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Abstract: To date, cardiotocography (CTG) is the only non-invasive and cost-effective tool available
for continuous monitoring of the fetal health. In spite of a marked growth in the automation of the
CTG analysis, it still remains a challenging signal processing task. Complex and dynamic patterns
of fetal heart are poorly interpreted. Particularly, the precise interpretation of the suspected cases is
fairly low by both visual and automated methods. Also, the first and second stage of labor produce
very different fetal heart rate (FHR) dynamics. Thus, a robust classification model takes both stages
into consideration separately. In this work, the authors propose a machine-learning-based model,
which was applied separately to both the stages of labor, using standard classifiers such as SVM,
random forest (RF), multi-layer perceptron (MLP), and bagging to classify the CTG. The outcome was
validated using the model performance measure, combined performance measure, and the ROC-AUC.
Though AUC-ROC was sufficiently high for all the classifiers, the other parameters established a
better performance by SVM and RF. For suspicious cases the accuracies of SVM and RF were 97.4%
and 98%, respectively, whereas sensitivity was 96.4% and specificity was 98% approximately. In the
second stage of labor the accuracies were 90.6% and 89.3% for SVM and RF, respectively. Limits of
agreement for 95% between the manual annotation and the outcome of SVM and RF were (−0.05
to 0.01) and (−0.03 to 0.02). Henceforth, the proposed classification model is efficient and can be
integrated into the automated decision support system.

Keywords: cardiotocograph; fetal heart rate; random forest; sensitivity; specificity; SVM

1. Introduction

The perinatal mortality rate is defined as the total number of stillbirths and deaths that
take place during the first seven days of life per 1000 live births. According to UNICEF, in
low- and middle-income countries this figure stood at 19 per 1000 births by 2018, whereas
for high-income and upper-middle-income countries this value was 3 and 7 per 1000,
respectively South Asia and Sub-Saharan Africa have the highest perinatal mortality at
26% and 28%, respectively as reported by UNICEF [1]. Though in the beginning of 20th
century the perinatal mortality in high-income countries was frighteningly high, it was
drastically reduced with proper antenatal care, comprehensive indicators of C-section, and
introduction of perinatal screening technologies such as cardiotocograph (CTG), ultrasound,
fetal ECG, amnioscopy, and amniocentesis etc. [2].

It was found that the most common reasons for birth-related complications and
perinatal deaths are prematurity, birth asphyxia, maternal hypertension, and septicemia [3].
Asphyxia arises due to prolonged deprivation of oxygen caused by the interruption in
the placental blood flow that is caused by maternal pre-eclampsia, placental abruption, or
umbilical cord prolapse. Inadequate delivery management causes the signs of asphyxia
to be overlooked. Fetal heart rate during the intra-partum and ante-partum period gives
indications of the signs of asphyxia that, if detected in time, can prevent irreversible organ
damage or even death.
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The main objective of intrapartum fetal monitoring is to recognize fetuses with risks
of mortality and morbidity in order to ensure timely intervention. Cardiotocograph (CTG)
is the most commonly used external monitoring system that continuously records the
fetal heart rate (FHR) and uterine contraction (UC) to produce a visual display either
electronically or on thermal paper. CTG has been in clinical practice for the last six decades
and has enabled clinical practitioners to detect signs of fetal compromise at an early stage.
However, studies have shown that continuous CTG monitoring of low-risk pregnancies led
to an increase in unnecessary interventions and C-sections. To avoid this [4] international
guidelines such as FIGO [5] NICE, NICHD [6] etc., have suggested the use of CTG only for
high-risk pregnancies.

1.1. Physiology of Fetal Hypoxia

The autonomic nervous system (ANS), baroreceptors, and chemoreceptors control
the pace of the fetal cardiac activity. The ANS consists of the sympathetic nervous system,
which accelerates the heart rate, and the parasympathetic nervous system, which tries to
reduce the heart rate. The baseline of the FHR is determined by the balance between these
two nervous systems. When blood pressure increases, baroreceptors help reduce the heart
rate, which in turn reduces blood pressure. This reduction in blood pressure prompts the
baroreceptors to reduce the tone of the parasympathetic nerve and stimulate an increase
in FHR and blood pressure. Chemoreceptors can sense the depletion of oxygen levels in
fetal blood, which causes an increase the FHR to intensify the rate of oxygen input from the
placenta. However, during hypoxemia, chemoreceptors cause the FHR to drop, resulting in
an increase in blood pressure.

1.2. Problems of CTG Interpretation

Significant and methodical cardiotocography (CTG) interpretation is vital to minimize
intrapartum fetal asphyxia and the related grim consequences. Nowadays, though there
are widespread uses of CTG, it suffers from inter- and intra-observer variation which
results in low specificity. To counter this problem Dawes et al. [7] introduced the first
computerized version of CTG for automated feature extraction. A study that involved
469 subjects established that the fetal mortality rate when monitored by computerized CTG
was four times less than the population whose CTG was interpreted visually. Despite the
worldwide acceptance of CTG, the medico-legal issues have risen due to reasons such as
improper interpretation of CTG and subsequent lack of timely action [8] Birth asphyxia-
related litigations in the UK in the decade 2000–2010 totaled as high as GBP 3.1 billion. A
total of 73.6% of US-based obstetricians faced litigations due to fetal neurological damage.
These litigations not only affected the working lives of the clinicians but also had influenced
them to opt for unnecessary C-sections as a safeguard. The lack of standard guidelines for
interpretation and recognition of the FHR signals in the gray zone is another reason for
misinterpretation. To address these issues, in recent times soft-computing-based methods
have been explored to find better interpretation of FHR results, which yielded results that
are comparable to the clinical interpretation. These systems are capable of distinguishing
between normal and IUGR fetuses [9].

Automated interpretation of CTGs have not produced the desired result in predicting
the pathological conditions. Soft-computing-based techniques were thus sought to identify
the high-risk features with better accuracy. In fetal healthcare, machine learning had been
used successfully to measure fetal weight [10] predict hypoxia, or estimate gestational
age [11].

In this work, the authors propose a machine learning (ML)-based technique to classify
the CTG by taking into consideration both the stages of labor separately. Standard ML
algorithms such as MLP, SVM, random forest, and bagging were used for classification,
and the most suitable classifier was selected using various statistical analysis metrics.
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Arrangement of the paper is as follows: Literature study is elaborated in Section 2;
Methodology is described in Section 3; Section 4 contains the Results and Discussion; and
the Conclusion is given in Section 5.

2. Literature Study

Since the classical method for the interpretation and classification of CTG failed to
produce convincing results, in last decade the focus of research had shifted towards the
application of soft-computing-based techniques for the classification of CTGs. Comert et al.
used the CTU-UHB dataset with 552 raw CTG data points to predict the fetal state with
87.9% accuracy [12]. In another work with the same dataset, they reported an accuracy of
91.8% and 93.4%, respectively, with an artificial neural network (ANN) and an extreme
learning machine (ELM) Comert (2019) [13]. These models have shown high accuracy
for normal and pathological states; however, the accuracy dropped to 59% for suspicious
CTGs. Sundar et al. [14] generated a model using XGBoost with an accuracy of 96% for
the pathological state but only 73% for suspicious state. Batra et al. [15] performed feature
selection on the UCI machine learning repository’s CTG data.

Impulse response function, FHR baseline, and variability were used as inputs to SVM
by Warrick et al. [16] to train the system to classify normal and pathological CTGs. A total
of 50% of the pathological CTGs were correctly identified with FP = 7.5%. The training
dataset contained 189 normal CTGs and 31 pathological ones. Dash et al. [17] exploited the
dynamic nature of the FHR signal. They segmented the CTG record into shorter segments
and extracted the features from each segment separately. The sequence of features from the
segments were used as inputs to a Bayesian classifier. The true positive rate (TPR) and true
negative rate (TNR) were 0.817 and 0.609, respectively, and thus outperformed SVM on the
same dataset. The hidden patterns from the FHR were extracted by Chamidah et al. [18]
(to classify the fetus as normal, irregular, or pathologic using k-means clustering with an
accuracy of 90.64%.

Brocklehurst et al. [19] used numerical algorithms and ANN to effectively identify
abnormal CTGs. Features such as signal quality, patient clinical data, and the major features
of CTG were used as the input. Nuanes et al. [20] used uterine contractions, acceleration,
and deceleration as input features to identify the rates of acidosis. In both the works the
targets were labelled manually by the clinicians. Deceleration capacity was also used to
predict acidemia with pH < 7.05 [9]. Another similar study was conducted with fractal
analysis and the Hurst parameter as the input [21]. In these two studies, the AUCs were
found to be 0.665 and 0.87, respectively. Dash et al. [17] used the standard parameters of
CTG and applied generative models and Bayesian theory to predict acidemia; pH < 7.15
was used for providing the target labels.

Petrozziello et al. [22] used a multi-modal convolution neural network (MCNN) on
35000 CTG data points and had a false positive rate (FPR) of 15% and a TPR of 31%.
Ogasawara et al. [23] used a database containing 162 normal and 162 abnormal CTGs to
show that a deep neural network (DNN) performed better in classifying CTGs than either
SVM or k-means clustering. Rahamayanti et al. [24] experimented with LSTM models that
had 28, 14, and 42 nodes in their hidden layers. They used ReLU and Softsign activations
with 32 batch size. The accuracies were 95–98% for different models.

Besides class imbalance, the major challenge in developing a robust soft-computing-
based CTG interpretation model is class labeling. Many class labeling methods use weak
metrics such as pH and healthy against HIE (hypoxic ischemic encephalopathy) without
taking into consideration other CTG abnormalities. In this work, the authors have ad-
dressed this problem by annotating the CTG by different clinicians. Also, the classification
of CTG without considering the progress in labor is not ideal because definition of normal
features varies from first stage to second stage. The authors have taken this into account
and performed the classification based on the stage of labor. The studies discussed above
do not take into consideration the second stage of labor, which reduces the usefulness of
the decision support system.
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3. Methodology

Classification was performed separately on both the stages of labor. The duration of
each stage of labor was roughly 30 min. Overview of the methodology is given in Figure 1.
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3.1. Dataset Description

The Czech Technical University and University Hospital of Brno (CTU-UHB) database
consists of 552 intrapartum records collected using the OB TraceVue System between 27th
April and 6th August 2012. The duration of each record was at most 90 min. In the CTG
records, the second stage of labor was not more than 30 min. From the 552 cases, only 46
were caesarean deliveries, whereas the remaining were vaginal deliveries. The following
selection criteria had been taken into account [25]:

1. Mother’s age—plays a role in congenital disease. Women with age below 18 years
were thus excluded from the study.

2. Weeks of gestation—affects the shape and behavior of the FHR signal. Hence, only
fetuses with a gestational age greater than 36 weeks were included in the study.

3. Known fetal disease—a disease such as intrauterine growth retardation (IUGR) has
an effect on FHR patterns. Fetuses with IUGR or other congenital defects were not
part of the study.

4. Singleton pregnancies without complication were included.

Different labor outcome measures such as umbilical artery pH were also provided
to facilitate objective classification. It is considered the most common outcome measure
of fetal hypoxia. Besides pH, the following outcome measures were also provided in the
database:

1. Base excess (BE) is a sign of metabolic hypoxia.
2. A base deficit in extracellular fluid (BDecf) is another measure of hypoxia.
3. Complete neonatal records of each baby. There was no neonatal morbidity, hypoxic-

ischemic encephalopathy (HIE), or seizures.
4. Apgar score.

The following criteria had been applied to the CTG records:

1. Signal Length: Out of the 90 min of each CTG record, stage 1 was restricted to a
maximum of 60 min. The minimum time length, Td, needed was:

{pH ≤ 7.15; Td ≥ 30minspH > 7.15; Td ≥ 40mins (1)

Time duration from the end of the first stage of labor to birth was less than 30 min. A
maximum of 30 min of FHR was recorded for the second stage of labor to ensure the
circumvention of adversarial outcomes that might occur at the end of this stage.
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2. Missing signal: The quantity of missing signal was a maximum of 50% in the first
stage of labor and was kept to an optimum in the second stage.

3. Noisy signal: Maternal heart rates were present in some of the recordings due to the
inaccurate placement of the ultrasound probe.

The main parameters of the CTG signal were:

1. Length of stage 1 of the labor in minutes.
2. Length of stage 2 of the labor in minutes.
3. Time duration from the signal end to birth.
4. Percentage of noisy data in Window 1.
5. Percentage of noisy data in Window 1.
6. Overall percentage in Window 1.
7. Percentage of noisy data in Window 2.
8. Percentage of noisy data in Window 2.
9. Overall percentage in Window 2.

3.2. Extraction of the Features

The main features of CTG had been extracted in some previous works by the author.
The authors considered two frequency domain parameters, i.e., baseline variability and
sinusoidal heart rate pattern (SHR) and three time domain parameters, i.e., FHR baseline,
acceleration, and deceleration. A summary of the extraction of the features is given below.

3.2.1. Baseline of FHR

FHR baseline (BL) was estimated iteratively based on the assessment of an initial
virtual baseline within a 10 min window [26]. The effect of this initial calculation of base-
line is nullified due to the iterative calculation of the adjusted baseline, which ultimately
approaches the original baseline of the FHR signal. Each stage of iteration removes acceler-
ations and decelerations. This algorithm is applied in a 10 min window with 3 minutes
of overlap. If within each window is an identifiable baseline of duration more than 2 min
(not necessarily contiguous), then the baseline value is accepted; otherwise, it is rejected.
Baseline was classified as Normal, Bradycardia, and Tachycardia based on the amplitude
of FHR.

3.2.2. FHR Variability

A given FHR signal was disintegrated to its component frequencies, where each
frequency is represented by its amplitude expressed in bpm. FHR variability (FHRV) was
calculated in each discreet 10 min slice by computing the deviation of the FHR amplitude
from the baseline within a one minute segment. If the number of cycles in each segment
is more than one, then that segment has an identifiable baseline variability value. FHR
variability (FHRV) is the standard deviation of the FHR values at each point. Summation of
the value of variability for all the segments where the number of cycles exceeds one, gives
the variability of the FHR for a 10 min window, and the average FHRV of all the 10 min
windows is the variability of the CTG trace [27].

3.2.3. Acceleration

Three points are used to identify each acceleration (Ac): the beginning, where the fetal
heart rate crosses the baseline; the peak of Ac; and the end, i.e., where FHR again crosses
the baseline. The duration of each deviation and the peak are noted. If the duration is
between 15 sec and 10 min and the difference between the peak and the baseline is greater
than 15 bpm, then the deviation was identified as acceleration. Acceleration that lasts for
more than 10 min is considered a baseline change. Acceleration was classified as either
present or absent [28].
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3.2.4. Deceleration

Besides the FHR baseline, the next important feature is the type of deceleration, which
is a major indicator of fetal health status. The classification of deceleration plays a major
role in the classification of FHR patterns into the three-tier system, i.e., normal, suspicious,
and pathological. The spatial and temporal relationship of FHR with the uterine contraction
pressure (UCP) of the mother can help classify the deceleration as Early, Late, or Variable.
The authors proposed a fuzzy-logic-based method to identify a deceleration, extract the
event points of both FHR and UCP, and finally classify the decelerations.

The algorithm proposed by the authors to estimate the deceleration assesses the width
as well as the amplitude of any negative deviation from the baseline and identifies it as
deceleration if both the amplitude and the width conforms to the definition provided by
the different international obstetric bodies. Every deceleration, De, was identified using
three points—the start, where the fetal heart rate falls below the baseline; the nadir of De;
and the end, i.e., where FHR again goes above the baseline. The duration of each De was
noted.

According to NICHD guidelines, the length of deceleration should be at least 15 s
but not more than 10 min, in which case it is considered a baseline change. The difference
between the nadir and the baseline should be at least 15 bpm. However, in clinical scenarios
may not conform to such a strict definition. Therefore, the authors used a fuzzy-logic-
based approach to identify the length and width in order to define a period with negative
deviation from the baseline as deceleration. Finally, the classification of deceleration was
performed using machine-learning-based techniques.

3.3. Classification of FHR for First Stage of Labor

The dataset is D = {d1, d2, . . . ., dn}, where each data sample di has a feature set
consisting of 11 features X = {x1, x2, . . . ., x10}. The features are listed in Table 1.

Table 1. Description of the feature set for the classification of CTG.

Feature
Number Feature Set Description

1 Baseline (BL) Baseline of the FHR

2 Baseline type (B_type) Classification of BL as Normal, Bradycardia,
or Tachycardia

3 Variability (V) Variability of FHR baseline

4 Variability type (V_type) Classification variability as Absent, Minimal,
Moderate, or Marked

5 Acceleration (Ac) Acceleration of FHR

6 Number of accelerations Total number of accelerations present
in a CTG trace.

7 Number of Early decelerations Number of Early decelerations present
in a CTG trace

8 Number of Late decelerations Number of Late decelerations present
in a CTG trace

9 Number of Variable
decelerations

Number of Variable decelerations present
in a CTG trace

10 Sinusoidal heart rate (SHR)
Sinusoidal heart rate pattern present or not. SHR

in a CTG trace is denoted as Present, Absent,
or Undetermined.

11 Stage of labor Stage of labor can be normal, stage 1, or stage 2.
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A total of 399 cases from the CTU-UHB dataset were used for the experiment. Six
clinicians separately annotated the data. The final annotation was performed by taking a
majority vote. The CTG trace is classified as Normal (1), Suspicious (2), and Pathological (3).
The annotated data was used as input to the classifiers. The input vector is represented as:

I =


v11 . . v1nCk

. . . .Ck

. . . ..
vm1 . . vmnCk


where the feature value for each data sample is represented as vij and Ck, k = 1, 2, 3 denotes
the class of each sample. The four classifiers used for building different classification models
are discussed below.

3.3.1. Random Forest (RF)

RF is known to provide a higher level of accuracy. It uses the bagging method, which
is a combination of learning models that provides a more accurate and stable outcome.
It searches for the best feature among a random subset of features, leading to a wide
variety that generally results in a better model. Hence, it is a suitable model for predictive
modelling. The associated algorithm is given in Algorithm 1:

Algorithm 1: FHR Classsification using Random Forest

Input: Si ⊆ {(d1, y1), . . . ., (dn, yn)}
Step1: Perform row and column sampling
Step2: Decision tree DTi for each Si
Step3: Prediction Pi ← output of each Si
Output: P← majority vote of P1, . . . ., Pi

3.3.2. Multilayer Perceptron (MLP)

MLP offers approximate solutions for complex problems. The input layer has 10 features
along with weights, wi, and the annotated class of the sample as input units. The output
layer has one output unit. There are three hidden layers with sigmoid as the activation
function. The use of the sigmoid function for the hidden layers is appropriate for the
problem since we need to consider a soft decision boundary. The associated algorithm is
given in Algorithm 2:

Algorithm 2: FHR Classsification using Multi Layer Perceptron

Input: X = [x1, . . . ., x10], class labels, initial weight vector w = [wi]
T

Step 1: Weighted sum of the input features

g(x)←
n10
∑

i = 1
wixi

Step2: Pass the value to the sigmoid activation function f.
Step3: Produce the output

y← f (g(x))
Step4: Compute the error ei = hi − yi
Step5: Adjust w to minimize ei.
Output:

ŷ = ∑10
i = 1 wi fi

∑10
i = 1 wi

3.3.3. Support Vector Machine

Training samples are mapped to high-dimensional feature space. SVM can be easily
extended into complex classification problems with more than two classes. In the current
classification problem it is not always possible to find the hard boundary between the
classes. SVM is capable of dealing with soft boundaries for multiclass classification prob-



Diagnostics 2023, 13, 858 8 of 24

lems by introducing a slack variable that allows the input di to be closer to the hyperplane.
The associated algorithm is given in Algorithm 3:

Algorithm 3: FHR Classsification using Support Vector Machine

Input: ∆ = {(d1, y1), . . . ., (dn, yn)}, class labels
C = [c1|, c2, c3], initial weight vector w = [wi]

T , hyper-parameters, training set T
Step1: Define the hyperplane wT ∗ d + b← 0
Step3: Maximize the margin

w ∗ d + b ∨ w
|w|∨← 1

|w|∨

between the hyperplane and the plane median
Step4: Minimize |w|∨ to maximize the margin
Output: wT+1

3.3.4. Bagging

Bagging is a commonly used ensemble method that creates several training sets using
boot-strapping. It is useful in medical data analysis because it constructs a classification
tree by bootstrapping the training data and then aggregating the predictions to produce the
outcome. During bootstrapping, multiple training sets are created choosing the samples
randomly and repeatedly. The training of each learner results in the generation of multiple
learning models. This improves the accuracy of the prediction. The associated algorithm is
given in Algorithm 4:

Algorithm 4: FHR Classsification using Bagging

Input: ∆ = {(d1, y1), . . . ., (dn, yn)}, class labels, base learning algorithm L, number of learning rounds
j, training set T
Step1: ∆t ← Bootstrap ∆
Step3: ht ← L∆t
Step4: j← j + 1
Step5: Repeat steps 1–3 till j covers the entire training set T
Output:

ŷ(d) = argmax
T
∑

j = 1
(y = ht(d))

For the purpose of classification, the dataset was split into k-number of folds where
each fold is used as a testing set at some point, whereas other folds are used for training. The
value of k was set to 5. Rather than splitting the data into train–test sets, the cross validation
was chosen because it gives a less biased estimate of the model skill. The algorithm for the
classification with k-fold cross validation is given in Algorithm 5:

Algorithm 5: Algorithm for the k-fold cross validation

Input: D = {d1, d2, . . . ., dn}, class labels
Step1: Initialize i← 1, k← 5
Step2: Split D into k-folds
Step3: In iterationi, the ith fold is used for testing and the rest are used for training
Step4: i← i + 1
Step5: Repeat steps 3–4 while i ≤ k
Step6: Evaluate model on test score

3.4. Data Augmentation

A large dataset is important for the improved performance of a machine learning
model. However, the existing dataset is imbalanced. Thus, to increase the diversity of the
data, we have performed data augmentation using the synthetic minority oversampling
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technique (SMOTE). The normal and suspicious CTGs are the majority class C−, whereas
pathological CTGs are the minority class C+. The total synthetic samples are:

S = (C − C+) × C + C−

The size of the dataset after augmentation was 1968. The same set of classifiers were
used with the augmented data and the accuracy was noted for both the training and testing
data. SMOTE is applied only to the training dataset, whereas the test dataset remains
unchanged to correctly represent the original data.

3.5. Classification of the Second Stage of Labor

Another complication associated with the classification of CTG is the existence of two
different stages of labor. In the first stage, cervical dilation occurs with regular contractions.
The second stage is characterized by active pushing, during which uterine contraction is
more frequent and so are the decelerations. Interpretation of the parameter values also
change during this stage. While building a robust classification system most researchers
consider either one of the labor stages or make no distinction between the stages. The first
approach is methodologically correct but does not take into consideration the change in
feature values that might lead to a better recognition of the fetal state. The second approach
can lead to erroneous classification because it does not consider the radical changes in
FHR parameter dynamics. In this work, the authors applied the classification and feature
extraction algorithms to the second stage as well, while taking into consideration the
changed dynamics in this stage.

4. Results and Discussion

The analysis of the result can be categorized into four categories:

i. Adequacy of the dataset.
ii. Outcome of the classification and the comparison of the performance of the classifiers.
iii. Agreement between the manual annotation and the classifier-based outcome.
iv. Comparison of the classifiers’ performance for different stages of labor.

4.1. Kaiser–Meyer–Olkin (KMO) and Bartlett’s Test

Sample size is the most important factor to be considered to determine if the data is
appropriate for the experiment. Sample size should be more than 100 [28] and at least 300
for factor analysis [29]. Also, the number of samples should be a least five times more than
the number of features [30]. KMO was conducted to measure the sample adequacy, which
is used to compare the magnitudes of the observed correlation coefficients in relation to the
partial correlation coefficients. KMO ≈ 1 is considered ideal; KMO < 0.5 is unacceptable.
Bartlett’s test of sphericity is used to establish that there is no redundancy between the
features, i.e., an ideal value for Bartlett’s sphericity means that the null hypothesis of
uncorrelated features is rejected. Both the values are shown in Table 2. A scree plot is
plotted to find out the number of features that can be retained by recognizing the point of
inflexion. The number of features before the inflexion represents the important features to
be extracted for the factor analysis. The plot is shown in Figure 2.

Table 2. KMO and Bartlett’s test. A KMO value greater than 0.8 indicates the presence of a strong
partial correlation among the features and the number for the significance of Bartlett’s test is less
than 0.05.

KMO and Bartlett’s Test

Kaiser-Meyer-Olkin Measure of Sampling Adequacy. 0.867

Bartlett’s Test of Sphericity
Approx. Chi-Square 5612.158

df 105
Sig. 0.000
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Figure 2. The scree plot begins to flatten from the 9th feature.

According to the scree plot, all the features up to the ninth feature are important for
the classification. For the classification, the first nine features are adequate. The 10th and
11th features have been added to ensure the robustness of the system.

4.2. Sensitivity Analysis of the 5-Fold Cross-Validation

The authors have evaluated the choice of k value for the k-fold cross validation.
Distribution of the outcome for each fold for each different classifiers are compared to check
the robustness of the chosen configuration of k. Values of the performance metrics set:

M = {Accuracy, TPR, FPR, Precision, Recall, F
−Measure, ROC, kappa, RMSE} (2)

were compared and shown graphically in Figure 3. The correlation matrix is shown in
Table 3, and graphical representation of the correlation is given in Figure 4.

Table 3. Correlation matrix of the classifiers depicting the degree of correlation in terms of M.

Fold 1

Variables Bagging MLP RF SVM

Bagging 1 0.888 0.953 0.953

MLP 0.888 1 0.931 0.931

RF 0.953 0.931 1 1.000

SVM 0.953 0.931 1.000 1

Fold 2

Bagging 1 0.888 1.000 0.832

MLP 0.888 1 0.888 0.615

RF 1.000 0.888 1 0.832

SVM 0.832 0.615 0.832 1

Fold 3

Bagging 1 0.888 0.538 1.000

MLP 0.888 1 0.478 0.888

RF 0.538 0.478 1 0.538

SVM 1.000 0.888 0.538 1
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Table 3. Cont.

Fold 4

Bagging 1 0.901 0.742 0.742

MLP 0.901 1 0.931 0.931

RF 0.742 0.931 1 1.000

SVM 0.742 0.931 1.000 1

Fold 5

Bagging 1 0.901 0.742 0.742

MLP 0.901 1 0.931 0.931

RF 0.742 0.931 1 1.000

SVM 0.742 0.931 1.000 1Diagnostics 2023, 13, x FOR PEER REVIEW 11 of 25 
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Figure 4. Scatter plot of the correlation analysis for the four classifiersestablishes how well the chosen
value of k matches across the different algorithms.

Metric measurements of the classifiers for each fold are almost equal except for MLP.
Correlation of the performance outcome in Table 3 suggests high correlation among the
classifier performance in fold 1, whereas in other folds, except for the highlighted, corre-
lations are very high. The scatter plot of Figure 4 has very few outliers and performance
measures for SVM and RF are almost identical. Thus, the choice of k = 5 is appropriate for
the purpose.

The correlation test not only established the appropriateness of the chosen test harness,
but also established that the value of k performed equally well across the different classifiers.
The scatter plot has revealed how closely the performance of the classifiers match when
compared pairwise.

4.3. Model Performance Measure

Metrics of the model performance measures for the classifiers are given in Table 4.
Though accuracy is normally considered a measure for evaluating the performance of a
classifier, it can be ambiguous if the dataset is not balanced. In such cases, more emphasis
is on the majority class, which makes it difficult for the classifier to perform well on
the minority class. The parameter values for all the classes are comparable, though the
performance of the RF and SVM are better.
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Table 4. Metric values of the model performance measure.

Classifier Accuracy Sensitivity Specificity Precision

MLP 0.927 0.927 0.962 0.928

RF 0.967 0.964 0.984 0.968

SVM 0.964 0.964 0.983 0.966

Bagging 0.936 0.936 0.968 0.936

4.3.1. Combined Performance Measure

The authors also establish that the proposed model balances between false positive
rate (FPR) and false negative rate (FNR). Such measures cannot be provided by model
performance metrics. Hence, the values of combined performance measures are given in
Table 5.

Table 5. Metrics values of the combined performance measure.

Classifier G-Mean Discriminant
Power (DP)

Balanced
Accuracy

Matthew’s
Correlation
Coefficient

(MCC)

Cohen’s Kappa Youden’s Index

MLP 0.944 1.382 0.446 0.784 0.889 0.889

RF 0.974 1.774 0.474 0.696 0.950 0.948

SVM 0.973 1.774 0.474 0.970 0.946 0.947

Bagging 0.952 1.459 0.453 0.904 0.902 0.904

Since G-mean > 0.9 for all the classifiers, the performance of the classifiers in identifying
positive classes is very high. However, the values of DP < 0.2 indicate that the classifiers
have limited capacity in distinguishing between normal and abnormal (suspicious and
pathological) classes. The average accuracy or the balanced accuracy for both the major and
minor classes are fair. MCC values indicate that the correlation between classifier prediction
and visual prediction are high for SVM and bagging and moderate for MLP and RF. Cohen’s
kappa > 0.8 is in almost perfect concordance with the classifier model prediction and the
classified class. All the classification models are good at avoiding misclassification because
Youden’s index > 0.8.

4.3.2. Model Performance Comparison

The number of data points where actual and predicted classifications differ along
with the actual and predicted class are shown in Figure 5, along with the prediction
probability. The prediction probability summarizes how well the predicted class matches
the actual class.

The maximum number of misclassifications is observed with MLP and bagging with
27 and 25 data points, respectively. Prediction probability is unvarying for SVM.
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4.3.3. AUC-ROC Curve

Since it is a multi-class classification problem, the AUC-ROC was used to visualize the
performance of the classifiers. The ROC curve is plotted with TPR (sensitivity) against the
FPR (1—specificity) in Figure 6. The AUC values are 0.966, 0.997, 0.966, and 0.989 for MLP,
RF, SVM, and bagging, respectively. The AUC-ROC value greater than 0.9 indicates high
discrimination capacity for all the classifiers for all the classes. All the classifiers exhibit
very high discrimination capacity.
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4.4. Performance Comparison of the Classifiers with Clinicians’ Annotation

Performance of the four classifiers are compared with the visual estimate using covari-
ance correlation and a contingency table. A total of 399 observations were annotated as
Normal (1), Suspicious (2), and Pathological (3).
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4.4.1. Covariance Correlation

The degree of association between the actual and predicted values are analyzed
and the results for all four classifiers are given in Table 6; the scatter plots are shown in
Figure 7. All the models show almost similar standard deviation between the actual and
the predicted values.

Table 6. Correlation between the actual and the predicted values for the classifiers.

Classifier Variable Mean Std. Deviation

MLP
Actual 1.927 0.781

Predicted 1.912 0.770

RF
Actual 1.927 0.781

Predicted 1.947 0.786

SVM
Actual 1.927 0.778

Predicted 1.932 0.785

Bagging
Actual 1.937 0.782

Predicted 1.945 0.787
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Figure 7. Scatter plots show the difference between the actual and predicted classifications. The bar
charts show the number of instances in each class and the scatter plots show the number of outliers
in each class for all four classifiers. (a) MLP. (b) RF. (c) SVM. (d) Bagging.
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The scatter plot shows that many traces that had been annotated as Suspicious (2)
or Pathological (3) were predicted as Normal (1) by all the classifiers. On the other hand,
actual Pathological ones have been predicted by the classifiers as Normal or Suspicious.
This anomaly in the prediction can cause serious damage to the fetus. The degree of
disagreement is most evident with the bagging classifier. Also, this contradicts the result
of Table 5 where Youden’s Index indicates the avoidance of misclassification by all four
classifiers. This leads us to hypothesis test.

4.4.2. Contingency Table

Since we are dealing with categorical data, the contingency table is used for hypothesis
testing along with estimation of model parameters. Contingency dals with:

i. Hypothesis testing that verifies whether there is any association among the actual and
predicted classifications or whether they are independent.

ii. Which model provides the better option for the overall classification of CTG?

The null hypothesis H0: The rows and the columns of the table are independent. The
alternate hypothesis Ha: There is a link between the rows and the columns of the table.

The observed frequencies for the actual and predicted classifications are shown in
Table 7. The result of the test for independence or the chi-squared test for degree of freedom
(DF) = 4 and α = 0.05 are shown in Table 8. As the computed p-value is lower than the
significance level alpha = 0.05, one should reject the null hypothesis H0 and accept the
alternative hypothesis Ha, i.e., the annotated class and the predicted class are related;
however, this test does not reveal the difference between the two methods of classification
and the Bland–Altman test was performed.

Table 7. Observed frequencies for actual and predicted classification of CTG.

Classifier Actual/Predicted 1 2 3

MLP

1 128 1 8

2 0 151 3

3 9 8 91

RF

1 131 0 6

2 0 151 3

3 3 1 104

SVM

1 132 0 4

2 1 152 3

3 4 0 103

Bagging

1 129 0 6

2 2 145 7

3 4 6 100

Table 8. Contingency table showing the chi-squared values and the p-value for each classifier.

Classifier Chi-Squared
(Observed Value)

Chi-Squared
(Critical Value) p-Value

MLP 624.194 9.488 <0.0001

RF 717.664 9.488 <0.0001

SVM 723.633 9.488 <0.0001

Bagging 650.510 9.488 <0.0001
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4.4.3. Bland–Altman Analysis

Bland–Altman (B-A) analysis was performed to find the difference between the actual
and predicted classifications [31] The difference between the two methods was measured
by constructing limits of agreement (LoA). A graphical approach is used to verify the
assumption of normality of differences. The lack of agreement is summarized by com-
puting the bias, estimated by the mean difference and the standard deviation of the dif-
ferences. Parameters of the B-A analysis are given in Table 9, and the plots for it shown
in Figure 8. The number of outliers is insignificant, and the limits of agreement are also
within acceptable limits.

Table 9. Parameters of the Bland–Altman analysis.

MLP

Parameter Value 95%CI lower limit 95%CI upper limit

Difference 0.02 −0.03 0.06

Upper Limit of Agreement 0.89 0.82 0.97

Lower Limit of Agreement −0.86 −0.94 −0.79

Intercept −0.02 −0.14 0.11

Slope 0.02 −0.04 0.08

RF

Parameter Value 95%CI lower limit 95%CI upper limit

Difference −0.02 −0.05 0.01

Upper Limit of Agreement 0.60 0.55 0.65

Lower Limit of Agreement −0.64 −0.69 −0.59

Intercept −0.01 −0.09 0.08

Slope −0.01 −0.05 0.03

SVM

Parameter Value 95%CI lower limit 95%CI upper limit

Difference −0.01 −0.03 0.02

Upper Limit of Agreement 0.58 0.53 0.64

Lower Limit of Agreement −0.59 −0.65 −0.54

Intercept 0.01 −0.07 0.09

Slope −0.01 −0.05 0.03

Bagging

Parameter Value 95%CI lower limit 95%CI upper limit

Difference −0.01 −0.04 0.03

Upper Limit of Agreement 0.72 0.66 0.78

Lower Limit of Agreement −0.74 −0.80 −0.67

Intercept 0.01 −0.09 0.11

Slope −0.01 −0.06 0.04

The bias is insignificant because the line of equality is within the CI of the mean
difference. Thus, no method over- or under-estimates compared with the actual annotation.
Though the limits of agreement (LoA) for the difference is within an a priori limit, the
LoA is narrowest at 0.5 and 0.6 for SVM and RF, respectively. The agreement of the upper
and lower limits for SVM and RF are also smaller compared with the other classification
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methods. Thus, the correlation between the actual annotation and the predictions by SVM
and RF are both high.
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Figure 8. Bland–Altman plot of the actual and predicted classifications for all the classifiers. (a) For
MLP, the average difference is −0.01 and the limits of agreement: −0.82 and 0.81. (b) For RF the
average difference is −0.03 and the limits of agreement: −0.7 and 0.65. (c) For SVM, the average
difference is−0.01 and the limits of agreement: −0.59 and 0.58. (d) For bagging the average difference
is −0.01 and the limits of agreement: −0.74 and 0.72.

4.5. Result with Augmented Data

Training models on limited data leads to overfitting, which is exhibited by high
accuracy on the training dataset but a lack of generalization to the test data. This difference
for both sets of data is shown in Figure 9. For both sets of data, there are differences in
accuracy for the training and test data. This could mean overfitting, however, since the
difference between the accuracy at each fold is below 4% the overfitting can be ignored. No
improvement in accuracy is observed with the augmented data.
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Figure 9. Comparison of the differences in accuracy for both the augmented and normal datasets for
both the training data and test data. The result is shown for each fold of the 5-fold cross validation
for (a) bagging, (b) random forest, (c) MLP, and (d) SVM.
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4.6. Class-Wise Accuracy Estimation for Stage 1 and Stage 2 Labor

Feature values from the second stage of labor were fed into the same set of classifiers
and the overall accuracies were 86.2%, 92.6%, 92.3%, and 88.2%, respectively, for MLP, RF,
SVM, and bagging. The accuracy of each class for the two stages of labor are given in
Table 10.

Table 10. Accuracies for each class for each of the four classifiers.

Classifier

Stage of Labor

Stage 1 Stage 2

Normal Suspicious Pathological Normal Suspicious Pathological

MLP 93.4% 98% 84.3% 89.3% 88.7% 79.2%

RF 95.6% 98% 96.3% 92.8% 89.3% 92.3%

SVM 97% 97.4% 96.3% 91.2% 90.6% 92.7%

Bagging 95.6% 94.2% 90.9% 89.8% 86.5% 86.7%

4.7. Comparison with Other Works

Some of the recent works along with their outcomes are listed in Table 11.

Table 11. A comparison with some of the recent works for the classification of CTG.

Author Dataset Number of
Samples Annotations Method Used Outcome

Comert et al. (2017)
[12]

UCI Machine
Learning

Repository

2126 with
21 features and
3 classifications.

3 obstetricians

ANN with 21 inputs,
10 hidden layer,
3 output nodes.

Tan sigmoid and softmax
functions were used in

the hidden layer.

Sensitivity = 97.9%
Specificity = 99.7%

Signorini et al.
(2019) [32]

Ob-Gyn Clinics at
the Azienda
Ospedaliera
Universitaria

Federico II, Napoli,
Italy

60 normal and
60 IUGR samples Normal and IUGR

Linear Logistic
Regression, SVM, Naïve
Bayes, Random Forest,

RIDGE Regression

Sensitivity = 83.8–86.7%
Specificity = 76.7–87.1%

Rahmayanti
et al.(2021) [24]

UCI Machine
Learning

Repository

2126 with
21 features and 3

classifications
3 obstetricians

ANN and LSTM with
ReLU activation and

Adam optimizer.
Accuracy = 9–37%

Ogasawara et al
(2021). [23] )

CTG data from
Keio University

hospital

380 with
2 classifications—

normal and
abnormal

Umbilical artery
pH value and

apgar score

Deep Neural Network
(DNN) with

3 convolution layers.
Normal and abnormal are

2 outputs.

AUC-ROC = 0.73± 0.04

Petroziello et al
(2019) [22]. Oxford archive 35,429 CTG data

Umbilical artery
pH value and

apgar score
Multimodal-CNN

Only 1% improvement in
FPR and 19%

improvement in TPR
compared to normal

clinical practice.

Zhao et al. (2019)
[33]

CTU-UHB dataset
for CTG 552 CTG data 9 obstetricians Deep CNN with 8 layers Sensitivity = 93.45%,

Specificity = 91.22%

Current Work CTU-UHB dataset
for CTG

399 data with
three

classifications
6 obstetricians Best result with

Random Forest
Sensitivity = 96.4%
Specificity = 98.4%
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5. Conclusions

The primary objective of this work was to develop a robust classification model for
CTG that can identify fetal distress at both stage 1 and stage 2 of labor. The accuracy for both
stages for each class is presented in Table 10. The difference in accuracy was mainly due to
the presence of noise and motion artefacts in the FHR signal in stage 2 of labor. A sample of
adequate size had been used for the experiment as established by the KMO and Bartlett’s
Test. The experiment was repeated with augmented data, but the deviation in accuracy for
each fold was less than 4%. The sensitivity and the specificity for different classifiers are in
the ranges 92.7–96.4% and 92.8–98.4%, respectively. The AUC, which is greater than 0.9
for all classifiers, indicated their high discrimination capacity. The combined performance
measure reveals that the discriminant power of SVM and RF were highest at 1.744 and the
maximum number of misclassifications were with MLP and bagging.

The authors used annotation by six clinicians, and the final annotation for each record
was chosen using majority voting. The Bland–Altman plot shows the strong agreement
between the clinicians’ annotation and the classification obtained with SVM and RF. Perfor-
mance measures for the four classifiers and the performance in comparison with clinicians’
annotations are summarized in Table 12. SVM and RF had improved classification perfor-
mance. The performance of the classifiers varies in different stages of labor. In the second
stage of the labor, the accuracy of the classifiers is comparatively low; however, SVM and
RF still performed better than the other two. The accuracy, sensitivity, specificity, and AUC,
etc., are sufficiently high for both SVM and RF. These two classifiers also exhibited a high
level of agreement between the system and the human annotators.

Table 12. Performance measure of the classifiers in terms of various statistical evaluation metrics and
classification performance in comparison with the clinicians’ interpretations.

Evaluation Metrics MLP SVM RF Bagging

Performance Measure
of the Classifiers

Combined Performance
Measure ×

√ √
×

Model Performance
Measure ×

√ √
×

AUC-ROC
√ √ √ √

Sensitivity and
Specificity ×

√ √
×

Accuracy of Detecting
Suspect Class

√ √ √
×

Performance
Comparison with

Clinicians’ Annotation

Covariance Correlation
√ √ √

×
Limits of Agreement of

B-A Plot ×
√ √

×

The other feature-based approaches to the automation of CTG classification that
were based on weak annotation did not achieve high AUC, sensitivity, and specificity.
In fact, with weak annotations, the systems showed little improvement over the visual
interpretation.

Features used in stage 1 of labor are typically embedded in clinical exercise. However,
features such as deceleration and average baseline are no longer applicable for stage 2.
Since there is active maternal pushing, the decelerations are recurrent and large. The data
is burstier and hence there is a dwindling of the accuracy level. In subsequent work, the
authors intend to implement the classification of CTG in the second stage of labor after
removing the noise and artefacts.
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