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Abstract

A substantial proportion of the world’s living species, including one-third of the reef-building corals, are threatened with
extinction and in pressing need of conservation action. In order to reduce biodiversity loss, it is important to consider
species’ contribution to evolutionary diversity along with their risk of extinction for the purpose of setting conservation
priorities. Here I reconstruct the most comprehensive tree of life for the order Scleractinia (1,293 species) that includes all
837 living reef species, and employ a composite measure of phylogenetic distinctiveness and extinction risk to identify the
most endangered lineages that would not be given top priority on the basis of risk alone. The preservation of these
lineages, not just the threatened species, is vital for safeguarding evolutionary diversity. Tests for phylogeny-associated
patterns show that corals facing elevated extinction risk are not clustered on the tree, but species that are susceptible,
resistant or resilient to impacts such as bleaching and disease tend to be close relatives. Intensification of these threats or
extirpation of the endangered lineages could therefore result in disproportionate pruning of the coral tree of life.
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Introduction

Worldwide, ocean-scale effects of sea surface warming and

acidification are subjecting reef corals to severe stresses, resulting

in intensified bleaching and disease, as well as declining

calcification rates [1–6]. Local anthropogenic impacts such as

overfishing and pollution have also forced coral reefs through

regime shifts toward macroalgal domination [4,7–10]. Alarmingly,

32.8% of all zooxanthellate reef-building coral species are

considered to be threatened with global extinction [11] (see also

[12]).

Limited resources constrain scientists and managers to focus

their efforts on a subset of the world’s coral reefs to minimise

extinction risk [13]. Consequently, the decision-making process

associated with assignment of funds and manpower has become a

major research focus in conservation biology [14–17]. One of the

most widely-used frameworks for assessing threats to species and

setting conservation priorities is the International Union for

Conservation of Nature (IUCN) Categories and Criteria [18,19].

Indeed, the identification and design of protected areas are often

guided by the distribution of species with the highest risk of

extinction, and in particular, the most threatened species of the

IUCN Red List [20–22].

Extinction probabilities aside, species are not equal. Rather,

evolutionary processes render each species unique with a

characteristic history that can be quantified for the purpose of

conservation prioritisation [14,23–26]. Assessments that integrate

phylogenetic distinctiveness and extinction threat have been

performed mainly for mammalian groups, drawing attention to

extraordinary species from lesser known localities and lineages (i.e.

lines of ancestry and descent [27]) [28–33]. The dire situation of

reef corals necessitates an equivalent treatment.

The utility of phylogenetic trees extends beyond the recognition

of distinct lineages that are at risk. Due to the hierarchical nature

of phylogenies, random losses of species rarely perturb the

branches of evolutionary history [34], but concentration of

threatened species or risk factors in particular parts of the

phylogeny can imperil entire clades [35–38]. Threats to reef corals

have traditionally been generalised based on species’ taxonomic

memberships [39,40]. The family Faviidae, for instance, is reputed

to be resilient to environmental disturbances [41], but the extreme

polyphyly of the group has called into question such inferences

[42] (see also [43]). Considering evolutionary history in the

analysis of extinction risk will certainly aid in the development of

informed conservation strategies against threats facing corals of the

world today.

The aim of this study is to apply the phylogenetic approach on

all reef corals of the order Scleractinia to identify, first, the most

endangered coral lineages, and second, evolutionary patterns

associated with extinction probability and various threats. To rank

corals according to both distinctiveness and imperilment, I use the

EDGE (evolutionarily distinct and globally endangered) metric

[29], which combines a unique measure of phylogenetic diversity

[44] with the conservation status of each species. Data for the

latter are based on the IUCN Red List that includes 827 reef-

building scleractinians assessed by the world’s leading coral experts

in 2006 and 2007 [11]. Of the 688 species not deemed Data

Deficient (DD), 32.7% are considered threatened. These compri-

se_in decreasing likelihood of extinction_four Critically Endan-

gered (CR), 23 Endangered (EN) and 198 Vulnerable (VU) corals.

The remaining species are categorised as Near Threatened (NT;

174 species) or of Least Concern (LC; 289 species).
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Methods

Phylogenetic data and analyses
To reconstruct the scleractinian phylogeny, 827 species from the

IUCN Red List dataset [11], five previously omitted corals, five

new species described since the assessment [45–47], and 65% of

non-reef corals [48] were included in the analysis (Table S1). The

supertree approach [49,50] was used to combine data from

molecular, morphologic and taxonomic sources. Unlike Kerr [51],

the last published Scleractinia supertree, I reanalysed the

molecular data rather than use available phylogenies because

several DNA markers were utilised repeatedly in different studies

(e.g. [52] and [53]). Using these phylogenies as source trees would

result in data duplication [54,55].

Mitochondrial DNA markers each with coverage of .40 species

were obtained from GenBank to assemble a 463-species dataset

(365 reef, 98 non-reef). The seven markers used were 12S small

subunit ribosomal RNA (12S), 16S ribosomal RNA (16S), ATP

synthase F0 subunit 6 (AT6), cytochrome c oxidase subunit I

(COI), control region (CTR), cytochrome b (CYB) and NADH

dehydrogenase subunit 5 (ND5) (Table S1). Corallimorphs

Discosoma and Ricordea florida were included as outgroups. Matrices

were aligned with MAFFT 6.8 [56,57] and concatenated for

analysis under the maximum likelihood criterion, using RAxML

7.2.8 [58,59] implemented at the Cyberinfrastructure for Phylo-

genetic Research (http://www.phylo.org) [60]. Tree searches were

carried out in 1000 alternate runs from distinct parsimony starting

trees, utilising the partitioned GTRGAMMA model. Nodal

supports were assessed via 1000 bootstrap replicates.

Thirteen morphological datasets were used to obtain source

trees for the supertree reconstruction [61–69] (Table 1). All except

one [61] were included in Kerr’s [51] study. Congeners were

assumed monophyletic unless otherwise shown in recent phylog-

enies (see remarks, Table S1). Maximum parsimony analyses were

performed in PAUP* 4.0b10 [70] using the branch-and-bound

algorithm for matrices with #25 terminals and heuristic searches

(105 random additions with a rearrangement limit of 107 per

replicate) for larger datasets. Nodal supports were determined with

1000 bootstrap replicates (100 random additions per replicate for

heuristic searches). For 145 reef species with no available data, a

source tree was used to represent likely sister relationships based

on a review of literature, favouring the more recent hypotheses in

cases of conflict [71–97] (see remarks, Table S1).

Including the molecular phylogeny, 1293 scleractinian species

(837 reef, 456 non-reef) were analysed. All source trees were coded

into bootstrap percentage-weighted matrix representation with

parsimony using SuperMRP 1.2.1 [98]. To ensure that analyses

were driven primarily by data, weights of nodes derived from

taxonomic information were each set at one. Maximum

parsimony analysis of the 792-character dataset was carried out

as above (rearrangement limit of 108 per replicate) to obtain 18978

minimum length trees.

The molecular data were then fitted to the strict consensus

supertree using RAxML (1000 replicate runs) to derive the best

branch length estimates [99]. Polytomies in the supertree were

randomly resolved to generate 1000 different resolutions. Species

with no available DNA sequence data were assigned a terminal

branch length of zero, though still represented by their ancestral

branches based on topology. This procedure yielded estimates for

the lower limit of distinctiveness, a conservative approach given

the lack of data. Calculations that followed were carried out for

each of the 1000 resolutions; reported results are means over all

randomly resolved trees.

Determining species priorities
For each reef species in the Scleractinia supertree, Tuatara 1.01

[100] was used to evaluate evolutionary distinctiveness (ED) by

summing the terminal branch length and its species-weighted

allocation of ancestral branches. ED was then multiplied by

extinction probability (PE) to obtain the EDGE score, a measure

of expected loss of evolutionary history [29,101]. PE was

calculated based on the IUCN100 transformation of the Red List

categories [102]. LC species’ PE was set at 0.001, assuming that at

most about one of the 289 LC corals would go extinct in 100 years;

NT corals were given an intermediate PE of 0.01. For the 149 DD

species, a PE value between the lowest Red List categories (LC and

NT) was assigned [33]. The ‘Isaac’ and ‘Pessimistic’ transforma-

tions of Mooers et al. [102] led to an LC species consistently

achieving the top two highest scores, an overly conservative result

that is not discussed (available in Table S1). Species were ranked

Table 1. Morphological data used as source matrices for supertree reconstruction.

Taxon No. of genera No. of species Analysis parameters Reference

Faviina 11 26 equal weights; unordered [61]

Turbinoliidae 22 57 characters weighted; one character ordered [62]

Dendrophylliidae 20 164 characters weighted; two characters ordered [63]

Scleractinia 29 440 equal weights; unordered [64]

Fungiidae 15 40 equal weights; unordered [65]

Pleuractis 1 6 equal weights; unordered [66]

Mussidae 12 44 characters weighted; Lundberg rooting [67]

Lobophyllia+Symphyllia 2 10 characters weighted [67]

Siderastreidae 6 29 characters weighted; Lundberg rooting [67]

Coscinaraea+Psammocora 2 14 characters weighted [67]

Scleractinia+Corallimorpharia 38 47 includes two outgroups [68]

Acroporidae 6 291 equal weights; unordered [69]

Acropora+Isopora 2 139 10 sister species grafted post-analysis [69]

Numbers in bold represent the taxonomic levels of analyses performed in the original studies.
doi:10.1371/journal.pone.0034459.t001
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according to their EDGE scores. Analyses repeated exclusively for

the reef species show that incomplete sampling of Scleractinia (i.e.

the non-reef corals) had minimal effect (mean rank variation: top

30 species = 1.5, all 837 species = 12.8).

Testing for phylogenetic signal
Phylogenetic signal of PE was tested using a randomisation

procedure [103] in R package Picante 1.3 [104] that determined

whether the actual phylogeny better fits a set of continuous data

relative to data that had been randomly permuted across the tips

of the tree (1000 replicates per supertree; K = 0 for random traits).

For binary traits, Fritz & Purvis’ [105] D was computed in CAIC

1.0.4 [106]. This metric was based on the trait’s sum of sister-clade

disparities on the tree (D = 0 for clumped traits, D = 1 for random

traits). The phylogenetic patterns of three extinction risk levels, EN

and above, VU and above and at least NT, were determined. In

addition, eight species-specific binary traits assessed by Carpenter

et al. [11] were tested for phylogenetic signal (Table 2).

Two potential confounding factors associated with the above

analyses were investigated. First, species assembled in the supertree

differ in the degree of representation among source trees. It may

be argued that poorly-sampled species are generally placed,

unresolved, outside of clades with well-sampled species, leading to

bias in calculations. The 1000 random resolutions of the strict

consensus supertree should circumvent this problem, but to be

sure, the tests were repeated for two reduced datasets with species

present in at least two and three source trees respectively. Second,

the level of phylogenetic signal inferred for each trait may be

influenced by variation in species abundances, hence the analyses

were also performed separately for species that are considered

common (including one abundant taxon), uncommon and rare

(data from [11]). Phylogenetic signal of the trait ‘reported

collection of .1000 pieces per year’ for the ‘rare’ dataset could

not be computed as it is represented by just two species.

Carpenter et al. [11] also found that several taxa that are

susceptible to bleaching also appear to be heavily impacted by

disease and predation by the crown-of-thorns seastar, Acanthaster

planci. To ascertain if this relationship holds with the incorporation

of phylogenetic information, I tested for correlation among traits

associated with coral bleaching, disease and predation using

phylogenetically independent contrasts [107]. This was imple-

mented in APE 2.7 [108], with statistical significance evaluated

based on fit to a linear model.

Finally, I determined whether the decrease in phylogenetic

diversity (PD) [44] under various extinction scenarios was different

from a null model of random extinction. PD was compared

between rarefied trees based on threat status (EN and above, VU

and above, NT and above) and 1000 randomly pruned trees with

the same species richness, using the one-sample t-test [109]. This

analysis was also carried out for 30 species with the highest EDGE

scores.

Results

Integrating the diverse data types using a supertree approach

yields a 1293-species phylogeny of Scleractinia that includes all

837 reef-building corals (Figures 1, 2, 3). Despite the vast increase

Figure 1. Supertree of Scleractinia with corallimorph out-
groups Discosoma and Ricordea florida. Cladogram of 1293 corals
inferred by maximum parsimony analysis of the 792-character dataset
assembled using 15 source trees (13 morphological, one molecular and
one taxonomic). Complex and robust clades shown in Figures 2 and 3
respectively. GAR: Gardineriidae, MIC: Micrabaciidae.
doi:10.1371/journal.pone.0034459.g001

Table 2. Phylogenetic signal of IUCN Red List categories and traits of reef corals.

Category/trait
Proportion of
species D P for H0: D = 0 P for H0: D = 1

Endangered and above 0.032 1.09660.063 ,0.001 0.780

Vulnerable and above 0.269 0.96060.023 ,0.001 0.167

Near Threatened and above 0.477 0.85360.018 ,0.001 ,0.001

moderately or highly susceptible to bleaching 0.419 0.22960.010 ,0.001 ,0.001

moderately or highly resistant to bleaching 0.116 0.30060.023 0.001 ,0.001

moderately or highly susceptible to disease 0.310 0.12460.012 0.024 ,0.001

moderately or highly resistant to disease 0.058 20.17260.015 0.887 ,0.001

recovers quickly from bleaching or disease 0.134 0.12560.013 0.068 ,0.001

moderately or highly susceptible to crown-of-thorns seastar predation 0.273 0.05260.011 0.180 ,0.001

restricted or highly fragmented range 0.124 1.13660.037 ,0.001 0.973

reported collection of . 1000 pieces per year 0.157 0.63060.021 ,0.001 ,0.001

Results based on D, a measure of total sister-clade disparities on the phylogeny (6 SD; 0 for clumped traits, 1 for random traits). Numbers in bold denote non-significant
results (i.e. not different from 0 or 1).
doi:10.1371/journal.pone.0034459.t002

Threatened Reef Corals of the World

PLoS ONE | www.plosone.org 3 March 2012 | Volume 7 | Issue 3 | e34459



in taxon sampling over previous phylogenies [42,82], the present

analysis recovers a highly similar topology. In particular, all 21

clades recognised by Fukami et al. [42] (labelled I to XXI) are

present in the supertree.

The analysis of EDGE scores has produced a priority list of reef-

building corals that are both phylogenetically unique and facing

elevated extinction risk (Figure 4; for full ranking, see Table S1).

Conservation of these endangered lineages is critical for the

preservation of evolutionary diversity. The priority scores of the

top 30 species exceed the mean of all reef corals by at least an

order of magnitude, and a significantly greater than random loss of

phylogenetic diversity would occur should these species go extinct

(P,0.001).

Extinction probability of corals exhibits negligible phylogenetic

signal since the hypothesis that there is no signal cannot be

rejected given the data, i.e. non-zero K values are only non-zero

by chance (P = 0.745, K = 1.584610211). Threatened species (EN

and above, and VU and above) are randomly distributed on the

phylogeny, while species given a minimum status of NT are only

slightly more clumped than random (Figure 5, Table 2). The

Figure 2. Cladogram of scleractinian corals in the complex clade. A total of 735 corals, including 462 reef species, are represented on this
maximum parsimony cladogram that is part of the scleractinian supertree (Figure 1). Roman numerals denote clades based on the phylogeny in
Fukami et al. [42]. ACR: Acroporidae, AGA: Agariciidae, AST: Astrocoeniidae, CAR: Caryophylliidae, DEN: Dendrophylliidae, EUP: Euphylliidae, FLA:
Flabellidae, FUA: Fungiacyathidae, GUY: Guyniidae, MEA: Meandrinidae, OCU: Oculinidae, POR: Poritidae, SID: Siderastreidae, TUR: Turbinoliidae.
doi:10.1371/journal.pone.0034459.g002
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datasets comprising species with increased source tree sampling

and fixed abundances show very similar patterns, indicating that

these factors have limited influence on phylogenetic signal strength

(Figure 6). Gains in statistical significance (more clumped than

random) are recorded for VU and above corals that are present in

$3 source trees, as well as for taxa considered at least VU and NT

for the uncommon species, but values of D remain close to one

(random). Simulated extinction scenarios of reef corals based solely

on threat status result in smaller than random losses of PD

(P,0.001, EN and above, VU and above, NT and above, all

significantly less than random loss).

The tests for phylogenetic signal show that species susceptible to

bleaching, disease, and predation by Acanthaster planci, as well as

those resistant to and recovering quickly from bleaching and

disease (i.e. resilient [110]) are at least moderately clumped on the

coral tree (Figure 5, Table 2; see [105]). Species’ source tree

representation and abundances have negligible effects on these

inferences (Figure 6). In fact, phylogenetic signal increases among

taxa represented by at least three source trees for the traits

Figure 3. Cladogram of scleractinian corals in the robust clade. A total of 552 corals, including 375 reef species, are represented on this
maximum parsimony cladogram that is part of the scleractinian supertree (Figure 1). Roman numerals denote clades based on the phylogeny in
Fukami et al. [42]. ANT: Anthemiphyllidae, AST: Astrocoeniidae, CAR: Caryophylliidae, EUP: Euphylliidae, FAV: Faviidae, FUN: Fungiidae, MEA:
Meandrinidae, MER: Merulinidae, MUS: Mussidae, OCU: Oculinidae, PEC: Pectiniidae, POC: Pocilloporidae, RHI: Rhizangiidae, SID: Siderastreidae, STE:
Stenocyathidae, TRC: Trachyphylliidae.
doi:10.1371/journal.pone.0034459.g003
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‘resistant to bleaching’, ‘susceptible to disease’ and ‘resistant to

disease’. It should be noted that in the dataset comprising only rare

corals, species resistant to bleaching display relatively low signal

(D = 0.5456SD 0.065), but are still significantly more clustered

than random on the phylogeny (P = 0.016).

Among lineages, correlations are evident between susceptibil-

ities to bleaching events and disease (P = 0.001), as well as

susceptibilities to bleaching and predation (P,0.001). Negative

linear relationships are present between susceptibility and

resistance for both bleaching (P,0.001) and disease (P,0.001),

although there is a positive correlation between susceptibility to

disease and quick recovery from bleaching/disease (P = 0.025).

Discussion

Using the most comprehensive coral phylogeny to date, this

study has quantified the expected loss of evolutionary history for

reef species based on the EDGE (evolutionarily distinct and

globally endangered) measure. The ranking provided here, the

first of its kind for corals, has been successful in identifying distinct

lineages that warrant the highest conservation attention.

The top-30 list captures three of four CR species and 16 of the

23 EN species, the majority of which have restricted ranges

(Figure 4). In particular, the most endangered lineage represented

by Ctenella chagius is known only from the Chagos Archipelago,

Mauritius and La Réunion, while Siderastrea glynni, fourth on the

list, is endemic to Panamá in the tropical eastern Pacific [92]. The

remaining 11 species are of VU status and could be accorded

lower conservation priority based upon extinction risk alone. Five

of these, Horastrea indica, Heliofungia actiniformis, Anomastraea

irregularis, Physogyra lichtensteini and Moseleya latistellata have only

recently been highlighted by the EDGE of Existence programme

(http://www.edgeofexistence.org/coral_reef) that aims to identify

evolutionarily distinct and globally endangered species. Yet it has

failed to recognise 21 of the 30 corals shown here to be of top

priority; neither the ‘Isaac’ nor ‘Pessimistic’ transformation

increases its representation of high EDGE-scoring species (22

and 24 species overlooked respectively). The programme’s

Figure 4. Top 30 reef corals ranked according to EDGE scores. List of corals representing high evolutionary distinctiveness and extinction risk.
Left panel shows the EDGE score for each species. Global mean score for all 837 reef corals denoted by vertical line through bars, which are coloured
to indicate respective geographic ranges. Error bars represent standard deviation. Middle panel shows pre-1998 and present IUCN Red List categories,
as well as ranks according to the EDGE of Existence (EoE) programme. Right panel shows pre-1998 and present rates of global population reduction.
IUCN Red List and population reduction data derived from Carpenter et al. [11].
doi:10.1371/journal.pone.0034459.g004
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methodology remains unknown, but likely utilisation of an

incomplete phylogeny may have precluded a comprehensive

listing (see also materials and methods in [29]).

Distinctiveness metrics such as ED often account for a greater

proportion of total PD than expected [111]. Recent evidence also

suggests that evolutionarily distinct species and high PD represent

a broader distribution of ecological diversity and higher ecosystem

function than expected [112–117] (but see [109]). If the

preservation of biological diversity is a goal of reef conservation,

then such phylogenetically-informed rankings would shore up

priority setting efforts that currently focus on species richness,

rarity and connectivity [13,118–121].

Despite the heightened risk in a larger fraction of corals relative

to birds and mammals [11], groups that exhibit phylogenetic

clustering of threat status [105,122], extinction probability and

threatened species of corals show negligible signal associated with

phylogeny (Figure 5). That species facing elevated extinction risk

are not concentrated in particular parts of the phylogeny is no

cause for optimism, however, as recent simulations have shown

that other factors are involved in determining the magnitude of

Figure 5. Cladogram of reef corals illustrating phylogenetic signal of traits. This tree represents the first of 1000 random resolutions of the
strict consensus supertree. Vertical bars illustrate, in red, degrees of clumping among species classified as Vulnerable (VU) and above, susceptible
and/or resistant to specific threats, and those recovering quickly from bleaching and disease. Taxa absent for the above traits are in blue. Data
Deficient (DD) species, which are not phylogenetically clumped, are in black.
doi:10.1371/journal.pone.0034459.g005

Threatened Reef Corals of the World
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Figure 6. Species’ source tree representation and abundances show limited effect on phylogenetic signal strength. Measure of
phylogenetic signal based on K for probability of extinction (K = 0 for random continuous traits) and D for all other traits (D = 0 for clumped and D = 1
for random binary traits). Upper and lower panels show levels of phylogenetic signal for datasets with varying degrees of source tree representation

Threatened Reef Corals of the World
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PD loss during extinctions [123]. In particular, trees derived from

real data generally have asymmetric topologies [124–128]; the

coral supertree is no exception (P,0.001, Colless’ [129] index

significantly greater than predicted by the Yule model). Under this

circumstance, even random exterminations of species can lead to

disproportionate losses of PD [34,123,130]. High average

extinction probability among reef corals [11] may also exacerbate

this pattern [123]. Indeed, random extinction scenarios of coral

species lead to larger declines in PD compared to extinctions based

on IUCN Red List threat status. In other words, while none of the

major clades of reef corals are in immediate danger of complete

obliteration, the unbalanced phylogeny and high mean extinction

risk suggest that any extinction event can substantially reduce

overall PD.

Bleaching, disease, and predation by A. planci are three of the

most serious stressors affecting coral health today [131,132]. Tests

for phylogenetic signal show that species susceptible to these

threats, as well as those resistant and resilient to bleaching and

disease are clustered on the tree, indicating that the aggravation of

these risk factors can result in disproportionately large PD declines.

More worrying is the finding that lineages vulnerable to bleaching

events are also more likely to be susceptible to disease and

predation. These threats often impact similar sets of species

[11,133–136], yet this relationship holds even after controlling for

effects of shared common ancestry.

The value of investigating extinction risk in the phylogenetic

context has been emphasised in considerable detail elsewhere

[26,29,32,38,101,137,138]. Specifically for corals, confusion

surrounding traditional taxonomy makes it difficult to accurately

generalise traits exhibited by species to higher level taxa [42]. For

instance, following the massive bleaching event in 1998, the family

Faviidae, including Leptastrea purpurea and L. transversa, has been

declared a ‘winner’ in the recovery process at Sesoko Island, Japan

[39,40]. Yet phylogenies inferred in the last 15 years have

unequivocally demonstrated that Leptastrea is more closely related

to members of Fungiidae rather than Faviidae [42,52,53,82,139]

(see also [140,141]), recovered within clade X with corals that are

resistant to or recover quickly from bleaching (Figures 3, 5).

Results here suggest that these traits are conserved on the

evolutionary tree, irrespective of species’ taxonomic affiliations.

Vulnerabilities of reef corals to bleaching and disease appear to

be mediated by the same physiological mechanisms, and immune

responses against these threats tend to be similar among close

relatives, with Acroporidae and Porites (Poritidae) possessing the

lowest and highest immunity levels respectively [142]. Conse-

quently, the enhanced susceptibility of Alveopora to bleaching [11] is

better understood in the context of recent phylogenies that show

the genus being placed within Acroporidae (clade VI) rather than,

traditionally, Poritidae (clade III) [42,82]. It is clear that,

conventional taxonomy notwithstanding, close relatives are likely

to share similar levels of susceptibility, resistance and resilience to

various risk factors, underscoring the utility of phylogenetic

approaches in understanding specific responses of corals to

environmental perturbations.

Subsequent analyses will utilise these results in distinguishing

reef regions that make the greatest contribution to evolutionary

history, in comparison to the most species-rich areas [143]. A

biogeographically-weighted evolutionary distinctiveness (ED) met-

ric has the potential for regional prioritisation [144], but a

probabilistic approach that accounts for future extinctions of

related species may be more suitable than the static allocation of

conservation value afforded by the ED measure [32,145,146].

Analyses demonstrating phylogenetic clustering of susceptibili-

ties, resistance and resilience to various risk factors rely on

accurate and precise species-specific data. The conservation status

of Data Deficient species clearly needs to be assessed while regular

updates are necessary for all corals [147,148]. Increasingly, recent

research is revealing a wider range of species responses to

environmental threats than before [149–152]. Given that these

threats exhibit considerable phylogenetic signal, the coral tree of

life will prove an excellent framework for investigating these

variabilities.

Supporting Information

Table S1 Reef and non-reef coral species included in
the phylogenetic analysis of Scleractinia. For each species,

the IUCN Red List category and ranks according to the EDGE of

Existence (EoE) programme and the present study are shown

where appropriate. Species not assessed are indicated as N/A.

GenBank accession numbers are provided for DNA sequences (see

text for names of markers).

(PDF)
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