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Abstract

Oryza sativa, the common cultivated rice, is one of the most important crops for human consumption, but production
is increasingly threatened by abiotic stresses. Although many efforts have resulted in breeding rice cultivars that are
relatively tolerant to their local environments, climate changes and population increase are expected to soon call for
new, fast generation of stress tolerant rice germplasm, and current within-species rice diversity might not be enough
to overcome such needs. The Oryza genus contains other 23 wild species, with only Oryza glaberrima being also do-
mesticated. Rice domestication was performed with a narrow genetic diversity, and the other Oryza species are a vir-
tually untapped genetic resource for rice stress tolerance improvement. Here we review the origin of domesticated
Oryza sativa from wild progenitors, the ecological and genomic diversity of the Oryza genus, and the stress tolerance
variation observed for wild Oryza species, including the genetic basis underlying the tolerance mechanisms found.
The summary provided here is important to indicate how we should move forward to unlock the full potential of these
germplasms for rice improvement.
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Introduction

Continuous population and consumption growth are

placing enormous demands on natural resources and agri-

culture. Today, approximately a billion people are chroni-

cally malnourished and it is uncertain whether our current

agricultural system will be able to feed the expected world

population, projected to reach nine billion by 2050. The ef-

ficient use of resources and reduced food waste can save

much food, and increased crop production is fundamental

to meet the world’s future food needs (Godfray et al., 2010;

Foley et al., 2011; Palmgren et al., 2014). However, there is

an urgent need to reduce agriculture’s environment foot-

print, and farming land should not be expanded at the

expense of natural ecosystems. We are faced with the chal-

lenge of increasing food production without degrading

land, water and biodiversity in an environment becoming

increasingly exposed to a myriad of abiotic stresses (Foley

et al., 2011; Mueller et al., 2012; Sang and Ge, 2013;

Palmgren et al., 2014).

Rice is one of the world’s most important staple

crops, feeding more than 2.7 billion people worldwide

(Muthayya et al., 2014), and also a model for genomic re-

search in monocots. It is cultivated on 150 million hectares

of land, and its annual yield is close to 610 million tons

(http://irri.org/). Due to global adverse climate changes,

rice growth and productivity in recent years has been seri-

ously affected by abiotic stresses such as cold, drought,

heat, flood, and salt (Zhang et al., 2015). Plants have

evolved complex but not well understood responses. A

complicated signaling network is effectively and timely

initiated, which ultimately reprograms the expression of a

large set of stress-responsive genes (Hong et al., 2016),

leading to a series of morphological, physiological, and

biochemical changes (Scafaro et al., 2011; Lei et al., 2013).

The acclimation processes that result from stress percep-

tion aims at protecting plants from damages and increases

the chance of survival (Hu and Xiong, 2014). However, it is
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important to highlight that acclimation to stressful condi-

tions does not occur in all plant species, and depending on

stress intensity and duration, growth and yield can be se-

verely affected. In nature, there is a wide variability to

stress response and tolerance, making worthwhile the

search for “tolerance genes” in wild relatives of cultivated

species.

Abiotic stress is a major concern for rice production,

and an increasing threat to food security considering cli-

mate change, population increase and area of arable land

available. Drought, flooding and extreme temperatures

should become more frequent according to predictions

(Wang, 2005; Bita and Gerats, 2013; Hirabayashi et al.,

2013), which are likely to increase pressure on grain har-

vest. Food security is an issue to the human population as a

whole, but especially in rural areas of Asia and Africa,

which represent about 35% of the total rice harvest area. In

Asia, where 700 million people live in extreme poverty,

30% of them are in regions that are prone to abiotic stresses

such as flooding, drought and excess soil salinity (Ismail et

al., 2013). These stresses often occur in combination, and

stress responsive pathways often show extensive cross-talk

(Mittler 2006).

Flooding is a widespread environmental stress. The

rapid decline in the oxygen (O2) diffusion rate during flood-

ing is accompanied by a reduction in cellular O2 levels and

an energy crisis, which are particularly severe when photo-

synthesis is limited or absent (Bailey-Serres and Voesenek,

2008). Although rice is considered a flood tolerant crop,

only limited cultivars display tolerance to prolonged sub-

mergence (Niroula et al., 2012), with most dying within 14

days of complete submergence.

Salinity is one of the most devastating abiotic stresses

in rice, and the salt-affected soils currently account for

about 20% of the total paddy rice planting area (Zhou et al.,

2016). Soil salinity has adverse effects on plant germina-

tion, strength, and yield (Munns and Tester, 2008). On ex-

posure to salt stress, the ionic balance (especially Na+/K+

ratio) and distribution is the ultimate manifestation of sev-

eral physiologic processes in response to salt stress (Chen

Y et al., 2013), creating an imbalance in the supplies of wa-

ter and other nutrient solutes (Sengupta and Majumder,

2010). Most plants can adapt to low or moderate salinities,

but their growth is severely limited above 200 mM NaCl.

Therefore, plant survival and growth depends on adapta-

tions to re-establish ionic homeostasis (Hasegawa et al.,

2000).

Cold stress is one of the major environmental factors

limiting the growth, productivity, and geographical distri-

bution of crops, mostly in temperate and high altitude areas,

due to the tropical origin of the rice species (Cruz et al.,

2013; Zhang et al., 2014). Low temperature can affect

growth and development of rice plants during any develop-

mental stage, from germination to grain filling. During ger-

mination, the most common symptoms of cold temperature

damage are low percentage and delayed germination (Cruz

et al., 2013; Dametto et al., 2015), resulting in yield de-

creases up to 25% of the final yield and in increased weed

competition (Fujino et al., 2004). During the vegetative

stage, it can severely affect seedling establishment, leading

to yellowing of the leaves, growth retardation, and de-

creased tillering (Cruz et al., 2013). Low temperatures that

occur at critical reproductive stages can adversely affect

grain quality (incomplete grain maturation) or cause yield

reductions (Jena et al., 2012; Cruz et al., 2013; Zhang et al.,

2014).

Availability of irrigation water is a limiting factor in

attaining the full potential yield in many crops (Singh et al.,

2015). Drought is one of the most widespread and damag-

ing environmental stress factors in plants (Krannich et al.,

2015), especially in rice, which is sensitive to drought

stress because it is acclimated to either rain-fed or fully irri-

gated fields. The effect of drought may vary with the differ-

ent genotypes, development stages, and degree and dura-

tion of drought stress (Wang et al., 2011). Rice plants are

highly sensitive to drought stress during vegetative stage

(resulting in reduced height, tiller number, and leaf area), at

the panicle initiation and booting stages (Jiang et al., 2004;

Wang et al., 2011). In China, the average annual drought

affected area is up to 27 million hectares and rice produc-

tion has decreased by 70-80 billion Kg since the 1990s

(Luo, 2010).

A decline in rice production caused by heat stress is

one of the biggest concerns resulting from future climate

change. Maximum and minimum daily temperatures, and

the number of hot days and warm nights in a year, are esti-

mated to increase over most land areas (IPCC, 2014). In ad-

dition, climate variability is predicted to increase, leading

to frequent episodes of heat stress, often coinciding with

key developmental stages in crops, such as flowering (Hira-

bayashi et al., 2015). It is predicted that rice yields would

be reduced by up to 10% with an average daily temperature

increase of 1 °C (Peng et al., 2004). During early growth

stages of rice, the occurrence of heat stress inhibits seedling

establishment, leading to non-uniform growth, and reduced

yield. The physiological and genetic basis of the heat re-

sponse during the seedling stage is poorly understood (Lei

et al., 2013). High temperatures at anthesis cause spikelet

sterility due to the failure of anther dehiscence and the re-

duction in the number of germinating pollen grains on the

stigma, leading to reductions in grain yield (Jagadish et al.,

2010).

Therefore, the development of cultivated rice with

abiotic stress tolerance is needed to stabilize the production

level of rice. The method currently practiced for improving

abiotic stress tolerance in rice cultivars is to explore

germplasm for desirable traits (Scafaro et al., 2010). Recent

attempts (until now limited to O. sativa species) have been

successful, with backcrossing of Oryza sativa ssp. japonica

and indica leading to substantial improvements in abiotic
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stress tolerance (Cheng et al., 2007). As there are about 24

known species within the Oryza genus, a large source of ge-

netic material remains virtually untapped. The search for

variability in the ancestors of cultivated rice, which under-

goes a long history of artificial selection, has great potential

value for rice breeding. Stress tolerance traits are likely to

be found in wild rice species (Tian et al., 2015), which are

recognized as an important genetic resource for cultivated

rice improvement (Sakai and Itoh, 2010). In this review, we

focus on the rice domestication history, the diversification

of the Oryza genus, the mechanisms and underlying genetic

basis for abiotic stress tolerance in species within the Oryza

diversity, which illustrates the feasibility of using rice wild

relatives as a source for breeding stress tolerant O. sativa.

Diversity in the Oryza genus

Rice belongs to the genus Oryza, of the tribe Oryzeae,

subfamily Ehrhartoideae and family Poaceae (Grass Phy-

logeny Working Group, 2001). The tribe Oryzeae includes

nine or ten genera and up to 70 species, and is very likely

monophyletic; in this tribe, Oryza L. and Leersia Sw. are

the two largest genera (reviewed by Kellogg, 2009). The

analysis of both nuclear and chloroplast genes revealed that

Oryza and Leersia are sister genera. The divergence of

Oryza–Leersia from the other genera occurred approxi-

mately 20.5 MYA and the divergence of Oryza from

Leersia 14.2 MYA (Ge et al., 2002; Guo and Ge, 2005).

The Oryza genus consists of 24 species spread world-

wide (Table 1) (Kellogg, 2009; Jacquemin et al., 2013).

The phylogeny of the Oryza genus spans approximately 15

million years (MY) of evolutionary history, a process that

created diverse ecological adaptations (Vaughan et al.,

2003; Ammiraju et al., 2010). The Oryza species have 11

different genome types (AA, BB, CC, BBCC, CCDD, EE,

FF, GG, KKLL, HHJJ, and HHKK), and a 3.6-genome size

variation (Lu et al., 2009; Jacquemin et al., 2013; Atwell et

al., 2014).

A phylogenomic study sampled and sequenced 142

single-copy genes to clarify the relationships among all

diploid genome types of the rice genus (Zou et al., 2008).

The analysis identified two episodes of rapid speciation

that occurred approximately five and ten million years ago

(MYA) and gave rise to almost the entire diversity of the

genus. The first event occurred approximately ten MYA

(Guo and Ge, 2005) and led to a rapid diversification of the

G genome, F genome and a lineage that subsequently diver-

sified into the rest of the rice genomes. Additionally, the H,

J and K genomes that are now only present in tetraploid

species also diverged around this time (Ge et al., 1999; Guo

and Ge, 2005). The second event led to the diversification

of the A, B, and C genomes approximately five MYA, con-

firming that the A and B genome species are sisters and the

C genome clade is sister to that (Zou et al., 2008, Kellogg,

2009).

Divergence of the A genome took place over the past

two million years, and the current most divergent species

within this group are the perennial O. meridionalis (rhizo-

matous) and O. longistaminata (Zhu and Ge, 2005;

Vaughan et al., 2008). O. sativa has two presumed wild an-

cestors (O. rufipogon and O. nivara), while the annual O.

barthii is the progenitor of African domesticated rice O.

glaberrima (please see next section). The two cultivated

species and their respective progenitors shared an unknown

ancestral of about 0.86 MYA (Sarla and Swamy, 2005; Zhu

et al., 2014). Perennial O. glumaepatula is the only A ge-

nome group member with a current distribution in Latin

America and presents a strong relation between genetic and

geographic distances (Jacquemin et al., 2013; Vaughan et

al., 2003). The A genome species O. meridionalis, O.

longistaminata, O. glaberrima and O. barthii are consid-

ered candidates for tolerance to heat and drought stresses

based on their distribution in temperature and moisture ex-

tremes (Atwell et al., 2014).

The CC genome group is formed by O. officinalis, O.

rhizomatis and O. eichingeri. All three species are peren-

nial, occurring in shade or semi-shade forest environments,

among other habitats. O. officinalis (generally rhizoma-

tous) has a high level of genetic diversity between popula-

tions, and O. rhizomatis (rhizomatous) is endemic to Sri

Lanka (Vaughan et al., 2003; Lu and Jackson, 2004). The

only member of the diploid BB genome group is O.

punctata, which also exists in the allotetraploid form

BBCC. Both BB and BBCC populations are distributed in

Africa but occupying distinct niches. The diploid form is

found in open habitats, while the allotetraploid in shade or

semi-shade environments (Vaughan et al., 2003). Both

forms of O. punctata are potential genetic reservoirs for tol-

erance to drought stress if considering their plasticity over

moisture extremes (Atwell et al., 2014). O. eichingeri is be-

lieved to be the CC genome donor to the allotetraploid O.

punctata, while the diploid O. punctata is the BB genome

donor to the other allotetraploid BBCC species O. minuta

and O. malampuzhaensis (rhizomatous). Perennial O.

minuta and O. malampuzhaensis seem to have arisen from

different polyploidy events if considering their distinct

morphology, distribution and genetic diversity (Jacquemin

et al., 2013; Vaughan et al., 2003). O. minuta diploid pro-

genitors are O. punctata (BB), as already mentioned, and

O. officinalis (CC), and its recent polyploidization is be-

lieved to have occurred within the last 400,000 years (Lu et

al., 2009). O. malampuzhaensis, endemic to the Nalla-

malais of Eastern Ghats (India), is under severe threat con-

sidering its narrow distribution over a small geographical

area, which leads to vulnerability to habitat destruction and

fragmentation (Elangovan et al., 2012). The CCDD ge-

nome species O. latifolia, O. alta and O. grandiglumis are

very closely related, with current distribution in Latin Ame-

rica. In fact, some studies suggest that CCDD group mem-

bers are one complex species with different ecotypes (Vau-

240 Oryza species and abiotic stress
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ghan et al., 2003). O. alta polyploidization was estimated to

have happened less than 1.6 MYA. Additionally, O.

grandiglumis and O. latifolia are considered candidates for

tolerance to flooding stress (Lu et al., 2009; Atwell et al.,

2014).

The GG genome species O. granulata and O.

meyeriana are found in forest shade environments. O.

granulata occupies the most basal position in the Oryza ge-

nus phylogeny, presents a high level of genetic diversity be-

tween populations, and is a potential genetic resource for

tolerance to cold stress (Aggarwal et al., 1997; Vaughan et

al., 2003; Atwell et al., 2014). The F genome species O.

brachyantha has a compact genome (the smallest in the

Oryza genus) and is distributed in West and East Africa

(Chen J et al., 2013). Limited information is available for

O. coarctata (KKLL), O. longiglumis (HHJJ), O. ridleyi

(HHJJ) and O. schlechteri (HHKK) (Vaughan et al., 2003;

Jacquemin et al., 2013). Regarding abiotic stresses, O.

coarctata shows considerable adaptation to salinity, and O.

ridleyi and O. schlechteri are considered good genetic res-

ervoirs for tolerance to flooding (Lu et al., 2009; Sengupta

and Majumder, 2010; Atwell et al., 2014). A summary of

all Oryza species cited in this review, including their geno-

types, life span, geographical distributions and habitats, is

presented in Table 1.

The origin of Asian cultivated rice

There are two distinct groups of Asian cultivated rice,

namely O. sativa ssp. japonica and indica, which can be

differentiated by morphological and physiological traits,

additionally to an incomplete sterility barrier (Sang and Ge,

2013). The origin and evolution of the japonica and indica

subspecies is under considerable debate over the past sev-

eral years. Two models of interactive domestication scenar-

ios were proposed. The ‘snowballing model’ suggests a

single domestication event that created an early cultivar

with a set of domestication traits. This early cultivar, when

hybridized with different wild rice populations, japonica-

like and indica-like, would have enabled the fixation of

critical domestication alleles in each one of them sepa-

rately. Alternatively, in the ‘combination model’, both sub-

species were domesticated independently from diverse

wild rice ecotypes with subsequent hybridization, leading

to the introgression and fixation of domestication alleles

(Sang and Ge, 2007).

Considering archeological and genetic studies avail-

able to date, the ‘combination model’ is suggested as the

closest scenario from what had happened during Asian rice

domestication (Gross and Zhao, 2014). Briefly, the japon-

ica subspecies was originated from O. rufipogon in the

Yangtze River Valley in China, where rice cultivation pos-

sibly started around 8,000 years ago. Meanwhile, indica or

proto-indica independent origin of cultivation probably

took place in the Ganges plains in India, but proto-indica

domestication was only complete after domesticated japon-

ica was introduced and hybridized with indica, around

4,000 years ago (Fuller et al., 2009, 2011; Gross and Zhao,

2014). Both O. rufipogon and its annual derived O. nivara

are native to India today. In most of the physiological and

morphological traits, O. nivara is rather similar to the culti-

vated rice than O. rufipogon. Thus, O. nivara could have

served as the indica progenitor, and domestication would

have required fewer genetic modifications or mating sys-

tem transitions (Li et al., 2006; Sang and Ge, 2013). If this

hypothesis is correct, selection would have been less in-

tense for indica because O. nivara already presented sev-

eral cultivated rice traits. Thus, key domestication alleles

had more chance to arise during japonica domestication

from O. rufipogon, and semi-domesticated indica became

the primary recipient of the domestication alleles when ja-

ponica was brought to India (Vaughan et al., 2008; Sang

and Ge, 2013).

During the process of crop domestication many of the

inherited traits involved in biotic and abiotic stress resis-

tance may have been weakened or lost, since it is estimated

that only 10-20% of wild species diversity is present in cul-

tivated rice (Zhu et al., 2007; Palmgren et al., 2014). One of

the most important resources for improvement of cultivated

rice is the genetic reservoir hidden in wild rice species dis-

tributed across several biomes worldwide. It is also impor-

tant to underline that isolated populations within species

may also contain critical genes (Jacquemin et al., 2013;

Atwell et al., 2014). Rice gene banks around the world ex-

hibit an extensive seed collection, covering the genetic di-

versity present in farmers’ cultivars, landraces and Oryza

species. The two largest gene banks are the International

Rice Research Institute in the Philippines (4,370 wild spe-

cies and hybrids accessions at IRRI, http://irri.org), and

Oryzabase in Japan (1,703 entries,

http://www.shigen.nig.ac.jp) (Jacquemin et al., 2013).

Moreover, the Genesys database

(http://www.genesys-pgr.or) allows searching accessions

for many species in several seed banks, being a valuable re-

source for germplasm distribution (see total number of ac-

cessions available for each Oryza species in Table 1). A

genus-wide comparative genome platform is essential to

understand the genetic differences associated with abiotic

factors. The sequencing of 16 Oryza genomes is either

complete or underway with “gold standard” reference se-

quences available for the cultivated species O. sativa ssp.

japonica and O. glaberrima, and for the wild species O.

barthii and O. brachyantha (Jacquemin et al., 2013). The

introgression of desirable traits via conventional breeding

into cultivated rice should be more feasible from close rela-

tives (although a viable hybrid O. coarctata X O. sativa has

been reported – see below). Among the AA genome spe-

cies, introgression lines can be obtained by backcrossing F1

hybrids that are partially sterile, and various levels of post-

zygotic barriers are known (Doi et al., 2008). The gene

groups that cause these incompatibilities were genetically
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identified, but further studies are needed to break the repro-

ductive isolation (Ji et al., 2005; Qiu et al., 2005). When O.

sativa is crossed to non-AA genome species, viable but

highly sterile F1 hybrids can be obtained using embryo cul-

ture. However, the aberrant chromosome pairing in meiosis

makes it difficult to introgress genetic information from

these species into cultivated rice (Doi et al., 2008). Trans-

genic approaches will be eventually needed for genes from

taxonomically distant species (Vaughan et al., 2003; Palm-

gren et al., 2014). Therefore, it is of great significance to

understand the genetic diversity within the wild relatives of

Oryza in the context of their natural environment of origin,

in order to identify the genetic basis of phenotypic variation

between and within-species. This knowledge is an impor-

tant resource to improve rice production under abiotic

stresses (Sang and Ge, 2013; Gross and Zhao, 2014; Palm-

gren et al., 2014).

Abiotic stress tolerance in wild relatives:
submergence

Rice is commonly grown in flooded soil containing a

thin water layer. Although rice roots are well adapted to

hypoxic conditions, most rice cultivars die rapidly if their

shoots are submerged (Mackill et al., 2012). Several

rainfed rice areas are at risk of flooding, a stress that de-

creases yield substantially (Ismail et al., 2013). Submer-

gence inhibits aerobic metabolism and photosynthesis,

leading to carbohydrate depletion and, depending on the

stress intensity, plant death (Fukao and Bailey-Serres,

2004). However, rice plants are able to tolerate submer-

gence using different strategies. In the low oxygen escape

syndrome (or “escape strategy”) shoot elongation is stimu-

lated by progressive flooding, keeping leaves in contact

with the air and escaping the increasing levels of water

(Bailey-Serres and Voesenek, 2008). In the “quiescent stra-

tegy”, hypoxia reduces elongation, represses carbohydrate

degradation and stimulates anaerobic metabolism. When

water recedes, plants resume growth. While the escape

strategy only results in submergence tolerance if flooding

occurs progressively, rice genotypes that use the quiescent

strategy are able to survive up to 14 days of complete sub-

mergence (Bailey-Serres and Voesenek, 2008). Both strate-

gies were elucidated at the molecular level: the quiescent

strategy is linked to the SUB1 locus, while the escape strat-

egy is dependent on the SNORKEL (SK) locus (for reviews

see Bailey-Serres and Voesenek, 2008; Mickelbart et al.,

2015).

SUB1 is the major QTL associated with submergence

tolerance in rice cultivars that use the quiescent strategy

(Fukao et al., 2009). The SUB1 locus was mapped to chro-

mosome 9, and is composed of a cluster of ethylene re-

sponse factors (ERF) genes located in tandem, named

SUB1A, SUB1B and SUB1C (Figure 1). Different rice ge-

notypes have two genes in the cluster, SUB1B and SUB1C,

whereas a third gene, SUB1A, is present only in a subset of

them. Interestingly, tolerance to submergence is linked to a

specific allele of the SUB1A gene, named SUB1A-1 (Xu et

al., 2006). Accessions that lack SUB1A gene, or carry the

SUB1A-2 allele, are sensitive to submergence (Figure 1).

Introgression of functional copies of SUB1A-1 in sensitive

genotypes is sufficient to generate tolerant plants (Xu et al.,

2006).

The tolerant SUB1A-1 allele is derived from the aus

subgroup of indica rice (Xu et al., 2006). Wild species from

the Oryza genus commonly grow in constantly or season-

ally wet habitats (Vaughan et al., 2003), and thus submer-

gence tolerance could be found in other species. Niroula et

al. (2012) tested 109 accessions of rice and wild relatives,

including 12 species, for submergence tolerance, and found

O. rufipogon and O. nivara (AA genome; Table 2) tolerant

accessions that carry the SUB1A-1 allele, showing that

SUB1 locus architecture determines submergence toler-

ance in these species, as in O. sativa (Figure 1; Niroula et

al., 2012). Strikingly, accessions of O. rhizomatis and O.

eichingeri (CC genome; Table 2) were also found to be sub-

mergence tolerant, but SUB1A sequences were absent from

genomes of tested accessions, indicating that a novel,

SUB1A-independent mechanism is responsible for sub-

mergence tolerance, at least in these two CC genome spe-

cies (Figure 1; Niroula et al., 2012).

Oryza grandiglumis is a tetraploid species with

CCDD genome (Table 2) that grows in Amazonian

floodplains, where water levels can reach up to 10 meters,

and thus it was expected to show some degree of submer-

gence tolerance (Okishio et al., 2014, 2015). Depending on

the flooding conditions, O. grandiglumis showed distinct

responses: when progressively submerged, the internodes

elongated, resembling the escape strategy of O. sativa;
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Figure 1 - Submergence tolerance and genetic architecture of SUB1 locus

in cultivated and wild Oryza species. Genotypes from AA genome species

Oryza sativa, Oryza rufipogon and Oryza nivara are tolerant or sensitive

to submergence depending on the presence of SUB1A-1 allele of the

SUB1A gene. Genotypes that either have SUB1A-2 allele or lack a

SUB1A, carrying only SUB1B and SUB1C genes, are sensitive. Geno-

types from CC genome species Oryza eichingeri, Oryza rhizomatis and

the CCDD tetraploid species Oryza grandiglumis were shown to be toler-

ant to submergence while carrying a SUB1A gene-lacking SUB1 locus,

indicating the locus does not contribute to the stress tolerance in these spe-

cies.



however, when plants were completely submerged, growth

was reduced, as in the quiescent strategy (Okishio et al.,

2014). Interestingly, SUB1A is absent in O. grandiglumis,

indicating that a SUB1A-independent mechanism for a qui-

escent strategy is present, as observed for O. rhizomatis and

O. eichingeri (Figure 1). Genes similar to SNORKEL1 and

SNORKEL2, responsible for the escape strategy in deep-

water-adapted O. sativa, as well as O. rufipogon and O.

glumeapatula (AA genome; Table 2), are absent in O.

grandiglumis (Hattori et al., 2009, Okishio et al., 2015).

These results indicate that O. grandiglumis is tolerant to

both gradual and full submergence by unknown mecha-

nisms (Okishio et al., 2014), indicating that CC genome

Oryza species might provide new molecular mechanisms to

improve cultivated rice.

Salinity

Soil salinization is a worldwide problem for agricul-

ture. It affects 6% of total Earth’s land, as a result of natural

accumulation over long periods of time (Rengasamy,

2002). However, agricultural activity contributes to sec-

ondary salinization: 2% of all dry land is becoming

salinized, and more than 20% of irrigated soils are affected,

mostly because of irrigation water containing small

amounts of sodium chloride (Tester and Davenport, 2003).

Plants vary in their sensitivity to salt stress, and rice is

the most sensitive among cereals. Salinity reduces growth

rate, including cellular and leaf expansion, number of tillers

and photosynthesis, and can lead to premature senescence

of older leaves (Munns and Tester, 2008, Sirault et al.,

2009). The deleterious effects of salt in plants can be a re-

sult of osmotic stress (caused by salt in the soil), or of ionic

stress (toxic effect of Na+ accumulation in plant tissues;

Munns and Tester, 2008). The tolerance to ionic stress is

dealt with by Na+ exclusion from xylem vessels to avoid

shoot accumulation, or by tissue tolerance, when Na+ levels

reach toxic levels and plant leaf cells compartmentalize salt

to reduce damage (Roy et al., 2014).

The genetic basis of tolerance to ionic stress is much

better understood than to osmotic stress (Roy et al., 2014).

A range of transporters involved in reducing Na+ accumula-

tion in shoots and in subcellular compartmentalization was

described, such as the high affinity potassium transporter

(HKT), salt overly sensitive (SOS) and Na+/H+ exchanger

(NHX) gene families (Mickelbart et al., 2015). HKT mem-

bers are crucial determinants of tissue concentration of Na+.

OsHKT1;5 is the causative gene of Saltol, the major quanti-

tative trait locus (QTL) for salt accumulation in O. sativa

genotypes (Ren et al., 2005). OsHKT1;5 is a plasma mem-

brane transporter that regulates partitioning of Na+ between

roots and shoots by efflux of Na+ from the xylem to adja-

cent parenchyma cells (Hauser and Horie, 2010). Four

amino acid changes in OsHKT1;5 resulted in increased Na+

efflux activity in salt tolerant indica cultivar Nona Bokra

compared to the salt sensitive cultivar Koshihikari (Ren et

al., 2005). Although other QTLs were described (Negrão et

al., 2011), Saltol is the only one that has been cloned so far.

In a large screening effort which included several O.

sativa cultivars, landraces and O. glaberrima (AA genome,

Table 2) genotypes, it was shown that salinity sensitivity is

correlated with Na+ concentration in leaf blades.

OsHKT1;5 genotype was shown to be a major determinant

for tolerance: the more active the efflux transporter, which

directs the Na+ exclusion from the transpiration stream, the

less Na+ is translocated to leaves (Platten et al., 2013). In-

terestingly, these authors found tolerant O. glaberrima ac-

cessions with low Na+ concentration in leaves, but carrying

OsHKT1;5 alleles that are associated with salt sensitivity

and Na+ accumulation in leaves of O. sativa genotypes.

These results indicate that O. glaberrima genotypes could

exclude Na+ from shoots using a mechanism independent

of OsHKT1;5 (Platten et al., 2013).

Other species from the genus Oryza were explored for

salt tolerance genes. O. rufipogon was shown to be salt tol-

erant when compared to rice sensitive cultivars (Zhou et al.,

2016). Introgression lines derived from O. rufipogon X O.

sativa cross revealed 15 QTLs for salinity tolerance, 13 of

them derived from the O. rufipogon parent (Tian et al.,
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Table 2 - Tolerance to abiotic stresses found in accessions of Oryza species and references.

Species Tolerance compared to O. sativa Reference

Oryza coarctata Salt Sengupta and Majumder, 2009

Oryza eichingeri Submergence Niroula et al., 2012

Oryza glaberrima Salt, Drought Ndjiondjop et al., 2010, Platten et al., 2013

Oryza glumaepatula Submergence Hattori et al., 2009

Oryza grandiglumis Submergence Okishio et al., 2014, 2015

Oryza meridionalis Heat Scafaro et al., 2010

Oryza nivara Drought Singh et al., 2015

Oryza officinalis Drought, Heat (Early Morning Flowering) Ishimaru et al., 2010, Feng et al., 2012

Oryza rhizomatis Submergence Niroula et al., 2012

Oryza rufipogon Salinity, Cold, Drought, Submergence Hattori et al., 2009, Tian et al., 2011, Xiao et al., 2014



2011). Over-expression of bHLH transcription factors

OrbHLH001 and OrbHLH2 from O. rufipogon resulted in

Arabidopsis and O. sativa salt tolerant lines (Zhou et al.,

2009; Li et al., 2010; Chen Y et al., 2013). These authors

showed that OrbHLH001 is able to positively regulate the

K+ transporter OsAKT1, suggesting that salt tolerance re-

sults from maintenance of K+ homeostasis under high Na+

conditions (Chen Y et al., 2013). Based on heterologous ex-

pression in Arabidopsis, OrbHLH2 was suggested to posi-

tively regulate genes from the CBF/DREB pathway (Zhou

et al., 2009). Indeed, transcriptomic studies of the O.

rufipogon response to high salinity showed that transcrip-

tion factors are among the top up-regulated genes (Zhou et

al., 2016).

Oryza coarctata, a promising source of salinity
and submergence genes for rice

Oryza coarctata (also known as Porteresia

coarctata, Lu and Ge, 2003) is an allotetraploid wild rice

with extreme salt and submergence tolerance. It is unique

among wild rice species, since it has a KKLL genome (Ta-

ble 1; Lu et al., 2009). O. coarctata grows in coastal region

of India and Bangladesh, where it experiences lunar tides

and is submerged with saline seawater every 12 hours

(Sengupta and Majumder, 2010, Garg et al., 2014). It has

also been established as an important resource for prospect-

ing genes to improve cultivated rice (Garg et al., 2014). A

hybrid derived from a cross between O. sativa and O.

coarctata has been reported (Jena, 1994), and salt tolerant

rice cultivars with introgressed O. coarctata traits for salt

tolerance are currently under development in the Interna-

tional Rice Research Institute (IRRI; www.irri.org). Still,

little is known about the physiological and molecular de-

tails of this wild rice adaptation to high salinity conditions.

O. coarctata growth, relative water content and pho-

tosynthesis are unaffected by high concentrations (400

mM) of NaCl, conditions in which O. sativa salt tolerant

cultivars do not develop properly (Sengupta and Majum-

der, 2009). Leaves of O. coarctata contain “salt hairs”, out-

growths of the epidermis that increase their number under

high salinity and secrete excessive salt. When salt concen-

tration in the growth media is high (300-400 mM), the salt

hairs in the abaxial surface collapse and fall off from the

leaf surface (Sengupta and Majumder, 2009). Still, total

Na+ concentration in leaves of O. coarctata does not in-

crease under salt stress, indicating that O. coarctata avoids

Na+ toxicity in mesophyll cells by compartmentalization of

salt in epidermal hairs, a mechanism similar to what is

known for other halophyte grasses (Sengupta and Majum-

der, 2009, 2010). The secreted salt is a significant propor-

tion of the Na+ reaching leaves, and important to maintain a

low Na:K ratio (Sengupta and Majumder, 2010). A

tonoplast-localized transporter from the NHX family of O.

coarctata was recently cloned. PcNHX1 transcription is

regulated during the day, presumably reflecting the circa-

dian variation in tide experienced by the plant, and is also

rapidly induced by NaCl treatment, compartmentalizing

Na+ into vacuoles (Kizhakkedath et al., 2015). Thus, O.

coarctata is adapted to high salinity environments by using

multiple mechanisms to cope with salt stress, including de-

creased root-to-shoot translocation and increased compart-

mentalization in the vacuole and secretion in salt hairs.

Proteomic analyses identified up-regulated proteins

by Na+ treatment in O. coarctata, including transcription

factors of the CBF/DREB pathway of abiotic stress re-

sponse (Shinozaki and Yamaguchi-Shinozaki, 2000); a cel-

lulose synthase-like, which could help maintaining cellu-

lose synthesis during salt stress (Endler et al., 2015); and an

L-myo-inositol 1-phosphate synthase, important for ino-

sitol synthesis. Inositol metabolism is, in fact, one of the

most studied aspects of O. coarctata salt tolerance. Its de-

rivative, pinitol, is a known osmoprotectant in many plant

species, and accumulates in O. coarctata under high salin-

ity (Sengupta et al., 2008; Sengupta and Majumder, 2010).

Strikingly, cloning and characterization of O. coarctata

L-myo-inositol 1-phosphate synthase (INO1) showed that

enzyme activity is maintained properly even in high salt

concentrations, and that its expression in plants and bacte-

ria confers high, albeit variable, salt tolerance to these or-

ganisms (Majee et al., 2004; Das-Chatterjee et al., 2006;

Sengupta and Majumder, 2010). This highlights the poten-

tial of wild species to provide useful proteins for rice (and

other crops) improvement. Moreover, inositol methyl

transferase (IMT1), which methylates inositol into pinitol,

is up-regulated in the same conditions as INO1 in O.

coarctata, indicating that inositol synthesis and conversion

to pinitol are key steps for salt tolerance in this species

(Sengupta et al., 2008).

More recently, a study evaluated O. coarctata trans-

criptomic changes under salt and submergence stresses

(alone or combined, compared to control conditions), and

found several transcription factors up-regulated in leaves

under stress conditions, such as NAC, WRKY and MYB gene

family members, indicating extensive transcriptional regu-

lation in stress responses (Garg et al., 2014). Gene Ontol-

ogy analyses showed enrichment of ABA-responsive genes

under salinity stress, and of carbohydrate metabolism and

anaerobic respiration genes under submergence stress. In

plants under submergence stress, genes related to ethylene

and gibberellin responses were also identified, along with

Alcohol Dehydrogenase, a marker for anoxia stress, indi-

cating that a SUB1A-related response might be present in

O. coarctata (Garg et al., 2014; see above for discussion on

submergence stress mechanisms). However, demonstration

of the presence of SUB1A-like ERF transcription factors

and of their role in submergence response in O. coarctata is

lacking. Moreover, suberin and cellulose synthesis-related

transcripts were identified as up-regulated in both stresses,

indicating that these processes might be key for stress toler-
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ance, as observed in other species (Garg et al., 2014; Endler

et al., 2015; Barberon et al., 2016).

Cold

The japonica cultivars of O. sativa are usually

adapted to temperate climates, a process that was driven by

domestication, while indica cultivars are generally tropical

(Kovach et al., 2007; Ma et al., 2015). Thus, temperate ja-

ponica cultivars are more tolerant to low temperatures than

indica, and introgression of cold tolerance traits from tem-

perate into tropical genotypes is desirable (Cruz et al.,

2013; Dametto et al., 2015). However, little is known about

the molecular basis for low temperature tolerance in O.

sativa, and even less about the variation of cold tolerance

among its wild relatives.

The Oryza genus has a pan-tropical distribution,

growing in regions with an average low temperature of 15

°C or above during the growth season, with only a few ex-

ceptions (Atwell et al., 2014). Hence, it is possible that

other species of Oryza might be better adapted to lower

temperatures, being able to provide alleles to improve cold

tolerance. Atwell et al. (2014) used the distribution of each

species in different climates to estimate the best candidates

for stress tolerance, and O. granulata is suggested as a pos-

sible source for cold tolerance. O. eichingeri (CC genome,

Table 2) also grows in low temperature environments, and

could be considered a good candidate (Atwell et al., 2014).

However, screenings of cold tolerance are still lacking for

most Oryza species.

One genotype of O. rufipogon, named Dongxiang

wild rice, is able to withstand overwintering in its natural

habitat and temperature as low as 3 °C for three days in lab-

oratory conditions (Xiao et al., 2014; Mao et al., 2015).

Using an experimental population derived from Dongxiang

wild rice X Nanjing 11 (a cold sensitive cultivar) crosses, a

CBF3/DREB1G gene was found to co-localize to a previ-

ously identified cold-related QTL (Xiao et al., 2014).

CBF/DREBs are known regulators of cold and other abiotic

stress responses (Mao and Chen, 2012; Mickelbart et al.,

2015). Interestingly, CBF3/DREB1G is up-regulated as

early as three hours after cold treatment in both Dongxiang

wild rice, but only after 12 hours in the sensitive one. Genes

known to be downstream of CBF/DREB1 in the cold re-

sponse are up-regulated accordingly in both tolerant geno-

types (Xiao et al., 2014). Other QTLs unique to Dongxiang

wild rice were described (Mao et al., 2015).

Recently, a SNP associated with temperate japonica

cold tolerance was described. COLD1 (chilling-tolerance

divergence) is a plasma membrane- and endoplasmic retic-

ulum-localized regulator of G protein that activates Ca2+ in-

flux during cold sensing. One SNP that results in an amino

acid change was found to be responsible for the difference

in cold tolerance. The SNP found in japonica is shared with

accessions of O. rufipogon, but not with O. nivara or O.

barthii (AA genome; Ma et al., 2015). Thus, the COLD1

sequence found in tolerant japonica cultivars represents an

ancient allele from O. rufipogon that was selected during

domestication (Ma et al., 2015). However, it is important to

note that the SNP in COLD1 explains only part of the cold

tolerance in rice, a trait for which many minor effect QTLs

are expected to contribute (Cruz et al., 2013; Ma et al.,

2015; Mao et al., 2015). Thus, other QTLs should be char-

acterized and used in combination in order to develop

highly tolerant lines, and newly identified genes from wild

species might also be useful.

Drought

Drought tolerance is a complex trait, with many genes

and processes involved (Singh et al., 2015). Rice in particu-

lar demands great amounts of water for proper develop-

ment, owing to its shallow roots compared to other crops

(Kondo et al., 2000). QTLs for drought tolerance were

identified within O. sativa variability, and causative genes

have been cloned (Vikram et al., 2011; Uga et al., 2013).

DRO1 (DEEPER ROOTING 1), a previously unknown

protein, is responsible for downward growth of rice roots,

and introgression of DRO1 in otherwise shallow root rice

genotypes increases root angle and drought tolerance (Uga

et al., 2013). Still, wild rice species might be a source of

stronger drought tolerance genes and mechanisms, since

they are adapted to a much wider spectrum of environments

(Vaughan et al., 2003; Atwell et al., 2014).

Species that are present in low moisture regions were

suggested as more likely candidates for drought tolerance,

namely: O. barthii, O. australiensis, O. glaberrima, O.

longistaminata and O. punctata (Atwell et al., 2014). At

least three of these (O. australiensis, glaberrima and

longistaminata), plus O. meridionalis, present thick leaves

and high mesophyll conductance to CO2 diffusion, indicat-

ing that they might be drought tolerant, since these traits

can be associated with a higher water use efficiency (Sca-

faro et al., 2011; Giuliani et al., 2013). Indeed, field evalua-

tion of O. glaberrima showed that some accessions could

be used as donors in crossing with O. sativa for drought tol-

erance breeding (Ndjiondjop et al., 2010).

The O. rufipogon genotype Dongxiang was also used

to breed drought tolerance in O. sativa. An introgressed line

was shown to be more tolerant when compared to the O.

sativa recurrent parent, with higher survival rate, along

with higher proline and soluble sugar accumulation (Zhang

et al., 2014). However, it is clear that the trait is geno-

type-specific, since different O. rufipogon accessions can

have widely different sensitivity levels. Feng et al. (2012)

tested tolerance of eight accessions of O. rufipogon and one

of O. officinalis, and observed that accessions from tropical

origin are more tolerant. Interestingly, the single O.

officinalis (CC genome; Table 2) accession performed even

better under drought conditions (Feng et al., 2012).

Another study analyzed leaf rolling score and relative

water content in several O. sativa, O. rufipogon and O.
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nivara genotypes from India, and associated these traits

with sequence diversity of OsDREB1F, a known drought

stress-responsive transcription factor (Wang et al., 2008;

Singh et al., 2015). At least five truncated versions of

OsDREB1F were found to be associated with drought sen-

sitivity. Interestingly, one protein variant, present in four O.

nivara accessions, was associated with high relative water

content and low leaf rolling score. The variant harbors an

amino acid mutation in a putative activation domain,

which, based on molecular modeling, is likely to affect the

tertiary structure of the protein (Singh et al., 2015). The

over-expression of OsDREB1F in O. sativa confers toler-

ance to drought, low temperature and salt stresses (Wang et

al., 2008). Thus, the protein variant from O. nivara geno-

types is likely to confer tolerance to multiple stresses, pos-

sible due to effects on tolerance to the osmotic adjustment

component that is common in these conditions.

Heat

Rice is a pan-tropical species, and thus well adapted

to high temperatures compared to other grasses. However,

the increasing global average temperatures and the more

frequent occurrence of heat waves (IPCC, 2007) could af-

fect rice growth, both during vegetative and reproductive

stages. Species from the Oryza genus were suggested as

heat tolerant (Atwell et al., 2014), but few have been physi-

ologically characterized.

O. meridionalis (AA genome, Table 1), is endemic to

hot regions of northern Australia, and is described as heat

tolerant (Scafaro et al., 2010). When compared to O. sativa,

O. meridionalis leaf elongation rate is slower under 27 °C,

but faster at 45 °C. The photosynthesis temperature opti-

mum of O. meridionalis is 3 °C above that of O. sativa,

which is accounted for by a higher RuBisCO activation

state under heat stress (Scafaro et al., 2012). Proteomics

analyses showed that Calvin Cycle and heat shock-related

proteins increased their abundance in O. meridionalis

leaves at high temperatures, including Rubisco activase

(Scafaro et al., 2010). Thus, higher Rubisco activase accu-

mulation is directly involved in heat tolerance of O.

meridionalis, maintaining RuBisCO carboxylation at

higher temperatures (Scafaro et al., 2010, 2012).

Temperatures higher than 32-36 °C at anthesis cause

spikelet sterility and yield reduction, mainly due to reduced

anther dehiscence and germinating pollen on the stigma

(Ishimaru et al., 2010, and references therein). Flowering in

cultivated rice occurs between mid-morning to noon, when

heat has already built up since the beginning of the day

(Nishiyama and Blanco, 1980). A useful trait to avoid flow-

ering at high temperatures is early morning flowering

(EMF). The wild rice species O. officinalis shows EMF,

which can be used to increase cultivated rice fertilization

and yield by escaping heat stress (Ishimaru et al., 2010). In-

deed, introgression lines were produced from O. sativa X

O. officinalis crosses, and these showed increased fertility

due to the shift in anthesis timing (Ishimaru et al., 2010).

QTL analyses revealed that an O. officinalis EMF candi-

date gene is located in chromosome 3 and reduces the flow-

ering opening time by 1.5 to 2 hours in both temperate and

tropical cultivars, thus demonstrating the usefulness of this

trait to reduce effects of heat stress on spikelet sterility

(Hirabayashi et al., 2015).

Concluding remarks

Early domestication of crops was a bottleneck for

gene diversity. While selecting important traits for cultiva-

tion, the process inadvertently lost others that might be in-

teresting for humans today. As an example, a wheat NAC

transcription factor, NAM-B1, was shown to regulate iron,

zinc and protein levels in grains. Interestingly, the NAM-

B1 allele from wild emmer wheat is functional, accelerat-

ing senescence and increasing remobilization of nutrients

to developing seeds, while the modern varieties carry a

non-functional allele, and thus have decreased levels of

iron, zinc and protein (Uauy et al., 2006). Considering that

iron and zinc deficiencies in humans are a common dietary

problem (Sperotto et al., 2012; Ricachenevsky et al., 2015),

introgression of the functional NAM-B1 allele is likely to

improve wheat nutritional quality.

The use of wild relatives as a reservoir of new alleles

to confer stress tolerance to cultivated species has been suc-

cessful before. In wheat, introgression of the Nax2 locus

(containing the TmHKT1;5-A allele) from Triticum

monoccocum conferred improved salt tolerance, with re-

duced Na+ accumulation in leaves and a 25% increase in

grain yield in high salt soils, and resulted in a wide distribu-

tion of Nax2 bearing germplasm to producers (James et al.,

2012; Munns et al., 2012; Mickelbart et al., 2015). A soy-

bean wild relative, Glycine soja, has also been shown to be

salt tolerant (Chen P et al., 2013). A Cation H+ Exchange

(CHX) transporter was identified as the causative gene of

the tolerance phenotype, and gain-of-function transgenic

plants expressing the transporter were shown to be more

salt tolerant (Qi et al., 2014).

Considering the wide variety of environments in

which species from the Oryza genus are found, it is ex-

pected that they also vary in abiotic stress tolerance (Atwell

et al., 2014). Thus, screening for stress tolerance in these

species, and within multiple genotypes of each species,

should yield new alternatives for rice improvement. Efforts

such as the International Oryza Map Alignment Project and

the genome sequencing of 16 species (Jacquemin et al.,

2013) should fast track the unlocking of rice wild relatives

potential for breeding and transgenic approaches. The com-

bination of these data with large scale screening for toler-

ance in wild genotypes, together with the available and

newly generated QTL maps and genome re-sequencing of

tolerant individuals will be key to guarantee food security,

considering the prospects of climate change and overpopu-

lation.
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