10–20% ACN in 0.1 M NH4OAc (pH = 5)
Flow rate: 1.0 mL/min; UV detection at 340 nm

Cytotoxicity in NCI’s 60 cell line panel [115]

Zygosporamide (118) Marine-derived fungus
Zygosporium masonii L-Phe, L-Leu, D-Leu

Marfey’s method (FDAA) combined with HPLC
C18, Agilent column, 5 µm (4.6 × 250 mm)
MP: 10–50% ACN (0.1% TFA)
Flow rate: 1.0 mL/min; UV detection at 340 nm

Cytotoxicity in RXF 393 and SF-268
cancer cell lines [116]

Petriellin A (119) Coprophilous fungus
Petriella sordida

N-Me-L-Ile,
N-Me-L-Thr
D-Phenyllactate

Marfey’s method (FDAA) combined with HPLC
C18 column (4.6 × 250 mm); Conditions not described;
UV detection at 260 nm

Antifungal activity [117]

Alternaramide (120) Marine derived fungus
Alternaria sp. SF-5016 L-Pro, D-Phe

Marfey’s method (FDAA) combined with HPLC
Capcell Pak C18 column; MP: 30–60% ACN in H2O
(0.1% HCOOH); Flow rate: 1.0 mL/min

Antibacterial activity against
Bacillus subtilis and
Staphylococcus aureus

[118]

Petrosifungins A (121) and
B (122) Penicillum brevicompac-tum L-Val, L-Pro, L-Thr,

L-pipecolinic acids

Marfey’s method (FDAA) combined with HPLC
C18 column, Waters, 5 µm (2.1 × 150 mm); MP: H2O or ACN
(0.05% TFA); Flow rate: 1.0 mL/min

Not described [119]

Oryzamides A–E (123–127) Sponge-Derived fungus
Nigrospora oryzae PF18

L-Ala, D-Leu, L-Val
123: L-Leu; 124: L-Tyr
125 and 126: L-Met; 127:
L-Phe

Marfey’s method (FDLA) combined with UHPLC
Acquity UHPLC BEH column, 1.7 µm (2.1 × 250 mm);
MP: 10–100% ACN in H2O with 0.1% HCOOH;
Flow rate: 0.5 mL/min; UV detection at 360 nm

No cytotoxicity, antibacterial,
antiparasitic, and NF-kB activities [122]

Spicellamide A (128)
and B (129)

Marine-derived fungus
Spicellum roseum

N-Me-D-Phe,
N-Me-L-Ala, L-Ala

Marfey’s method (FDAA) combined with HPLC
C18 column; Macherey-Nagel Nucleodur 100, 5 µm
(2.0 × 125 mm); MP: MeOH:H2O (10:90 v/v to 100% MeOH) or 100%
MeOH with NH4Ac, 2 mmol

129: Cytotoxicity [123]

L-2-hydroxyisocaproic
acid

Ligand Exchange Type CSP; Phenomenex Chirex 3126
N,S-dioctyl-(D)-penicillamine (4.6 × 50 mm)
MP: 2 mM CuSO4 in ACN:H2O (15:85 v/v)
Flow rate: 1.0 mL/min; UV detection at 254 nm

Depsipeptides 1962A (130)
and 1962B (131)

Endophytic fungus
Kandelia candel

L-Tyr, L-Val, D-Leu,
(S)-O-Leu

Crown Ether CSP; Crownpak CR (+) column
(0.4 × 150 mm), MP: 2 mM CuSO4 aq. solutions
Flow rate: 0.5 mL/min; UV detection at 200 nm

131: Activity against MCF-7 tumor
cell line [124]

aa—Amino acid; FDAA—1-Fluoro-2-4-dinitrophenyl-5-L-alanine amide; HPLC—High Performance Liquid Chromatography; MP—Mobile Phase; ACN—Acetonitrile; TFA—Trifluoracetic
acid; MeOH—Methanol; TEA—Triethylamine; FDLA—1-Fluoro-2-4-dinitrophenyl-5-D,L-leucine amide; NaOAc—Sodium acetate; NH4OAc—Ammonium acetate.
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Spicellamides A (128) and B (129), which were isolated from the marine-derived fungus
Spicellum roseum, exhibited cytotoxicity against rat neuroblastoma B104 cell line, with an IC50 value
of 6.2 µg/mL for spicellamide B (129) [123]. It is interesting to note that Marfey’s method was not
suitable for the determination of the configuration of all amino acid residues of these two peptides.
Therefore, a chiral HPLC approach was also employed, using a ligand exchange type CSP [123].
Furthermore, the chiral HPLC, using the crown ether-based CSP Crownpak CR (+), was used as the
only method for determination of the configuration of the amino acids residues to confirm the presence
of L-Tyr, L-Val, D-Leu, and (S)-O-Leu in the cyclic depsipeptides 1962 A (130) and B (131), isolated from
the endophytic fungus Kandelia candel [124]. The cyclic depsipeptide 1962 A (130) exhibited growth
inhibitory activity against the human breast cancer cell line, MCF-7, with IC50 of 100 µg/mL [124].

4. Peptides from Marine Sponges

Marine sponges are an important source of new metabolites from the marine environment [125].
They are considered one of the most prolific sources of novel bioactive compounds, such as terpenoids,
alkaloids, macrolides, nucleoside derivatives, polyethers, fatty acids, sterols, peroxides and other
numerous organic compounds [17,126]. In addition, cyclic peptides and depsipeptides have also
been isolated from marine sponges. Most bioactive compounds from sponges displayed myriad
of biological activities including anti-inflammatory, antibiotic, antitumor, antimalarial, antiviral,
antifouling, and immuno- or neurosuppressive [127]. However, a significant number of marine
natural products isolated from sponges were tested for the anticancer activity, and many of them were
successfully undergoing to preclinical and clinical trials [126,128]. More recently, among bioactive
compounds discovered from marine sponges, bioactive peptides have aroused attention of many
researchers [8,17].

4.1. Cyclic Peptides

Several works reported the determination of the stereochemistry of the amino acid residues
of diverse peptides isolated from marine sponges (Figures 10 and 11), most of which described
the application of Marfey’s method, using FDAA as the derivatization reagent (Table 6). By using
Marfey’s method, Randazzo et al. [129] have showed that a 16-membered cyclic peptide, haliclamide
(132), isolated from the Vanuatu marine sponge Haliclona sp., comprised the amino acid N-Me-L-Phe.
The absolute configuration analysis of the amino acid residues of microsclerodermins J (133) and
K (134), isolated from the sponge Microscleroderma herdmani, indicated, besides the amino acids
common to both microsclerodermins, the presence of L-Phe, and L-Gly in 133, and L-Val, and L-Ala
in 134 [130]. Moreover, in the case of euryjanicins E–G (135–137), isolated from the Caribbean sponge
Prosuberites laughlini [131], chujamide A (138), isolated from Suberites waedoensis [132], and kapakahines
A–D (139–142), isolated from Cribrochalina olemda [133], all the amino acid residues were proved to
have the L configuration. However, except for D-Phe, all the amino acid residues of koshikamide
B (143), isolated from the marine sponge Theonella sp., were shown to possess L-configuration [134].
Furthermore, perthamides C–F (144–147), isolated from the sponge marine Theonella swinhoei, were found
to comprise L-ThrOMe, and L-Phe; while perthamides C (144) and D (145) also comprise in their structures
L-Asp, and (2R,3S)-βOHAsp [135,136]. Marfey’s method was also successfully used for evaluation of the
stereochemistry of the amino acids of the cyclic peptides stylisins 1 (148) and 2 (149), stylissatins B–D
(152–154), and carteritins A (150) and B (151), isolated from marine sponge Stylissa sp. [137–139], as well
as of callyaerin G (155), isolated from the marine sponge Callyspongia aerizusa [140].

The marine sponge cyclic peptides whose configuration of their amino acids constituent was
determined by Marfey’s method, were found to display interesting biological activities. For examples,
haliclamide (132) exhibited cytotoxicity against NSCLC-N6 cell line, with an IC50 value of 4.0 µg/mL [129],
while koshikamide B (143) showed growth inhibitory activity against P388 and HCT-116 cell lines, with
IC50 values of 0.45 and 7.5 µg/mL, respectively [134]. Callyaerin G (155) also exhibited cytotoxicity
against mouse lymphoma cell line (L5178Y), and HeLa cell line, with ED50 values of 0.53 and 5.4 µg/mL,
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respectively [140]. Moreover, perthamides C (144), D (145) and F (147) showed anti-inflammatory activity,
with perthamide F (147) having a promising antipsoriatic effect [135,136].
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The simultaneous application of Marfey’s method, using FDAA as derivatization reagent,
and chiral HPLC, using a ligand exchange type CSP, afforded the total assignment of the configuration
of all the amino acid residues of reniochalistatins A–E (156–160) [141]. Reniochalistatins A–E (156–160),
the cyclic peptides isolated from the marine sponge Reniochalina stalagmitis, were found to have all
the amino acid residues with L configuration, including L-Asn and L-Trp in reniochalistatins A (156)
and E (160) respectively [141]. The octapeptide reniochalistatin E (160) exhibited cytotoxicity towards
myeloma RPMI-8226, and gastric MGC-803 cell lines (IC50 values of 4.9 and 9.7 µM, respectively) [141].

Phakellistatins 15–18 (161–164) were analysed only by chiral HPLC, using the ligand exchange
type Chirex 3126 D-penicillamine CSP, being able to identify that all the amino acids presented
L-configuration. Furthermore, phakellistatins 15 (161) and 16 (162) exhibited cytotoxicity against P388
cancer cell line, with IC50 values of 8.5 and 5.4 µM, respectively, while phakellistatin 16 (162) was also
active against BEL-7402 cancer cell line, with an IC50 value of 14.3 µM [142].
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Table 6. Cyclic peptides from marine sponges.

Peptide Source aa Composition Chromatographic Conditions Biological Activities Ref.

Haliclamide (132) Vanuatu marine sponge
Haliclona sp. N-Me-L-Phe

Marfey’s method (FDAA) combined with HPLC
Vydac C18; MP: ACN in H2O with 0.1% TFA (9:1 to 1:1 v/v);
UV detection at 340 nm

Cytotoxicity against NSCLC-N6
carcinoma cell line [129]

Microsclerodermins J (133)
and K (134)

Deep water sponge
Microscleroderma herdmani

L-Ile, L-Thr
133: L-Phe, L-Gly
134: L-Val, L-Ala

Marfey’s method (FDAA) combined with HPLC
C18 column, 5 µm (4.6 × 150 mm)
Flow rate: 1.0 mL/min; UV detection at 340 nm

Activity against opportunistic
pathogenenic fungi [130]

Euryjanicins E–G
(135–137)

The Caribbean Sponge
Prosuberites laughlini

L-Pro, L-Ile, L-Phe
135: L-Asp

Marfey’s method (FDAA) combined with HPLC
C18 column, 5 µm (4.6 × 150 mm)
Flow rate: 1.0 mL/min; UV detection at 340 nm

No significant activity
cytotoxicity against the
National Cancer Institute 60
tumor cell line panel

[131]

Chujamide A (138) Marine sponge
Suberites waedoensis

L-Pro, L-Tyr, L-Cys,
L-Leu, L-Phe
L-Ile (S)

Marfey’s method (FDAA) combined with HPLC
ESI-LC/MS YMC ODS-A column, 5 µm (4.6 × 250 mm)
MP: H2O:ACN (80:20 to 30:70 v/v)
Flow rate: 0.7 mL/min; UV detection at 360 nm

Weak cytotoxicity against A549
and K562 cell lines [132]

Kapakahines A–D
(139–142)

Marine Sponge
Cribrochalina olemda

L-Val, L-Ile, L-Leu,
L-Trp, L-Phe, L-Ala,
L-Pro, L-Try

Marfey’s method (FDAA) combined with HPLC
Cosmosil C18-MS column, 5 µm (4.6 × 250 mm)
MP 37.5% ACN in 0.05% TFA or 20% or 38% ACN in 50 mM
NH4OAc

139–141: Cytotoxicity against
P388 cell line
139: Inhibition against protein
phosphatase

[133]

Koshikamide B (143) Marine sponge
Theonella sp.

D-Phe, L-Thr,
N-Me-L-Val, N-Me-L-Asn,
N-Me-L-Leu

Marfey’s method (FDAA) combined with HPLC
ODS HPLC (10 × 250 mm); MP: ACN:H2O:TFA (25:75:0.05 to
55:45:0.05 v/v/v); Flow rate: 1.0 mL/min; UV detection at 340 nm

Cytotoxicity against P388 and
HCT-116 tumor cell lines [134]

Perthamides C (144)
and D (145)

Solomon Lithistid sponge
Theonella swinhoei

L-Asp, L-ThrOMe,
(2R,3S)-βOHAsp, L-Phe

Marfey’s method (FDAA) combined with HPLC/MS Proteo C18
column (1.8 × 25 mm)
MP: 10–50% aq ACN with 5% HCOOH and 0.05% TFA
Flow rate: 0.15 mL/min

Anti-inflammatory activity [135]

Perthamides E (146)
and F (147)

Polar extracts of the
sponge Theonella swinhoei

146: L-ThrOMe
147: L-Phe

Marfey’s method (FDAA) combined with HPLC
Proteo C18 column, (1.8 × 25 mm); MP: 10–50% aq ACN with 5%
HCOOH and 0.05% TFA
Flow rate: 0.15 mL/min

147: IL-8 release inhibition [136]

Stylisins 1 (148)
and 2 (149)

Jamaican sponge
Stylissa caribica

L-Pro, L-Tyr, L-Ile
148: L-Leu, L-Phe

Marfey’s method (FDAA) combined with HPLC
HPLC water Nova Pack column (3.9 × 150 mm)
MP: TEAP buffer (pH 3.0 ± 0.02):ACN (90 to 60% TEAP)
UV detection at 340 nm

No antimicrobial, antimalarial,
anticancer, anti-HIV-1, anti-Mtb
and
anti-inflammatory activities

[137]

Carteritins A (150)
and B (151)

Marine sponge
Stylissa carteri

150: L-Pro, L-Phe, L-Ile,
L-Pro (trans), L-Pro (cis),
L-Glu, L-Tyr; 151: L-Pro
(trans), L-Leu,
L-Tyr, L-Pro(cis)

Marfey’s method (FDAA) combined with HPLC
Cosmosil C18 MS (4.6 × 250 mm);
MP: H2O:TFA (100:0.1) to ACN:H2O:TFA (50:50:0.1 v/v/v);
Flow rate: 1.0 mL/min; UV detection at 340 nm

150: Cytotoxicity against HeLa,
HCT116, and RAW264 cells [139]
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Table 6. Cont.

Peptide Source aa Composition Chromatographic Conditions Biological Activities Ref.

Stylissatins B–D
(152–154)

Marine sponge
Stylissa massa

L-Pro, L-Phe, L-Leu
152: L-His
153–154: L-Asp, L-Val

Marfey’s method (FDAA) combined with HPLC
Thermo BDS Hypersil C18 column, 5 µm (4.6 × 150 mm);
MP: 30–70% MeOH:H2O (H3PO4)
Flow rate: 1.0 mL/min; UV detection at 340 nm

152: Inhibitory effects against a
panel of human tumor cell lines
including HCT-116, HepG2,
BGC-823, NCI-H1650, A2780,
and MCF7

[138]

Callyaerin G (155) Indonesian sponge
Callyspongia aerizusa

L-Pro, L-Leu, L-Phe,
L-FGly

Marfey’s method (FDAA) combined with HPLC/MS;
Conditions not described

Cytotoxicity against L5178Y,
Hela, and PC12 [140]

Reniochalistatins A–E
(156–160)

Marine sponge
Reniochalina stalagmitis

L-Pro, L-Phe, L-Val,
L-Leu, L-Ile, L-Tyr

Ligand Exchange Type CSP; MCI GELCRS 10 W (4.6 × 50 mm);
MP: 2 mM CuSO4:H2O solution
Flow rate: 1.0 mL/min; UV detection at 254 nm 160: Cytotoxicity against

RPMI-8226, MGC-803, HL-60,
HepG2, and HeLa

[141]
156: L-Asn
160: L-Trp

Marfey’s method (FDAA) combined with HPLC YMC-Park Pro
C18, 5 µm (4.6 × 250 mm)
MP: 2 mM CuSO4:H2O solution
Flow rate: 1.0 mL/min; UV detection at 254 nm

Phakellistatins 15–18
(161–164)

South china sea sponge
Phakellia fusca

L-Pro
161: L-Trp, L-Ile, L-Leu,
L-Thr; 162: L-Phe, L-Asp,
L-Ser, L-Arg, L-Ala, L-Val,
L-Thr, L-Tyr; 163: L-Trp,
L-Val, L-Leu, L-Ile; 164:
L-Tyr, L-Ile, L-Phe

Ligand-exchange type CSP; Chirex 3126 (D)-penicillamine column
(4.6 × 150 mm)
MP: aq 2 mM CuSO4:MeOH (85:15 to 70:30 v/v) or aq
1 mM/0.5 mM CuSO4;
Flow rate: 0.5 or 1.0 mL/min

161: Cytotoxicity against P388
cancer cell line
162: Cytotoxicity against P388
and BEL-7402 cancer cell lines

[142]

aa—Amino acid; FDAA—1-Fluoro-2-4-dinitrophenyl-5-L-alanine amide; LC—Liquid Chromatography; MS—Mass spectrometry; HPLC—High Performance Liquid Chromatography;
MP—Mobile Phase; TEAP—Triethylammonium phosphate; ACN—Acetonitrile; TFA—Trifluoracetic acid; MeOH—Methanol; TEA—Triethylamine; IPA—Isopropyl alcohol;
NaOAc—Sodium acetate; NH4OAc—Ammonium acetate.
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4.2. Cyclic Depsipeptides

A number of cyclic depsipeptides (Figures 12 and 13), have been reported from marine
sponges and Marfey’s method using FDAA as the derivatization reagent was the most used for the
determination of absolute configuration of the amino acid residues. Table 7 gives some examples of the
cyclic depsipeptides, isolated from marine sponges, whose stereochemistry of their amino acid residues
was determined by Marfey’s method. By application of this method, callipeltins B (165) and C (166),
isolated from the marine lithistida sponge Callipelta sp., were found to have in their structure L-Ala,
N-Me-L-Ala, L-Leu, L-Thr and D-Arg [143]. For halipeptins A (167) and B (168), isolated from the marine
sponge Haliclona sp., the referred method was only able to determine the configuration for L-Ala [144].
Marfey’s method was successfully used to determine the absolute configuration of the amino acid
constituents of several marine sponge cyclic peptides including phoriospongin A (169) and B (170),
isolated from the marine sponges Phoriospongia sp. and Callyspongia bilamellata [145], mirabamides A–D
(171–174), isolated from the marine sponge Siliquarias-pongia mirabilis [146], and neamphamides B–D
(175–177), isolated from the marine sponge Naemphius huxleyi [147]. Furthermore, the stereochemistry
determination of amino acid residues in pipecolidepsins A (178) and B (179), isolated from the marine
sponge Homophymia lamellose, confirmed the presence of several L and D amino acid residues, besides
the (3S,4R) diMe-L-Glu and (2S,3S)-EtO-Asp present in both peptides [148]. Stellatolide A (180),
a cyclic depsipeptide isolated from Ecionemia acervus, was found to have N-Me-D-Ser and D-allo-Thr,
among other L-configured amino acids [149]. The amino acid constituents of the cyclic depsipeptides
cyclolithistide A (181) and nagahamide A (182), both isolated from the sponge Theonella swinhoei, were
all found to have the S or L-configuration, and the 3-amino-5-hydroxybenzoic acid (AHBA) residue in
nagahamide A (182) was established to have 3S configuration [150,151].

Almost all the cyclic peptides isolated from marine sponges displayed a variety of biological
activities. Thus, callipeltin C (166) [143], cyclolithistide A (181) [150], and mirabamides A–D
(171–174) [146] exhibited growth inhibitory activity against Candida albicans. Moreover, mirabamides
A–D (171–174) also exhibited potent anti-HIV activities towards several HIV strains [146] whereas
neamphamides B–D (175–177) displayed cytotoxic activity against several human cancer cell lines,
including A549, HeLa, LNCaP, PC3, HEK, and NFF, with IC50 values ranging from 88 to 370 nM [147].

A simultaneous use of Marfey’s method and chiral HPLC analysis for stereochemical analysis
of the amino acids of this type of peptides have been reported (Table 7). For examples, the absolute
configuration of the amino acids of theopapuamides B (183) and C (184) and celebesides A–C (185–187),
isolated from an Indonesian sponge Siliquariaspongia mirabilis, was successful assigned by HPLC-MS
analysis of FDAA derivatives as well as via chiral HPLC analysis using a ligand exchange type
CSP [152]. In the case of theopapuamide (188), isolated from a papua new Guinea Lithistid Sponge
Theonella swinhoei, Marfey’s method was used to confirm the presence of D-allo-Thr, whereas chiral
HPLC using a ligand exchange type CSP, revealed the presence of N-Me-L-Leu, D-Asp, L-Leu and
N-Me-L-Glu in its structure [153]. The absolute configuration of the amino acid residues of a new
sulfated cyclic depsipeptide, mutremdamide A (189) and six new highly N-methylated peptides,
koshikamides C–H (190–195), isolated from different deep-water specimens of Theonella swinhoei and
Theonella cupola, was also established by using both approaches. However, two different columns
(C12 and C18) were used in Marfey’s method. By using chiral HPLC, it was possible to identify the
amino acid residue N-Me-allo-L-Ile in koshikamide H (195) [154]. These cyclic peptides showed
interesting biological activities. While theopapuamide (188) was cytotoxic against CEM-TART and
HCT cell lines (IC50 values of 0.5 and 0.9 µM, respectively) [153], koshikamides F (193) and H (195)
were active against a CCR5-using viral envelope, with IC50 values of 2.3 and 5.5 µM [154].
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Table 7. Cyclic depsipeptides from marine sponges.

Peptide Source aa Composition Chromatographic conditions Biological activities Ref.

Callipeltins B (165)
and C (166) Callipelta sp. L-Ala, D-Arg, L-Thr,

N-Me-L-Ala, L-Leu

Marfey’s method (FDAA) combined with HPLC; Column not
described; MP: TEAP (50 nM, pH 3.0):ACN 90–50% TEAP
Flow rate: 2.0 mL/min; UV detection at 340 nm

Cytotoxicity
166: Growth inhibitory activity
against Candida albicans

[143]

Halipeptiins A (167)
and B (168) Haliclona species L-Ala

Marfey’s method (FDAA) combined with HPLC
Vydac C18 column; MP: H2O (0.1% TFA):ACN (0:1 to 1:1 v/v)
UV detection at 340 nm

168: Anti-inflammatory activity [144]

Phoriospongin A (169)
and B (170)

Phoriospongia sp. and
Callyspongia bilamellata

D-Asp, D-allo-Thr, D-Ala, L-Phe,
D-Leu, D-nor-Val,
N-Me-D-nor-Val
170: N-Me-L-Leu

Marfey’s method (FDAA) combined with HPLC
C18 column, 5 µm (4.6 × 250 mm)
Flow rate: 1.0 mL/min; UV detection at 340 nm

Nematocidal activity against the
parasite Haemonchus contortus [145]

Mirabamides A–D
(171–174) Siliquarias-pongia mirabilis

N-Me-L-Thr, L-Thr, L-Ala,
D-3-OMeAla, (2R,3R)-3-OH-Leu
(3S,4R)-diMe-L-Glu,
(2S,3R)-diaminobutanoic acid;
174: L-HPr

Marfey’s method (FDAA) combined with HPLC
Phenomenex Jupiter Proteo C12 column, 4 µm (4.6 × 150 mm)
MP: 25–70% ACN; Flow rate: 0.5 mL/min

171: Anti-HIV activity
173 and 174: Antibacterial activity
171–173: Antifungal activity

[146]

Neamphamides B (175),
C (176) and D (177) Neamphius huxleyi

D-Arg, L-Asn, L-Hpr, L-Leu,
D-allo-Thr
175 and 177: N-Me-L-Gln
176: N-Me-L-Glu

Marfey’s method (FDAA) combined with HPLC
Phenomenex Luna Column C18, 3 µm (2.0 × 150 mm)
MP: H2O:ACN:HCOOH (100:0:0.1 to 0:100:0.1 v/v/v)
UV detection at 340 nm

Growth inhibition of human cell
lines: A549, HeLa, LNCaP, PC3,
and NFF

[147]

Pipecolidepsins A (178)
and B (179) Homophymia lamellosa

D-Asp, L-Leu, D-Lys, D-allo-Thr,
(3S,4R) diMe-L-Glu,
(2S,3S)-EtO-Asp, N-Me-L-Glu,
L-Pip

Marfey’s method (FDAA) combined with HPLC
Symmetry C18, 5 µm (4.6 × 150 mm); MP: 20–50% ACN (0.04%
TFA) in H2O (0.04% TFA); Flow rate: 0.8 mL/min

Cytotoxicity against three human
tumor cell lines (A-549, HT-29,
and MDA-MB-231)

[148]

Stellatolide A (180) Ecionemia acervus
N-Me-L-Ala, L-Leu,
N-Me-L-Gln, N-Me-D-Ser,
D-allo-Thr

Marfey’s method (FDAA) combined with HPLC Hewlett-Packard
Hypersil BDS-C18, 4 µm (4.0 × 100 mm); MP: H2O (0.1%
TFA):ACN (90:10 to 50:50 v/v); Flow rate: 1.0 mL/min

In in vitro
antiproliferative activity [149]

Cyclolithistide A (181) Theonella swinhoei
nor-S-Val, S-Phe, S-Gln,
N-Me-S-Leu, S-Ala,
S-Allo-S-Thr

Marfey’s method (FDAA) combined with HPLC
ODS (4.6 × 250 mm); MP: 100% H2O
Flow rate: 2.0 mL/min; UV detection at 210 nm

Antifungal activity against
Candida albicans (ATCC 24433) [150]

Nagahamide A (182) Theonella swinhoei L-Val, L-Ser, 3S-AHBA Marfey’s method (FDAA) combined with HPLC
ODS column (4.6 × 250 mm); Conditions not described Antibacterial activity [151]

Theopapuamides B (183)
and C (184), Celebesides
A–C (185–187)

Siliquarias-pongia mirabilis 185: L-βMeAsn

Marfey’s method (FDAA) combined with HPLC/MS
Phenomenex Jupiter Proteo C12 column, 4 µm (4.6 × 150 mm)
MP: 25–70% ACN with 0.01 M TFA; Flow rate: 0.5 mL/min

185: Inhibits HIV-1 Entry
183–185: Cytotoxic to human
colon tumor cell line (HCT-116)
183 and 185: Antifungal activity
against Candida albicans

[152]
Ligand Exchange Type CSP Phenomenex column, Chirex Phase
3126 (D) (4.6 × 150 mm); MP: 1 mM CuSO4:ACN (95:5 v/v)
Flow rate: 0.5 mL/min; UV detection at 254 nm
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Table 7. Cont.

Peptide Source aa Composition Chromatographic conditions Biological activities Ref.

Theopapuamide (188) Lithistid sponge
Theonella swinhoei

N-Me-L-Leu, D-Asp, L-Leu,
N-Me-L-Glu

Ligand Exchange Type CSP Chirex Phase 3126 (D), 5 µm
(4.6 × 250 mm); MP: IPA: 2 mM CuSO4 (5:95 v/v)
Flow rate: 1.0 mL/min; UV detection at 254 nm Cytotoxicity against CEM-TART

and HCT-cell lines
[153]

D-allo-Thr
Marfey’s method (FDAA) combined with HPLCPhenomenex C18,
5 µm (4.6 × 250 mm); MP: 10–50% ACN in H2O (0.05% TFA); Flow
rate: 1.0 mL/min; UV detection at 340 nm

Mutremdamide A (189) and
Koshikamides C–H
(190–195)

Theonella swinhoei and
Theonella cupola

189: N-Me-L-Val; 190:
N-Me-L-Val, N-Me-L-Asn, L-Asn,
N-Me-L-Leu, L-Pro,
N-Me-allo-L-Ile, D-Phe

Marfey’s method (FDAA) combined with HPLC
LC-MS analysis using a C12 column, 4 µm (4.6 × 250 mm); MP:
ACN with 0.01% TFA; Flow rate: 0.5 mL/min

189–195: Anti-HIV-1 activity [154]
191 and 192: N-Me-allo-L-Ile,
N-Me-L-Val; 192–194:
N-Me-allo-L-Ile, L-Ala 1, D-Ala2,
L-Asn

Marfey’s method (FDAA) combined with HPLC
LC-MS, C18 column, 4 µm (4.6 × 250 mm); MP: 20 mM buffer
(AF):ACN (3:1 to 3:7 v/v); Flow rate: 0.5 mL/min

195: N-Me-allo-L-Ile Chiral HPLC (column not described); MP: 1 mM CuSO4:ACN (95:5
v/v); Flow rate: 0.5 mL/min; UV detection at 254 nm

aa—Amino acid; FDAA—1-Fluoro-2-4-dinitrophenyl-5-L-alanine amide; LC—Liquid Chromatography; MS—Mass spectrometry; HPLC—High Performance Liquid Chromatography;
MP—Mobile Phase; TEAP—Triethylammonium phosphate; ACN—Acetonitrile; TFA—Trifluoracetic acid; MeOH—Methanol; TEA—Triethylamine; NaOAc—Sodium acetate;
NH4OAc—Ammonium acetate.
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4.3. Lipopeptides

The absolute configuration of the amino acids of new N-sulfoureidylated lipopeptides
sulfolipodiscamides A–C (196–198), isolated from the n-butanol fraction of the marine sponge
Discodermia kiiensis (Figure 14), was determined by Marfey’s method to be L-Uda and L-Gly (Table 8).
Compound 196 was found to be cytotoxic against the murine leukemia cell line P388 with a IC50 value
of 15 µM [155].
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Table 8. Lipopeptides from marine sponge.

Peptide Source aa Composition Chromatographic Conditions Biological Activity Ref.

Sulfolipo-
discamides

A–C
(196–198)

Sponge
Discoderma

kiiensis
L-Uda, L-Gly

Marfey’s method (FDAA)
combined with HPLC Cosmosil

C18-MSII column (4.6 × 250 mm);
MP: 100 mM NaClO4 in 60% ACN

Flow rate: 0.8 mL/min

196: Cytotoxicity against
P388 cell line [155]

aa—Amino acid; FDAA—1-Fluoro-2-4-dinitrophenyl-5-L-alanine amide; HPLC—High Performance Liquid
Chromatography; MP—Mobile Phase; ACN—Acetonitrile.

5. Peptides from Other Marine Invertebrates and Algae

A number of diverse bioactive peptides such as cyclic peptides, cyclic depsipeptides and linear
peptides have been isolated from other marine invertebrates including ascidians, commonly called
tunicates, mollusks, among others [17]. Moreover, the potential applications of many bioactive
compounds from marine algae, mainly red and brown as well as some green algae, were reported [156].

5.1. Cyclic Peptides

To the best of our knowledge, only five works described the analysis of the stereochemistry of the
cyclic peptides from marine invertebrates and algae (Figure 15). In all reported works, Marfey’s method
was employed (Table 9). Among these, the determination of the absolute configuration of the cyclic
hexapeptides didmolamides A (199) and B (200) and mollamides B (201) and C (202), isolated from
the marine ascidian Didemnum molle from Madagascar and Indonesia, respectively, was performed
by Marfey’s method using FDAA as derivatization reagent [157,158]. These compounds showed
interesting biological activities, particularly, cytotoxicity against A549, HT29 MEL28 tumor cell lines,
with IC50 values ranging from 10 to 20 µg/mL for didmolamides A (199) and B (200) [157] while 201
showed antimalarial activity against Plasmodium falciprum, clones D6 and W2, with IC50 values of
2.0 and 21 µg/mL, respectively [158].

Furthermore, the stereochemical determination of antatollamides A (203) and B (204), isolated
from the marine ascidian Didemnum molle, sanguinamide A (205), isolated from the sea slug
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Hexabranchus sanguineus, and gamakamide E (206), isolated from the oysters Crassostrea giga, was
carried out by Marfey’s method using FDLA as a derivatization reagent. The analysis demonstrated
that most of their amino acids have the L-configuration, with the exception of D-Ala and D-Lys in
antatollamides A (203) and B (204), and gamakamide E (206), respectively [159–161].
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Table 9. Cyclic peptides from marine invertebrates and algae.

Peptide Source aa Composition Chromatographic Conditions Biological Activities Ref.

Didomolamides
A (199) and
B (200)

Ascidian
Didemnum molle

L-Thr, L-Ala, L-Phe
200: L-Tzl

Marfey’s method (FDAA)
combined with HPLC;
MP: 50 mM (TEAP) buffer pH 3:
ACN (9:1 to 1:1 v/v); Flow rate:
1.0 mL/min; UV detection at
340 nm

Cytotoxicity against A549,
HT29 MEL28 tumor
cell lines

[157]

Mollamides B
(201) and C (202)

Tunicate
Didemnum molle

L-Thr, L-Ile, L-Pro
201: L-Val, L-Phe
202: L-Ser, L-Leu

Marfey’s method (FDAA)
combined with HPLC;
MP: 50 mM TEAP, pH 3.0: ACN
(90:10 to 60:40 v/v) or 40 mM
NH4OAc, 70% ACN, and 30%
MeOH (98:2 to 66:34 v/v)
Flow rate: 1.0 or 0.8 mL/min;
UV detection at 340 nm

201: Activity against HIV,
Plasmodium falciparum,
Lieshmania donovan, and
cytotoxicity against H460,
MCF7, SF-268 cell lines

[158]

Antatollamides A
(203) and B (204)

Ascidian
Didemnum-molle

L-Ile, L-Phe, L-Val,
L-Pro, D-Ala

Marfey’s method (FDLA)
combined with
HPLC/MSHypersil Gold C18
column, 1.9 µm (2.1 × 50 mm);
MP: H2O 0.1%; HCOOH:ACN
(85:15 to 55:45 v/v)
Flow rate: 0.5 mL/min

203: Weak cytotoxicity
against a chronic
lymphocytic leukemia
cell line

[159]
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Table 9. Cont.

Peptide Source aa Composition Chromatographic Conditions Biological Activities Ref.

Sanguinamide
A (205)

Nudibranch
Hexabranchs
sanguineus

L-Pro, L-Ile, L-Ala,
L-Phe

Marfey’s method (FDLA)
combined with HPLC Agilent
Zorbax SB-Aq C18 column, 5 µm
(4.6 × 250 mm)
MP: 80% (H2O: 0.1% HCOOH),
20% (ACN)

Antifungal activity [160]

Gamakamide
E (206)

Oysters
Crassostrea giga

L-Met(O),
N-Me-L-Phe, L-Leu,
D-Lys, L-Phe

Marfey’s method (FDLA)
combined with HPLC
Conditions not described

No growth
inhibition abilities [161]

aa—Amino acid; FDAA—1-Fluoro-2-4-dinitrophenyl-5-L-alanine amide; HPLC—High Performance
Liquid Chromatography; MP—Mobile Phase; ACN—Acetonitrile; TEAP—Triethylammonium phosphate;
FDLA—1-Fluoro-2-4-dinitrophenyl-5-D,L-leucine amide; TFA—Trifluoracetic acid; MeOH—Methanol;
TEA—Triethylamine; NH4OAc—Ammonium acetate.

5.2. Cyclic Depsipeptides

To the best of our knowledge, only four works reported the determination of the stereochemistry
of amino acid constituents of the cyclic depsipeptides from marine invertebrates and algae
(Figure 16). Among these, three employed only Marfey’s method, specifically for peptides 207–216.
However, for peptide 217, Marfey’s method was not efficient and, as a consequence, a ligand exchange
type CSP was also used for complete determination of the configuration of its amino acids (Table 10).

The determination of the absolute configuration of the amino acids in kahalalides A–F (207–212),
isolated from the marine mollusk Elysia rufescens, was performed by using FDLA as the derivatization
reagent and the presence of diverse residues of L- and D-Val in these peptides was confirmed [162].
Using FDAA as the Marfey derivatization reagent, the absolute configuration of tamandarins A (213)
and B (214), isolated from an unidentified Brazilian marine ascidian of the family Didemnidae [163],
and kahalalides P (215) and Q (216), isolated from green algae Bryopsis species [164] were elucidated.
In the case of kahalalide O (217), the absolute configuration of its amino acid constituents was
determined by Marfey’s method and chiral HPLC analysis, using a ligand exchange type CSP [165].
Tamandarin A (213) was found to display cytotoxicity against BX-PC3, DU-145, and UMSCC10b
human cancer cell lines, with IC50 values of 1.79, 1.36, and 0.99 µg/mL, respectively [163].
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Table 10. Cyclic depsipeptides from marine invertebrates and algae.

Peptide Source aa Composition Chromatographic Conditions Biological Activities Ref.

Kahalalides A–F
(207–212)

Mollusk
Elysia rufescens

207: D-Val-5; 208:
L-Val-1, D-Val-2,
D-allo-Thr-1; 209:
L-Val-3, D-Val-4,
L-Thr-2; 210:
D-Val-2,
D-allo-Thr-1

Marfey’s method (FDLA) combined
with HPLC
COSMOSIL 5C18-AR
MP: ACN:H2O:TFA (42:48:0.05 v/v/v)
or ACN:H2O:50 mM NH4OAc
(20:80:0.01 v/v/v)

207: Antimalarial
activity
211: Activity against
RSV II virus

[162]

Table 10.
Cont.Tamandarins
A (213)
and B (214)

Ascidian of the
family
Didemni-dae

213: S-Lac, L-Pro,
N-Me-D-Leu, L-Thr,
(3S,4R,5S)-Ist
214: S-Lac, L-Pro,
N-Me-D-Leu, L-Thr
3S,4R)-Nst

Marfey’s method (FDAA) combined
with HPLC
Hewlett-Packard ODS Hypersil 5 µm
(4.6 × 200 mm); MP: 0.1% TFA in
H2O or MeOH; Flow rate:
1.0 mL/min; UV detection at 340 nm

213: Cytotoxicity against
various human cancer
cell lines

[163]

KahalalidesP
(215) and Q (216)

Green alga
Bryopsis sp.

L-Asp, L-Val,
D-Leu, L-Ser,
L-Hyp, L-Pro,
L-Lys

Marfey’s method (FDAA) combined
with HPLC COSMOSIL 5C18-AR-II
(4.6 × 250 mm); MP: 0.1 M NH4OAc
pH 3 or 90% aq ACN

No antimicrobial and no
hemolytic activities [164]

Kahalalide
O (217)

Mollusk Elysia
ornata and green
alga Bryopsis sp.

L-Ile, L-Thr,
D-allo-Thr, D-Tyr,
L-Val

Ligand Exchange Type CSP Chirex
(D) Penicillamine Column
(4.6 × 250 mm); MP: 1.9 mM CuSO4
in ACN:H2O (5:95) or 2.0 mM CuSO4
in H2O; UV detection at 254 nm No growth inhibition of

P-388, A549, HT29 and
MEL28 cancer cell lines

[165]

D-Trp

Marfey’s method (FDAA) combined
with HPLC
COSMOSIL 5C18-AR; MP:
ACN:H2O:TFA (37.5:62.5:0.05 v/v/v);
Flow rate: 1.0 mL/min
UV detection at 254 nm

aa—Amino acid; FDAA—1-Fluoro-2-4-dinitrophenyl-5-L-alanine amide; HPLC—High Performance Liquid
Chromatography; MP—Mobile Phase; ACN—Acetonitrile; FDLA—1-fluoro-2-4-dinitrophenyl-5-D,L-leucine amide;
TFA—Trifluoracetic acid; MeOH—Methanol; TEA—Triethylamine; NH4OAc—Ammonium acetate.
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5.3. Lipopeptides

For lipopeptides isolated from other marine invertebrates and algae, there are only two works
which reported the use of a chiral HPLC for the stereochemistry determination of the amino acid
residues (Table 11) of the peptides 218–221 (Figure 17).
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Eudistomides 
A (218) and B 
(219) 

Ascidian 
Eudistoma 
sp. 

L-Pro, L-Ala,  
L-Leu 
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Ligand Exchange Type CSP 
Phenomenex Chirex 3126 (D)  
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2 mM CuSO4:ACN (95:5 or 85:15 v/v); 
Flow rate: 1.0 mL/min 
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No activity 
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[166] 

Mebamamides 
A (220) and B 
(221) 

Green algae 
Derbesia 
marina 

L-Leu, L-Pro,  
D-Ala, L-Thr,  
L-Val, D-Phe,  
D-Ser 

Ligand Exchange Type CSP 
Diacel CHIRALPAK (MA+) (4.6 × 50 
mm); MP: 2.0 mM CuSO4, Flow rate: 
1.0 mL/min; UV detection at 254 nm 

No growth 
inhibitory activity 
against HeLa and 
HL60 cell lines 

[167] 
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Table 11. Lipopeptides from marine invertebrates and algae.

Peptide Source aa Composition Chromatographic Conditions Biological Activities Ref.

Eudistomides A
(218) and B (219)

Ascidian
Eudistoma sp.

L-Pro, L-Ala,
L-Leu
219: L-Cyp

Ligand Exchange Type CSP
Phenomenex Chirex 3126 (D)
(4.6 × 250 mm); MP: 2 mM CuSO4,
2 mM CuSO4:ACN (95:5 or 85:15 v/v);
Flow rate: 1.0 mL/min
UV detection at 254 nm

No activity reported [166]

Mebamamides A
(220) and B (221)

Green algae
Derbesia marina

L-Leu, L-Pro,
D-Ala, L-Thr,
L-Val, D-Phe,
D-Ser

Ligand Exchange Type CSP
Diacel CHIRALPAK (MA+) (4.6 × 50 mm);
MP: 2.0 mM CuSO4, Flow rate:
1.0 mL/min; UV detection at 254 nm

No growth inhibitory
activity against HeLa
and HL60 cell lines

[167]

aa—Amino acid; MP—Mobile Phase; ACN—Acetonitrile.

Chiral HPLC analysis by using a ligand exchange type CSP (Phenomenex Chirex Phase 3126) was
used to determine the configuration of the amino acid residues in eudistomides A (218) and B (219),
isolated from an ascidian Eudistoma sp. It was possible to verify the presence of L-Pro, L-Ala and L-Leu
in both compounds as well as the presence of L-Cyp in eudistomide A (218) [166]. Similarly, a chiral
HPLC analysis using a ligand exchange type CSP (CHIRALPAK (MA+)) was able to confirm the
presence of four L-amino acid residues and D-Ala, D-Phe, and D-Ser in mebamamides A (220) and B
(221), isolated from the green alga Derbesia marina [167].
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6. Case-Study: Chiral HPLC in the Analysis of the Stereochemistry of Cyclopeptides Isolated
from Marine Sponge-Associated Fungi

Recently, the determination of the stereochemistry of the amino acid residues of three bioactive
marine natural products, by chiral HPLC analysis of their acidic hydrolysates, using appropriate
D- and L-amino acid standards was achieved in our group [111,112]. The marine sponge-associated
fungus Aspergillus similanensis KUFA 0013 was the source of the cyclohexapeptide similanamide (110)
(Figure 8), while cyclotetrapeptides sartoryglabramides A (111) and B (112) (Figure 8) were isolated
from the marine sponge-associated fungus Neosartorya glabra KUFA 0702. The enantioseparations of
the amino acids were successfully performed on Chirobiotic T column under reverse phase elution
conditions. Actually, the teicoplanin selector of this column has several characteristic features that
make it suitable for amino acid analysis [168,169]. Figure 18 shows selected chromatograms of the
enantioseparation of standard amino acids.
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The elution order of all the standard enantiomers of amino acids was confirmed by injecting
solutions of the racemic or enantiomeric mixtures of amino acids and then each enantiomer separately.
As an example, Figure 19 shows the chromatograms obtained during the method development for the
determination of the elution order of Ala. As expected, the D-enantiomer was always more strongly
retained than the corresponding L-enantiomer on Chirobiotic T column [168]. Mixed HPLC analyses
of the acidic hydrolysates with appropriate standard amino acids (co-injection) (Table 12), confirmed
the stereochemistry of the amino acids of the three cyclopeptides [111,112]. Chiral HPLC technique
demonstrated to be decisive leading to the unambiguous elucidation of the amino acid constituents of
the three marine natural products.

Additionally, the in vitro growth inhibitory activity against MCF-7, breast adenocarcinoma,
NCI-H460, non-small cell lung cancer and A373, melanoma, cell lines, as well as antibacterial
activity against reference strains and the environmental multidrug-resistant isolates (MRS and VRE)
were evaluated for cyclopeptide 110. Only weak activity against the three cancer cell lines was
observed [111]. Moreover, cyclopeptides 111 and 112 were tested for their antifungal activity against
filamentous (Aspergillus fumigatus ATCC 46645), dermatophyte (Trichophyton rubrum ATCC FF5) and
yeast (Candida albicans ATCC 10231), as well as for their antibacterial activity against Gram-positive
(Escherichia coli ATCC 25922) and Gram-negative (Staphyllococus aureus ATCC 25923) bacteria. None of
them exhibited antibacterial or antifungal activities [112].
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Table 12. Chiral HPLC analysis of the acidic hydrolysates of 110, 111 and 112 by co-injection with
amino acids standards.

Retention
Time (min) Retention Time (min)

D-Trp (A) 5.20 D-pipecolic acid (B) 14.67

L-Trp (A) 4.51 Acidic hydrolysate of 110 (B) 6.59, 7.20, 8.09, 8.83, 9.67, 10.57, 14.69

L-Val (B) 6.60 Acidic hydrolysate of 110 +
DL-Val (co-injection) (B) 6.61, 7.31, 8.30, 8.10, 8.84, 9.70, 10.50, 14.95

D-Val (B) 8.32 Acidic hydrolysate of 110 +
DL-Ala (co-injection) (B) 6.59, 7.19, 8.04, 8.81, 9.37, 9.70, 10.50, 14.90

L-Ala (B) 7.16 Acidic hydrolysate of 110+
DL-Leu (co-injection) (B) 6.60, 6.76, 7.26, 8.04, 8.83, 9.67, 10.54, 15.02

D-Ala (B) 9.36 Acidic hydrolysate of 110 +
DL-pipecolic acid (co-injection) (B) 6.58, 7.20, 8.09, 8.64, 8.84, 9.77, 10.64, 14.64

L-Leu (B) 6.78 Acidic hydrolysate of 110 +
N-Me-L-Leu (co-injection) (B) 6.59, 7.20, 8.09, 8.83, 9.67, 10.57, 14.69

D-Leu (B) 9.67 Acidic hydrolysate of 111 (A) 1.91, 2.55, 2.86, 3.49, 3.89, 6.79

N-Me-L-Leu (B) 8.09 Acidic hydrolysate of 111 +
DL-Phe (co-injection) (A) 1.87, 2.50, 2.89, 3.68, 5.01, 6.82

L-Phe (A) 3.81 Acidic hydrolysate of 111 +
DL-Pro (co-injection) (A) 1.96, 2.60, 2.96, 3.52, 3,92, 6.70, 21.09

D-Phe (A) 5.00 Acidic hydrolysate of 112 (A) 1.93, 3.07, 3.80, 4.29, 4.60, 6.62

L-Pro (A) 6.72 Acidic hydrolysate of 112 +
DL-Phe (co-injection) (A) 1.90, 3.10, 3.78, 4.39, 5.04, 6.70

D-Pro (A) 20.10 Acidic hydrolysate of 112 +
DL-Pro (co-injection) (A) 2.04, 3.02, 3.72, 4.30, 4.60, 6.66, 19.40

L-pipecolic acid (B) 8.68 Acidic hydrolysate of 112 +
DL-Trp (co-injection) (A) 1.93, 2.99, 3.70, 4.29, 4.60, 5.07, 6.33

Column, Chirobiotic T; Mobile phase, MeOH:H2O (80:20 v/v) (A) or MeOH:H2O:acetic acid (70:30:0.02 v/v/v) (B);
Flow rate, 1.0 mL/min (A) or 0.5 mL/min (B); UV detection, 210 nm.

7. Conclusions

In summary, concerning all the reported studies surveyed in this review, which are related to the
determination of the absolute configuration of the marine peptides, their distribution according to
the methods used, is shown in Figure 20. It is possible to conclude that Marfey’s method is the most
employed accounting for 52% of the reported studies, while only 21% of the studies described the use
of chiral HPLC analysis. Moreover, 27% of the studies included the application of both methods. In fact,
in some cases, the complementarity of both methods demonstrated to be crucial for the stereochemical
analysis of all the amino acid residues.
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Figure 20. Distribution of the reported studies concerning the determination of the stereochemistry of
marine peptides according to the methods used.

Figure 21 compares the reported studies before and after 2007. Interestingly, it is possible to
observe that in the last ten years, Marfey’s method is still the most used for determination of the
absolute configuration of amino acid residues in marine peptides. However, it is important to point
out a notable increase of the number of studies related to a chiral HPLC analysis, either as the only
method or in a combination with Marfey’s method.
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In our opinion, the current trend is to use chiral HPLC for stereochemical analysis due to many
advantages of this method. For examples, there is no need for prior derivatization, it requires much
less sample manipulation and the results are more rapid to obtain. In contrast, Marfey’s method
involves time-consuming and labor-intensive procedure.

We believe that the reasons that can justify the actual low number of studies using chiral HPLC
is due to the price of the commercially available CSPs and the fact that there is no universal CSP,
i.e., one CSP can only separate a limited number of chiral compounds and, in many cases, the choice of
CSP may become a very difficult task.
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