RESEARCH ARTICLE # Malassezia vespertilionis sp. nov.: a new cold-tolerant species of yeast isolated from bats J.M. Lorch¹, J.M. Palmer², K.J. Vanderwolf^{1,3}, K.Z. Schmidt¹, M.L. Verant^{1,3}, T.J. Weller⁴, D.S. Blehert¹ #### Key words Chiroptera evolution hibernation Malassezia Myotis new species phylogeny Abstract Malassezia is a genus of medically-important, lipid-dependent yeasts that live on the skin of warmblooded animals. The 17 described species have been documented primarily on humans and domestic animals, but few studies have examined Malassezia species associated with more diverse host groups such as wildlife. While investigating the skin mycobiota of healthy bats, we isolated a Malassezia sp. that exhibited only up to 92 % identity with other known species in the genus for the portion of the DNA sequence of the internal transcribed spacer region that could be confidently aligned. The Malassezia sp. was cultured from the skin of nine species of bats in the subfamily Myotinae; isolates originated from bats sampled in both the eastern and western United States. Physiological features and molecular characterisation at seven additional loci (D1/D2 region of 26S rDNA, 18S rDNA, chitin synthase, second largest subunit of RNA polymerase II, β -tubulin, translation elongation factor EF-1 α , and minichromosome maintenance complex component 7) indicated that all of the bat Malassezia isolates likely represented a single species distinct from other named taxa. Of particular note was the ability of the Malassezia sp. to grow over a broad range of temperatures (7–40 °C), with optimal growth occurring at 24 °C. These thermal growth ranges, unique among the described Malassezia, may be an adaptation by the fungus to survive on bats during both the host's hibernation and active seasons. The combination of genetic and physiological differences provided compelling evidence that this lipid-dependent yeast represents a novel species described herein as Malassezia vespertilionis sp. nov. Whole genome sequencing placed the new species as a basal member of the clade containing the species M. furfur, M. japonica, M. obtusa, and M. yamatoensis. The genetic and physiological uniqueness of Malassezia vespertilionis among its closest relatives may make it important in future research to better understand the evolution, life history, and pathogenicity of the Malassezia yeasts Article info Received: 17 September 2017; Accepted: 28 November 2017; Published: 5 February 2018. ### INTRODUCTION Members of the genus Malassezia are lipid-dependent fungi specialised to live on the skin of humans and other euthermic animals. Malassezia is the sole genus in the class Malasseziomycetes, and the 17 described species appear to be part of the natural skin mycobiome of animals (Wang et al. 2014). At least five species have been regularly associated with dermatitis or other types of skin disorders in humans (reviewed by Gaitanis et al. 2012), and M. pachydermatis is described as the cause of otitis externa in domestic dogs (Gustafson 1955, Bond et al. 2004). However, these potentially pathogenic species of Malassezia are also found on areas of normal skin of afflicted patients and on asymptomatic individuals, making it unclear what role the fungi play in skin disease (reviewed by Gaitanis et al. 2012). Malassezia furfur, M. pachydermatis, and M. sympodialis have also occasionally been implicated as causes of sepsis in infants and immunocompromised patients (reviewed by Gaitanis et al. 2012, Aguirre et al. 2015, Patron 2016), and it has even been hypothesised that Malassezia could play a role in promoting certain forms of skin cancer (Gaitanis et al. 2011). In addition to their medical ambiguity, relatively little is known about the diversity and ecology of Malassezia. Members of the genus were traditionally identified on the basis of phenotypic traits, and prior to 1996 there were only three recognised species of Malassezia. More recent application of molecular techniques to assist with species characterisation has facilitated the ability to distinguish cryptic species and has increased the known diversity of the genus (e.g., Sugita et al. 2002, Hirai et al. 2004, Cabañes et al. 2007, 2016, Honnavar et al. 2016). Sugita et al. (2010) present a list of the animal hosts from which various species of Malassezia have been recovered. However, many reports used to generate that list lacked molecular data to support the identification of the Malassezia species that were isolated, and potentially novel taxa may have been overlooked. Indeed, diversity of the genus is likely much higher than currently documented (Amend 2014, Cabañes 2014). Ten of the 17 Malassezia species are most closely associated with humans, and were discovered through culturebased surveys of diseased skin; the remaining seven species (M. brasiliensis, M. caprae, M. cuniculi, M. equina, M. nana, M. pachydermatis, and M. psittaci) have been isolated primarily from animals (reviewed by Sugita et al. 2010, Cabañes et al. 2016), with M. pachydermatis reported as a zoonotic pathogen (Chang et al. 1998). Some of the zoophilic members of the group appear to have a broad host range, while others are more host-specific (reviewed by Guého-Kellerman et al. 2010, Sugita et al. 2010). Little work has been done with broader taxonomic ¹ U.S. Geological Survey, National Wildlife Health Center, 6006 Schroeder Road, Madison, WI 53711, USA; corresponding author e-mail: jlorch@usgs.gov. ² United States Department of Agriculture Forest Service, Center for Forest Mycology Research, Northern Research Station, USDA Forest Service, 1 Gifford Pinchot Drive, Madison, WI 53726, USA. ³ Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, 1656 Linden Drive, Madison, WI 53706, USA. United States Department of Agriculture Forest Service, Pacific Southwest Research Station, 1700 Bayview Drive, Arcata, CA 95521, USA. host groups, and the relatively small number of described species of *Malassezia* is likely the result of sampling bias, which is skewed toward humans and domestic animals. Given the host specificity of some species of *Malassezia*, many more taxa may be discovered when a broader range of host species (especially wildlife) are sampled. Such undiscovered species of *Malassezia* could be important in further elucidating the taxonomy, evolution, ecology, and pathogenicity of this group of medically important fungi. While investigating the mycobiota on the skin of bats, we detected a putative *Malassezia* sp. that was genetically distinct from other known members of the genus. Here we describe the isolation, occurrence, and characterisation of this novel species. #### **MATERIALS AND METHODS** #### Isolation of Malassezia from bats Samples were collected in 2014, 2016, and 2017 under the U.S. Geological Survey - National Wildlife Health Center (NWHC) Animal Care and Use Committee Protocols #EP140212 and #EP081124-A2, with all necessary permits and permissions for the sites and species sampled. Hibernating bats (Fig. 1) were captured by hand and active bats were captured in mist nets. Gloves were changed between animals to prevent crosscontamination. The animals were sampled non-lethally using sterile Pur-Wraps® polyester-tipped swabs (Puritan Medical Products Company LLC, Guilford, Maine, USA) pre-moistened with 150 µL of sterile nuclease-free water. Swabs were gently rolled back-and-forth three times across the skin of the forearm and wing membrane between the elbow and wrist joints. Samples were then placed in sterile microcentrifuge tubes, stored chilled for up to 48 h, and shipped on ice to the NWHC. A total of 264 samples were obtained from thirteen sites in seven states (one site in Alabama, USA; one site in California, USA; one site in Kentucky, USA; one site in Missouri, USA; one site in Pennsylvania, USA; two sites in New York, USA; and six sites in Wisconsin, USA), representing ten bat species (Lasionycteris noctivagans, Myotis californicus, Myotis grisescens, Myotis leibii, Myotis lucifugus, Myotis septentrionalis, Myotis sodalis, Myotis thysanodes, Myotis yumanensis, and Perimyotis subflavus). A list of all individual bats sampled for the project is provided in Table 1. Upon arrival at the laboratory, swabs were streaked onto Leeming and Notman agar (LNA; 10 g bacteriological peptone, 0.1 g yeast extract, 5 g glucose, 8 g desiccated ox bile, 1 mL glycerol, 0.5 g glycerol monostearate, 0.5 g Tween 60, 10 mL whole fat cow's milk, 0.5 g chloramphenicol, 0.5 g cycloheximide, 15 g agarose per litre, pH 6.0; modified slightly from Leeming & Notman (1987)) and incubated at 7 °C. Plates were checked weekly for a total of 12 wk, and any colonies resembling *Malassezia* were transferred to fresh LNA. Isolates were identified by sequencing the ITS as described by Lorch et al. (2015). #### Whole genome sequence analysis Isolate CBS 15041 (NWHC 44797-103; UAMH 11924) was selected for whole genome sequencing to further resolve the taxonomy of the bat-associated Malassezia. Nucleic acid was obtained using a phenol-chloroform extraction. Library preparation and next-generation sequencing was performed by the University of Wisconsin Biotechnology Center DNA Sequencing Facility using the genomic Nextera XT DNA Library Prep Kit (Illumina Inc., San Diego, CA) and the Illumina MiSeq Next Generation Sequencer platform. Sequence data was processed and assembled using JAAWS (https://github.com/nextgenusfs/ jaaws). Briefly, the paired-end 250-bp MiSeg sequence reads (2×250) were processed with trimmomatic v. 0.36 (Bolger et al. 2014) to remove adapter sequences and phiX spike-in was removed using bowtie2 v. 2.3.2 (Langmead & Salzberg 2012) alignment to the phiX genome (NC 001422). The data were then assembled into scaffolds with Spades v. 3.9.0 (Bankevich et al. 2012). The subsequent assembly was cleaned using Blobtools v. 0.9.19 (Laetsch & Blaxter
2017) and filtered for unexpected coverage, mitochondrial DNA, contamination, and scaffolds less than 1 kb in length. Finally, the cleaned assembly was error corrected using five iterations of Pilon v. 1.22 (Walker et al. 2014). The genome of the bat-associated Malassezia was annotated with funannotate v. 0.7.0 while the 28 genomes of Malassezia species previously sequenced (Wu et al. 2015; Table 2) were annotated using funannotate v. 0.5.3 (https:// aithub.com/nextgenusfs/funannotate). Conserved orthologues were identified using BUSCO2 (Simão et al. 2015) basidiomycete database using the busco wrapper script in Phyloma (https://github.com/nextgenusfs/phyloma). The concatenated protein sequences of 254 conserved BUSCO2 orthologues were aligned using MAFFT v. 7.305b (Katoh & Standley 2013) Fig. 1 Hibernating bats, such as these *Myotis* sp., were sampled for this study by swabbing wing skin. Table 1 List of individual bats sampled for this study. | 2471E-071 | Individual identifier | Location | Host species | Sampling date | Malassezia vespertilionis isolated | |--|-----------------------|--------------------------|------------------------|------------------|------------------------------------| | 2471-16-003 Wisconnan, USA (site #1) Myofis experiendonals D3 March 2014 no D2 Misconnan, USA (site #1) Perinytotic audibranz D3 March 2014 no D2 Misconnan, USA (site #1) Perinytotic audibranz D3 March 2014 no D2 Misconnan, USA (site #1) Perinytotic audibranz D3 March 2014 no D2 Misconnan, USA (site #1) Perinytotic audibranz D3 March 2014 no D2 Misconnan, USA (site #1) Perinytotic audibranz D3 March 2014 no | 24716-001 | Wisconsin, USA (site #1) | Myotis septentrionalis | 03 March 2014 | no | | 2271 6.006 Wissonan, USA (site #1) Persymptis auditivate Co. Nature 20114 no. 0 (2011) 2271 6.007 Wissonan, USA (site #1) Myots apprintmonals Co. Nature 20114 yes 2271 6.007 Wissonan, USA (site #1) Myots apprintmonals Co. Nature 20114 yes 2271 6.007 Wissonan, USA (site #1) Persymptis auditivate Co. 2011 2271 6.007 Wissonan, USA (site #1) Persymptis auditivate Co. 20114 yes 2271 6.007 Wissonan, USA (site #1) Persymptis auditivate Co. 20114 yes 2271 6.007 Wissonan, USA (site #1) Persymptis auditivate Co. 20114 yes 2271 6.007 Wissonan, USA (site #1) Persymptis auditivate Co. 20114 yes 2271 6.007 Wissonan, USA (site #1) Persymptis auditivate Co. 20114 yes 2271 6.007 Wissonan, USA (site #1) Persymptis auditivate Co. 20114 yes 2271 6.007 Wissonan, USA (site #1) Persymptis auditivate Co. 20114 yes 2271 6.007 Wissonan, USA (site #1) Persymptis auditivate Co. 20114 yes 2271 6.007 Wissonan, USA (site #1) Wyots apprintmonals Co. 20114 yes 2271 6.007 Wissonan, USA (site #1) Wyots apprintmonals Co. 20114 yes 2271 6.007 Wissonan, USA (site #1) Wyots apprintmonals Co. 20114 yes 2271 6.007 Wissonan, USA (site #1) Wyots apprintmonals Co. 20114 yes 2271 6.007 Wissonan, USA (site #1) Wyots apprintmonals Co. 20114 yes 2271 6.007 Wissonan, USA (site #1) Wyots apprintmonals Co. 20114 yes 2271 6.007 Wissonan, USA (site #1) Wyots apprintmonals Co. 20114 yes 2271 6.007 Wissonan, USA (site #1) Wyots apprintmonals Co. 20114 yes 2271 6.007 Wissonan, USA (site #1) Wyots apprintmonals Co. 20114 yes 2271 6.007 Wissonan, USA (site #2) Wyots additionals Co. 20114 yes 2271 6.007 Wissonan, USA (site #2) Wyots additionals Co. 20114 yes 2271 6.007 yes 2273 6.007 Wissonan, USA (site #2) Wyots additionals Co. 20114 yes 2273 9.000 Wissonan, USA (site #2) Wyots additionals Co. 20114 yes 2273 9.000 Wissonan, USA (site #2) Wyots additionals Co. 20114 yes 2273 9.000 Wissonan, USA (site #2) Wyots additionals Co. 20114 yes 20114 yes 2273 9.000 Wissonan, USA (site #2) Wyots additionals Co. 20114 yes 20114 yes 20114 yes 20114 yes 20114 yes 20114 yes 2011 | | | | 03 March 2014 | | | 2471-0005 Wescomin, USA (obs. 81) Pennyndes confevere 03 March 2014 no no 2471-0006 Wescomin, USA (obs. 81) Memory of the confevere 10 March 2014 yes 2471-0006 Wescomin, USA (obs. 81) Memory of the confevere 10 March 2014 yes 2471-0006 Wescomin, USA (obs. 81) Pennyndes confevere 03 March 2014 no no 2471-0017 Wescomin, USA (obs. 81) Pennyndes confevere 03 March 2014 no no 2471-011 Wescomin, USA (obs. 81) Pennyndes confevere 03 March 2014 no no 2471-011 Wescomin, USA (obs. 81) Pennyndes confevere 03 March 2014 no no 2471-011 Wescomin, USA (obs. 81) Pennyndes confevere 03 March 2014 no no 2471-011 Wescomin, USA (obs. 81) Pennyndes confevere 03 March 2014 no no 2471-011 Wescomin, USA (obs. 81) Pennyndes confevere 03 March 2014 no no 2471-011 Wescomin, USA (obs. 81) Pennyndes confevere 03 March 2014 no no 2471-011 Wescomin, USA (obs. 81) Pennyndes confevere 03 March 2014 no no 2471-011 Wescomin, USA (obs. 81) Pennyndes confevere 03 March 2014 no no 2471-011 Wescomin, USA (obs. 81) Pennyndes confevere 03 March 2014 no no 2471-011 Wescomin, USA (obs. 81) Pennyndes confevere 03 March 2014 no no 2471-011 Wescomin, USA (obs. 81) Pennyndes confevere 03 March 2014 no no 2471-011 Wescomin, USA (obs. 81) Pennyndes confevere 03 March 2014 no no 2471-011 Wescomin, USA (obs. 81) Pennyndes confevere 03 March 2014 no no 2471-011 Wescomin, USA (obs. 81) Pennyndes confevere 03 March 2014 no no 2471-011 Wescomin, USA (obs. 81) Pennyndes confevere 03 March 2014 no no 2471-011 Wescomin, USA (obs. 81) Pennyndes confevere 03 March 2014 no no 2471-011 Wescomin, USA (obs. 81) Pennyndes confevere 03 March 2014 no no 2471-011 Wescomin, USA (obs. 81) Pennyndes confevere 03 March 2014 no no 2471-011 Wescomin, USA (obs. 81) Pennyndes confevere 03 March 2014 no no 2471-011 Wescomin, USA (obs. 81) Pennyndes confevere 03 March 2014 no no 2471-011 Wescomin, USA (obs. 81) Pennyndes confevere 03 March 2014 no no 2471-011 Wescomin, USA (obs. 81) Pennyndes confevere 03 March 2014 no no 2471-011 Wescomin, USA (obs. 81) Pennyndes confevere 03 March 2014 | | | | | | | 2471-0.005 Wisconnin, USA (size #1) Permyndes audehause | | | | | | | 22-716-007 Wisconnin, USA (site #1) Myoris agententionale (SA Merch 20114 yes 22-716-007 Wisconnin, USA (site #1) Persylvation and the state of | | , , | | | | | 22911-5008 Wisconani, USA (alte #1) | | | | | | | 24716-010 Wisconsin, USA (site #1) Permyrote sudfavus | | | | | | | 24716-011 Wisconsin LDA (site et 1) Peninyvida subfavus | | | | | | | 24716-012 Wisconsin LISA (alle #1) Pennyudos audibrous O. Minch 2014 no | | | , | | | | 24716-01-31 Wiscoms U.S.A. (size #1) Permyriods sudributes O.S. March 2014 yes | | | | | | | 2471-01914 Wisconsin USA (alse #1) Myorbs isotrationals 03 March 2014 n. no. 2471-01915 Wisconsin USA (alse #1) Myorbs isotrationals 03 March 2014 n. no. 2471-01917 Wisconsin USA (alse #1) Myorbs isotrationals 03 March 2014 n. no. 2471-01918 Wisconsin USA (alse #1) Myorbs septembronals 03 March 2014 n. no. 2471-01918 Wisconsin USA (alse #1) Myorbs septembronals 03 March 2014 n. no. 2471-01918 Wisconsin USA (alse #1) Myorbs septembronals 03 March 2014 n. no. 2471-01918 Wisconsin USA (alse #2) Myorbs septembronals 03 March 2014 n. no. 2471-01918 Wisconsin USA (alse #2) Myorbs septembronals 03 March 2014 n. no. 2471-01918 Wisconsin USA (alse #2) Myorbs septembronals 03 March 2014 n. no. 2471-01918 Wisconsin USA (alse #2) Myorbs septembronals 03 March 2014 n. no. 2471-01918 Wisconsin USA (alse #2) Myorbs septembronals 03 March 2014 n. no. 2471-01918 Wisconsin USA (alse #2) Myorbs septembronals 03 March 2014 n. no. 2471-01918 Wisconsin USA (alse #2) Myorbs septembronals 03 March 2014 n. no. 2471-01918 Wisconsin USA (alse #2) Myorbs septembronals 04 March 2014 n. no. 2471-01918 Wisconsin USA (alse #2) Myorbs septembronals 04 March 2014 n. no. 2471-01918 Wisconsin USA (alse #2) Myorbs septembronals 04 March 2014 n. no. 2471-01918 Wisconsin USA (alse #2) Myorbs septembronals 04 March 2014 n. no. 2471-01918 Wisconsin USA (alse #2) Myorbs septembronals 04 March 2014 n. no. 2471-01918 Wisconsin USA (alse #2) Myorbs septembronals 04 March 2014 n. no. 2471-01918 Wisconsin USA (alse #2) Myorbs
septembronals 04 March 2014 n. no. 2471-01918 Wisconsin USA (alse #2) Myorbs septembronals 04 March 2014 n. no. 2471-01918 Wisconsin USA (alse #2) Myorbs septembronals 04 March 2014 n. no. 2471-01918 Wisconsin USA (alse #2) Myorbs septembronals 04 March 2014 n. no. 2471-01918 Wisconsin USA (alse #2) Myorbs septembronals 04 March 2014 n. no. 2471-01918 Wisconsin USA (alse #2) Myorbs septembronals 04 March 2014 n. no. 2471-01918 Wisconsin USA (alse #2) Myorbs septembronals 04 March 2014 n. no. 2471-01918 Wisconsin USA (alse #2) Myorbs se | | | | | | | 24716-016 Wisconsin, USA (site #1) Perimyotis aubithavos 03 March 2014 no 0 24716-017 Wisconsin, USA (site #1) Myotis explentionalis 03 March 2014 no 0 24716-018 Wisconsin, USA (site #1) Myotis explentionalis 03 March 2014 no 0 24716-020 Wisconsin, USA (site #2) Myotis septemboralis 03 March 2014 no 0 24716-020 Wisconsin, USA (site #2) Myotis septemboralis 03 March 2014 no 0 24716-020 Wisconsin, USA (site #2) Myotis septemboralis 03 March 2014 per 24716-020 Wisconsin, USA (site #2) Myotis fundiques 10 March 2014 per 24738-020 Wisconsin, USA (site #2) Myotis fundiques 10 March 2014 no 0 24738-030 Wisconsin, USA (site #2) Myotis fundiques 10 March 2014 no 0 24738-030 Wisconsin, USA (site #2) Myotis fundiques 10 March 2014 no 0 24738-031 Wisconsin, USA (site #2) Myotis fundiques 10 March 2014 no 0 24738-031 Wisconsin, USA (site #2) Myotis fundiques 10 March 2014 per 24738-031 Wisconsin, USA (site #2) Myotis fundiques 10 March 2014 per 24738-032 Wisconsin, USA (site #2) Myotis fundiques 10 March 2014 per 24738-035 Wisconsin, USA (site #2) Myotis fundiques 10 March 2014 per 24738-035 Wisconsin, USA (site #2) Myotis fundiques 10 March 2014 per 24738-035 Wisconsin, USA (site #2) Myotis fundiques 10 March 2014 per 24738-035 Wisconsin, USA (site #2) Myotis fundiques 10 March 2014 per 24738-035 Wisconsin, USA (site #2) Myotis fundiques 10 March 2014 per 24738-035 Wisconsin, USA (site #2) Myotis fundiques 10 March 2014 per 24738-036 Wisconsin, USA (site #2) Myotis fundiques 10 March 2014 per 24738-036 Wisconsin, USA (site #2) Myotis fundiques 10 March 2014 per 24738-036 Wisconsin, USA (site #2) Myotis fundiques 10 March 2014 per 24738-036 Wisconsin, USA (site #2) Myotis fundiques 10 March 2014 per 24738-036 Wisconsin, USA (site #2) Myotis fundiques 10 March 2014 per 24738-036 Wisconsin, USA (site #2) Myotis fundiques 10 March 2014 per 24738-036 Wisconsin, USA (site #1) Myotis fundiques 10 March 2014 per 24738-036 Wisconsin, USA (site #1) Myotis fundiques 10 March 2014 per 24738-036 Wisconsin, USA (site #1) March 2014 per | | | | | | | 24716-017 Wisconsin, USA (sels et 1) | 24716-015 | Wisconsin, USA (site #1) | Myotis lucifugus | 03 March 2014 | no | | 2471-0-19 | | | - | | | | 24716-079 Wisconsin, USA (site #1) | | | | | | | 24778-020 Wisconsin, USA (site #2) Myots buildings: 10 March 2014 per 2478-010 Wisconsin, USA (site #2) Myots buildings: 10 March 2014 per 2478-010 Wisconsin, USA (site #2) Myots buildings: 10 March 2014 per 2478-010 Wisconsin, USA (site #2) Myots buildings: 10 March 2014 per 2478-011 Wisconsin, USA (site #2) Myots buildings: 10 March 2014 per 2478-011 Wisconsin, USA (site #2) Myots buildings: 10 March 2014 per 2478-011 Wisconsin, USA (site #2) Myots buildings: 10 March 2014 per 2478-011 Wisconsin, USA (site #2) Myots buildings: 10 March 2014 per 2478-011 Wisconsin, USA (site #2) Myots buildings: 10 March 2014 per 2478-011 March 2014 per 2478-011 Myots buildings: 10 March 2014 per 2478-011 Myots buildings: 10 March 2014 per 2478-011 Myots sp. 2478-012 sp | | | | | | | 2473-002 Wisconsin, USA (elle #2) 2473-005 Wisconsin, USA (elle #2) 2473-006 Wisconsin, USA (elle #2) 2473-006 Wisconsin, USA (elle #2) 2473-007 2473-0 | | | | | | | 24738-006 Wisconsin, USA (site #2) Myotis fundings 10 March 2014 no 24738-2011 Wisconsin, USA (site #2) Myotis fundings 10 March 2014 no 24738-24738-2511 Wisconsin, USA (site #2) Myotis fundings 10 March 2014 no 24738-24738-252 Wisconsin, USA (site #2) Myotis fundings 10 March 2014 no 24738-225 Wisconsin, USA (site #2) Myotis fundings 10 March 2014 no 24738-225 Wisconsin, USA (site #2) Myotis fundings 10 March 2014 no 24738-225 Wisconsin, USA (site #2) Myotis fundings 20 March 2014 no 24738-225 Wisconsin, USA (site #2) Myotis fundings 20 March 2014 no 24787-7022 Kentucky, USA Permyotis subflavus 04 March 2014 no 24787-7025 Kentucky, USA Permyotis subflavus 04 March 2014 no 24787-7026 Kentucky, USA Permyotis subflavus 04 March 2014 no 24787-7036 Kentucky, USA Permyotis subflavus 04 March 2014 no 24787-7037 Kentucky, USA Permyotis subflavus 04 March 2014 no 24787-7037 Kentucky, USA Permyotis subflavus 04 March 2014 no 24787-7037 Kentucky, USA Permyotis subflavus 04 March 2014 no 24787-7037 Kentucky, USA Permyotis subflavus 04 March 2014 no 24787-7037 Kentucky, USA Permyotis subflavus 04 March 2014 no 24787-7038 Kentucky, USA Permyotis subflavus 04 March 2014 no 24787-7038 Kentucky, USA Permyotis subflavus 04 March 2014 no 24787-7038 Kentucky, USA Permyotis subflavus 04 March 2014 no 24787-7038 Kentucky, USA Permyotis subflavus 04 March 2014 no 24787-7038 Kentucky, USA Permyotis subflavus 04 March 2014 no 24787-7038 Kentucky, USA Permyotis subflavus 04 March 2014 no 24787-7038 Kentucky, USA Permyotis subflavus 04 March 2014 no 24787-7038 Kentucky, USA Permyotis subflavus 04 March 2014 no 24787-7038 Kentucky, USA Permyotis subflavus 04 March 2014 no 24787-7038 Kentucky, USA Permyotis subflavus 04 March 2014 no 24787-7038 Kentucky, USA Permyotis subflavus 04 March 2014 no 24787-7038 Kentucky, USA Permyotis subflavus 04 March 2014 no 24787-7038 Kentucky, USA Permyotis subflavus 04 March 2014 no 24787-7038 Kentucky, USA Permyotis subflavus 04 March 2014 no | | | | | | | 24738-008 Wisconsin, USA (siel #2) Myels burifugus 10 March 2014 no 24738-011 Wisconsin, USA (siel #2) Myels burifugus 10 March 2014 no 24738-021 Wisconsin, USA (siel #2) Myels burifugus 10 March 2014 yes 24738-022 Wisconsin, USA (siel #2) Myels burifugus 10 March 2014 yes 24738-022 Wisconsin, USA (siel #2) Myels burifugus 10 March 2014 yes 24738-022 Wisconsin, USA (siel #2) Myels burifugus 10 March 2014 no 24738-022 Kentucky, USA Perimyots subflavus 04 March 2014 no 24767-002 Kentucky, USA Perimyots subflavus 04 March 2014 no 24767-003 Kentucky, USA Perimyots subflavus 04 March 2014 no 24767-005 Kentucky, USA Perimyots subflavus 04 March 2014 no 24767-007 Kentucky, USA Perimyots subflavus 04 March 2014 no 24767-007 Kentucky, USA Perimyots subflavus 04 March 2014 no 24767-007 Kentucky, USA Perimyots subflavus 04 March 2014 no 24767-007 Kentucky, USA Perimyots subflavus 04 March 2014 no 24767-007 Kentucky, USA Perimyots subflavus 04 March 2014 no 24767-007 Kentucky, USA Perimyots subflavus 04 March 2014 no 24767-007 Kentucky, USA Perimyots subflavus 04 March 2014 no 24767-007 Kentucky, USA Perimyots subflavus 04 March 2014 no 24767-007 Kentucky, USA Perimyots subflavus 04 March 2014 no 24767-007 Kentucky, USA Perimyots subflavus 04 March 2014 no 24767-017 Kentucky, USA Perimyots subflavus 04 March 2014 no 24767-017 Kentucky, USA Perimyots subflavus 04 March 2014 no 24767-017 Kentucky, USA Perimyots subflavus 04 March 2014 no 24767-018 Kentucky, USA Perimyots subflavus 04 March 2014 no 24767-018 Kentucky, USA Perimyots subflavus 04 March 2014 no 24767-019 Kentucky, USA Perimyots subflavus 04 March 2014 no 24767-019 Kentucky, USA Perimyots subflavus 04 March 2014 no 24767-019 Kentucky, USA Perimyots subflavus 04 March 2014 no 24767-019 Kentucky, USA Perimyots subflavus 04 March 2014 no 24767-019 Kentucky, USA Perimyots subflavus 04 March 2014 no 24767-019 Kentucky, USA Perimyots subflavus 04 March 2014 no 24767-019 Kentucky, USA Perimyots subflavus 04 March 2014 no 24767-019 Kentucky, USA Perimyots subflavus 04 Ma | | | | | no | | 24738-011 Wisconsin, USA (siel #2) Myote fundings 10 March 2014 yes 24738-013 Wisconsin, USA (siel #2) Myote fundings 10 March 2014 yes 24738-022 Wisconsin, USA (siel #2) Myote fundings 10 March 2014 no 44767-002 Kentucky, USA Permyote subflavus 04 March 2014 no 44767-003 Kentucky, USA Permyote subflavus 04 March 2014 no 044767-003 Kentucky, USA Permyote subflavus 04 March 2014 no 044767-004 Kentucky, USA Permyote subflavus 04 March 2014 no 044767-004 Kentucky, USA Permyote subflavus 04 March 2014 no 044767-005 Kentucky, USA Permyote subflavus 04 March 2014 no 044767-006 Kentucky, USA Permyote subflavus 04 March 2014 no 044767-008 Kentucky, USA Permyote subflavus 04 March 2014 no 044767-008 Kentucky, USA Permyote subflavus 04 March 2014 no 044767-008 Kentucky, USA Permyote subflavus 04 March 2014 no 044767-009 Kentucky, USA Permyote subflavus 04 March 2014 no 044767-009 Kentucky, USA Permyote subflavus 04 March 2014 no 044767-019 Kentucky, USA Permyote subflavus 04 March 2014 no 044767-019 Kentucky, USA Permyote subflavus 04 March 2014 no 044767-011 Kentucky, USA Permyote subflavus 04 March 2014 no 044767-013 Kentucky, USA Permyote subflavus 04 March 2014 no 044767-014 Kentucky, USA Permyote subflavus 04 March 2014 no 044767-013 Kentucky, USA Permyote subflavus 04 March 2014 no 044767-014 Kentucky, USA Permyote subflavus 04 March 2014 no 044767-014 Kentucky, USA Permyote subflavus 04 March 2014 no 044767-017 Kentucky, USA Permyote subflavus 04 March 2014 no 044767-017 Kentucky, USA Permyote subflavus 04 March 2014 no 044767-018 Kentucky, USA Permyote subflavus 04 March 2014 no 044767-019 Kentucky, USA Permyote subflavus 04 March 2014 no 044767-019 Kentucky, USA Permyote subflavus 04 March 2014 no 044767-019 Kentucky, USA Permyote subflavus 04 March 2014 no 044767-019 Kentucky, USA Permyote subflavus 04 March 2014 no 044767-019 Kentucky, USA Permyote subflavus 04 March 2014 no 044767-019 Kentucky, USA Permyote subflavus 04 March 2014 no 044767-019 Kentucky, USA Permyote subflavus 04 March 2014 no 044767-019 Kent | | , , | | | | | 24738-013 Wisconshi, USA (site #2) Myots burfugus 10 March 2014 yes 24738-022 Wisconshi, USA (site #2) Myots
burfugus 10 March 2014 yes 24738-022 Wisconshi, USA (site #2) Myots sp.* 10 March 2014 yes 44767-001 Kentucky, USA Penmyots subflavus 04 March 2014 no 44767-003 Kentucky, USA Penmyots subflavus 04 March 2014 no 64767-003 Kentucky, USA Penmyots subflavus 04 March 2014 no 64767-003 Kentucky, USA Penmyots subflavus 04 March 2014 no 64767-005 Kentucky, USA Penmyots subflavus 04 March 2014 no 64767-006 Kentucky, USA Penmyots subflavus 04 March 2014 no 64767-006 Kentucky, USA Penmyots subflavus 04 March 2014 no 64767-007 Kentucky, USA Penmyots subflavus 04 March 2014 no 64767-008 Kentucky, USA Penmyots subflavus 04 March 2014 no 64767-008 Kentucky, USA Penmyots subflavus 04 March 2014 no 64767-008 Kentucky, USA Penmyots subflavus 04 March 2014 no 64767-009 Kentucky, USA Penmyots subflavus 04 March 2014 no 64767-010 Kentucky, USA Penmyots subflavus 04 March 2014 no 64767-010 Kentucky, USA Penmyots subflavus 04 March 2014 no 64767-011 Kentucky, USA Penmyots subflavus 04 March 2014 no 64767-012 Kentucky, USA Penmyots subflavus 04 March 2014 no 64767-013 Kentucky, USA Penmyots subflavus 04 March 2014 no 64767-013 Kentucky, USA Penmyots subflavus 04 March 2014 no 64767-015 Kentucky, USA Penmyots subflavus 04 March 2014 no 64767-016 Kentucky, USA Penmyots subflavus 04 March 2014 no 64767-016 Kentucky, USA Penmyots subflavus 04 March 2014 no 64767-017 Kentucky, USA Penmyots subflavus 04 March 2014 no 64767-017 Kentucky, USA Penmyots subflavus 04 March 2014 no 64767-017 Kentucky, USA Penmyots subflavus 04 March 2014 no 64767-018 Kentucky, USA Penmyots subflavus 04 March 2014 no 64767-018 Kentucky, USA Penmyots subflavus 04 March 2014 no 64767-018 Kentucky, USA Penmyots subflavus 04 March 2014 no 64767-018 Kentucky, USA Penmyots subflavus 04 March 2014 no 64767-018 Kentucky, USA Penmyots subflavus 04 March 2014 no 64767-018 Kentucky, USA Penmyots subflavus 04 March 2014 no 64767-018 Kentucky, USA Penmyots subflavus 04 | | | | | | | 24738-022 Wisconsin, USA (eller #2) Myioris buildigus 10 March 2014 98 44787-001 Kentucky, USA Permyoris subflavus 04 March 2014 98 44787-001 Kentucky, USA Permyoris subflavus 04 March 2014 99 44787-001 Kentucky, USA Permyoris subflavus 04 March 2014 99 44787-002 Kentucky, USA Permyoris subflavus 04 March 2014 99 44787-003 Kentucky, USA Permyoris subflavus 04 March 2014 99 44787-006 Kentucky, USA Permyoris subflavus 04 March 2014 99 44787-007 Kentucky, USA Permyoris subflavus 04 March 2014 99 44787-008 Kentucky, USA Permyoris subflavus 04 March 2014 99 44787-008 Kentucky, USA Permyoris subflavus 04 March 2014 99 44787-010 Kentucky, USA Permyoris subflavus 04 March 2014 99 44787-010 Kentucky, USA Permyoris subflavus 04 March 2014 99 44787-010 Kentucky, USA Permyoris subflavus 04 March 2014 99 44787-010 Kentucky, USA Permyoris subflavus 04 March 2014 99 44787-010 Kentucky, USA Permyoris subflavus 04 March 2014 99 44787-011 Kentucky, USA Permyoris subflavus 04 March 2014 99 44787-013 Kentucky, USA Permyoris subflavus 04 March 2014 99 44787-014 Kentucky, USA Permyoris subflavus 04 March 2014 99 44787-015 Kentucky, USA Permyoris subflavus 04 March 2014 99 44787-016 Kentucky, USA Permyoris subflavus 04 March 2014 99 44787-017 Kentucky, USA Permyoris subflavus 04 March 2014 99 44787-018 Kentucky, USA Permyoris subflavus 04 March 2014 99 44787-019 Kentucky, USA Permyoris subflavus 04 March 2014 99 44787-019 Kentucky, USA Permyoris subflavus 04 March 2014 99 44787-019 Kentucky, USA Permyoris subflavus 04 March 2014 99 44787-019 Kentucky, USA Permyoris subflavus 04 March 2014 99 44787-019 Kentucky, USA Permyoris subflavus 04 March 2014 99 44787-020 Kentucky, USA Permyoris subflavus 04 March 2014 99 44787-021 Kentucky, USA Permyoris subflavus 04 March 2014 99 44787-021 Kentucky, USA Permyoris subflavus 04 March 2014 99 44787-021 Kentucky, USA Permyoris subflavus 04 March 2014 99 44787-021 Kentucky, USA Permyoris subflavus 04 March 2014 99 44787-022 Kentucky, USA Permyoris subflavus 04 March | | , , | | | | | 2478-025 Wisconsin, USA (site #Z) Mylotis sp." 4767-002 Kentucky, USA Perimyotis subflavus 04 March 2014 no 4767-003 Kentucky, USA Perimyotis subflavus 04 March 2014 no 4767-003 Kentucky, USA Perimyotis subflavus 04 March 2014 no 4767-003 Kentucky, USA Perimyotis subflavus 04 March 2014 no 4767-003 Kentucky, USA Perimyotis subflavus 04 March 2014 no 4767-006 Kentucky, USA Perimyotis subflavus 04 March 2014 no 4767-007 Kentucky, USA Perimyotis subflavus 04 March 2014 no 4767-007 Kentucky, USA Perimyotis subflavus 04 March 2014 no 4767-008 Kentucky, USA Perimyotis subflavus 04 March 2014 no 4767-009 Kentucky, USA Perimyotis subflavus 04 March 2014 no 4767-010 Kentucky, USA Perimyotis subflavus 04 March 2014 no 4767-010 Kentucky, USA Perimyotis subflavus 04 March 2014 no 4767-010 Kentucky, USA Perimyotis subflavus 04 March 2014 no 4767-011 Kentucky, USA Perimyotis subflavus 04 March 2014 no 4767-012 Kentucky, USA Perimyotis subflavus 04 March 2014 no 4767-013 Kentucky, USA Perimyotis subflavus 04 March 2014 no 4767-014 Kentucky, USA Perimyotis subflavus 04 March 2014 no 4767-015 Kentucky, USA Perimyotis subflavus 04 March 2014 no 4767-016 Kentucky, USA Perimyotis subflavus 04 March 2014 no 4767-017 Kentucky, USA Perimyotis subflavus 04 March 2014 no 4767-018 Kentucky, USA Perimyotis subflavus 04 March 2014 no 4767-019 Kentucky, USA Perimyotis subflavus 04 March 2014 no 4767-019 Kentucky, USA Perimyotis subflavus 04 March 2014 no 4767-019 Kentucky, USA Perimyotis subflavus 04 March 2014 no 4767-019 Kentucky, USA Perimyotis subflavus 04 March 2014 no 4767-019 Kentucky, USA Perimyotis subflavus 04 March 2014 no 4767-020 Kentucky, USA Perimyotis subflavus 04 March 2014 no 4767-021 Kentucky, USA Perimyotis subflavus 04 March 2014 no 4767-021 Kentucky, USA Perimyotis subflavus 04 March 2014 no 4767-022 Kentucky, USA Perimyotis subflavus 04 March 2014 no 4767-023 Kentucky, USA Perimyotis subflavus 04 March 2014 no 4767-024 Kentucky, USA Perimyotis subflavus 0 | | | | | • | | 44767-003 Kentucky, USA Perimyots subflavus 04 March 2014 no 44767-004 Kentucky, USA Perimyots subflavus 04 March 2014 no 44767-005 Kentucky, USA Perimyots subflavus 04 March 2014 no 44767-005 Kentucky, USA Perimyots subflavus 04 March 2014 no 44767-007 Kentucky, USA Perimyots subflavus 04 March 2014 no 44767-007 Kentucky, USA Perimyots subflavus 04 March 2014 no 44767-008 Kentucky, USA Perimyots subflavus 04 March 2014 no 44767-009 Kentucky, USA Perimyots subflavus 04 March 2014 no 44767-010 Kentucky, USA Perimyots subflavus 04 March 2014 no 44767-011 Kentucky, USA Perimyots subflavus 04 March 2014 no 44767-011 Kentucky, USA Perimyots subflavus 04 March 2014 no 44767-011 Kentucky, USA Perimyots subflavus 04 March 2014 no 44767-011 Kentucky, USA Perimyots subflavus 04 March 2014 no 44767-011 Kentucky, USA Perimyots subflavus 04 March 2014 no 44767-011 Kentucky, USA Perimyots subflavus 04 March 2014 no 44767-016 Kentucky, USA Perimyots subflavus 04 March 2014 no 44767-017 Kentucky, USA Perimyots subflavus 04 March 2014 no 44767-018 Kentucky, USA Perimyots subflavus 04 March 2014 no 44767-018 Kentucky, USA Perimyots subflavus 04 March 2014 no 44767-019 Kentucky, USA Perimyots subflavus 04 March 2014 no 44767-019 Kentucky, USA Perimyots subflavus 04 March 2014 no 44767-019 Kentucky, USA Perimyots subflavus 04 March 2014 no 44767-019 Kentucky, USA Perimyots subflavus 04 March 2014 no 44767-019 Kentucky, USA Perimyots subflavus 04 March 2014 no 44767-019 Kentucky, USA Perimyots subflavus 04 March 2014 no 44767-019 Kentucky, USA Perimyots subflavus 04 March 2014 no 44767-019 Kentucky, USA Perimyots subflavus 04 March 2014 no 44767-019 Kentucky, USA Perimyots subflavus 04 March 2014 no 44767-019 Kentucky, USA Perimyots subflavus 04 March 2014 no 44767-019 Kentucky, USA Perimyots subflavus 04 March 2014 no 44767-019 Kentucky, USA Perimyots subflavus 04 March 2014 no 44767-019 Kentucky, USA Perimyots subflavus 04 March 2014 no 44767-019 Kentucky, USA Perimy | | | | | | | 44767-005 Kentucky, USA Permyots subflavus 0 4 March 2014 no 44767-006 Kentucky, USA Permyots subflavus 0 4 March 2014 no 44767-006 Kentucky, USA Permyots subflavus 0 4 March 2014 no 44767-007 Kentucky, USA Permyots subflavus 0 4 March 2014 no 44767-007 Kentucky, USA Permyots subflavus 0 4 March 2014 no 44767-008 Kentucky, USA Permyots subflavus 0 4 March 2014 no 44767-009 Kentucky, USA Permyots subflavus 0 4 March 2014 no 44767-010 Kentucky, USA Permyots subflavus 0 4 March 2014 no 44767-011 Kentucky, USA Permyots subflavus 0 4 March 2014 no 44767-012 Kentucky, USA Permyots subflavus 0 4 March 2014 no 44767-013 Kentucky, USA Permyots subflavus 0 4 March 2014 no 44767-013 Kentucky, USA Permyots subflavus 0 4 March 2014 no 44767-015 Kentucky, USA Permyots subflavus 0 4 March 2014 no 44767-016 Kentucky, USA Permyots subflavus 0 4 March 2014 no 44767-017 Kentucky, USA Permyots subflavus 0 4 March 2014 no 44767-018 Kentucky, USA Permyots subflavus 0 4 March 2014 no 44767-018 Kentucky, USA Permyots subflavus 0 4 March 2014 no 44767-019 Kentucky, USA Permyots subflavus 0 4 March 2014 no 44767-019 Kentucky, USA Permyots subflavus 0 4 March 2014 no 44767-019 Kentucky, USA Permyots subflavus 0 4 March 2014 no 44767-020 Kentucky, USA Permyots subflavus 0 4 March 2014 no 44767-021 Kentucky, USA Permyots subflavus 0 4 March 2014 no 44767-021 Kentucky, USA Permyots subflavus 0 4 March 2014 no 44767-021 Kentucky, USA Permyots subflavus 0 4 March 2014 no 44767-021 Kentucky, USA Permyots subflavus 0 4 March 2014 no 44767-021 Kentucky, USA Permyots subflavus 0 4 March 2014 no 44767-021 Kentucky, USA Permyots subflavus 0 4 March 2014 no 44767-021 Kentucky, USA Permyots subflavus 0 4 March 2014 no 44767-021 Kentucky, USA Permyots subflavus 0 4 March 2014 no 44767-021 Kentucky, USA Permyots subflavus 0 4 March 2014 no 44767-021 Kentucky, USA Permyots subflavus 0 4 March 2014 no 44767-022 Kentucky, USA Permyots subflavus 0 4 March 2014 no 44767-023 Kentucky, USA Permyo | | | | | no | | 44767-004
Kentucky, USA Perimyotis subflavus 0-4 March 2014 no 44767-006 Kentucky, USA Perimyotis subflavus 0-4 March 2014 no 44767-007 Kentucky, USA Perimyotis subflavus 0-4 March 2014 no 44767-007 Kentucky, USA Perimyotis subflavus 0-4 March 2014 no 44767-008 Kentucky, USA Perimyotis subflavus 0-4 March 2014 no 44767-010 Kentucky, USA Perimyotis subflavus 0-4 March 2014 no 44767-010 Kentucky, USA Perimyotis subflavus 0-4 March 2014 no 44767-011 Kentucky, USA Perimyotis subflavus 0-4 March 2014 no 44767-012 Kentucky, USA Perimyotis subflavus 0-4 March 2014 no 44767-013 Kentucky, USA Perimyotis subflavus 0-4 March 2014 no 44767-014 Kentucky, USA Perimyotis subflavus 0-4 March 2014 no 44767-015 Kentucky, USA Perimyotis subflavus 0-4 March 2014 no 44767-016 Kentucky, USA Perimyotis subflavus 0-4 March 2014 no 44767-017 Kentucky, USA Perimyotis subflavus 0-4 March 2014 no 44767-018 Kentucky, USA Perimyotis subflavus 0-4 March 2014 no 44767-018 Kentucky, USA Perimyotis subflavus 0-4 March 2014 no 44767-019 Kentucky, USA Perimyotis subflavus 0-4 March 2014 no 44767-019 Kentucky, USA Perimyotis subflavus 0-4 March 2014 no 44767-019 Kentucky, USA Perimyotis subflavus 0-4 March 2014 no 44767-020 Kentucky, USA Perimyotis subflavus 0-4 March 2014 no 44767-021 Kentucky, USA Perimyotis subflavus 0-4 March 2014 no 44767-022 Kentucky, USA Perimyotis subflavus 0-4 March 2014 no 44767-023 Kentucky, USA Perimyotis subflavus 0-4 March 2014 no 44767-024 Kentucky, USA Perimyotis subflavus 0-4 March 2014 no 44767-025 Kentucky, USA Perimyotis subflavus 0-4 March 2014 no 44767-026 Kentucky, USA Perimyotis subflavus 0-4 March 2014 no 44767-027 Kentucky, USA Perimyotis subflavus 0-4 March 2014 no 44767-030 Kentucky, USA Perimyotis subflavus 0-4 March 2014 no 44767-031 Kentucky, USA Myotis sodalis 0-4 March 2014 no 44767-030 Kentucky, USA Myotis sodalis 0-4 March 2014 no 44767-031 Kentucky, USA Myotis sodalis 0-4 March 2014 no 44767-045 Kentucky, USA Myotis sodalis 0-4 March | | | | | | | 44767-005 Kentucky, USA Permyolis subflavus 0 4 March 2014 no 44767-007 Kentucky, USA Permyolis subflavus 0 4 March 2014 no 44767-008 Kentucky, USA Permyolis subflavus 0 4 March 2014 no 44767-008 Kentucky, USA Permyolis subflavus 0 4 March 2014 no 6 March 2014 no 6 March 2016 Marc | | | | | | | 44767-005 Kentucky, USA Perimyotis subflavus 0-4 March 2014 no 44767-008 Kentucky, USA Perimyotis subflavus 0-4 March 2014 no 44767-008 Kentucky, USA Perimyotis subflavus 0-4 March 2014 no 44767-008 Kentucky, USA Perimyotis subflavus 0-4 March 2014 no 44767-010 Kentucky, USA Perimyotis subflavus 0-4 March 2014 no 44767-011 Kentucky, USA Perimyotis subflavus 0-4 March 2014 no 44767-012 Kentucky, USA Perimyotis subflavus 0-4 March 2014 no 44767-013 Kentucky, USA Perimyotis subflavus 0-4 March 2014 no 44767-015 Kentucky, USA Perimyotis subflavus 0-4 March 2014 no 44767-016 Kentucky, USA Perimyotis subflavus 0-4 March 2014 no 44767-017 Kentucky, USA Perimyotis subflavus 0-4 March 2014 no 44767-018 Kentucky, USA Perimyotis subflavus 0-4 March 2014 no 44767-019 Kentucky, USA Perimyotis subflavus 0-4 March 2014 no 44767-017 Kentucky, USA Perimyotis subflavus 0-4 March 2014 no 44767-019 Kentucky, USA Perimyotis subflavus 0-4 March 2014 no 44767-019 Kentucky, USA Perimyotis subflavus 0-4 March 2014 no 44767-020 Kentucky, USA Perimyotis subflavus 0-4 March 2014 no 44767-021 Kentucky, USA Perimyotis subflavus 0-4 March 2014 no 44767-022 Kentucky, USA Perimyotis subflavus 0-4 March 2014 no 44767-023 Kentucky, USA Perimyotis subflavus 0-4 March 2014 no 44767-024 Kentucky, USA Perimyotis subflavus 0-4 March 2014 no 44767-025 Kentucky, USA Perimyotis subflavus 0-4 March 2014 no 44767-026 Kentucky, USA Perimyotis subflavus 0-4 March 2014 no 44767-027 Kentucky, USA Perimyotis subflavus 0-4 March 2014 no 44767-028 Kentucky, USA Perimyotis subflavus 0-4 March 2014 no 44767-028 Kentucky, USA Perimyotis subflavus 0-4 March 2014 no 44767-029 Kentucky, USA Perimyotis subflavus 0-4 March 2014 no 44767-030 Kentucky, USA Perimyotis subflavus 0-4 March 2014 no 44767-045 Kentucky, USA Perimyotis subflavus 0-4 March 2014 no 44767-045 Kentucky, USA Perimyotis subflavus 0-4 March 2014 no 44767-046 Kentucky, USA Perimyotis subflavus 0-4 March 2014 no 44767-047 Kentucky, USA Perimyo | | | , | | | | 44767-007 Kentucky, USA Penmyotis subflavus 04 March 2014 no 44767-008 Kentucky, USA Penmyotis subflavus 04 March 2014 no 44767-010 Kentucky, USA Penmyotis subflavus 04 March 2014 no 44767-011 Kentucky, USA Penmyotis subflavus 04 March 2014 no 44767-011 Kentucky, USA Penmyotis subflavus 04 March 2014 no 44767-011 Kentucky, USA Penmyotis subflavus 04 March 2014 no 644767-012 Kentucky, USA Penmyotis subflavus 04 March 2014 no 644767-013 Kentucky, USA Penmyotis subflavus 04 March 2014 no 644767-013 Kentucky, USA Penmyotis subflavus 04 March 2014 no 644767-015 Kentucky, USA Penmyotis subflavus 04 March 2014 no 644767-016 Kentucky, USA Penmyotis subflavus 04 March 2014 no 644767-017 Kentucky, USA Penmyotis subflavus 04 March 2014 no 644767-018 Kentucky, USA Penmyotis subflavus 04 March 2014 no 644767-018 Kentucky, USA Penmyotis subflavus 04 March 2014 no 644767-018 Kentucky, USA Penmyotis subflavus 04 March 2014 no 644767-018 Kentucky, USA Penmyotis subflavus 04 March 2014 no 644767-018 Kentucky, USA Penmyotis subflavus 04 March 2014 no 644767-020 Kentucky, USA Penmyotis subflavus 04 March 2014 no 644767-020 Kentucky, USA Penmyotis subflavus 04 March 2014 no 644767-020 Kentucky, USA Penmyotis subflavus 04 March 2014 no 644767-020 Kentucky, USA Penmyotis subflavus 04 March 2014 no 644767-020 Kentucky, USA Penmyotis subflavus 04 March 2014 no 644767-020 Kentucky, USA Penmyotis subflavus 04 March 2014 no 644767-020 Kentucky, USA Penmyotis subflavus 04 March 2014 no 644767-020 Kentucky, USA Penmyotis subflavus 04 March 2014 no 644767-020 Kentucky, USA Penmyotis subflavus 04 March 2014 no 644767-020 Kentucky, USA Penmyotis subflavus 04 March 2014 no 644767-020 Kentucky, USA Penmyotis subflavus 04 March 2014 no 644767-020 Kentucky, USA Penmyotis subflavus 04 March 2014 no 644767-020 Kentucky, USA Penmyotis subflavus 04 March 2014 no 644767-020 Kentucky, USA Penmyotis subflavus 04 March 2014 no 644767-020 Kentucky, USA Penmyotis subflavus 04 March 2014 no 644767-020 Kentucky, USA Penmyotis subflavus 04 March 2014 no 644767 | | | | | | | 44767-009 Kentucky, USA Perimyofis subflavus O4 March 2014 no A4767-011 Kentucky, USA Perimyofis subflavus O4 March 2014 no A4767-012 Kentucky, USA Perimyofis subflavus O4 March 2014 no A4767-012 Kentucky, USA Perimyofis subflavus O4 March 2014 no A4767-012 Kentucky, USA Perimyofis subflavus O4 March 2014 no A4767-014 Kentucky, USA Perimyofis subflavus O4 March 2014 no A4767-015 Kentucky, USA Perimyofis subflavus O4 March 2014 no | | | | | | | 44767-010 Kentucky, USA Penmyotis subflavus O4 March 2014 no 44767-012 Kentucky, USA Penmyotis subflavus O4 March 2014 no 44767-013 Kentucky, USA Penmyotis subflavus O4 March 2014 no 44767-013 Kentucky, USA Penmyotis subflavus O4 March 2014 no 44767-014 Kentucky, USA Penmyotis subflavus O4 March 2014 no 44767-015 Kentucky, USA Penmyotis subflavus O4 March 2014 no 44767-016 Kentucky, USA Penmyotis subflavus O4 March 2014 no 44767-017 Kentucky, USA Penmyotis subflavus O4 March 2014 no 44767-017 Kentucky, USA Penmyotis subflavus O4 March 2014 no 44767-018 Kentucky, USA Penmyotis subflavus O4 March 2014 no 44767-019 Kentucky, USA Penmyotis subflavus O4 March 2014 no 44767-019 Kentucky, USA Penmyotis subflavus O4 March 2014 no 44767-019 Kentucky, USA Penmyotis subflavus O4 March 2014 no 44767-019 Kentucky, USA Penmyotis subflavus O4 March 2014 no 44767-020 Kentucky, USA Penmyotis subflavus O4 March 2014 no 44767-021 Kentucky, USA Penmyotis subflavus O4 March 2014 no 44767-022 Kentucky, USA Penmyotis subflavus O4 March 2014 no 44767-023 Kentucky, USA Penmyotis subflavus O4 March 2014 no 44767-024 Kentucky, USA Penmyotis subflavus O4 March 2014 no 44767-025 Kentucky, USA Penmyotis subflavus O4 March 2014 no 44767-026 Kentucky, USA Penmyotis subflavus O4 March 2014 no 44767-027 Kentucky, USA Penmyotis subflavus O4 March 2014 no 44767-028 Kentucky, USA Penmyotis subflavus O4 March 2014 no 44767-029 Kentucky, USA Penmyotis subflavus O4 March 2014 no 44767-029 Kentucky, USA Penmyotis subflavus O4 March 2014 no 44767-030 Kentucky, USA Penmyotis subflavus O4 March 2014 no 44767-030 Kentucky, USA Penmyotis subflavus O4 March 2014 no 44767-031 Kentucky, USA Penmyotis subflavus O4 March 2014 no 44767-032 Kentucky, USA Penmyotis subflavus O4 March 2014 no 44767-033 Kentucky, USA Penmyotis subflavus O4 March 2014 no 44767-034 Kentucky, USA Penmyotis subflavus O4 March 2014 no 44767-035 Kentucky, USA Penmyotis subflavus O4 March 2014 no 44767-036 Kentucky, USA Penmyo | | • | | | no | | 44767-011 Kentucky, USA Perimyotis subflavus 04 March 2014 no 44767-013 Kentucky, USA Perimyotis subflavus 04 March 2014 no 44767-014 Kentucky, USA Perimyotis subflavus 04 March 2014 no 44767-015 Kentucky, USA Perimyotis subflavus 04 March 2014 no 44767-016 Kentucky, USA Perimyotis subflavus 04 March 2014 no 44767-016 Kentucky, USA Perimyotis subflavus 04 March 2014 no 44767-017 Kentucky, USA Perimyotis subflavus 04 March 2014 no 44767-017 Kentucky, USA Perimyotis subflavus 04 March 2014 no 64767-018 Kentucky, USA Perimyotis subflavus 04 March 2014 no 64767-018 Kentucky, USA Perimyotis subflavus 04 March 2014 no 64767-018 Kentucky, USA Perimyotis subflavus 04 March 2014 no 64767-021 Kentucky, USA Perimyotis subflavus 04 March 2014 no 64767-022 Kentucky, USA Perimyotis subflavus 04 March 2014 no 64767-022 Kentucky, USA Perimyotis subflavus 04 March 2014 no 64767-023 Kentucky, USA Perimyotis subflavus 04 March 2014 no 64767-024 Kentucky, USA Perimyotis subflavus 04 March 2014 no 64767-025 Kentucky, USA Perimyotis subflavus 04 March 2014 no 64767-026 Kentucky, USA Perimyotis subflavus 04 March 2014 no 64767-027 Kentucky, USA Perimyotis subflavus 04 March 2014 no 64767-027 Kentucky, USA
Perimyotis subflavus 04 March 2014 no 64767-027 Kentucky, USA Perimyotis subflavus 04 March 2014 no 64767-027 Kentucky, USA Perimyotis subflavus 04 March 2014 no 64767-028 Kentucky, USA Perimyotis subflavus 04 March 2014 no 64767-028 Kentucky, USA Perimyotis subflavus 04 March 2014 no 64767-028 Kentucky, USA Perimyotis subflavus 04 March 2014 no 64767-028 Kentucky, USA Perimyotis subflavus 04 March 2014 no 64767-028 Kentucky, USA Perimyotis subflavus 04 March 2014 no 64767-028 Kentucky, USA Myotis sodalis 04 March 2014 no 64767-038 Kentucky, USA Myotis sodalis 04 March 2014 yes 64767-038 Kentucky, USA Myotis sodalis 04 March 2014 yes 64767-038 Kentucky, USA Myotis sodalis 04 March 2014 yes 64767-038 Kentucky, USA Myotis sodalis 04 March 2014 yes 64767-048 Kentucky, USA Myotis sodalis 04 March 2014 yes 64767-048 Kentucky, USA Myotis | | | | | | | 44767-012 Kentucky, USA Perimyots subflavus 04 March 2014 no 44767-015 Kentucky, USA Perimyots subflavus 04 March 2014 no 44767-016 Kentucky, USA Perimyots subflavus 04 March 2014 no 44767-016 Kentucky, USA Perimyots subflavus 04 March 2014 no 44767-017 Kentucky, USA Perimyots subflavus 04 March 2014 no 44767-017 Kentucky, USA Perimyots subflavus 04 March 2014 no 44767-017 Kentucky, USA Perimyots subflavus 04 March 2014 no 44767-018 Kentucky, USA Perimyots subflavus 04 March 2014 no 44767-019 Kentucky, USA Perimyots subflavus 04 March 2014 no 44767-019 Kentucky, USA Perimyots subflavus 04 March 2014 no 44767-021 Kentucky, USA Perimyots subflavus 04 March 2014 no 644767-022 Kentucky, USA Perimyots subflavus 04 March 2014 no 644767-023 Kentucky, USA Perimyots subflavus 04 March 2014 no 644767-023 Kentucky, USA Perimyots subflavus 04 March 2014 no 644767-024 Kentucky, USA Perimyots subflavus 04 March 2014 no 644767-025 Kentucky, USA Perimyots subflavus 04 March 2014 no 644767-025 Kentucky, USA Perimyots subflavus 04 March 2014 no 644767-026 Kentucky, USA Perimyots subflavus 04 March 2014 no 644767-026 Kentucky, USA Perimyots subflavus 04 March 2014 no 644767-027 Kentucky, USA Perimyots subflavus 04 March 2014 no 644767-028 Kentucky, USA Perimyots subflavus 04 March 2014 no 644767-028 Kentucky, USA Myots sodalis 04 March 2014 no 644767-029 Kentucky, USA Myots sodalis 04 March 2014 no 644767-039 Kentucky, USA Myots sodalis 04 March 2014 no 644767-039 Kentucky, USA Myots sodalis 04 March 2014 no 644767-039 Kentucky, USA Myots sodalis 04 March 2014 no 644767-039 Kentucky, USA Myots sodalis 04 March 2014 no 644767-039 Kentucky, USA Myots sodalis 04 March 2014 no 644767-039 Kentucky, USA Myots sodalis 04 March 2014 yes 644767-039 Kentucky, USA Myots sodalis 04 March 2014 yes 644767-039 Kentucky, USA Myots sodalis 04 March 2014 yes 644767-046 Kentucky, USA Myots sodalis 04 March 2014 yes 644767-046 Kentucky, USA Myots sodalis 04 March 2014 yes 644767-046 Kentucky, USA Myots sodalis 04 March 2014 yes 644767-046 Kentucky, | | | | | | | 44767-013 Kentucky, USA Perimyots subflavus 04 March 2014 no 44767-016 Kentucky, USA Perimyots subflavus 04 March 2014 no 44767-016 Kentucky, USA Perimyots subflavus 04 March 2014 no 44767-016 Kentucky, USA Perimyots subflavus 04 March 2014 no 44767-017 Kentucky, USA Perimyots subflavus 04 March 2014 no 44767-018 Kentucky, USA Perimyots subflavus 04 March 2014 no 44767-018 Kentucky, USA Perimyots subflavus 04 March 2014 no 44767-019 Kentucky, USA Perimyots subflavus 04 March 2014 no 44767-020 Kentucky, USA Perimyots subflavus 04 March 2014 no 44767-020 Kentucky, USA Perimyots subflavus 04 March 2014 no 44767-021 Kentucky, USA Perimyots subflavus 04 March 2014 no 44767-021 Kentucky, USA Perimyots subflavus 04 March 2014 no 44767-022 Kentucky, USA Perimyots subflavus 04 March 2014 no 44767-022 Kentucky, USA Perimyots subflavus 04 March 2014 no 44767-023 Kentucky, USA Perimyots subflavus 04 March 2014 no 44767-023 Kentucky, USA Perimyots subflavus 04 March 2014 no 44767-023 Kentucky, USA Perimyots subflavus 04 March 2014 no 44767-023 Kentucky, USA Perimyots subflavus 04 March 2014 no 44767-023 Kentucky, USA Perimyots subflavus 04 March 2014 no 44767-028 Kentucky, USA Perimyots subflavus 04 March 2014 no 44767-028 Kentucky, USA Perimyots subflavus 04 March 2014 no 44767-028 Kentucky, USA Perimyots subflavus 04 March 2014 no 44767-038 Kentucky, USA Myots sodalis 04 March 2014 no 44767-031 Kentucky, USA Myots sodalis 04 March 2014 no 44767-031 Kentucky, USA Perimyots subflavus 04 March 2014 per 44767-031 Kentucky, USA Perimyots subflavus 04 March 2014 per 44767-032 Kentucky, USA Perimyots subflavus 04 March 2014 per 44767-033 Kentucky, USA Perimyots subflavus 04 March 2014 per 44767-034 Kentucky, USA Perimyots subflavus 04 March 2014 per 44767-034 Kentucky, USA Myots sodalis 04 March 2014 per 44767-035 Kentucky, USA Myots sodalis 04 March 2014 per 44767-036 Kentucky, USA Myots sodalis 04 March 2014 per 44767-036 Kentucky, USA Myots sodalis 04 March 2014 per 44767-036 Kentucky, USA Myots sodalis 04 March 2014 per 4476 | | • | | | | | 44767-014 Kentucky, USA Perimyotis subflavus 0.4 March 2014 no | | | | | | | 44767-016 Kentucky, USA Perimyotis subflavus 0.4 March 2014 no | | | | | | | 44767-017 Kentucky, USA Perimyotis subflavus 0.4 March 2014 no 44767-018 Kentucky, USA Perimyotis subflavus 0.4 March 2014 no 44767-020 Kentucky, USA Perimyotis subflavus 0.4 March 2014 no 44767-020 Kentucky, USA Perimyotis subflavus 0.4 March 2014 no 44767-021 Kentucky, USA Perimyotis subflavus 0.4 March 2014 no 44767-022 Kentucky, USA Perimyotis subflavus 0.4 March 2014 no 44767-022 Kentucky, USA Perimyotis subflavus 0.4 March 2014 no 44767-022 Kentucky, USA Perimyotis subflavus 0.4 March 2014 no 44767-023 Kentucky, USA Perimyotis subflavus 0.4 March 2014 no 44767-024 Kentucky, USA Perimyotis subflavus 0.4 March 2014 no 44767-025 Kentucky, USA Perimyotis subflavus 0.4 March 2014 no 44767-025 Kentucky, USA Perimyotis subflavus 0.4 March 2014 no 44767-026 Kentucky, USA Perimyotis subflavus 0.4 March 2014 no 44767-027 Kentucky, USA Myotis sodalis 0.4 March 2014 no 44767-028 Kentucky, USA Myotis sodalis 0.4 March 2014 no 44767-029 Kentucky, USA Myotis sodalis 0.4 March 2014 no 44767-030 Kentucky, USA Myotis subflavus 0.4 March 2014 no 44767-031 Kentucky, USA Myotis subflavus 0.4 March 2014 no 44767-032 Kentucky, USA Myotis subflavus 0.4 March 2014 no 44767-032 Kentucky, USA Myotis subflavus 0.4 March 2014 yes 44767-033 Kentucky, USA Myotis subflavus 0.4 March 2014 yes 44767-034 Kentucky, USA Myotis sodalis 0.4 March 2014 yes 44767-035 Kentucky, USA Myotis sodalis 0.4 March 2014 yes 44767-035 Kentucky, USA Myotis sodalis 0.4 March 2014 yes 44767-036 Kentucky, USA Myotis sodalis 0.4 March 2014 yes 44767-037 Kentucky, USA Myotis sodalis 0.4 March 2014 yes 44767-038 Kentucky, USA Myotis sodalis 0.4 March 2014 yes 44767-039 Kentucky, USA Myotis sodalis 0.4 March 2014 yes 44767-039 Kentucky, USA Myotis sodalis 0.4 March 2014 yes 44767-040 Kentucky, USA Myotis sodalis 0.4 March 2014 yes 44767-041 Kentucky, USA Myotis sodalis 0.4 March 2014 yes 44767-041 Kentucky, USA Myotis sodalis 0.4 March 2014 yes 44767-042 Kentucky, USA Myotis sodalis 0.4 March 2014 yes 44767-046 Kentucky, USA Myotis sodalis 0.4 March 2014 no 44768- | | | | | | | 44767-019 Kentucky, USA Penimyotis subflavus 04 March 2014 no 44767-029 Kentucky, USA Penimyotis subflavus 04 March 2014 no 44767-021 Kentucky, USA Penimyotis subflavus 04 March 2014 no 44767-021 Kentucky, USA Penimyotis subflavus 04 March 2014 no 44767-022 Kentucky, USA Penimyotis subflavus 04 March 2014 no 44767-023 Kentucky, USA Penimyotis subflavus 04 March 2014 no 44767-023 Kentucky, USA Penimyotis subflavus 04 March 2014 no 44767-024 Kentucky, USA Penimyotis subflavus 04 March 2014 no 44767-025 Kentucky, USA Penimyotis subflavus 04 March 2014 no 44767-025 Kentucky, USA Penimyotis subflavus 04 March 2014 no 44767-025 Kentucky, USA Penimyotis subflavus 04 March 2014 no 44767-026 Kentucky, USA Penimyotis subflavus 04 March 2014 no 44767-027 Kentucky, USA Penimyotis subflavus 04 March 2014 no 44767-028 Kentucky, USA Myotis sodalis 04 March 2014 no 44767-029 Kentucky, USA Myotis sodalis 04 March 2014 no 44767-029 Kentucky, USA Myotis sotalis 04 March 2014 no 44767-031 Kentucky, USA Penimyotis subflavus 04 March 2014 no 44767-031 Kentucky, USA Penimyotis subflavus 04 March 2014 no 44767-033 Kentucky, USA Penimyotis subflavus 04 March 2014 no 44767-033 Kentucky, USA Penimyotis subflavus 04 March 2014 pes 44767-034 Kentucky, USA Myotis sodalis 04 March 2014 pes 44767-035 Kentucky, USA Myotis sodalis 04 March 2014 pes 44767-035 Kentucky, USA Myotis sodalis 04 March 2014 pes 44767-036 Kentucky, USA Myotis sodalis 04 March 2014 pes 44767-038 Kentucky, USA Myotis sodalis 04 March 2014 pes 44767-038 Kentucky, USA Myotis sodalis 04 March 2014 pes 44767-038 Kentucky, USA Myotis sodalis 04 March 2014 pes 44767-040 Kentucky, USA Myotis sodalis 04 March 2014 pes 44767-040 Kentucky, USA Myotis sodalis 04 March 2014 pes 44767-041 Kentucky, USA Myotis sodalis 04 March 2014 pes 44767-044 Kentucky, USA Myotis sodalis 04 March 2014 pes 44767-042 Kentucky, USA Myotis sodalis 04 March 2014 pes 44767-044 Kentucky, USA Myotis sodalis 04 March 2014 pes 44767-046 Kentucky, USA Penimyotis subflavus 04 March 2014 pes 44767-046 Kentucky, | | | | | | | 44767-019 Kentucky, USA Perimyotis subflavus 04 March 2014 no 44767-020 Kentucky, USA Perimyotis subflavus 04 March 2014 no 44767-021 Kentucky, USA Perimyotis subflavus 04 March 2014 no 44767-022 Kentucky, USA Perimyotis subflavus 04 March 2014 no 44767-023 Kentucky, USA Perimyotis subflavus 04 March 2014 no 44767-024 Kentucky, USA Myotis grisescens 04 March 2014 no 44767-025 Kentucky, USA Perimyotis subflavus 04 March 2014 no 44767-025 Kentucky, USA Perimyotis subflavus 04 March 2014 no 44767-026 Kentucky, USA Perimyotis subflavus 04 March 2014 no 44767-027 Kentucky, USA Perimyotis subflavus 04 March 2014 no 44767-027 Kentucky, USA Myotis sodalis 04 March 2014 no 44767-028 Kentucky, USA Myotis sodalis 04 March 2014 no 44767-028
Kentucky, USA Myotis sodalis 04 March 2014 no 44767-029 Kentucky, USA Myotis subflavus 04 March 2014 no 44767-030 Kentucky, USA Myotis subflavus 04 March 2014 no 44767-030 Kentucky, USA Myotis subflavus 04 March 2014 no 44767-031 Kentucky, USA Myotis subflavus 04 March 2014 no 44767-032 Kentucky, USA Myotis subflavus 04 March 2014 yes 44767-032 Kentucky, USA Myotis subflavus 04 March 2014 yes 44767-033 Kentucky, USA Myotis sodalis 04 March 2014 yes 44767-034 Kentucky, USA Myotis sodalis 04 March 2014 yes 44767-035 Kentucky, USA Myotis sodalis 04 March 2014 yes 44767-035 Kentucky, USA Myotis sodalis 04 March 2014 yes 44767-036 Kentucky, USA Myotis sodalis 04 March 2014 yes 44767-037 Kentucky, USA Myotis sodalis 04 March 2014 yes 44767-038 Kentucky, USA Myotis sodalis 04 March 2014 yes 44767-040 Kentucky, USA Myotis sodalis 04 March 2014 yes 44767-041 Kentucky, USA Myotis sodalis 04 March 2014 yes 44767-041 Kentucky, USA Myotis sodalis 04 March 2014 yes 44767-041 Kentucky, USA Myotis sodalis 04 March 2014 yes 44767-041 Kentucky, USA Myotis sodalis 04 March 2014 yes 44767-041 Kentucky, USA Myotis sodalis 04 March 2014 yes 44767-042 Kentucky, USA Myotis sodalis 04 March 2014 yes 44767-046 Kentucky, USA Myotis sodalis 04 March 2014 yes 44767-046 Kentucky, USA Myotis sodalis 04 March 2014 no | | | | | | | 44767-020 Kentucky, USA Perimyotis subflavus 04 March 2014 no 44767-021 Kentucky, USA Perimyotis subflavus 04 March 2014 no 44767-022 Kentucky, USA Perimyotis subflavus 04 March 2014 no 44767-023 Kentucky, USA Perimyotis subflavus 04 March 2014 no 44767-024 Kentucky, USA Perimyotis subflavus 04 March 2014 no 44767-025 Kentucky, USA Perimyotis subflavus 04 March 2014 no 44767-025 Kentucky, USA Perimyotis subflavus 04 March 2014 no 44767-025 Kentucky, USA Perimyotis subflavus 04 March 2014 no 44767-027 Kentucky, USA Perimyotis subflavus 04 March 2014 no 44767-027 Kentucky, USA Myotis socialis 04 March 2014 no 44767-028 Kentucky, USA Myotis socialis 04 March 2014 no 44767-029 Kentucky, USA Myotis socialis 04 March 2014 no 44767-030 Kentucky, USA Myotis socialis 04 March 2014 no 44767-031 Kentucky, USA Perimyotis subflavus 04 March 2014 no 44767-032 Kentucky, USA Perimyotis subflavus 04 March 2014 no 44767-033 Kentucky, USA Perimyotis subflavus 04 March 2014 perimyotis subflavus 04 March 2014 no 44767-033 Kentucky, USA Perimyotis subflavus 04 March 2014 perimyotis socialis M | | | | | | | 44767-022 Kentucky, USA Perimyotis subflavus 04 March 2014 no 44767-024 Kentucky, USA Perimyotis subflavus 04 March 2014 no 44767-025 Kentucky, USA Perimyotis subflavus 04 March 2014 no 44767-026 Kentucky, USA Perimyotis subflavus 04 March 2014 no 44767-027 Kentucky, USA Perimyotis subflavus 04 March 2014 no 44767-028 Kentucky, USA Myotis sodalis 04 March 2014 no 44767-029 Kentucky, USA Myotis sodalis 04 March 2014 no 44767-030 Kentucky, USA Myotis griescens 04 March 2014 no 44767-031 Kentucky, USA Myotis griescens 04 March 2014 no 44767-032 Kentucky, USA Myotis sodalis 04 March 2014 yes 44767-033 Kentucky, USA Myotis sodalis 04 March 2014 yes 44767-034 Kentucky, USA Myotis sodalis 04 March 2014 yes 44767-035 Kentucky, USA Myotis s | | | Perimyotis subflavus | 04 March 2014 | no | | 44767-023 | | | | | | | 44767-024 Kentucky, USA Perimyotis subflavus 04 March 2014 no 44767-025 Kentucky, USA Perimyotis subflavus 04 March 2014 no 44767-027 Kentucky, USA Perimyotis subflavus 04 March 2014 no 44767-028 Kentucky, USA Myotis sodalis 04 March 2014 no 44767-029 Kentucky, USA Myotis lucifugus 04 March 2014 no 44767-030 Kentucky, USA Perimyolis subflavus 04 March 2014 no 44767-031 Kentucky, USA Perimyolis subflavus 04 March 2014 no 44767-032 Kentucky, USA Myotis grissecens 04 March 2014 yes 44767-033 Kentucky, USA Myotis sodalis 04 March 2014 yes 44767-034 Kentucky, USA Myotis sodalis 04 March 2014 yes 44767-035 Kentucky, USA Myotis sodalis 04 March 2014 yes 44767-036 Kentucky, USA Myotis sodalis 04 March 2014 yes 44767-037 Kentucky, USA Myoti | | | | | | | 44767-025 Kentucky, USA Perimyotis subflavus 04 March 2014 no 44767-026 Kentucky, USA Perimyotis subflavus 04 March 2014 no 44767-027 Kentucky, USA Myotis sodalis 04 March 2014 no 44767-028 Kentucky, USA Myotis sodalis 04 March 2014 no 44767-030 Kentucky, USA Myotis subflavus 04 March 2014 no 44767-031 Kentucky, USA Penimyotis subflavus 04 March 2014 no 44767-032 Kentucky, USA Penimyotis subflavus 04 March 2014 no 44767-033 Kentucky, USA Myotis sodalis 04 March 2014 yes 44767-034 Kentucky, USA Myotis sodalis 04 March 2014 yes 44767-035 Kentucky, USA Myotis sodalis 04 March 2014 yes 44767-036 Kentucky, USA Myotis sodalis 04 March 2014 yes 44767-037 Kentucky, USA Myotis sodalis 04 March 2014 yes 44767-038 Kentucky, USA Myotis sodalis | | | | | | | 44767-026 Kentucky, USA Perimyotis subflavus 04 March 2014 no 44767-027 Kentucky, USA Myotis sodalis 04 March 2014 no 44767-028 Kentucky, USA Myotis sucflugus 04 March 2014 no 44767-030 Kentucky, USA Perimyotis subflavus 04 March 2014 no 44767-031 Kentucky, USA Perimyotis subflavus 04 March 2014 no 44767-032 Kentucky, USA Perimyotis subflavus 04 March 2014 no 44767-033 Kentucky, USA Perimyotis subflavus 04 March 2014 no 44767-034 Kentucky, USA Myotis sodalis 04 March 2014 yes 44767-035 Kentucky, USA Myotis sodalis 04 March 2014 yes 44767-037 Kentucky, USA Myotis sodalis 04 March 2014 yes 44767-038 Kentucky, USA Myotis sodalis 04 March 2014 yes 44767-039 Kentucky, USA Myotis sodalis 04 March 2014 yes 44767-040 Kentucky, USA Myotis s | | | | | | | 44767-028 Kentucky, USA Myotis sodalis 0.4 March 2014 no 44767-030 Kentucky, USA Myotis lucifugus 0.4 March 2014 no 44767-031 Kentucky, USA Myotis grisescens 0.4 March 2014 yes 44767-032 Kentucky, USA Perimyotis subflavus 0.4 March 2014 yes 44767-033 Kentucky, USA Myotis sodalis 0.4 March 2014 yes 44767-034 Kentucky, USA Myotis sodalis 0.4 March 2014 yes 44767-035 Kentucky, USA Myotis sodalis 0.4 March 2014 yes 44767-036 Kentucky, USA Myotis sodalis 0.4 March 2014 yes 44767-037 Kentucky, USA Myotis sodalis 0.4 March 2014 yes 44767-038 Kentucky, USA Myotis sodalis 0.4 March 2014 yes 44767-040 Kentucky, USA Myotis sodalis 0.4 March 2014 yes 44767-040 Kentucky, USA Myotis sodalis 0.4 March 2014 yes 44767-041 Kentucky, USA Myotis sodal | 44767-026 | | Perimyotis subflavus | 04 March 2014 | no | | 44767-029 Kentucky, USA Myotis lucifugus 04 March 2014 no 44767-030 Kentucky, USA Perimyotis subflavus 04 March 2014 no 44767-031 Kentucky, USA Myotis sodalis 04 March 2014 no 44767-032 Kentucky, USA Myotis sodalis 04 March 2014 yes 44767-034 Kentucky, USA Myotis sodalis 04 March 2014 yes 44767-035 Kentucky, USA Myotis sodalis 04 March 2014 yes 44767-036 Kentucky, USA Myotis sodalis 04 March 2014 yes 44767-037 Kentucky, USA Myotis sodalis 04 March 2014 yes 44767-038 Kentucky, USA Myotis sodalis 04 March 2014 yes 44767-039 Kentucky, USA Myotis sodalis 04 March 2014 yes 44767-040 Kentucky, USA Myotis sodalis 04 March 2014 yes 44767-041 Kentucky, USA Myotis sodalis 04 March 2014 yes 44767-042 Kentucky, USA Myotis sodalis | | | | | | | 44767-030 Kentucký, USA Perimyotis subflavus 04 March 2014 no 44767-031 Kentucky, USA Myotis grisescens 04 March 2014 yes 44767-032 Kentucky, USA Perimyotis subflavus 04 March 2014 no 44767-033 Kentucky, USA Myotis sodalis 04 March 2014 yes 44767-035 Kentucky, USA Myotis sodalis 04 March 2014 yes 44767-036 Kentucky, USA Myotis sodalis 04 March 2014 yes 44767-037 Kentucky, USA Myotis sodalis 04 March 2014 yes 44767-038 Kentucky, USA Myotis sodalis 04 March 2014 yes 44767-039 Kentucky, USA Myotis sodalis 04 March 2014 yes 44767-040 Kentucky, USA Myotis sodalis 04 March 2014 yes 44767-041 Kentucky, USA Myotis sodalis 04 March 2014 yes 44767-042 Kentucky, USA Myotis sodalis 04 March 2014 yes 44767-043 Kentucky, USA Myotis sodalis | | | | | | | 44767-031 Kentucky, USA Myotis grisescens 0.4 March 2014 yes 44767-032 Kentucky, USA Perimyotis subflavus 0.4 March 2014 yes 44767-033 Kentucky, USA Myotis sodalis 0.4 March 2014 yes 44767-035 Kentucky, USA Myotis sodalis 0.4 March 2014 yes 44767-036 Kentucky, USA Myotis sodalis 0.4 March 2014 yes 44767-037 Kentucky, USA Myotis sodalis 0.4 March 2014 yes 44767-038 Kentucky, USA Myotis sodalis 0.4 March 2014 yes 44767-038 Kentucky, USA Myotis sodalis 0.4 March 2014 yes 44767-039 Kentucky, USA Myotis sodalis 0.4 March 2014 yes 44767-040 Kentucky, USA Myotis sodalis 0.4 March 2014 yes 44767-041 Kentucky, USA Myotis sodalis 0.4 March 2014 yes 44767-042 Kentucky, USA Myotis sodalis 0.4 March 2014 yes 44767-043 Kentucky, USA Myotis sodal | | | | | | | 44767-032 Kentucky, USA Perimyotis subflavus 04 March 2014 no 44767-033 Kentucky, USA Myotis sodalis 04 March 2014 yes 44767-034 Kentucky, USA Myotis sodalis 04 March 2014 yes 44767-035 Kentucky, USA Myotis sodalis 04 March 2014 yes 44767-037 Kentucky, USA Myotis sodalis 04 March 2014 yes 44767-038 Kentucky, USA Myotis sodalis 04 March 2014 yes 44767-039 Kentucky, USA Myotis sodalis 04 March 2014 yes 44767-040 Kentucky, USA Myotis sodalis 04 March 2014 yes 44767-041 Kentucky, USA Myotis sodalis 04 March 2014 yes 44767-042 Kentucky, USA Myotis sodalis 04 March 2014 yes 44767-043 Kentucky, USA Myotis sodalis 04 March 2014 yes 44767-045 Kentucky, USA Myotis sodalis 04 March 2014 no 44767-046 Kentucky, USA Perimyotis subflavus | | | , | | | | 44767-034 Kentucky, USA Myotis sodalis 04 March 2014 yes 44767-035 Kentucky, USA Myotis sodalis 04 March 2014 yes 44767-036 Kentucky, USA Myotis sodalis 04 March 2014 yes 44767-037 Kentucky, USA Myotis sodalis 04 March 2014 yes 44767-038 Kentucky, USA Myotis sodalis 04 March 2014 yes 44767-039 Kentucky, USA Myotis sodalis 04 March 2014 yes 44767-040 Kentucky, USA Myotis sodalis 04 March 2014 yes 44767-041 Kentucky, USA Myotis sodalis 04 March 2014 yes 44767-042 Kentucky, USA Myotis sodalis 04 March 2014 yes 44767-043 Kentucky, USA Myotis sodalis 04 March 2014 no 44767-044 Kentucky, USA Myotis sodalis 04 March 2014 no 44767-045 Kentucky, USA Perimyotis subflavus 04 March 2014 no
44768-046 Kentucky, USA Perimyotis subflavus | | | | | | | 44767-035 Kentucky, USA Myotis sodalis 04 March 2014 yes 44767-036 Kentucky, USA Myotis sodalis 04 March 2014 yes 44767-037 Kentucky, USA Myotis sodalis 04 March 2014 yes 44767-038 Kentucky, USA Myotis sodalis 04 March 2014 yes 44767-040 Kentucky, USA Myotis sodalis 04 March 2014 yes 44767-041 Kentucky, USA Myotis sodalis 04 March 2014 yes 44767-042 Kentucky, USA Myotis sodalis 04 March 2014 yes 44767-043 Kentucky, USA Myotis sodalis 04 March 2014 yes 44767-044 Kentucky, USA Myotis sodalis 04 March 2014 yes 44767-045 Kentucky, USA Myotis sodalis 04 March 2014 yes 44767-046 Kentucky, USA Perimyotis subflavus 04 March 2014 no 44767-046 Kentucky, USA Perimyotis subflavus 04 March 2014 no 44768-001 New York, USA (site #1) Myotis sodali | | | • | | yes | | 44767-036 Kentucky, USA Myotis sodalis 04 March 2014 yes 44767-037 Kentucky, USA Myotis sodalis 04 March 2014 yes 44767-038 Kentucky, USA Myotis sodalis 04 March 2014 yes 44767-039 Kentucky, USA Myotis sodalis 04 March 2014 yes 44767-040 Kentucky, USA Myotis sodalis 04 March 2014 yes 44767-041 Kentucky, USA Myotis sodalis 04 March 2014 yes 44767-042 Kentucky, USA Myotis sodalis 04 March 2014 yes 44767-043 Kentucky, USA Myotis sodalis 04 March 2014 yes 44767-044 Kentucky, USA Myotis sodalis 04 March 2014 yes 44767-045 Kentucky, USA Perimyotis subflavus 04 March 2014 no 44767-046 Kentucky, USA Perimyotis subflavus 04 March 2014 no 44768-047 Kentucky, USA Perimyotis subflavus 04 March 2014 no 44768-001 New York, USA (site #1) Myotis l | | | | | | | 44767-037 Kentucky, USA Myotis sodalis 04 March 2014 yes 44767-038 Kentucky, USA Myotis sodalis 04 March 2014 yes 44767-039 Kentucky, USA Myotis sodalis 04 March 2014 yes 44767-040 Kentucky, USA Myotis sodalis 04 March 2014 yes 44767-041 Kentucky, USA Myotis sodalis 04 March 2014 yes 44767-042 Kentucky, USA Myotis sodalis 04 March 2014 no 44767-043 Kentucky, USA Myotis sodalis 04 March 2014 no 44767-044 Kentucky, USA Myotis sodalis 04 March 2014 no 44767-045 Kentucky, USA Perimyotis subflavus 04 March 2014 no 44767-046 Kentucky, USA Perimyotis subflavus 04 March 2014 no 44768-001 New York, USA (site #1) Myotis sodalis 04 March 2014 no 44768-001 New York, USA (site #1) Myotis subflavus 04 March 2014 no 44768-003 New York, USA (site #1) | | | - | | | | 44767-038 Kentucký, USA Myotis sodalis 04 March 2014 yes 44767-039 Kentucky, USA Myotis sodalis 04 March 2014 yes 44767-040 Kentucky, USA Myotis sodalis 04 March 2014 yes 44767-041 Kentucky, USA Myotis sodalis 04 March 2014 yes 44767-042 Kentucky, USA Myotis sodalis 04 March 2014 yes 44767-043 Kentucky, USA Myotis sodalis 04 March 2014 no 44767-044 Kentucky, USA Myotis sodalis 04 March 2014 yes 44767-045 Kentucky, USA Perimyotis subflavus 04 March 2014 no 44767-046 Kentucky, USA Perimyotis subflavus 04 March 2014 no 44767-047 Kentucky, USA Perimyotis subflavus 04 March 2014 no 44768-001 New York, USA (site #1) Myotis sodalis 04 March 2014 no 44768-002 New York, USA (site #1) Myotis lucifugus 19 March 2014 no 44768-003 New York, USA (site #1) | | | • | | | | 44767-040 Kentucky, USA Myotis sodalis 04 March 2014 yes 44767-041 Kentucky, USA Myotis sodalis 04 March 2014 yes 44767-042 Kentucky, USA Myotis sodalis 04 March 2014 yes 44767-043 Kentucky, USA Myotis sodalis 04 March 2014 yes 44767-044 Kentucky, USA Myotis sodalis 04 March 2014 yes 44767-045 Kentucky, USA Perimyotis subflavus 04 March 2014 no 44767-046 Kentucky, USA Perimyotis subflavus 04 March 2014 no 44767-047 Kentucky, USA Perimyotis subflavus 04 March 2014 no 44768-01 New York, USA (site #1) Myotis lucifugus 04 March 2014 no 44768-02 New York, USA (site #1) Myotis lucifugus 19 March 2014 no 44768-003 New York, USA (site #1) Myotis lucifugus 19 March 2014 no 44768-004 New York, USA (site #1) Myotis lucifugus 19 March 2014 no 44768-006 New Yor | | | | | | | 44767-041 Kentucky, USA Myotis sodalis 04 March 2014 yes 44767-042 Kentucky, USA Myotis sodalis 04 March 2014 yes 44767-043 Kentucky, USA Myotis sodalis 04 March 2014 no 44767-044 Kentucky, USA Myotis sodalis 04 March 2014 yes 44767-045 Kentucky, USA Perimyotis subflavus 04 March 2014 no 44767-046 Kentucky, USA Perimyotis subflavus 04 March 2014 no 44767-047 Kentucky, USA Perimyotis subflavus 04 March 2014 no 44768-048 Kentucky, USA Perimyotis subflavus 04 March 2014 no 44768-001 New York, USA (site #1) Myotis lucifugus 19 March 2014 no 44768-002 New York, USA (site #1) Myotis lucifugus 19 March 2014 no 44768-003 New York, USA (site #1) Myotis lucifugus 19 March 2014 no 44768-004 New York, USA (site #1) Myotis lucifugus 19 March 2014 no 44768-005 N | 44767-039 | Kentucky, USA | | 04 March 2014 | | | 44767-042 Kentucky, USA Myotis sodalis 04 March 2014 yes 44767-043 Kentucky, USA Myotis sodalis 04 March 2014 no 44767-044 Kentucky, USA Myotis sodalis 04 March 2014 yes 44767-045 Kentucky, USA Perimyotis subflavus 04 March 2014 no 44767-046 Kentucky, USA Perimyotis subflavus 04 March 2014 no 44767-047 Kentucky, USA Perimyotis subflavus 04 March 2014 no 44768-010 New York, USA (site #1) Myotis sodalis 04 March 2014 no 44768-001 New York, USA Perimyotis subflavus 04 March 2014 no 44768-002 New York, USA (site #1) Myotis lucifugus 19 March 2014 no 44768-003 New York, USA (site #1) Myotis lucifugus 19 March 2014 no 44768-004 New York, USA (site #1) Myotis lucifugus 19 March 2014 no 44768-005 New York, USA (site #1) Myotis lucifugus 19 March 2014 no 44768-006 | | | • | | | | 44767-043 Kentucky, USA Myotis sodalis 04 March 2014 no 44767-044 Kentucky, USA Myotis sodalis 04 March 2014 yes 44767-045 Kentucky, USA Perimyotis subflavus 04 March 2014 no 44767-046 Kentucky, USA Perimyotis subflavus 04 March 2014 no 44767-047 Kentucky, USA Perimyotis subflavus 04 March 2014 no 44768-048 Kentucky, USA Myotis lucifugus 04 March 2014 no 44768-001 New York, USA (site #1) Myotis lucifugus 19 March 2014 no 44768-002 New York, USA (site #1) Myotis lucifugus 19 March 2014 no 44768-003 New York, USA (site #1) Myotis lucifugus 19 March 2014 no 44768-004 New York, USA (site #1) Myotis lucifugus 19 March 2014 no 44768-005 New York, USA (site #1) Myotis lucifugus 19 March 2014 no 44768-006 New York, USA (site #1) Myotis lucifugus 19 March 2014 no 44768-009< | | ** | - | | | | 44767-044 Kentucky, USA Myotis sodalis 04 March 2014 yes 44767-045 Kentucky, USA Perimyotis subflavus 04 March 2014 no 44767-046 Kentucky, USA Perimyotis subflavus 04 March 2014 no 44767-047 Kentucky, USA Perimyotis subflavus 04 March 2014 no 44767-048 Kentucky, USA Myotis sodalis 04 March 2014 no 44768-001 New York, USA (site #1) Myotis lucifugus 19 March 2014 no 44768-002 New York, USA (site #1) Myotis lucifugus 19 March 2014 no 44768-003 New York, USA (site #1) Myotis lucifugus 19 March 2014 no 44768-004 New York, USA (site #1) Myotis lucifugus 19 March 2014 no 44768-005 New York, USA (site #1) Myotis lucifugus 19 March 2014 no 44768-006 New York, USA (site #1) Myotis lucifugus 19 March 2014 no 44768-008 New York, USA (site #1) Myotis lucifugus 19 March 2014 no | | | • | | | | 44767-045 Kentucky, USA Perimyotis subflavus 04 March 2014 no 44767-046 Kentucky, USA Perimyotis subflavus 04 March 2014 no 44767-047 Kentucky, USA Perimyotis subflavus 04 March 2014 no 44767-048 Kentucky, USA Myotis subflavus 04 March 2014 no 44768-001 New York, USA (site #1) Myotis lucifugus 19 March 2014 no 44768-002 New York, USA (site #1) Myotis lucifugus 19 March 2014 no 44768-003 New York, USA (site #1) Myotis lucifugus 19 March 2014 no 44768-004 New York, USA (site #1) Myotis lucifugus 19 March 2014 no 44768-005 New York, USA (site #1) Myotis lucifugus 19 March 2014 no 44768-006 New York, USA (site #1) Myotis lucifugus 19 March 2014 no 44768-008 New York, USA (site #1) Myotis lucifugus 19 March 2014 no 44768-009 New York, USA (site #1) Myotis lucifugus 19 March 2014 no | | | | | | | 44767-047 Kentucký, USA Perimyotis subflavus 04 March 2014 no 44767-048 Kentucky, USA Myotis sodalis 04 March 2014 no 44768-001 New York, USA (site #1) Myotis lucifugus 19 March 2014 no 44768-002 New York, USA (site #1) Myotis lucifugus 19 March 2014 no 44768-003 New York, USA (site #1) Myotis lucifugus 19 March 2014 no 44768-004 New York, USA (site #1) Myotis lucifugus 19 March 2014 no 44768-005 New York, USA (site #1) Myotis lucifugus 19 March 2014 no 44768-006 New York, USA (site #1) Myotis lucifugus 19 March 2014 no 44768-007 New York, USA (site #1) Myotis lucifugus 19 March 2014 no 44768-008 New York, USA (site #1) Myotis lucifugus 19 March 2014 no 44768-010 New York, USA (site #1) Myotis lucifugus 19 March 2014 no 44768-011 New York, USA (site #1) Myotis lucifugus 19 March 2014 no 44768-012 New York, USA (site #1) Myotis lucifugus | | | | | | | 44767-048 Kentucky, USA Myotis sodalis 04 March 2014 no 44768-001 New York, USA (site #1) Myotis lucifugus 19 March 2014 no 44768-002 New York, USA (site #1) Myotis lucifugus 19 March 2014 no 44768-003 New York, USA (site #1) Myotis lucifugus 19 March 2014 no 44768-004 New York, USA (site #1) Myotis lucifugus 19 March 2014 no 44768-005 New York, USA (site #1) Myotis lucifugus 19 March 2014 no 44768-006 New York, USA (site #1) Myotis lucifugus 19 March 2014 no 44768-007 New York, USA (site #1) Myotis lucifugus 19 March 2014 no 44768-008 New York, USA (site #1) Myotis lucifugus 19 March 2014 no 44768-010 New York, USA (site #1) Myotis lucifugus 19 March 2014 no 44768-011 New York, USA (site #1) Myotis lucifugus 19 March 2014 no 44768-012 New York, USA (site #1) Myotis lucifugus 19 March 2014 no 44768-012 New York, USA (site #1) Myotis lucifugus <td></td> <td></td> <td></td> <td></td> <td></td> | | | | | | | 44768-001 New York, USA (site #1) Myotis lucifugus 19 March 2014 no 44768-002 New York, USA (site #1) Myotis lucifugus 19 March 2014 no 44768-003 New York, USA (site #1) Myotis lucifugus 19 March 2014 no 44768-004 New York, USA (site #1) Myotis lucifugus 19 March 2014 no 44768-005 New York, USA (site #1) Myotis lucifugus 19 March 2014 no 44768-006 New
York, USA (site #1) Myotis lucifugus 19 March 2014 no 44768-007 New York, USA (site #1) Myotis lucifugus 19 March 2014 no 44768-008 New York, USA (site #1) Myotis lucifugus 19 March 2014 no 44768-009 New York, USA (site #1) Myotis lucifugus 19 March 2014 no 44768-010 New York, USA (site #1) Myotis lucifugus 19 March 2014 no 44768-011 New York, USA (site #1) Myotis lucifugus 19 March 2014 no 44768-012 New York, USA (site #1) Myotis lucifugus 19 March 2014 no | | | | | | | 44768-002 New York, USA (site #1) Myotis lucifugus 19 March 2014 no 44768-003 New York, USA (site #1) Myotis lucifugus 19 March 2014 no 44768-004 New York, USA (site #1) Myotis lucifugus 19 March 2014 no 44768-005 New York, USA (site #1) Myotis lucifugus 19 March 2014 no 44768-006 New York, USA (site #1) Myotis lucifugus 19 March 2014 no 44768-007 New York, USA (site #1) Myotis lucifugus 19 March 2014 no 44768-008 New York, USA (site #1) Myotis lucifugus 19 March 2014 no 44768-010 New York, USA (site #1) Myotis lucifugus 19 March 2014 no 44768-011 New York, USA (site #1) Myotis lucifugus 19 March 2014 no 44768-012 New York, USA (site #1) Myotis lucifugus 19 March 2014 no 44768-012 New York, USA (site #1) Myotis lucifugus 19 March 2014 no | | | | | | | 44768-003 New York, USA (site #1) Myotis lucifugus 19 March 2014 no 44768-004 New York, USA (site #1) Myotis lucifugus 19 March 2014 no 44768-005 New York, USA (site #1) Myotis lucifugus 19 March 2014 no 44768-006 New York, USA (site #1) Myotis lucifugus 19 March 2014 no 44768-007 New York, USA (site #1) Myotis lucifugus 19 March 2014 no 44768-008 New York, USA (site #1) Myotis lucifugus 19 March 2014 no 44768-009 New York, USA (site #1) Myotis lucifugus 19 March 2014 no 44768-010 New York, USA (site #1) Myotis lucifugus 19 March 2014 no 44768-011 New York, USA (site #1) Myotis lucifugus 19 March 2014 no 44768-012 New York, USA (site #1) Myotis lucifugus 19 March 2014 no | | | | | | | 44768-004 New York, USA (site #1) Myotis lucifugus 19 March 2014 no 44768-005 New York, USA (site #1) Myotis lucifugus 19 March 2014 no 44768-006 New York, USA (site #1) Myotis lucifugus 19 March 2014 no 44768-007 New York, USA (site #1) Myotis lucifugus 19 March 2014 no 44768-008 New York, USA (site #1) Myotis lucifugus 19 March 2014 no 44768-019 New York, USA (site #1) Myotis lucifugus 19 March 2014 no 44768-011 New York, USA (site #1) Myotis lucifugus 19 March 2014 no 44768-012 New York, USA (site #1) Myotis lucifugus 19 March 2014 no 44768-012 New York, USA (site #1) Myotis lucifugus 19 March 2014 yes | | | | | | | 44768-006 New York, USA (site #1) Myotis lucifugus 19 March 2014 no 44768-007 New York, USA (site #1) Myotis lucifugus 19 March 2014 no 44768-008 New York, USA (site #1) Myotis lucifugus 19 March 2014 no 44768-009 New York, USA (site #1) Myotis lucifugus 19 March 2014 no 44768-010 New York, USA (site #1) Myotis lucifugus 19 March 2014 no 44768-011 New York, USA (site #1) Myotis lucifugus 19 March 2014 no 44768-012 New York, USA (site #1) Myotis lucifugus 19 March 2014 yes | 44768-004 | New York, USA (site #1) | Myotis lucifugus | 19 March 2014 | | | 44768-007 New York, USA (site #1) Myotis lucifugus 19 March 2014 no 44768-008 New York, USA (site #1) Myotis lucifugus 19 March 2014 no 44768-009 New York, USA (site #1) Myotis lucifugus 19 March 2014 no 44768-010 New York, USA (site #1) Myotis lucifugus 19 March 2014 no 44768-011 New York, USA (site #1) Myotis lucifugus 19 March 2014 no 44768-012 New York, USA (site #1) Myotis lucifugus 19 March 2014 yes | | | | | | | 44768-008 New York, USA (site #1) Myotis lucifugus 19 March 2014 no 44768-009 New York, USA (site #1) Myotis lucifugus 19 March 2014 no 44768-010 New York, USA (site #1) Myotis lucifugus 19 March 2014 no 44768-011 New York, USA (site #1) Myotis lucifugus 19 March 2014 no 44768-012 New York, USA (site #1) Myotis lucifugus 19 March 2014 yes | | | | | | | 44768-009 New York, USA (site #1) Myotis lucifugus 19 March 2014 no 44768-010 New York, USA (site #1) Myotis lucifugus 19 March 2014 no 44768-011 New York, USA (site #1) Myotis lucifugus 19 March 2014 no 44768-012 New York, USA (site #1) Myotis lucifugus 19 March 2014 yes | | | | | | | 44768-010 New York, USA (site #1) Myotis lucifugus 19 March 2014 no 44768-011 New York, USA (site #1) Myotis lucifugus 19 March 2014 no 44768-012 New York, USA (site #1) Myotis lucifugus 19 March 2014 yes | | | | | | | 44768-011 New York, USA (site #1) Myotis lucifugus 19 March 2014 no 44768-012 New York, USA (site #1) Myotis lucifugus 19 March 2014 yes | | | | | | | | 44768-011 | New York, USA (site #1) | Myotis lucifugus | 19 March 2014 | no | | 44700-013 New York, USA (Sile #1) Myotis lucitugus 19 March 2014 No | | | | | | | | 44100-013 | INEW TOIK, USA (SILE #1) | wyous lucilugus | 19 IVIAICII 2014 | TIO | Table 1 (cont.) | Individual identifier | Location | Host species | Sampling date | Malassezia vespertilionis isolated | |------------------------|---|--|--------------------------------------|------------------------------------| | 44768-014 | New York, USA (site #1) | Myotis lucifugus | 19 March 2014 | no | | 44768-015 | New York, USA (site #1) | Myotis lucifugus | 19 March 2014 | no | | 44768-016
44768-017 | New York, USA (site #1)
New York, USA (site #1) | Myotis lucifugus
Myotis lucifugus | 19 March 2014
19 March 2014 | no
no | | 44768-018 | New York, USA (site #1) | Myotis lucifugus | 19 March 2014 | no | | 44768-019 | New York, USA (site #1) | Myotis lucifugus | 19 March 2014 | no | | 44768-020 | New York, USA (site #1) | Myotis lucifugus | 19 March 2014 | yes | | 44768-021 | New York, USA (site #1) | Myotis lucifugus | 19 March 2014 | yes | | 44768-022
44768-023 | New York, USA (site #1)
New York, USA (site #1) | Myotis lucifugus
Myotis lucifugus | 19 March 2014
19 March 2014 | no
no | | 44768-024 | New York, USA (site #1) | Myotis lucifugus | 19 March 2014 | no | | 44768-025 | New York, USA (site #1) | Myotis lucifugus | 19 March 2014 | yes | | 44768-026 | New York, USA (site #1) | Myotis lucifugus | 19 March 2014 | no | | 44768-027 | New York, USA (site #1) | Myotis lucifugus | 19 March 2014 | no | | 44768-028
44768-029 | New York, USA (site #1)
New York, USA (site #1) | Myotis lucifugus
Myotis lucifugus | 19 March 2014
19 March 2014 | no | | 44768-030 | New York, USA (site #1) | Myotis lucifugus | 19 March 2014 | no
no | | 44768-031 | New York, USA (site #1) | Myotis lucifugus | 19 March 2014 | no | | 44769-001 | Wisconsin, USA (site #3) | Myotis lucifugus | 28 March 2014 | yes | | 44769-002 | Wisconsin, USA (site #3) | Myotis lucifugus | 28 March 2014 | no | | 44769-003 | Wisconsin, USA (site #3) | Myotis lucifugus | 28 March 2014 | no | | 44769-004
44769-005 | Wisconsin, USA (site #3) Wisconsin, USA (site #3) | Myotis lucifugus
Myotis lucifugus | 28 March 2014
28 March 2014 | yes | | 44769-006 | Wisconsin, USA (site #3) | Myotis lucifugus | 28 March 2014 | no
yes | | 44769-007 | Wisconsin, USA (site #3) | Myotis lucifugus | 28 March 2014 | no | | 44769-008 | Wisconsin, USA (site #3) | Myotis lucifugus | 28 March 2014 | yes | | 44769-009 | Wisconsin, USA (site #3) | Myotis lucifugus | 28 March 2014 | no | | 44769-010 | Wisconsin, USA (site #3) | Myotis lucifugus | 28 March 2014 | yes | | 44769-011
44769-012 | Wisconsin, USA (site #3) Wisconsin, USA (site #3) | Myotis lucifugus
Myotis lucifugus | 28 March 2014 | no | | 44769-012 | Wisconsin, USA (site #3) | Myotis lucifugus | 28 March 2014
28 March 2014 | no
yes | | 44769-014 | Wisconsin, USA (site #3) | Myotis lucifugus | 28 March 2014 | yes | | 44769-015 | Wisconsin, USA (site #3) | Myotis lucifugus | 28 March 2014 | no | | 44769-016 | Wisconsin, USA (site #3) | Myotis lucifugus | 28 March 2014 | yes | | 44769-017 | Wisconsin, USA (site #3) | Myotis lucifugus | 28 March 2014 | yes | | 44769-018
44769-019 | Wisconsin, USA (site #3) Wisconsin, USA (site #3) | Myotis lucifugus
Myotis lucifugus | 28 March 2014
28 March 2014 | yes
yes | | 44769-020 | Wisconsin, USA (site #3) | Myotis lucifugus | 28 March 2014 | yes | | 44769-021 | Wisconsin, USA (site #3) | Myotis lucifugus | 28 March 2014 | yes | | 44769-022 | Wisconsin, USA (site #3) | Myotis lucifugus | 28 March 2014 | yes | | 44769-023 | Wisconsin, USA (site #3) | Myotis lucifugus | 28 March 2014 | yes | | 44769-024 | Wisconsin, USA (site #3) | Myotis lucifugus | 28 March 2014 | yes | | 44769-025
44797-032 | Wisconsin, USA (site #3)
New York, USA (site #2) | Myotis lucifugus
Myotis lucifugus | 28 March 2014
15 January 2015 | yes
no | | 44797-033 | New York, USA (site #2) | Myotis lucifugus | 15 January 2015 | no | | 44797-034 | New York, USA (site #2) | Myotis lucifugus | 15 January 2015 | no | | 44797-035 | New York, USA (site #2) | Myotis lucifugus | 15 January 2015 | yes | | 44797-036 | New York, USA (site #2) | Myotis lucifugus | 15 January 2015 | no | | 44797-037
44797-038 | New York, USA (site #2)
New York, USA (site #2) | Myotis lucifugus
Myotis lucifugus | 15 January 2015
15 January 2015 | no | | 44797-039 | New York, USA (site #2) | Myotis lucifugus | 15 January 2015 | no
no | | 44797-040 | New York, USA (site #2) | Myotis lucifugus | 15 January 2015 | no | | 44797-041 | New York, USA (site #2) | Myotis lucifugus | 15 January 2015 | no | | 44797-042 | New York, USA (site #2) | Myotis lucifugus | 15 January 2015 | no | | 44797-043
44797-044 | New York, USA (site #2) | Myotis lucifugus | 15 January 2015 | no | | 44797-045 | New York, USA (site #2)
New York, USA (site #2) | Myotis lucifugus
Myotis lucifugus | 15 January 2015
15 January 2015 | no
no | | 44797-046 | New York, USA (site #2) | Myotis lucifugus | 15 January 2015 | no | | 44797-047 | New York, USA (site #2) | Myotis lucifugus | 15 January 2015 | no | | 44797-048 | New York, USA (site #2) | Myotis lucifugus | 15
January 2015 | no | | 44797-049 | New York, USA (site #2) | Myotis lucifugus | 15 January 2015 | no | | 44797-050
44797-051 | New York, USA (site #2)
New York, USA (site #2) | Myotis lucifugus
Myotis lucifugus | 15 January 2015
15 January 2015 | no
no | | 44797-052 | New York, USA (site #2) | Myotis lucifugus | 15 January 2015 | no | | 44797-053 | New York, USA (site #2) | Myotis lucifugus | 15 January 2015 | no | | 44797-054 | New York, USA (site #2) | Myotis lucifugus | 15 January 2015 | no | | 44797-055 | New York, USA (site #2) | Myotis lucifugus | 15 January 2015 | no | | 44797-056 | New York, USA (site #2)
New York, USA (site #2) | Myotis lucifugus | 15 January 2015
15 January 2015 | no | | 44797-057
44797-058 | New York, USA (site #2) | Myotis lucifugus
Myotis lucifugus | 15 January 2015 | no
no | | 44797-059 | New York, USA (site #2) | Myotis lucifugus | 15 January 2015 | no | | 44797-060 | New York, USA (site #2) | Myotis lucifugus | 15 January 2015 | no | | 44797-061 | New York, USA (site #2) | Myotis lucifugus | 15 January 2015 | no | | 44797-062 | Missouri, USA | Myotis sodalis | 24 February 2015 | no | | 44797-063
44797-064 | Missouri, USA
Missouri, USA | Perimyotis subflavus
Myotis sodalis | 24 February 2015
24 February 2015 | no
yes | | 44797-065 | Missouri, USA | Myotis sodalis | 24 February 2015 | no | | 44797-066 | Missouri, USA | Myotis sodalis | 24 February 2015 | no | | 44797-067 | Missouri, USA | Perimyotis subflavus | 24 February 2015 | no | | 44797-068 | Missouri, USA | Myotis sodalis | 24 February 2015 | no | | 44797-069
44797-070 | Missouri, USA | Myotis sodalis | 24 February 2015 | no
no | | 44797-070
44797-071 | Missouri, USA
Missouri, USA | Perimyotis subflavus
Myotis sodalis | 24 February 2015
24 February 2015 | no
no | | 44797-072 | Missouri, USA | Myotis sodalis | 24 February 2015 | no | | 44797-073 | Missouri, USA | Myotis sodalis | 24 February 2015 | no | | 44797-074 | Missouri, USA | Myotis sodalis | 24 February 2015 | no | | 44797-075 | Missouri, USA | Perimyotis subflavus | 24 February 2015 | no | | 44797-076
44797-077 | Missouri, USA
Missouri, USA | Myotis sodalis
Perimyotis subflavus | 24 February 2015
24 February 2015 | no
no | | TT101-011 | WildSouri, OOA | i cinnyona aubilavua | 27 I Guidaly 2010 | ПО | Table 1 (cont.) | ndividual identifier | Location | Host species | Sampling date | Malassezia vespertilionis isola | |------------------------|---|--|------------------|---------------------------------| | 44797-078 | Missouri, USA | Perimyotis subflavus | 24 February 2015 | no | | 44797-100 | Wisconin, USA (site #4) | Myotis septentrionalis | 27 January 2015 | yes | | 44797-101 | Wisconin, USA (site #4) | Myotis septentrionalis | 27 January 2015 | no | | 44797-102 | Wisconin, USA (site #4) | Myotis septentrionalis | 27 January 2015 | no | | 44797-103 | Wisconsin, USA (site #1) | Myotis septentrionalis | 28 January 2015 | yes | | 44797-104 | Wisconsin, USA (site #1) | Myotis septentrionalis | 28 January 2015 | yes | | 44797-105 | Wisconsin, USA (site #1) | Myotis septentrionalis | 28 January 2015 | no | | 44797-106 | Wisconsin, USA (site #1) | Myotis septentrionalis | 28 January 2015 | no | | 44797-107 | Wisconsin, USA (site #1) | Myotis septentrionalis | 28 January 2015 | no | | 44797-108 | Wisconsin, USA (site #1) | Myotis septentrionalis | 28 January 2015 | no | | 44797-109 | Wisconsin, USA (site #1) | | , | | | | , | Myotis septentrionalis | 28 January 2015 | no | | 44797-110 | Wisconsin, USA (site #1) | Myotis septentrionalis | 28 January 2015 | no | | 44797-111 | Wisconsin, USA (site #5) | Myotis septentrionalis | 29 January 2015 | no | | 44797-112 | Wisconsin, USA (site #5) | Myotis septentrionalis | 29 January 2015 | no | | 44797-113 | Wisconsin, USA (site #5) | Myotis septentrionalis | 29 January 2015 | no | | 44797-114 | Wisconsin, USA (site #5) | Myotis septentrionalis | 29 January 2015 | no | | 44797-115 | Wisconsin, USA (site #5) | Myotis septentrionalis | 29 January 2015 | yes | | 44797-116 | Wisconsin, USA (site #5) | Myotis septentrionalis | 29 January 2015 | no | | 44797-123 | Wisconsin, USA (site #6) | Myotis septentrionalis | 02 March 2015 | no | | 44797-124 | Wisconsin, USA (site #6) | Myotis septentrionalis | 02 March 2015 | yes | | 44797-125 | Wisconsin, USA (site #6) | Myotis septentrionalis | 02 March 2015 | no | | 44797-126 | Wisconsin, USA (site #6) | Myotis septentrionalis | 02 March 2015 | no | | 44797-127 | Wisconsin, USA (site #6) | Myotis septentrionalis | 02 March 2015 | yes | | 44797-128 | Wisconsin, USA (site #6) | Myotis septentrionalis | 02 March 2015 | no | | 44797-129 | Wisconsin, USA (site #6) | Perimyotis subflavus | 02 March 2015 | no | | 44797-129 | , , , | Myotis septentrionalis | 02 March 2015 | | | | Wisconsin, USA (site #6) | | | no | | 44797-131 | Wisconsin, USA (site #6) | Myotis septentrionalis | 02 March 2015 | yes | | 44797-132 | Alabama, USA | Perimyotis subflavus | 11 February 2015 | no | | 44797-133 | Alabama, USA | Myotis grisescens | 11 February 2015 | no | | 44797-134 | Alabama, USA | Perimyotis subflavus | 11 February 2015 | no | | 44797-135 | Alabama, USA | Myotis sodalis | 11 February 2015 | yes | | 44797-136 | Alabama, USA | Myotis grisescens | 11 February 2015 | no | | 44797-137 | Alabama, USA | Myotis grisescens | 11 February 2015 | yes | | 44797-138 | Alabama, USA | Myotis grisescens | 11 February 2015 | yes | | 44797-139 | Alabama, USA | Myotis grisescens | 11 February 2015 | yes | | 44797-140 | Alabama, USA | Perimyotis subflavus | 11 February 2015 | no | | 44797-141 | Alabama, USA | Myotis grisescens | 11 February 2015 | yes | | 44797-142 | Alabama, USA | Myotis grisescens | 11 February 2015 | no | | 44797-143 | Alabama, USA | Myotis grisescens | 11 February 2015 | | | | | | | yes | | 44797-144 | Alabama, USA | Myotis grisescens | 11 February 2015 | no | | 44797-145 | Alabama, USA | Perimyotis subflavus | 11 February 2015 | no | | 44797-146 | Alabama, USA | Myotis grisescens | 11 February 2015 | no | | 44797-147 | Alabama, USA | Myotis grisescens | 11 February 2015 | no | | 44797-148 | Alabama, USA | Myotis grisescens | 11 February 2015 | yes | | 44797-149 | Alabama, USA | Perimyotis subflavus | 11 February 2015 | no | | 44797-150 | Alabama, USA | Myotis grisescens | 11 February 2015 | yes | | 44797-151 | Alabama, USA | Myotis grisescens | 11 February 2015 | no | | 44797-152 | Alabama, USA | Myotis grisescens | 11 February 2015 | yes | | 44797-153 | Alabama, USA | Myotis sodalis | 11 February 2015 | yes | | 44797-154 | Alabama, USA | Myotis grisescens | 11 February 2015 | no | | 44797-155 | Alabama, USA | Myotis grisescens | 11 February 2015 | no | | 45701-660 | California, USA | Myotis yumanensis | 07 May 2016 | no | | 45701-661 | California, USA | Myotis sp.** | 02 May 2016 | no | | 45701-663 | California, USA | Myotis yumanensis | 18 April 2016 | no | | | | | | | | 45701-664
45701-665 | California, USA | Myotis yumanensis
Myotis californicus | 02 May 2016 | yes | | | California, USA | | 07 May 2016 | yes | | 45701-666 | California, USA | Myotis californicus | 02 May 2016 | no | | 45701-668 | California, USA | Myotis yumanensis | 09 May 2016 | yes | | 45701-669 | California, USA | Myotis yumanensis | 18 April 2016 | no | | 45701-671 | California, USA | Myotis yumanensis | 09 May 2016 | no | | 45701-672 | California, USA | Myotis californicus | 02 May 2016 | no | | 45701-674 | California, USA | Myotis californicus | 26 April 2016 | no | | 45701-675 | California, USA | Myotis yumanensis | 07 May 2016 | no | | 45701-676 | California, USA | Myotis sp.** | 02 May 2016 | yes | | 45701-677 | California, USA | Myotis yumanensis | 18 April 2016 | yes | | 45701-678 | California, USA | Myotis californicus | 18 April 2016 | yes | | 45701-680 | California, USA | Myotis sp.** | 18 April 2016 | no | | 45701-681 | California, USA | Myotis sp.** | 09 May 2016 | no | | 45701-682 | California, USA | Myotis sp.
Myotis californicus | 19 April 2016 | | | | | - | • | yes | | 45701-683
45701-684 | California, USA | Myotis yumanensis | 20 April 2016 | no | | 45701-684
45701-685 | California, USA | Myotis californicus | 09 May 2016 | no | | 45701-685 | California, USA | Myotis yumanensis | 20 April 2016 | no | | 45701-686 | California, USA | Myotis thysanodes | 26 April 2016 | yes | | 45701-687 | California, USA | Myotis yumanensis | 20 April 2016 | no | | 45701-688 | California, USA | Myotis yumanensis | 20 April 2016 | yes | | 45701-689 | California, USA | Myotis sp.** | 02 May 2016 | no | | 45701-691 | California, USA | Myotis californicus | 16 May 2016 | yes | | 45701-696 | California, USA | Myotis californicus | 16 May 2016 | no | | 45701-699 | California, USA | Lasionycteris noctivagans | 16 May 2016 | no | | 45701-099 | California, USA | Lasionycteris noctivagans | 16 May 2016 | yes | | | | • | | | | 45701-719 | California, USA | Myotis californicus | 16 May 2016 | yes | | 45704-161 | Pennsylvania, USA | Myotis leibii | 26 February 2016 | yes | | 46375-001 | California, USA | Myotis californicus | 08 May 2017 | yes | | 46375-002 | California, USA | Myotis californicus | 08 May 2017 | yes | | | California, USA | Lasionycteris noctivagans | 08 May 2017 | yes | | 46375-003
46375-004 | California, USA | Lasionycteris noctivagans | 08 May 2017 | no | ^{*} either Myotis lucifugus or Myotis septentrionalis. ^{**} either Myotis lucifugus or Myotis yumanensis. Table 2 Fungal genomes and summary statistics used for whole genome phylogenic analysis. | Species | Strain identifier | GenBank accession number | Locus_tag | Assembly size (Mb) | Number of
scaffolds | Scaffold N50 (Kb) | Percent GC | Protein coding gene models | |-------------------|-------------------|--------------------------|-----------
--------------------|------------------------|-------------------|------------|----------------------------| | Malassezia caprae | CBS 10434* | GCA_001264625.1 | MCA1 | 7.58 | 229 | 110 | 59.78% | 3.553 | | M. cuniculi | CBS 11721* | GCA 001264635.1 | MCU1 | 7.459 | 76 | 522 | 58.99% | 3.167 | | M. dermatis | CBS 9169* | GCA_001264665.1 | MDM1 | 7.54 | 111 | 189 | 59.10% | 3.538 | | | JCM 11348 | GCA 001600775.1 | MDM2 | 7.551 | 18 | 1.325 | 58.98% | 3.544 | | M. equina | CBS 9969* | GCA_001264685.1 | MEQ1 | 7.658 | 117 | 372 | 58.00% | 3.232 | | M. furfur | JPLK 23 | GCA_001265065.1 | MFU6 | 7.79 | 2092 | 14 | 64.18% | 3.087 | | | CBS 1878* | GCA_001265055.1 | MFU1 | 13.865 | 3460 | 14 | 63.91% | 5.418 | | | CBS 4172 | GCA_001264895.1 | MFU2 | 14.347 | 3453 | 15 | 64.23% | 5.672 | | | CBS 7019* | GCA_001264875.1 | MFU3 | 13.707 | 3262 | 15 | 63.70% | 5.565 | | | CBS 7710 | GCA_001264865.1 | MFU4 | 15.232 | 4053 | 14 | 63.89% | 5.835 | | | CBS 7982 | GCA 001265045.1 | MFU5 | 7.877 | 1694 | 20 | 64.06% | 3.158 | | M. globosa | CBS 7966* | GCA_001264805.1 | MGL2 | 8.94 | 113 | 724 | 52.02% | 4.245 | | - | CBS 7874 | GCA_001264815.1 | MGL1 | 8.938 | 138 | 398 | 51.87% | 4.191 | | | CBS 7990 | GCA_001264795.1 | MGL3 | 8.884 | 108 | 414 | 52.07% | 3.703 | | M. japonica | CBS 9431* | GCA_001264785.1 | MJA1 | 8.341 | 295 | 66 | 62.38% | 4.215 | | | JCM 11963 | GCA_001600795.1 | MJA2 | 8.364 | 16 | 814 | 62.33% | 4.122 | | M. nana | CBS 9557* | GCA_001265015.1 | MNA1 | 7.607 | 95 | 492 | 57.93% | 3.785 | | | JCM 12085 | GCA_001600835.1 | MNA2 | 7.579 | 13 | 1.323 | 57.96% | 3.734 | | M. obtusa | CBS 7876* | GCA_001264985.1 | MOB1 | 7.842 | 1709 | 22 | 62.15% | 2.893 | | M. pachydermatis | CBS 1879* | GCA_001264975.1 | MPA1 | 8.158 | 61 | 957 | 55.08% | 4.134 | | M. restricta | CBS 7877* | GCA_001264765.1 | MRE1 | 7.249 | 90 | 402 | 55.83% | 3.556 | | | CBS 8742 | GCA 001264725.1 | MRE2 | 7.26 | 69 | 666 | 55.79% | 3.569 | | M. slooffiae | CBS 7956* | GCA 001264965.1 | MSL1 | 8.425 | 1641 | 15 | 65.82% | 3.422 | | M. sympodialis | ATCC 42132 | GCA 001264925.1 | MSY1 | 7.546 | 824 | 54 | 58.77% | 3.055 | | | ATCC 44340 | GCA 001264715.1 | MSY2 | 7.562 | 769 | 59 | 58.88% | 3.080 | | | ATCC 96806 | GCA_001264705.1 | MSY3 | 7.526 | 1030 | 44 | 58.80% | 3.946 | | M. vespertilionis | CBS 15041* | GCA_002818225.1 | MVES | 7.581 | 14 | 844 | 56.62% | 3.791 | | M. yamatoensis | CBS 9725* | GCA 001264885.1 | MYA1 | 8.106 | 49 | 1.447 | 49.62% | 3.971 | ^{*} type or neotype strain. and trimmed using trimAl v. 1.4.rev15 (Capella-Gutiérrez et al. 2009). A maximum-likelihood phylogeny was estimated using RAxML v. 8.2.10 (Stamatakis 2014) (PROTGAMMALG, 100 bootstrap replicates). As a secondary method, a Bayesian phylogeny was estimated using MrBayes v. 3.2.6 (Ronquist & Huelsenbeck 2003) through the CIPRES Science Gateway (Miller et al. 2010). For the Bayesian analysis, an LG model with gamma-distributed rate variation across sites was used. To generate the 50 % majority rule consensus tree, two runs, each with 1 000 000 generations and four chains, were performed. The chains were sampled every 250 generations with the first 25 % of sampled values discarded as burn-in. # Multilocus sequence analysis To determine whether the isolates of Malassezia from bats represented a single species, seven loci (in addition to ITS) from 12 isolates (Table 3) were also examined: the D1/D2 region of 26S rDNA (hereafter referred to as D1/D2), the 18S rDNA, chitin synthase CHS2, second largest subunit of RNA polymerase II (RPB2), β-tubulin (β-tub), translation elongation factor EF-1α (TEF1), and minichromosome maintenance complex component 7 (MCM7). DNA was extracted using the methods of Lorch et al. (2015). The D1/D2 region was amplified using primers NL4 (5'-GGT CCG TGT TTC AAG ACG G-3') and NL1 (5'-GCA TAT CAA TAA GCG GAG GAA AAG-3') (O'Donnell 1993); cycling conditions: 94 °C for 5 min; 30 cycles of 94 °C for 45 s, 51 °C for 1 min, and 72 °C for 3 min; and a final extension of 72 °C for 10 min. The 18S rDNA was amplified with forward (5'-ATC TGG TTG ATC CTG CCA GT-3') and reverse (5'-TCC TCC GCT TAT TGA TAT GC-3') primers described by Sugita & Nakase (1999); cycling conditions: 94 °C for 3 min; 30 cycles of 94 °C for 30 s, 55 °C for 1 min, and 72 °C for 2 min and 30 s; and a final extension of 72 °C for 10 min. A portion of CHS2 was amplified with primers ChiSyn2f (5'-CTG AAG CTT CAN ATG TAY AAY GAR GAY-3') and ChiSyn2r (5'-GTT CTC GAG YTT RTA YTC RAA RTT YTG-3') (Bowen et al. 1992, Cabañes et al. 2007); cycling conditions: 94 °C for 5 min; 45 cycles of 94 °C for 1 min, 50 °C for 2 min, and 72 °C for 3 min; and a final extension of 72 °C for 6 min. A fragment of RPB2 was amplified with primers fRPB2-5F (5'-GAY GAY MGW GAT CAY TTY GG-3') and fRPB2-7cR (5'-CCC ATR GCT TGY TTR CCC AT-3') (Liu et al. 1999); cycling conditions: 94 °C for 4 min; 40 cycles of 94 °C for 1 min, 50 °C for 1 min, and 72 °C for 1 min; and a final extension of 72 $^{\circ}\text{C}$ for 8 min. A portion of $\beta\text{-tub}$ was amplified with primers F-βtub (5'-CAR GCY GGT CAR TGY GGT AAC CA-3') and F- \(\beta\) tub4r (5'-GCC TCA GTR AAY TCC ATY TCR TCC AT-3') (Einax & Voigt 2003); cycling conditions: 95 °C for 5 min; 30 cycles of 95 °C for 30 s, 50 °C for 1 min, and 72 °C for 1 min; and a final extension of 72 °C for 10 min. A portion of TEF1 was amplified with primers EF1-983F (5'-GCY CCY GGH CAY CGT GAY TTY AT-3') and EF1-2218R (5'-ATG ACA CCR ACR GCR ACR GTY TG-3') (Rehner & Buckley 2005); cycling conditions: 94 °C for 2 min; 47 cycles of 94 °C for 1 min, 53 °C for 1 min, and 72 °C for 1 min and 40 s; and a final extension of 72 °C for 10 min. A portion of MCM7 was amplified with primers MCM7-709 (5'-ACN MGN GTN TCV GAY GTH AAR CC-3') and MCM7-1348 (5'-GAY TTD GCN ACN CCN GGR TCW CCC AT-3') (modified slightly from Schmitt et al. 2009); cycling conditions as described for TEF1. Reactions were carried out using GoTaq® Flexi DNA polymerase (Promega Corporation, Madison, WI) according to the manufacturer's instructions (with final concentrations of 1.5 mM MgCl₂ solution and 1 µM of each primer) except that twice the recommended amount of Tag polymerase (2.5 U) and 1-3 µL of template were added per 50 µL reaction. When necessary, PCR products were gel-purified prior to sequencing using the QIAquick Gel Extraction Kit (Qiagen Inc., Valencia, CA). All PCR products were sequenced in both directions using the same primers described for the initial amplifications. Additional internal sequencing primers were used for some loci: 18S rDNA, forward primers (5'-GCT ACC ACA TCC AAG GAA GG-3', 5'-CTG CGA AAG CAT TTG CCA AGG-3', 5'-TCT GGG CCG CAC GCG CGC TAC ACT G-3') **Table 3** List of GenBank accession numbers for individual locus *Malassezia* sequence data generated for this project. Existing sequence data used for the multilocus phylogenetic analysis are listed at the end of the table. GenBank accession numbers beginning with 'L' represent the whole genome contig from which sequence data for a given locus was obtained. | | CHS2 | 4 | Y Y | MEGGG330 | AN AN | ζ. ΔΝ | | (d | ₹ N | MF669340 | ∀N | Ϋ́ | MF669341 | ΝΑ | NA | NA | NA | NA | NA | NA | ΑN | ΝΑ | MF669342 | Ψ. | ₹ <u><</u> | ¥ | ₹ 8 | Y X | AN | AN | NA | NA | ∀ N | ∀ N | ₹ Z | ₹ ₹ | ζ 4 | Ą. | MF669343 | ∀ Z | NA | MIT009344 | ζ V | A N | ΑN | ٩N | NA | MF669345 | ₹Z | ∀ N∷ | ΑN | Ϋ́ X | ₹. | ĄN | ΔN | |---------------------------|--------------------|-------------------|-------------------|-------------------|-------------------|------------------|------------------|-------------------|------------------|-------------------|----------------|-------------------|----------------|-------------------|-------------------|----------------|-------------------|-------------------|-------------------|-------------------|----------------|-------------------|-------------------|-------------------|------------------|-------------------|------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|----------------|----------------|---------------------------|----------------|----------------|-------------------|----------------|----------------|-------------------|----------------|-------------------|-------------------|-------------------|-------------------|-------------------|----------------| | | MCM7 | 2 | Y Y | MEGGO363 | 00000 | (d | | ₹ 2 | , d | MF669364 | | ₹Z | MF669365 | AN | Ϋ́ | NA | Ϋ́ | ΥN | NA | Ϋ́ | ΝΑ | NA | MF669366 | ₹ Z | ₹ <u>₹</u> | ζ Δ | ₹ Z | Ç X | Ϋ́Z | NA | NA | Ϋ́ | ∀ N | AN : | ₹ Z | ¥ × | X X | . AN | MF669367 | δN : | NA
S | MITOGRADO | (d | A N | NA | NA N | NA | MF669369 | AN : | Ψ. | ΑN | ΨZ: | ₹; | ₹Z | AN | | | RPB2 | × 4 | Y S | ME660351 | AN AN | Z Z | | ∀ 2 | AN | MF669352 | I AN | ΑN | MF669353 | NA | NA | NA | ٧Z | Ϋ́ | NA | ٧Z | NA | ΑN | MF669354 | ¥ £ | ¥ ≨ | Y Y | ž Ž | Ç Y | NA | NA | NA | NA | NA | ∀ N | ۷ × | Υ S | Z Z | . A | MF669355 | AN : | NA | MITOOSCOO | Z Z | N A | NA | AN A | NA | MF669357 | AN : | ΨZ: | NA | AN : | ΑN: | ∀ N | < N | | GenBank accession numbers | TEF1 | 4 | ¥ ≥ | MERRO315 | V V V | (V | 2 | (d | ξ Z | MF669316 | . V | Ϋ́ | MF669317 | ΝΑ | ΝΑ | ΑN | Ϋ́Z | Ϋ́ | ΝΑ | Ϋ́Z | ΝΑ | ΑN | MF669318 | Υ × | ₹ < Z | X A | | ζ ∢
Ζ Ζ | AN | AN | NA | ΑN | NA. | Y : | ¥ ¥ | ¥ × | V A | Ϋ́ | MF669319 | Y : | NA | MF00932U | ζ V | Z Z | AN | N A | AN | MF669321 | Y S | Ϋ́ Ξ | Y S | ₹Z : | A : | ≰ : | | | GenBank acc | β-tub | 4 | Ψ×. | MEGG0327 | NA
NA | ₹ Z | Ž | (| Ž Z | MF669328 | ₹
V | ₹Z | MF669329 | NA | NA | ΝΑ | ΝΑ | ΑN | NA | ΝΑ | ΝΑ | ΑN | MF669330 | ₹ \$ | ¥ \$ | Y Y | ΔN | Z Z | ΝΑ | AN | NA | NA | NA | Y : | A S | ₹ × | ζ «X | N A |
MF669331 | AN : | NA | MPOSSSZ | ζ V | N A | AN | Ϋ́ | NA | MF669333 | NA : | ΨZ: | NA. | A S | Υ S | Y : | - | | | 18S rDNA | V 14 | Υ × | MEGG0375 | AN AN | ζ Δ | Ž | (d | Ž Z | MF669376 | ₹
V | ₹Z | MF669377 | ΝΑ | NA | ΑN | ΝΑ | ΑN | ΑN | ΝΑ | ΝΑ | ΑN | MF669378 | Υ × | ₹ <
Z Z | (| ₹ 2 | Z Z | ΝΑ | ΑN | ΑN | ΝΑ | A N | ∀ Z | Υ ÷ | ₹ S | (| Ϋ́ | MF669379 | Y : | NA | NA | ₹ Z | Ϋ́ | ΑN | N A | NA | MF669381 | Y : | Ϋ́ Ξ | ΑN | ¥ : | ΨZ. | ¥. | | | | D1/D2 | ~ | ¥ × | MEGG0387 | AN AN | Z | | ∀ 2 2 | ž V | MF669388 | Z | ₹
Z | MF669389 | ΑN | ΑΝ | ΑN | NA | NA | ΑΝ | NA | ΝΑ | NA | MF669390 | ď s | √ ≤ Z | Z Z | X 2 | Z Z | AN | ΑN | ΝΑ | ΑN | NA | ∀ Z | ₹ 2 | Α × | (4
2 Z | Ϋ́ | MF669391 | Y S | NA | MPOSSSZ | ζ Δ | Ϋ́Α | ĄN | NA. | NA | MF669393 | Y Y | Υ
Y
Y | NA | AN: | Υ S | ₹ : | × 1 4 | | | ITS | 00000 | MF669399 | ME669400 | ME669402 | MF669403 | MEGGADA | MF669405 | MF669406 | MF669407 | MF669408 | MF669409 | MF669410 | MF669411 | MF669412 | MF669413 | MF669414 | MF669415 | MF669416 | MF669417 | MF669418 | MF 669419 | MF669420 | MF669421 | ME660422 | MF669423 | MF669425 | MF669426 | MF669427 | MF669428 | MF669429 | MF669430 | MF669431 | MF669432 | MF669433 | MF669434 | MF669436 | MF669437 | MF669438 | MF669439 | MF669440 | ME660441 | MF669443 | MF669444 | MF669445 | MF669446 | MF669447 | MF669448 | MF669449 | MF669450 | MF669451 | MF669452 | MF669453 | MF669454 | LL COOLE | | | Species | | M. vespertilionis | M. vespertilionis | M. vespertilionis | M vespertitionis | M vecperalionis | M. vespertitionis | M vespertitionis | M. vespertilionis | | M. vespertilionis | | M. vespertilionis | M. vespertilionis | | M. vespertilionis | M. vespertilionis | M. vespertilionis | M. vespertilionis | | M. vespertilionis | M. vespertilionis | M. vespertilionis | M. vespertinonis | M. vespertilionis | M vespertitionis | M. vespertilionis | | M. vespertilionis | | | M. vespertilionis | | | M. vespertilionis | | M. vespertilionis | | | | Other identifier | | | CBS 15042 | 2000 | | | | | CBS 15043 | | | UAMH 11925 | | | | | | | | | | CBS 15044 | | | | | | | | | | | | | | | | CBS 15045 | | | CBS 15041", UAIMIN 11924" | | | | | | CBS 15046 | | | | | | | | | | Isolate identifier | 100 04740 OLIVAIA | NWHC 24 / 16-00/ | NWHC 247 16-006 | NWHC 24738-002 | NWHC 24738-013 | NIV/HC 24738-026 | NWHC 44767-023 | NWHC 44767-033 | NWHC 44767-034 | NWHC 44767-035 | NWHC 44767-036 | NWHC 44767-037 | NWHC 44767-038 | NWHC 44767-039 | NWHC 44767-040 | NWHC 44767-041 | NWHC 44767-042 | NWHC 44767-044 | NWHC 44768-012 | NWHC 44768-020 | NWHC 44768-021 | NWHC 44768-025 | NWHC 44769-001 | NWHC 44769-004 | NWHC 44769-006 | NWHC 44769-010 | NWHC 44769-013 | NWHC 44769-014 | NWHC 44769-016 | NWHC 44769-017 | NWHC 44769-018 | NWHC 44769-019 | NWHC 44769-020 | NWHC 44769-021 | NWHC 44769-022 | NWHC 44769-024 | NWHC 44769-025 | NWHC 44797-035 | NWHC 44797-064 | NWHC 44/97-100 | NWHC 44/9/-103 | NWHC 44797-115 | NWHC 44797-124 | NWHC 44797-127 | NWHC 44797-131 | NWHC 44797-135 | NWHC 44797-137 | NWHC 44797-138 | NWHC 44797-139 | NWHC 44797-141 | NWHC 44797-143 | NWHC 44797-148 | NWHC 44797-150 | 017 TOT 7 TO 1 | | | | | | | | GenBank accession numbers | ssion numbers | | | | |--------------------|------------------|-------------------|----------|----------|---|---------------------------|---|----------------|----------------|----------------| | Isolate identifier | Other identifier | Species | ITS | D1/D2 | 18S rDNA | β-tub | TEF1 | RPB2 | MCM7 | CHS2 | | NWHC 45701-664 | | M. vespertilionis | MF669457 | NA | NWHC 45701-665 | CBS 15048 | M. vespertilionis | MF669458 | MF669394 | MF669382 | MF669334 | MF669322 | MF669358 | MF669370 | MF669346 | | NWHC 45701-668 | | M. vespertilionis | MF669459 | ΝΑ | ٧× | NA | ٧Z | NA | NA | NA | | NWHC 45701-676 | | M. vespertilionis | MF669460 | NA | ΥN | NA | ٧N | NA | NA | NA | | NWHC 45701-677 | | M. vespertilionis | MF669461 | NA | ΥN | NA | ٧N | NA | NA | NA | | NWHC 45701-678 | | M. vespertilionis | MF669462 | ΝΑ | ٧× | NA | ٧Z | NA | NA | NA | | NWHC 45701-682 | CBS 15051 | M. vespertilionis | MF669463 | MF669395 | MF669383 | MF669335 | MF669323 | MF669359 | MF669371 | MF669347 | | NWHC 45701-686 | CBS 15049 | M. vespertilionis | MF669464 | MF669396 | MF669384 | MF669336 | MF669324 | MF669360 | MF669372 | MF669348 | | NWHC 45701-688 | | M. vespertilionis | MF669465 | ΝΑ | ٧× | NA | ٧Z | NA | NA | NA | | NWHC 45701-691 | CBS 15050 | M. vespertilionis | MF669466 | MF669397 | MF669385 | MF669337 | MF669325 | MF669361 | MF669373 | MF669349 | | NWHC 45701-714 | | M. vespertilionis | MF669467 | ΝΑ | ٧× | NA | ٧Z | NA | NA | NA | | NWHC 45701-719 | | M. vespertilionis | MF669468 | ΝΑ | ΥN | NA | ٧Z | NA | NA | NA | | NWHC 45704-161 | | M. vespertilionis | MF669469 | ΝΑ | ΥN | ΥN | ΥN | ٧Z | ΥN | ΥN | | NWHC 46375-001 | | M. vespertilionis | MF669470 | ΑN | V. | ΝΑ | ٧Z | NA | NA | NA | | NWHC 46375-002 | | M. vespertilionis | MF669471 | NA | V. N. | NA | V. N. | NA | NA | NA | | NWHC 46375-003 | CBS 15047 | M. vespertilionis | MF669472 | MF669398 | MF669386 | MF669338 | MF669326 | MF669362 | MF669374 | MF669350 | | M9927* | CBS 9169* | M. dermatis | AB070356 | AB070361 | KF706452.1 | LFFX01000095.1 | LFFX01000013.1 | LFFX01000105.1 | LFFX01000023.1 | LFFX01000059.1 | | CBS 1878* | | M. furfur | AY743634 | AY743602 | EU192363.1 | LFGI01000839.1 | LFGI01000568.1 | LFGI01001900.1 | LFGI01002103.1 | LFGI01003290.1 | | CBS 7019* | | M. furfur | AY743635 | AY743603 | ΥN | LFGG01001873.1 | LFGG01000118.1 | LFGG01002621.1 | LFGG01003117.1 | LFGG01000889.1 | | NCPF 3349 | | M. furfur | NA | NA | AY083223.1 | ΝΑ | ZA | ٧Z | ΑN | ٧Z | | CBS 9431* | | M. japonica | EF140669 | EF140672 | KF706458.1 | LFDB01000216.1 | LFDB01000004.1 | LFDB01000183.1 | LFDB01000119.1 | LFDB01000111.1 | | CBS 7876* | | M. obtusa | AY387137 | AY743629 | ΥN | LFGC01001328.1 | LFGC01000155.1 | LFGC01000795.1 | LFGC01001067.1 | LFGC01000917.1 | | CBS 7968 | | M. obtusa | NA | ΝΑ | EU192365.1 | ΝΑ | ΝΑ | ٧Z | Ϋ́ | ٧Z | | CBS 1879* | | M. pachydermatis | AY387139 | AY743605 | LFGB01000057.1 | LFGB01000029.1 | LFGB01000018.1 | LFGB01000009.1 | LFGB01000036.1 | LFGB01000046.1 | and reverse primers (5'-TGG AAT TAC CGC GGC TGC TGG CAC C-3', 5'-TCC TTG GCA AAT GCT TTC GCA G-3', 5'-CCG TCAATT CCT TTAAGT TTC AGC C-3', 5'-AAG GTC TCG TTC GTT ATC G-3', 5'-GAC GGG CGG TGT GTA CAA AGG GCA G-3') (Sugita & Nakase 1999); *RPB2*, RPB2-6f (5'-TGG GGH ATG GTV TGY CCB GC-3') and RPB2-6r (5'-GCV GGR CAB ACC ATD CCC CA-3') (modified slightly from Liu et al. 1999); and *TEF1*, EF1-1577F (5'-CAG GAY GTN TAC AAG ATY GGT GG-3') and EF1-1567R (5'-ACH GTR CCR ATA CCA CCR ATC TT-3') (Rehner & Buckley 2005). A phylogenetic analysis was conducted using newly generated sequences from the bat-associated isolates of Malassezia and from existing sequence data in GenBank for type cultures of a subset of the recognised species of Malassezia for which sufficient sequence data were available (Table 3). Members of the genus residing in the same core clade as the type isolate (as determined by the whole-genome analysis described above) were included in this analysis as were representatives from the other two core clades described by Wu et al. (2015). Sequence data for protein-coding genes were obtained from whole genome sequences deposited in GenBank by Wu et al. (2015), while that for multicopy genes originated from various sources (see Table 3). For M. obtusa and one isolate of M. furfur, 18S sequence data were not available for the type isolates; instead, sequence data from non ex-type strains were substituted for that locus. Nucleotide sequences were aligned independently for each locus using MUSCLE in MEGA v. 6 (Tamura et al. 2013), and all gaps were deleted. MEGA 6 was also used to determine the best substitution model for each locus. A multigene phylogenetic analysis was then conducted by concatenating the final alignments of all eight loci. A Bayesian analysis was run as described above, except that 5000000 generations were used for each run and the sampling frequency was set to 1000. Data was partitioned by locus and (for coding genes) by nucleotide codon position. A Kimura 2-parameter model with gamma distribution was applied to the non-coding loci (ITS, 18S rDNA, and D1/D2); a Kimura 2-parameter model with gamma distribution and invariant sites was used for CHS2; a general time-reversible model with gamma distribution was used for β-tub, *TEF1*, and *RPB2*; and an HKY model with gamma distribution and invariant sites was applied to MCM7. # Physiological and morphological characterisation of isolates NA = sequence data not available or not used for analyses. type or neotype strain. Seven isolates of the bat-associated *Malassezia* sp. that were analysed genetically were also characterised physiologically and morphologically using criteria commonly employed to distinguish species in the genus (Guého-Kellerman et al. 2010). To determine the influence of temperature on growth, all isolates were incubated at various temperatures as described by Guého et al. (1996). Due to the fastidious nature of the isolates, growth temperature experiments were conducted on LNA instead of modified Dixon's agar (mDA; Guillot et al. 1996). Growth was assessed at the following temperatures: 7, 24, 30, 37, and 40 °C. Inclusion of growth characteristics at 7 °C and 24 °C are not standard for Malassezia, but were performed because the fungus was isolated from hibernating bats, which maintain low body temperatures. Plates were inoculated by transferring cells with an inoculating loop and streaking for isolated colonies. The diameter of isolated colonies was measured and colony morphology descriptions were recorded every 10 d for a total of 50 d. Cell morphology was assessed from wet mounts with lactophenol cotton blue stain conducted on 10-d-old
cultures that were grown on LNA at 24 °C. The ability of the bat-associated *Malassezia* isolates to grow on mDA and without lipid supplementation on Sabouraud dextrose agar (SDA) was tested by inoculating these media as described above. Utilisation of different types of Tween (i.e., 0.1 % Tween 80, 0.5 % Tween 40, 0.5 % Tween 60, and 10 % Tween 20) was tested according to the methodologies of Guého et al. (1996). The seven isolates were also characterised using the Tween Diffusion and Cremophor EL Assimilation Tests (Guillot et al. 1996). For all of these experiments, cultures were incubated at 32 °C and checked every seven days for a total of 50 d. Tests were also performed at 24 °C to ensure that lack of positive results was not due to incubation at temperatures outside the optimal growth range for the *Malassezia* sp. Additional physiological tests included catalase reaction and β -glucosidase activity. The catalase reaction was performed by harvesting a loop full of cells from a 7-d-old culture grown on LNA at 24 °C, smearing the cells onto a glass slide, and adding one drop of 3 % hydrogen peroxide (Guého et al. 1996). The ability to hydrolyse esculin (i.e., β -glucosidase activity) was tested following the methods of Mayser et al. (1997) except that 7-d-old cultures grown on LNA were used to inoculate the medium due to the slower growth rate of the bat-associated isolates relative to other species of Malassezia. The esculin agar tubes were incubated at 32 °C and checked daily for 14 d, and thereafter they were checked every seven days for an additional 30 d. The test was considered positive if a black precipitate was produced. Mating experiments were not performed. #### **RESULTS** #### Isolation of Malassezia from bats Fungal colonies that resembled *Malassezia* were visible on LNA medium after 40–50 d of incubation at 7 °C. These putative *Malassezia* colonies were observed growing in culture from samples collected from 75 of the 264 (28 %) bats examined. These included nine host species from seven U.S. states (Table 1; Fig. 2). The ITS sequences of 74 isolates shared 99.7–100 % sequence identity with one another across the approximately 760-bp fragment that was analysed. The remaining isolate had an ITS sequence divergent from the other 74 isolates and was not included in further analyses. When searched against the GenBank database, ITS sequences of the 74 bat-associated isolates most closely matched *M. japonica* (92 % sequence identity) within the portion of the sequences corresponding to the 5.8S rDNA; however, ITS1 and ITS2 were highly divergent from sequences that resided within GenBank. The ITS sequence data are available in GenBank (MF669451–MF669472). Some isolates of the *Malassezia* sp. lost vigour and eventually failed to grow after several passes on LNA. Transfer of these isolates to mDA did not cause reinvigoration but rather seemed to facilitate further decline of the cultures. The reason for this was not determined. Despite losing some isolates, the majority grew well in the laboratory. Representative isolates were deposited in the Westerdijk Fungal Biodiversity Institute and the UAMH Centre for Global Microfungal Biodiversity culture collections (Table 3). ### Whole genome sequence analysis The Whole Genome Shotgun project was deposited at DDBJ/ ENA/GenBank under the WGS Project PECA00000000 (accession GCA_002818225.1). The version described in this paper is version PECA01000000. Raw sequencing data is available from the NCBI SRA via the accession SRP121079. The genome of the *Malassezia* isolated from bats was 7.581 Mb, contained in 14 scaffolds, which is consistent with other Malassezia species (Boekhout et al. 1998, Wu et al. 2015). The annotated genome is estimated to contain 3791 protein coding gene models (Table 2). Twenty-seven genomes of Malassezia species were obtained from NCBI GenBank, however most of these data contained only assemblies without annotated gene models. Thus, all genome assemblies were re-annotated using funannotate in order to generate comparable annotations between species. The number of predicted genes was similar to previously published reports (Table 2) (Wu et al. 2015). Fig. 2 Map of the United States, showing the locations of sampling sites from which bats yielded isolates of *Malassezia vespertilionis* sp. nov. States from which isolates were obtained are labelled (AL = Alabama; CA = California; KY = Kentucky; MO = Missouri; NY = New York; PA = Pennsylvania; WI = Wisconsin). **Fig. 3** Phylogenetic tree of the genus *Malassezia* based on concatenated amino acid sequences of 254 conserved orthologues. The tree from the Bayesian analysis is shown, but the tree generated from the maximum likelihood analysis had an identical topology. Posterior probabilities (Bayesian)/bootstrap values (maximum likelihood), respectively, are shown at the nodes. *Ustilago maydis* was used to root the tree. Clades A, B, C as described by Wu et al. (2015) are illustrated. Based on the analyses, *M. vespertilionis* sp. nov. is a basal member of clade A. **Fig. 4** Phylogenetic tree resulting from a Bayesian analysis of concatenated nucleotide sequences from eight loci (ITS, 18S rDNA, D1/D2 region, and portions of the β-tub, *TEF1*, *MCM7*, *RPB2*, *CHS2* genes) of 12 *Malassezia* isolates from bats, all *Malassezia* species from clade A for which sufficient genetic data was available, and representative members from clades B and C (Wu et al. 2015). Posterior probabilities are presented at each node. All examined isolates from bats formed a well-supported clade, suggesting that they represent a single taxon referred to herein as *M. vespertilionis* sp. nov. tion from other species of Malassezia were taken from previous summaries and original data by Cabañes et al. 2011, 2016, and Honnavar et al. 2016. Results are displayed as pos (positive reaction/test), neg (negative reaction/test), variable (different isolates produce variable results), and ? (no information available for this specific test). When multiple results are listed for a given test/reaction, the one listed first is the **Table 4** Physiological characteristics of the various species of *Malassezia*. Seven isolates of *M. vespertilionis* were characterized and the characteristics are summarized ('Overall') for the species based on those results. Informamost common result obtained from the isolates examined; results in parentheses are observed only rarely. | | | | | | | 17.0 | | | | F | | | 1 1 4 | | | | |---|--------------------------------------|---------------|---------------------|-------------|-------------|-------------|-------------|-----------------|------------------|-----------------|-------------|-------------|-------------|--------------------|-------------|----------| | | | | ı | | | Utilization | | | | I ween DITUSION | lo l | | ACTIVITY | fiz | Growth | | | Species | Cell morphology | Growth
mDA | Lipid
dependency | Tween
20 | Tween
40 | Tween
60 | Tween
80 | Cremophor
EL | Tween
20 | Tween
40 | Tween
60 | Tween
80 | Catalase | β-gluco-
sidase | 37 °C | 40 °C | | M. arunalokei | ovoidal, globose | sod | sod | neg | neg | neg | variable | neg | خ | خ | خ | خ | neg | neg | sod | neg | | M. brasiliensis | ovoidal, ellipsoidal | sod <i>د</i> . | <i>د</i> - | <i>.</i> | ٠. | sod | neg | sod | sod | | M. caprae | globose, ellipsoidal | sod | sod | neg | sod | sod | pos, (neg) | neg | beu | sod | sod | pos, (neg) | sod | pos, (neg) | neg, (weak) | neg | | M. cuniculi | globose | neg, weak | sod | neg sod | sod | sod | sod | | M. dermatis | ellipsoidal, globose | sod | sod | sod | sod | sod | sod | pos, weak | sod | sod | sod | sod | sod | <i>خ</i> | sod | sod | | M. equina | ellipsoidal | sod | sod | weak | sod | sod | sod | neg | weak | sod | sod | sod | sod | neg | weak | neg | | M. furfur | globose, ellipsoidal,
cylindrical | sod pos, (neg) | neg, (weak) | sod | sod | | M. globosa | globose | sod | sod | neg sod | neg | neg, (weak) | neg | | M. japonica | globose, ellipsoidal | sod | sod | neg | weak | sod | neg | <i>-</i> | neg | weak | sod | neg | sod | 5 | sod | neg | | M. nana | ellipsoidal | sod | sod | variable | sod | sod | weak | neg | variable | sod | sod | weak | sod | neg | sod | variable | | M. obtusa | ellipsoidal, cylindrical | sod | sod | neg sod | sod | neg, (weak) | neg | | M. pachydermatis | ellipsoidal | sod | neg, weak | sod pos, (weak) | pos, (neg) | sod | sod | | M. psittaci | globose, ovoidal | sod c. | <i>د</i> | <i>د</i> - | ć. | sod | neg | neg | neg | | M. restricta | globose, ellipsoidal | sod | sod | neg | neg | neg | neg | neg | neg | beu | neg | neg | neg | neg | variable | neg | | M. slooffiae | ellipsoidal, cylindrical | sod | sod | pos, weak | sod | sod | neg, weak | neg | pos, weak, (neg) | sod | sod | neg, (weak) | sod | neg | sod | sod | | M. sympodialis | ellipsoidal | sod | sod | neg, weak | sod | sod | sod | neg, weak | neg, weak | sod | M. yamatoensis | ellipsoidal | sod | sod | sod | sod | sod | sod | خ | sod | sod | sod | sod | sod | خ. | sod | neg | | M. vespertilionis
(Overall) | ellipsoidal/ovoid;
rarely globose | sod | sod | weak* | sod | sod | weak* | neg | neg, (weak) | weak, pos | sod | variable | beu | neg | weak | weak | | M. vespertilionis
isolate CBS 15041 | ellipsoidal/ovoid;
rarely globose | sod | sod | weak | sod | sod | weak | neg | neg | weak | sod | weak | neg | neg | weak | weak | | M. vespertilionis
isolate CBS 15042 | ellipsoidal/ovoid;
rarely globose | sod | sod | weak | sod | sod | weak | neg | neg | weak | sod | neg | neg | neg | weak | weak | | M. vespertilionis
isolate CBS 15043 | ellipsoidal/ovoid;
rarely globose | sod | sod | weak | sod | sod | weak | neg | weak | sod | sod | sod | neg | neg | weak | weak | | M. vespertilionis
isolate CBS 15044 | ellipsoidal/ovoid;
rarely globose | sod | sod | weak | sod | sod | weak
 neg | neg | sod | sod | weak | neg | neg | weak | weak | | M. vespertilionis
isolate CBS 15045 | ellipsoidal/ovoid;
rarely globose | sod | sod | weak | sod | sod | weak | neg | neg | weak | sod | weak | neg | neg | weak | weak | | M. vespertilionis
isolate CBS 15046 | ellipsoidal/ovoid;
rarely globose | sod | sod | weak | sod | sod | weak | neg | neg | weak | sod | weak | neg | neg | weak | weak | | M. vespertilionis
isolate UAMH 11925 | ellipsoidal/ovoid;
rarely globose | sod | sod | weak | sod | sod | weak | neg | neg | weak | sod | weak | neg | neg | weak | weak | | - | | 000 | | | | | | | | | | | | | | | * generally grew well when test was performed at 24 $^{\circ}\mathrm{C}$ Using the annotated genomes and *Ustilago maydis* as an outgroup, we identified core conserved gene models in each genome using BUSCO v. 2 orthologous groups and generated a concatenated alignment of 254 gene models found in all 29 genomes studied. Using both maximum likelihood and Bayesian methods, the bat-associated *Malassezia* was placed as the most basal member of clade A (Fig. 3). #### Multilocus sequence analysis To demonstrate that all of the *Malassezia* isolates from bats represented a single taxon, multilocus sequencing analysis was performed on 12 isolates (including the type isolate). The isolates for the analysis were selected to represent a broad range of host species, geographic locations, and strains with slight sequence variations in the ITS region. The portions sequenced of D1/D2 region, β-tub, TEF1, and RPB2 were 100 % identical among the 12 isolates, and the ITS region, 18S rDNA, MCM7, and CHS2 shared at least 99.7, 99.9, 99.8, and 99.8 % sequence identity, respectively, between the isolates examined. The sequences generated for the multilocus analysis are available in GenBank (D1/D2: MF669394–MF669398; 18S rDNA: MF669382–MF669386; β-tub: MF669358–MF669362; MCM7: MF669370–MF669374; CHS2: MF669346–MF669350). The final alignments used for the phylogenetic analysis consisted of the following numbers of characters: ITS region, 402 characters; 18S rDNA, 1065 characters; D1/D2 region, 541 characters; β-tub, 1041 characters; TEF1, 987 characters; MCM7, 600 characters; RPB2, 1086 characters; and CHS2, 534 characters. The small number of characters included in the ITS region alignment was due to high divergence between the different Malassezia species within the ITS1 and ITS2 regions, resulting in their subsequent removal from the alignment. Thus, the final 'ITS' alignment consisted almost entirely of sequence data representing the 5.8S rDNA which is more highly conserved among species of Malassezia. The Bayesian analysis based on the eight concatenated sequences produced a tree that showed the same relationships among the subset of species included as the phylogenetic analysis based on whole genome sequencing. The 12 Malassezia isolates from bats all grouped together into a well-supported clade that likely represented a single species (Fig. 4). # Physiological and morphological characterisation of isolates The *Malassezia* sp. isolated from bats grew at all temperatures tested (7, 24, 30, 37, and 40 °C), with best growth (i.e., largest colony diameters) occurring at 24 °C. At higher temperatures, growth was slower. This was problematic since standard phy- siological tests used to characterise species of *Malassezia* are typically conducted at 32 °C for incubation periods that were too brief to allow for sufficient growth of this novel taxon from bats (Guého et al. 1996). Thus, we conducted most tests at both 24 °C and 32 °C and allowed cultures to incubate for up to 50 d. Test results at the two temperatures were generally equivalent, although positive test results often required longer incubation times and produced weaker results at 32 °C compared to 24 °C. Detailed descriptions of growth at different temperatures, cell morphology, and colony morphology are presented in the species description and in Table 4. Colony and cell morphology are also shown in Fig. 5. The bat-associated *Malassezia* grew on mDA, but some isolates began to lose vigour (even more so than previously described on LNA) after several transfers on the medium. All isolates were lipid-dependent, failing to grow on SDA. Growth occurred on a variety of tween lipid sources, but not in the presence of Cremophor EL. The isolates were catalase and β -glucosidase negative. More detailed information is provided in the species description and in Table 4. #### SPECIES DESCRIPTION Malassezia vespertilionis J.M. Lorch & Vanderwolf, sp. nov. — MycoBank MB822382; Fig. 5 Etymology. The species epithet refers to the host from which the fungus was isolated (n. vespertilio, Latin for bat; gen. n. vespertilionis, of a bat). Holotype. USA, Wisconsin, swab of wing skin of hibernating Myotis septentrionalis, 28 Jan. 2014, J.P. White (U.S. National Fungus Collections BPI 910536; culture ex-type CBS 15041 = UAMH 11924). Colonies are approximately 0.5-1.0 mm diam after 10 d of growth at 24 °C on LNA; 2-5 mm diam after 40 d. At 10 d, colonies are cream-coloured, flat to slightly convex, somewhat glossy, have entire margins, and have a crumbly or waxy consistency. At 40 d, colonies have irregular margins, are slightly raised, and have a prominent papilla near the centre (Fig. 5). Cells are ellipsoid or ovoid to (rarely) globose, ranging in size from 2-3 \times 2-4 μm (typically 2 \times 3 $\mu m) (Fig. 5). Buds are$ formed monopolarly, usually on a narrow base. Growth occurs (sometimes poorly) on mDA; no growth observed on SDA. Isolates are catalase and β-glucosidase negative. Variable in lipid utilisation: no growth observed for Cremophor EL, weak or no growth for Tween 20, usually weak growth for Tween 80, weak to good growth for Tween 40, and good growth for Tween 60. Growth occurs across a range of temperatures on LNA, but is slower at temperatures above and below 24 °C; specifically, individual pinpoint colonies are visible by day 30 at 7 °C and 30 °C, and on day 40 at 37 °C. Growth is evident at 40 d for **Fig. 5** Colony and cell morphology of *M. vespertilionis* sp. nov. grown on Leeming and Notman Agar at 24 °C. a. Colony size and morphology after 10 d of growth; b. colony size and morphology after 40 d of growth; c. cell morphology of 10-d-old culture. — Scale bars: a, b = 4 mm; c = 5 μm. cultures grown at 40 °C on areas of the medium where cells are placed at high densities; however, individual colonies are not grossly discernible. A sexual state was not observed; however, mating experiments were not explicitly performed. Additional specimens examined for physiological characteristics and multi-locus DNA sequencing. USA, Wisconsin, swab of wing skin of a hibernating Myotis septentrionalis, 3 Mar. 2014, J.P. White, CBS 15042; Kentucky, swab of wing skin of hibernating Myotis sodalis, 4 Mar. 2014, M.L. Verant, CBS 15043; Kentucky, swab of wing skin of hibernating Myotis sodalis, 4 Mar. 2014, M.L. Verant, UAMH 11925; New York, swab of wing skin of hibernating Myotis lucifugus, 19 Mar. 2014, M.L. Verant, CBS 15044; New York, swab of wing skin of hibernating Myotis lucifugus, 15 Jan. 2015, M.L. Verant, CBS 15045; Alabama, swab of wing skin of hibernating Myotis grisescens, 11 Feb. 2015, N. Sharp, CBS 15046. Additional isolates for which multilocus DNA sequencing was conducted. USA, California, swab of wing skin of Lasionycteris noctivagans, 8 May 2017, T.J. Weller, CBS 15047; California, swab of wing skin of Myotis californicus, 7 May 2016, T.J. Weller, CBS 15048; California, swab of wing skin of Myotis thysanodes, 26 Apr. 2016, T.J. Weller, CBS 15049; California, swab of wing skin of Myotis californicus, 16 May 2016, T.J. Weller, CBS 15050; California, swab of wing skin of Myotis californicus, 19 Apr. 2016, T.J. Weller, CBS 15051. #### **DISCUSSION** The diversity of species within the genus Malassezia has been expanded in recent years due to increased sampling and use of genetic and molecular tools for distinguishing taxa. In the current study, we report on a species of Malassezia that is relatively common on skin of North American bats (i.e., cultured from 28 % of 264 individuals sampled). Isolates of this Malassezia sp. from bats were physiologically and genetically similar to one another. Specifically, sequences of four loci (D1/ D2 region, β-tub, *TEF1*, and *RPB2*) were identical between isolates. Minimal variation in the ITS region (99.7 % sequence identity), 18S rDNA (99.9 % sequence identity), and portions of the MCM7 (99.8 % sequence identity) and CHS2 (99.8 % sequence identity) genes were within the intraspecific variation documented in other species of Malassezia (e.g., Makimura et al. 2000, Hirai et al. 2004, Cabañes et al. 2007). As a group, the bat-associated isolates were highly similar to one another, and they were sufficiently distinct from all other known taxa. Thus, we propose that these bat-associated isolates represent the novel species M. vespertilionis. All isolates of *M. vespertilionis* subjected to physiological tests were catalase negative, a trait shared only with *M. arunalokei*, M. restricta, and some strains of M. furfur and M. pachydermatis (Guého et al. 1996, Guillot et al. 1998, reviewed by Batra et al. 2005, Honnavar et al. 2016). In contrast to M. arunalokei and M. restricta, M. vespertilionis is capable of growth (albeit slow) at 40 °C and can utilise multiple types of Tween. It can be distinguished from catalase negative strains of M. pachydermatis based on ability of the latter to grow on SDA without the supplementation of lipids. Differentiation of M. vespertilionis from M. furfur based on physiological tests alone may be problematic due to reported variation in M. furfur (Batra et al. 2005). We examined a number of isolates of M. vespertilionis and found some variability in results of the physiological tests for this species as well. Interpretation of physiological tests can be challenging (Gupta
et al. 2004), and the inability of M. vespertilionis to grow sufficiently to produce positive results under the standard incubation procedures set forth by Guého et al. (1996) further complicates the use of these tests for identification. Thus, although physiological tests can often separate *M. vespertilionis* from other described taxa and may be helpful for some applications, we encourage the use of DNA sequencing (e.g., ITS region) to confirm identification. To date, *Malassezia* species have been isolated primarily from euthermic animals that maintain constant core body tempera- ture near 37 °C. This is consistent with the statement made by Guého-Kellerman et al. (2010) that members of the genus do not endure temperatures below 28 °C. Most of the bat species from which M. vespertilionis was isolated hibernate for up to seven months of the year at which time their body temperature is close to that of the surrounding environment. Specifically, Myotis lucifugus, Myotis sodalis, and Myotis septentrionalis were reported to prefer winter hibernacula with average air temperatures around 7.2, 8.5, and 9.1 °C, respectively (Brack 2007). In the active season, a bat's body temperature may exceed 40 °C; however, bats often use bouts of torpor even during the active season, such that their body temperatures frequently fluctuate, sometimes approaching ambient temperature (Hock 1951, Studier 1981, Willis & Cooper 2009). Thus, the skin temperature of bats is highly variable, and this may explain the wide range of temperatures under which M. vespertilionis is capable of growth (from at least 7 °C to 40 °C). The ability to grow at such cool temperatures is noteworthy and may be unique to M. vespertilionis among the Malassezia. However, the lower growth limits of most Malassezia species have not been expressly described in literature, making comparisons difficult. The detection of DNA of uncultured malassezia-like organisms on corals and in terrestrial and marine environments suggests that other undescribed species of Malassezia may be capable of growth at ambient temperatures or reside on poikilothermic hosts (reviewed by Amend 2014). Previous phylogenetic studies of Malassezia have demonstrated disparities in the relationships between species when different loci were analysed (Cabañes et al. 2007, Castellá et al. 2014). This genealogical discordance has made deciphering taxonomic relationship among all members of the genus difficult. Wu et al. (2015) was able to better resolve Malassezia phylogeny through whole genome sequencing and concatenation of 164 genes. This phylogeny resulted in three main clades: clade A consists of M. furfur, M. obtusa, M. yamatoensis, and M. japonica; clade B contains M. sympodialis, M. dermatis, M. caprae, M. equina, M. nana, M. pachydermatis, M. globosa, and M. restricta; and clade C is comprised of M. cuniculi and M. slooffiae. Using the sequence data generated by Wu et al. (2015) and the whole genome sequence of M. vespertilionis produced in this study, we conducted a phylogenetic analysis using amino acid sequences of 254 core genes. The resulting phylogenetic tree was identical to that of Wu et al. (2015) except that our analysis suggested that M. obtusa is basal to the subclade consisting of M. furfur and M. yamatoensis (Fig. 3). The *Malassezia* tree of Wu et al. (2015) had placed M. yamatoensis basal to M. furfur and M. obtusa; however, in that study the node was less well-supported compared to other species-level relationships. The slight change in tree topology and greater support for relationships within clade A in our tree may be due to the inclusion of more genes and M. vespertilionis in the analysis. These findings suggest that while sequencing loci traditionally used to differentiate species of Malassezia (e.g., ITS, D1/D2, β-tub, and CHS2 (Cabañes et al. 2007, 2011, 2016, Castellá et al. 2014)) can be useful in identifying novel species, whole genome sequencing may be necessary to generate enough genetic data to fully resolve the relationship of those novel species with existing taxa. Our phylogenetic analyses indicate that *M. vespertilionis* is the most basal member of clade A. *Malassezia arunalokei*, *M. brasiliensis*, and *M. psittaci* were not included in the analyses because genetic data is available for only three loci each for these newly-described species (Cabañes et al. 2016, Honnavar et al. 2016). Based on existing sequence data, *M. arunalokei*, *M. brasiliensis*, and *M. psittaci* share only about 75–87 %, 90–91 %, and 78–84 % DNA sequence identity, respectively, with *M. vespertilionis* in the ITS region, D1/D2 region, and portion of the β-tubulin gene. Furthermore, previous analyses indicate that *M. arunalokei* is a member of clade B (Honnavar et al. 2016). *Malassezia brasiliensis* and *M. psittaci* are sister taxa to *M. furfur* and *M. yamatoensis*, respectively, which are both divergent from *M. vespertilionis* (Cabañes et al. 2016). The genus Malassezia may be more diverse than currently documented due to the difficulty of transporting and culturing many fragile and fastidious members of the genus, the historic use of morphological and physiological characteristics as the sole criteria to identify species (which can fail to distinguish cryptic species), and a lack of sampling of diverse taxonomic host groups (Amend 2014, Cabañes 2014). In the only other published study in which bats were specifically surveyed for Malassezia, Gandra et al. (2008) reportedly cultured M. furfur, M. globosa, M. pachydermatis, and M. sympodialis (based on physiological and morphological characteristics) from Pallas' mastiff bats (Molossus molossus) in Brazil. No DNA sequence data were generated and the isolates were apparently not deposited in a public culture collection, making it difficult to ascertain their true species assignments. However, because all isolates from Gandra et al. (2008) were either catalase positive or lipid-independent (representing significant physiological deviations from *M. vespertilionis*) it may be that *M. vespertilionis* has not previously been isolated due to a lack of sampling effort of temperate bat species. Indeed, few studies have examined the fungal communities associated with bats, and those that have did not utilise fungal growth media suitable for the isolation of lipid-dependent species of Malassezia (Grose & Marinkelle 1966, Larcher et al. 2003, Voyron et al. 2011, Johnson et al. 2013, Vanderwolf et al. 2013). Nius (2014) detected Malassezia spp. on the skin of bats by conducting fungal community analyses with next generation sequencing. Based on reported sequence identities with other species of Malassezia, at least some of the Malassezia detected by Njus (2014) may represent *M. vespertilionis*. However, DNA sequence data from that project were not available in GenBank at the time of our study to confirm this. Malassezia yeasts are best known for their association with certain skin ailments. For example, M. pachydermatis has been implicated as the cause of dermatitis in (among other species) rhinoceroses (Bauwens et al. 1996), dogs (Gustafson 1955, Bond et al. 2004), and sea lions (Guillot et al. 1998, Nakagaki et al. 2000). More often, the role of Malassezia in skin diseases of animals is unknown, and targeting skin lesions for culture and PCR analyses likely masks the frequency with which these fungi act as commensals. For example, Neves et al. (2017) isolated *Malassezia* from a relatively high percentage (32.8 %) of free-ranging golden-headed lion tamarins (Leontopithecus chrysomelas) in Brazil; none of the animals had skin lesions. Similarly, none of the 74 bats from which isolates of M. vespertilionis were recovered in this study showed visible signs of dermatitis at the time they were sampled. Thus, there is no current evidence that *M. vespertilionis* acts as a pathogen; instead, the yeast is likely a normal component of the skin mycobiome of bats. In this study, *M. vespertilionis* was isolated from nine species of bats in seven U.S. states. With the exception of *Lasionycteris noctivagans*, all of these bats were species of *Myotis*, a diverse and widely distributed genus in North America. This, coupled with the detection of the fungus in both the eastern and western United States (Fig. 2), may indicate that the yeast is more widespread than our survey indicates. *Myotis* also has representatives throughout much of South America, Eurasia, Africa, and Australia, and additional sampling is necessary to determine whether *M. vespertilionis* may have a more global distribution. If this is shown to be the case, *M. vespertilionis* could prove to be an important species in which to study *Malassezia* genetics and evolution. All other known species of Malassezia occur on humans and domestic animals, which have been transported across the world. This, combined with the possibility of interspecific recombination (Cabañes et al. 2007, Castellá et al. 2014) when different species come into contact with one another, makes it difficult to understand historic patterns of geographic distribution, variation, and genetic exchange between strains. Bat species, however, have not been subjected to such extensive and recent human-assisted global movements, nor do they frequently come into close contact with other animal hosts that might facilitate genetic transfer between different species of Malassezia. Thus, if M. vespertilionis is found on other continents, genetic distinctions between strains may still be intact and provide important opportunities for future research into the evolution of these fungi and the role that humans have played in shaping the genetic structure and pathogenicity of Malassezia species. #### Data accessibility All relevant metadata related to this manuscript can be found in the tables of this manuscript, in GenBank, or in TreeBASE (http://purl.org/phylo/treebase/phylows/study/TB2:S21466). Acknowledgements We thank Mike
Armstrong, Elizabeth Bohuski, Shelly Colatskie, Carl Herzog, Heather Kaarakka, Julie Milbroda, Jennifer Redell, Mike Scafini, Nick Sharp, and J. Paul White for assisting with sample collection and Anne Ballmann for helping to coordinate submission for some of the samples. We acknowledge Carol Meteyer and Nancy Thomas for discussions regarding the presence of possible Malassezia observed on bat wings prior to the initiation of this project, Andrew Minnis for providing technical advice, and Teun Boekhout for providing constructive feedback on the manuscript. This work was funded by the U.S. Fish and Wildlife Service and the U.S. Geological Survey. We thank the University of Wisconsin Biotechnology Center DNA Sequencing Facility for providing next-generation sequencing services. The original map modified for Fig. 2 is attributed to Alan Rockefeller, is available on Wikimedia Commons, and was used under the terms of the GNU Free Documentation License. The use of trade, product, or firm names is for descriptive purposes only and does not imply endorsement by the US Government. # REFERENCES Aguirre C, Euliarte C, Finquelievich J, et al. 2015. Fungemia and interstitial lung compromise caused by Malassezia sympodialis in a pediatric patient. Revista Iberoamericana de Micología 32 (2): 118–121. Amend A. 2014. From dandruff to deep-sea vents: Malassezia-like fungi are ecologically hyper-diverse. PLoS Pathogens 10 (8): e1004277. Bankevich A, Nurk S, Antipov D, et al. 2012. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. Journal of Computational Biology 19: 455–477. Batra R, Boekhout T, Guého E, et al. 2005. Malassezia Baillon, emerging clinical yeasts. FEMS Yeast Research 5: 1101–1113. Bauwens L, De Vroey C, De Meurichy W. 1996. A case of exfoliative dermatitis in a captive Southern white rhinoceros (Ceratotherium simum simum). Journal of Zoo and Wildlife Medicine 27: 271–274. Boekhout T, Kamp M, Guého E. 1998. Molecular typing of Malassezia species with PFGE and RAPD. Medical Mycology 36: 365–372. Bolger AM, Lohse M, Usadel B. 2014. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30: 2114–2120. Bond R, Patterson-Kane JC, Lloyd DH. 2004. Clinical, histopathological and immunological effects of exposure of canine skin to Malassezia pachydermatis. Medical Mycology 42: 165–175. Bowen AR, Chen-Wu JL, Momany M, et al. 1992. Classification of fungal chitin synthases. Proceedings of the National Academy of Sciences, USA 89: 519–523. Brack Jr V. 2007. Temperature and locations used by hibernating bats, including Myotis sodalis (Indiana bat), in a limestone mine: implications for conservation and management. Environmental Management 40: 739–746. Cabañes FJ. 2014. Malassezia yeasts: how many species infect humans and animals? PLoS Pathogens 10: e1003892. Cabañes FJ, Coutinho SD, Puig L, et al. 2016. New lipid-dependent Malassezia species from parrots. Revista Iberoamericana de Micologia 33: 92–99. Cabañes FJ, Theelen B, Castellá G, et al. 2007. Two new lipid-dependent Malassezia species from domestic animals. FEMS Yeast Research 7: 1064–1076 - Cabañes FJ, Vega, S, Castellá G. 2011. Malassezia cuniculi sp. nov., a novel yeast species isolated from rabbit skin. Medical Mycology 49: 40–48. - Capella-Gutiérrez S, Silla-Martínez JM, Gabaldón T. 2009. trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics 25: 1972–1973. - Castellá G, Coutinho SD, Cabañes FJ. 2014. Phylogenetic relationships of Malassezia species based on multilocus sequence analysis. Medical Mycology 52: 99–105. - Chang HJ, Miller HL, Watkins N, et al. 1998. An epidemic of Malassezia pachydermatis in an intensive care nursery associated with colonisation of health care workers' pet dogs. New England Journal of Medicine 338: 706–711. - Einax E, Voigt K. 2003. Oligonucleotide primers for the universal amplification of β -tubulin genes facilitates phylogenetic analyses in the regnum Fungi. Organisms Diversity and Evolution 3: 185–194. - Gaitanis G, Magiatis P, Hantschke M, et al. 2012. The Malassezia genus in skin and systemic diseases. Clinical Microbiology Reviews 25: 106–141. - Gaitanis G, Velegraki A, Magiatis P, et al. 2011. Could Malassezia yeasts be implicated in skin carcinogenesis through the production of aryl-hydrocarbon receptor ligands? Medical Hypotheses 77: 47–51. - Gandra RF, Gambale W, De Cássia Garcia Simão R, et al. 2008. Malassezia spp. in acoustic meatus of bats (Molossus molossus) of the Amazon Region, Brazil. Mycopathologia 165: 21–26. - Grose E, Marinkelle CJ. 1966. Species of Sporotricum, Trichophyton and Microsporum from Columbian bats. Tropical and Geographical Medicine 18: 260–263. - Guého E, Midgley G, Guillot J. 1996. The genus Malassezia with description of four new species. Antonie van Leeuwenhoek 69: 337–355. - Guého-Kellerman E, Boekhout T, Begerow D. 2010. Biodiversity, phylogeny and ultrastructure. In: Boekhout T, Guého-Kellerman E, Mayser P, et al. (eds), Malassezia and the skin: science and clinical practice: 17–63. Springer, Germany. - Guillot J, Guého E, Lesourd M, et al. 1996. Identification of Malassezia species: A practical approach. Journal de Mycologie Médicale 6: 103–110. - Guillot J, Petit F, Degorce-Rubiales F, et al. 1998. Dermatitis caused by Malassezia pachydermatis in a California sea lion (Zalophus californianus). Veterinary Record 142: 311–312. - Gupta AK, Boekhout T, Theelen B, et al. 2004. Identification and typing of Malassezia species by amplified fragment length polymorphism and sequence analyses of the internal transcribed spacer and large-subunit regions of ribosomal DNA. Journal of Clinical Microbiology 42: 4253–4260. - Gustafson BA. 1955. Otitis externa in the dog: a bacteriological and experimental study. PhD thesis, Royal Veterinary College, Sweden. - Hirai A, Kano R, Makimura K, et al. 2004. Malassezia nana sp. nov., a novel lipid-dependent yeast species isolated from animals. International Journal of Systematic and Evolutionary Microbiology 54: 623–627. - Hock RJ. 1951. The metabolic rates and body temperatures of bats. The Biological Bulletin 101: 289–299. - Honnavar P, Prasad GS, Ghosh A, et al. 2016. Malassezia arunalokei sp. nov., a novel yeast species isolated from seborrheic dermatitis patients and healthy individuals from India. Journal of Clinical Microbiology 54: 1826–1834. doi: https://doi.org/10.1128/JCM.00683-16. - Johnson LJAN, Miller AN, McCleery RA, et al. 2013. Psychrophilic and psychrotolerant fungi on bats and the presence of Geomyces spp. on bat wings prior to the arrival of white-nose syndrome. Applied and Environmental Microbiology 79: 5465–5471. - Katoh K, Standley DM. 2013. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Molecular Biology and Evolution 30: 772–780. - Laetsch DR, Blaxter ML. 2017. BlobTools: Interrogation of genome assemblies [version 1; referees: awaiting peer review]. F1000Research 6: 1287. - Langmead B, Salzberg SL. 2012. Fast gapped-read alignment with Bowtie 2. Nature Methods 9: 357–359. - Larcher G, Bouchara JP, Pailley P, et al. 2003. Fungal biota associated with bats in western France. Journal de Mycologie Médicale 13: 29–34. - Leeming JP, Notman FH. 1987. Improved methods for isolation and enumeration of Malassezia furfur from human skin. Journal of Clinical Microbiology 25: 2017–2019. - Liu YL, Whelen S, Hall BD. 1999. Phylogenetic relationships among ascomycetes: evidence from an RNA polymerase II subunit. Molecular Biology and Evolution 16: 1799–1808. Lorch JM, Minnis AM, Meteyer CU, et al. 2015. The fungus Trichophyton redellii sp. nov. causes skin infections that resemble white-nose syndrome of hibernating bats. Journal of Wildlife Diseases 51: 36–47. - Makimura K, Tamura Y, Kudo M, et al. 2000. Species identification and strain typing of Malassezia species stock strains and clinical isolates based on the DNA sequences of nuclear ribosomal internal transcribed spacer 1 regions. Journal of Medical Microbiology 49: 29–35. - Mayser P, Haze P, Papavassilis C, et al. 1997. Differentiation of Malassezia species: selectivity of Cremophor EL, castor oil and ricinoleic acid for M. furfur. British Journal of Dermatology 137: 208–213. - Miller MA, Pfeiffer W, Schwartz T. 2010. Creating the CIPRES Science Gateway for inference of large phylogenetic trees. Proceedings of the Gateway Computing Environments Workshop (GCE), 14 Nov. 2010: 1–8. New Orleans, Louisiana. - Nakagaki K, Hata K, Iwata E, et al. 2000. Malassezia pachydermatis isolated from a South American sea lion (Otaria byronia) with dermatitis. The Journal of Veterinary Medical Science 62: 901–903. - Neves JJ, Francelino M, Silva FG, et al. 2017. Survey of Malassezia sp. and dermatophytes in the cutaneous microbiome of free-ranging goldenheaded lion tamarins (Leontopithecus chrysomelas Kuhl, 1820). Journal of Medical Primatology 46: 65–69. - Njus KA. 2014. Molecular techniques for the identification of commensal fungal populations on cave roosting bats. Master's thesis. University of Akron, USA. http://rave.ohiolink.edu/etdc/view?acc_num=akron1403716687. - O'Donnell K. 1993. Fusarium and its near relatives. In: Reynolds DR, Taylor JW (eds), Fungal holomorph: mitotic, meiotic and pleomorphic speciation in fungal systematics: 225–233. CAB International, UK. - Patron RL. 2016. A 34-year-old man with cough, lung nodules, fever, and eosinophilia. Clinical Infectious Diseases 63 (11): 1525–1526. - Rehner SA, Buckley E. 2005. A Beauveria phylogeny inferred from nuclear ITS and EF1-alpha sequences: evidence for cryptic diversification and likes to Cordyceps teleomorphs. Mycologia 97: 84–98. - Ronquist F, Huelsenbeck JP. 2003. MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19: 1572–1574. - Schmitt L, Crespo A, Divakar PK, et al. 2009. New primers for promising single-copy genes in fungal phylogenetics and systematics.
Persoonia 23: 35–40. - Simão FA, Waterhouse RM, Ioannidis P, et al. 2015. BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics 31: 3210–3212. - Stamatakis A. 2014. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30: 1312–1313. - Studier EH. 1981. Energetic advantages of slight drops in body temperature in little brown bats, Myotis lucifugus. Comparative Biochemistry and Physiology Part A: Physiology 70: 537–540. - Sugita T, Boekhout T, Velegraki A, et al. 2010. Epidemiology of Malasseziarelated skin diseases. In: Boekhout T, Guého-Kellerman E, Mayser P, et al (eds), Malassezia and the skin: science and clinical practice: 65–119. Springer, Germany. - Sugita T, Nakase T. 1999. Non-universal usage of the leucine CUG codon and the molecular phylogeny of the genus Candida. Systematic and Applied Microbiology 22: 79–86. - Sugita T, Takashima M, Shinoda T, et al. 2002. New yeast species, Malassezia dermatis, isolated from patients with atopic dermatitis. Journal of Clinical Microbiology 40: 1363–1367. - Tamura K, Stecher G, Peterson D, et al. 2013. MEGA6: Molecular Evolutionary Genetics Analysis Version 6.0. Molecular Biology and Evolution 30: 2725–2729. - Vanderwolf KJ, McAlpine DF, Malloch D, et al. 2013. Ectomycota associated with hibernating bats in eastern Canadian caves prior to the emergence of white-nose syndrome. Northeastern Naturalist 20: 115–130. - Voyron S, Lazzari A, Riccucci M, et al. 2011. First mycological investigation on Italian bats. Hystrix 22: 189–197. - Walker BJ, Abeel T, Shea T, et al. 2014. Pilon: an integrated tool for comprehensive microbial variant detection and genome assembly improvement. PLoS One 9: e112963. - Wang Q-M, Theelen B, Groenewald M, et al. 2014. Moniliellomycetes and Malasseziomycetes, two new classes in the Ustilaginomycotina. Persoonia 33: 41–47 - Willis CKR, Cooper CE. 2009. Techniques for studying thermoregulation and thermal biology in bats. In: Kunz TH, Parsons S (eds), Ecological and behavioral methods for the study of bats: 646–658. The John Hopkins University Press, USA. - Wu G, Zhao H, Li C, et al. 2015. Genus-wide comparative genomics of Malassezia delineates its phylogeny, physiology, and niche adaptation on human skin. PLoS Genetics 11: e1005614.