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Abstract: Natural extracts are the source of many antioxidant substances. They have proven useful
not only as supplements preventing diseases caused by oxidative stress and food additives preventing
oxidation but also as system components for the production of metallic nanoparticles by the so-called
green synthesis. This is important given the drastically increased demand for nanomaterials in
biomedical fields. The source of ecological technology for producing nanoparticles can be plants
or microorganisms (yeast, algae, cyanobacteria, fungi, and bacteria). This review presents recently
published research on the green synthesis of nanoparticles. The conditions of biosynthesis and
possible mechanisms of nanoparticle formation with the participation of bacteria are presented. The
potential of natural extracts for biogenic synthesis depends on the content of reducing substances.
The assessment of the antioxidant activity of extracts as multicomponent mixtures is still a challenge
for analytical chemistry. There is still no universal test for measuring total antioxidant capacity
(TAC). There are many in vitro chemical tests that quantify the antioxidant scavenging activity of free
radicals and their ability to chelate metals and that reduce free radical damage. This paper presents
the classification of antioxidants and non-enzymatic methods of testing antioxidant capacity in vitro,
with particular emphasis on methods based on nanoparticles. Examples of recent studies on the
antioxidant activity of natural extracts obtained from different species such as plants, fungi, bacteria,
algae, lichens, actinomycetes were collected, giving evaluation methods, reference antioxidants, and
details on the preparation of extracts.

Keywords: antioxidants; natural extracts; antioxidant activity/capacity; green synthesis; nanoparticles

1. Introduction

Recently, much research has been devoted to free radical chemistry. There are unde-
niable pieces of evidence that free radicals are responsible for the oxidative damage of
biomolecules such as proteins, lipids, or nucleic acids in the structures of cell nuclei and
molecular membranes. Maintaining the balance between free radicals and antioxidants
is a prerequisite for staying healthy. Thus, the control of oxidative stress processes may
turn out to be fundamental in both the prevention and treatment of many diseases, such
as diabetes, atherosclerosis, coronary artery disease, cancer, inflammation, liver diseases,
cardiovascular diseases, cataracts, nephrotoxicity, and neurodegenerative processes accom-
panying aging. In order to maintain redox homeostasis, excess free radicals are neutralized
by enzymes and non-enzymatic antioxidants, which, with the exception of a few produced
by the human body, e.g., glutathione, uric acid, and uricinol, must be supplied with the diet.
Since synthetic antioxidants butylated hydroanisole (BHA), butylated hydrotoluene (BHT),
n-propyl gallate (PG) pose a potential health risk due to contamination with chemical
precursors, toxic solvents, and the formation of hazardous by-products, natural antioxi-
dants are an attractive alternative. For this reason, there is an extensive search for effective,
non-toxic, and natural antioxidants. According to PubMed, in the last 5 years, over three
thousand review articles that prove the effectiveness of natural antioxidants in preventing
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diseases caused by oxidative stress have been published. Therefore, antioxidants have
become co-adjuvants utilized in conventional therapies with the aim of combating oxida-
tive stress. Many natural antioxidants have been shown to have strong antiviral effects.
The efficacy of flavonoids, i.e., (+)—catechin, luteolin, apigenin, quercetin, and quercetin
7-rhamnoside, has been proven in coronavirus infections (Porcine epidemic diarrhea virus
(PEDV), Transmissible gastroenteritis virus (TGEV) [1–3]. In the absence of effective thera-
pies for the treatment of diseases caused by coronaviruses, antioxidants may prove to be an
effective alternative to fight the SARS- and MERS-CoV pandemic [4]. The site of action of
antioxidants is the oxidative stress pathway, which plays a key role in coronavirus-induced
pathogenesis. Diniz et al. [4] reviewed different effects of natural antioxidants against
coronavirus covering reduction nucleocapsid (N) protein expression, inhibition 3C-like
protease (3CLpro) [5–8] enzyme responsible for replication of SARS-CoV (quercetin and
its derivatives), papain-like protease (PLpro) (isobavachalcone and psoralidin) [9], and
helicase protein by affected ATPase activity (myricetin and scutellarein) [10]. A recently
published review demonstrated the usefulness of antioxidants in the treatment of neu-
rological disorders caused by COVID-19 [11]. However, reports that do not confirm the
effectiveness of antioxidants in vivo cannot be ignored [12]. The activity of antioxidants
is mainly limited by ADMET (Absorption, Distribution, Metabolism, Excretion, and Tox-
icology)processes related to poor absorption caused by restrictions in the penetration of
cell membranes and degradation that occurs in the stomach and intestines. It has also
been reported that low molecular weight antioxidants lose their ability to scavenge free
radicals inside cells. This is especially true for the scavenging of the hydroxyl radical (OH•),
superoxide (O2

•−), and H2O2 [13,14].
The sources of natural antioxidants are mainly plants, i.e., edible vegetables, fruits,

spices, and herbs, which are rich in vitamins, phenolic compounds, carotenoids, and
microelements [15–17]. However, it should be emphasized that the antioxidant activity is
different for different varieties and morphological parts of natural resources. In addition,
the activity of natural products is influenced by many other factors, such as climatic and soil
conditions or harvest time. They hinder the standardization of natural products to a large
extent. Due to the fact that natural antioxidants have the ability to inhibit the processes
of oxidation and the growth of microorganisms, including many pathogenic ones, e.g.,
Salmonella spp. and Escherichia coli [18], they are more and more often used as preservatives
in food products [19] or as packaging ingredients for food [20]. In recent years, a large
body of evidence has been published that natural antioxidants increase the stability of
edible oils [21–23], the stability of carotenoid dyes, and the aroma of fruit juices [24] and
that they work well as additives in meat products [25,26] and even in bakery products [27],
successfully replacing artificial preservatives and stabilizers. It should be emphasized that
the choice of bioactive compounds for the food industry is significantly limited due to the
obvious taste requirements [28] and the need for approval by EFSA (European Food Safety
Authority) or FDA (American Food and Drug Administration). Currently, we can observe
an interesting trend in the strategy of using by-products of the processing industry [29,30].
This is related not only to environmental protection or economic reasons but to the fact
that they have a significant content of bioactive substances, exceeding that in the flesh of
fruit, such as polyphenols in apple and olive pomace [31], lycopene in tomato pomace [32],
phenolic compounds from the group of flavonoids (anthocyanins, catechins), and phenolic
acids and stilbenes in grape skins [33] or citrus fruits [34].

In recent years, natural extracts have become attractive, also due to the rapid de-
velopment of nanotechnology. As a source of substances with reducing potential, they
have replaced the toxic reagents used in chemical synthesis and ushered in the era of the
so-called biogenic synthesis and nanobiotechnology [35].

Numerous spectroscopic, biochemical, and electrochemical assays are used to test
antioxidant abilities, which are still modified so that they can effectively assess the potential
of antioxidants, taking into account the variability of their mechanisms of action. They are
usually based on a free radical scavenging reaction or the prevention of their formation by
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the addition of an antioxidant. Various techniques used for this purpose differ in terms
of repeatability and costs associated with the necessity of using specialized equipment.
Valuable reviews, published in recent years, describe problems related to (i) the mechanisms
responsible for the antioxidant activity [17]; (ii) the antioxidant activity of natural extracts
prepared from various plant species [36], microorganisms [37], and food ingredients [38];
and (iii) the preventive role of antioxidants in various diseases such as diabetes [39], human
gut diseases [40], and cancer [41], as well as the use of natural extracts for the synthesis of
nanoparticles [42].

This review gathers together issues related to antioxidants (classification, natural
sources, measurement of antioxidant activity) as well as their application in nanotechnology.
Within the review, two main issues can be distinguished:

(i) The wide range of industrial and biomedical applications of antioxidants requires
effective and rapid in vitro tests to evaluate total antioxidant activity. Various methods
were collected in the review, i.e., chromatographic, spectrometric, and electrochemical.
Particular attention was paid to the method based on metallic nanoparticles, which are
used as optical probes (SNPAC). The method is useful for measuring the antioxidant
activity of both simple chemical compounds and mixtures of natural origin. The
SNAPC tests are effective in assessing electron transfer but are not used very often.
The review includes information on the extracts from plants, lichens, fungi, algae,
and actinomycetes (reference antioxidants, extraction process, antioxidant activity
tests, and activity parameters).

(ii) Natural extracts as a source of both reducing and stabilizing substances are used for
the green synthesis of nanoparticles. The review includes examples of the synthesis
of metallic/metal oxides of nanoparticles using extracts from various plant species
and microorganisms (yeast, algae, cyanobacteria, fungi, and bacteria). The information
collected allows us to trace the links between the type of antioxidant, its origin, activity,
and suitability for the efficient synthesis of nanoparticles. Extensive data were collected
on the methods of extract preparation, antioxidant activity tests, detection methods,
NPs synthesis conditions, and the morphology of the obtained nanoparticles.

This review highlights recent trends in antioxidant research, measurement of antioxi-
dant activity, biogenic nanoparticle synthesis, and nano-drug delivery systems.

2. Free Radicals/Antioxidants
2.1. Free Radicals vs. Oxidative Stress

Free radicals can be defined as highly reactive species that contain an unpaired electron
in the valence shell. They can donate this electron but also accept it from other molecules,
acting as an oxidant or reducing agent [43]. In the human body, reactive forms (RS) come
from metabolic processes involved in the respiratory chain, phagocytosis, prostaglandin
synthesis, and the cytochrome P-450 system [44].

The most reactive species found in biological systems include the hydroxyl radical
(OH•), which is formed by attaching three electrons to an oxygen molecule, e.g., as a
result of the Fenton reaction, and the superoxide radical (O2

•−), which is formed mainly
in mitochondria, as a byproduct of electron transport in the respiratory chain. Other
reactive forms of oxygen (ROS), nitrogen (RNS), and chlorine occurring as free radicals
and nonradicals that as oxidizing agents can be easily converted into radicals are listed in
Table 1 [45,46].
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Table 1. Examples of reactive species. Reproduced with permission from Graves, D.B., [J. Phys. D
Appl. Phys.]; published by IOP Publishing, 2012 [47].

Reactive Species Form Example

Reactive oxygen
species (ROS)

Radical HO•, 1[O]2, O2
•− HOO•, ROO•, RO•, CO2

•−, CO3
•−

Non-radical O3, H2O2, HOCl, HOI, HOBr, ROOH, CO, ONOOH,
ONOO−, O2NOO−, HOOCO2

−, (O2 1Dg)

Reactive nitrogen
species (RNS)

Radical NO•, NO2
•, NO3

•

Non-radical ROONO, RO2ONO, CH3C(O)OONO2,
N2O4, N2O3, N2O5, HNO2 NO2Cl NO−, NO+

Reactive
chlorine species

Radical Cl•

Non-radical ClBr, Cl2, ClO2

Reactive sulfur species Radical S•

Non-radical H2S, RSSR, RS(O)SR, RSOH, RS(O)2SR, RSR’

ROS/RNS generated in oxygen metabolism are necessary in the regulation of gene ex-
pression, cell proliferation, apoptosis, the processes of protein phosphorylation or calcium
concentration in cells, activation of proteins controlling cell division, and elimination of mi-
croorganisms. Free radicals are also generated under the influence of external sources, such
as exposure to X-rays, ozone, smoking, air pollution, and industrial chemicals [48,49]. There
is a balance in the cell between RS production and its neutralization by defense systems.
Under physiological conditions, this balance is slightly shifted in favor of pro-oxidative
conditions, providing continuous, mild oxidative stress [50].

Each disturbance of this particular balance may lead to the development of oxidative
stress, i.e., a state in which the oxidizing potential increases to a level that threatens
the stability of cellular structures [51]. Under oxidative stress, biologically important
macromolecules such as DNA, proteins, carbohydrates, and lipids are damaged. The
excess of free radicals changes their structure and thus the physiological functioning of the
cell by disrupting redox signaling and the accumulation of cytotoxic compounds, such as
malonyl dialdehyde or 4-hydroxynonenal [52,53].

There is evidence that free radicals can accumulate throughout the body with age, initi-
ating the aging process, as well as various neurodegenerative diseases such as Alzheimer’s
disease, Parkinson’s disease, muscular dystrophy, and atherosclerosis [54]. An imbalance
between ROS and the antioxidant defense system has also been recognized in the induction
of diabetes and age-related eye disease [55]. Currently, it is believed that oxidative stress
has a significant negative impact also on inflammatory diseases, cancer, ischemic diseases,
immunodeficiency syndrome, hypertension, alcoholism, smoking-related diseases, and
many others [56–61]. Oxidative stress was first described and defined by Sies in 1991 [62].

The reasons for the occurrence of oxidative stress may be (i) an increase in the rate of
ROS production, (ii) deficiencies of low-molecular-weight antioxidants, and (iii) inactiva-
tion of enzymes with antioxidant activity. Increased and/or prolonged state of oxidative
stress may cause serious damage to the cell and even lead to its death [63]. Therefore, the
current discussions focus on the role of free radicals in the pathogenesis of many diseases
and the usefulness of antioxidants in their potential therapy [55,64,65].

Antioxidants are produced by the protective system of various organisms in order
to respond to the destructive effects of free radicals. Antioxidants are able to reduce the
damage caused by ROS/RNS and even chlorine. The action of the protective system may
limit the negative effects of free radicals by preventing the formation of reactive radicals or
by interrupting free radical reactions [66].

2.2. Antioxidants

Antioxidants act by delaying or preventing the oxidation of other chemicals. The first
studies on the role of antioxidants in biology focused on their use in preventing unsaturated
fats from going rancid [67–69]. However, the milestone that led to the understanding of the
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role of antioxidants for living organisms was the identification of vitamins A, C, and E [70]
and the understanding of the mechanism of lipid peroxidation prevention by vitamin E [71].
The classification of antioxidants, along with the most representative examples, is shown
in the diagram (Figure 1). Antioxidants are usually classified into enzymatic and non-
enzymatic. Among them, there are various compounds with different modes and places
of action and different final effects. This diversity determines the individual role of each
of them in the body. It should be emphasized that the network of interacting antioxidant
enzymes, such as superoxide dismutase enzymes (SODs), catalase (CAT), glutathione
peroxidase (GPx), and glutathione reductase (GRd), shows the highest antioxidant defense
effectiveness [72].
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Figure 1. Antioxidants classification.

Low-molecular-weight antioxidants, including vitamin C, E, coenzyme Q, carotenes,
glutathione, and trace elements, are also responsible for inactivating reactive radicals.
Some of them, including glutathione, ubiquinone, albumin and metallothioneins, and
uric acid, are produced in the body [73], but most are exogenous compounds derived
from natural sources such as plants (flavonoids, phenolic acids, carotenoids, stilbenes,
coumarins, lignans, organosulfur compounds, vitamins) or minerals (selenium, zinc, man-
ganese) provided with the diet. When endogenous antioxidants involved in free radical
defenses cannot protect the body against ROS, there is a need for exogenous antioxidants.
Almost all living organisms, both prokaryotes and eukaryotes, are capable of producing
bioactive compounds.

Many of the naturally occurring antioxidants are now isolated, fully characterized,
and available for various applications as prophylactic and therapeutic agents to inhibit the
adverse effects generated by ROS [74,75].

A good diet that includes fruit, tea, wine, vegetables, and grains is a rich source
of antioxidants. Some drugs, apart from their therapeutic effect, also have antioxidant
effects, e.g., captopril belonging to angiotensin-converting enzyme (ACE) inhibitors, N-
acetylcysteine [76], or dihydropyridine calcium antagonists [77]. However, the concentra-
tions used in the therapy do not provide antioxidant activity in vivo.

The source of antioxidants and other bioactive compounds are also microorganisms,
including actinomycetes, bacteria [78], cyanobacteria, fungi, and lichens [79]. Compared
to plants, these organisms can grow very quickly under strictly controlled conditions,
which makes them a favorable source of natural bioactive molecules for industrial food,
pharmaceuticals, nutraceuticals, and agricultural applications.
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Antioxidants can also be delivered to the body in the form of dietary supplements. The
synthetic forms of antioxidants are bioequivalent to their natural forms, e.g., biovitamin C
vs. chemically synthesized L-ascorbic acid, or synthetic and natural R, R, R-α-tocopherol.
Antioxidants are also used as additives to prevent the oxidation of unstable ingredients
in the food, cosmetic, and pharmaceutical industries. This mainly concerns synthetic
antioxidants with a phenolic structure, such as butylated hydroanisole (BHA), butylated
hydrotoluene (BHT), and tert-butylated hydroquinone (TBHQ), which are added to food-
stuffs to prevent lipid rancidity [80].

Antioxidants differ in their ability to scavenge free radicals. It has been shown that
antioxidant activity can be significantly correlated with the number of active groups such
as OH or NH2 and the position of these functional groups in the order ortho > para >
meta, from the highest to the lowest active [81]. It should be remembered that antioxidants
can act through various mechanisms, not only scavenging radicals, but also sequestering
transition metal ions, decomposing hydrogen peroxide or hydroperoxides, quenching
active pro-oxidants, and enhancing endogenous antioxidant defense but also by repairing
the resulting cellular damage. Therefore, antioxidants are sometimes classified as primary
or chain-breaking antioxidants and as secondary or preventive antioxidants [82]. Primary
antioxidants actively inhibit oxidation reactions by scavenging ROS/RNS, while secondary
antioxidants act indirectly through chelation of transition metal (iron) ions [83,84] and
other specific actions such as anti-inflammatory, induction of protective factors, inhibi-
tion of NADPH oxidase (nicotinamide adenine dinucleotide phosphate oxidase), inhi-
bition of xanthine oxidase, and regulation of redox-sensitive signal transduction path-
ways, including transcription factors and inhibition of poly (ADP-ribose) −1 (PARP-1)
polymerase [81,85,86]. Another indirect way of antioxidant activity is the activation of
transcription factors, including Nrf2, which in turn leads to the activation of endogenous
antioxidant enzymes [87].

Currently, the role of exogenous antioxidants in preventing or delaying oxidative
damage is becoming more and more controversial. The initial enthusiasm for their positive
health effects was mainly based on in vitro experiments. In the initial studies, the in vivo
bioavailability of the antioxidants, which is generally quite low, was neglected. In this
context, the activity of scavenging free radicals by antioxidant metabolites seems to be
more reliable [50,88]. The high in vitro chemical reactivity of the antioxidant is therefore
not evidence of its effectiveness in vivo. Moreover, as shown by individual studies [89,90],
supplementation with antioxidants may be ineffective and even very dangerous. An
example may be the disappointing research on the effectiveness of vitamin E in the risk of
cardiovascular disease or hemorrhagic stroke [91–95]. Reports that the use of antioxidants
not only prevent cancer but may also provoke it are also alarming [96]. As it turns out, it is
especially dangerous to supplement with antioxidants in doses exceeding the daily intake.
For example, supplementation with β-carotene over ten times the daily intake increased
the incidence of lung cancer in smoking men by 18% [97]. Vitamin C supplementation is
particularly controversial. Linus Pauling recommended health-promoting use of a high
daily dose of 1000 mg [98]. Unfortunately, it turned out that even at low concentrations
of ascorbic acid, a pro-oxidative effect can occur in the presence of transition metals,
e.g., iron. An example of this effect is the effect of ascorbic acid on iron-induced lipid
peroxidation [99].

In the review by Hrelia and Angeloni [100], recent reports on new mechanisms of
action of natural antioxidants are collected. Their study highlights the fact that natural
antioxidants are heavily metabolized in vivo, a result of which is that their redox potential
drops significantly at the physiological level.

The authors observed a growing interest in the scientific community in the interactions
of natural antioxidants with proteins that are involved in intracellular signaling cascades
and modulation of the gut microflora.

Currently, in research on natural antioxidants, research issues can be distinguished
regarding (i) combination therapies using the synergistic effect of natural antioxidants, (ii)
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anti-aging effects of fermented preparations, (iii) enzyme research, (iv) genetic research,
(v) studies on the effect of antioxidants on the intestinal microflora, and (vi) the effect of
antioxidants on hormonal activity.

3. Antioxidant Capacity/Activity Measurements

Determination of antioxidant status attracts growing attention for clinical purposes [48,101].
However, the determination of antioxidative potential, in this case, is difficult to establish
due to the complex mechanisms of action for the individual anti-oxidants. Some of them
act by scavenging free radicals, some by preventing the formation of ROS or inducing
the signaling pathways or by repairing the oxidative damage. Cellular protection is
ensured mainly by enzymes (glutathione peroxidase, SOD, catalase), whereas the non-
enzymatic antioxidants act in the plasma. Additionally, the status of redox homeostasis
differs significantly between the individuals; therefore, the reference values have not been
established so far [102,103]. Presently, there is also no direct method dedicated to accurate
measurement of oxidative stress in vivo conditions. Therefore, oxidative stress is measured
by the use of multiple in vitro assays [102], which can identify free radicals directly like
electron paramagnetic resonance (EPR) or electron spin resonance (ESR) spectroscopy,
fluorescent probes, or indirect methods enabled to identify the stable products which are
created as a consequence of the free radical attack, like chromatography, colorimetry, and
immune, or enzymatic tests [104].

There is also some misunderstanding regarding specific terms that are used to describe
antioxidants measurement assays. Bunaciu et al., in a critical review [105], pointed out that
the terms “antioxidant activity” and “antioxidant capacity” need some more clarification
because they are often used interchangeably despite having different meanings. It should
be emphasized that the term “antioxidant activity” refers to kinetic-based assays measuring
the rate constant of a reaction between reactants or scavenging percentages per unit time.
Thus, the term is characteristic of a specific antioxidant and oxidant, expressed as reaction
rates value. In turn, the antioxidant capacity can be defined as the efficiency of antioxidants
to inhibit the oxidative degradation of the various bio-compounds. The measurements
are based on the reaction between studied antioxidants and free radicals (reactive species
inactivation, quenching, or scavenging) or on the reaction of the sample with transition
metals. Antioxidant capacity expresses the amount (in moles) of a given free radical that is
scavenged by a sample.

In the case of a heterogeneous mixture, the antioxidant capacity of each individual
component is not possible to measure as all antioxidants react simultaneously to produce
the total scavenging ability of the sample. In the case of the complex samples, the most
reasonable way of their antioxidant capacity is using a variety of methods that can address
the different mechanisms of action of individual components [106,107]. The collaborative
effect of all sample components (i.e., synergistic or antagonistic effects) is responsible for
“total antioxidant capacity” (TAC) measured.

Antioxidants’ capacity can be estimated by considering the final effects of their pres-
ence, by the use of in vitro tests, or directly by more complex methods utilizing exogenic
probes to detect oxidation. With such a variety of mechanisms involved in the action of
antioxidants, determining the level of total antioxidant capacity (TAC) is one of the major
challenges in antioxidant testing. Thus far, no universal method has been developed that
would gain general and univocal acceptance. Therefore, when choosing a specific method,
one should be aware of what kind of an antioxidant function is being measured [46,108].

The measured activity of primary antioxidants reflects their ability to scavenge
ROS/RNS throughout hydrogen atom (H•) or electron (e−) transfer or both species si-
multaneously (i.e., proton-coupled electron transfer). Secondary antioxidants, which are
known as preventive ones, are evaluated by the chelating ability of selected transition
metal ions e.g., Fe(II) or Cu(I). Preventive antioxidants act by inhibiting Fenton reactions as
a source of hydroxyl radicals or a Lewis acid-base neutralization (metal ion—antioxidant).
In turn, endogenous antioxidative enzymes, being “first-line defense antioxidants” such as



Materials 2021, 14, 4135 8 of 54

SOD, CAT, and GPx, which are able to scavenge superoxide anion radicals and hydrogen
peroxides, require enzymatic methods for evaluation of the antioxidants activity [108].

Nonenzymatic primary antioxidant assays can be non-competitive or competitive [109].
Competitive assays such as TRAP, ORAC, TOSC, crocin bleaching, peroxyl radical trapping
antioxidant parameter, act due to the competition between a fluorogenic or chromogenic
probe and antioxidants for the reactive species (ROS/RNS). In the presence of antioxidants,
the probe undergoes weaker oxidation, which is reflected in the changes of its measurable
properties (absorbance, fluorescence, luminescence) [110] (Figure 2).
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Figure 2. Schematic illustration of competitive antioxidant (AO) assay.

The non-competitive (Figure 3) ones based on Folin−Ciocalteu reaction, ABTS/TEAC,
CUPRAC, FRAP, DPPH, ABTS differ in the lack of the presence of any competing target
molecule. TAC measurements are considered to be noncompetitive if they rely on electron
transfer (ET) mechanism, whereas competitive measurements are usually based on a
hydrogen atom transfer (HAT) [46].
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In certain circumstances, ET/HAT mechanisms may not be easily identified like for 2,2′-
azinobis-(3-ethylbenzothiazoline-6-sulfonic acid (ABTS), and 2,2-diphenyl-1-picrylhydrazyl
(DPPH) assays, which are sometimes classified as mixed-mode assays (ET/HAT). Both free
radicals react according to two mechanisms: HAT (1) and SET (single electron transfer) (2):

HAT: DPPH• + A→ DPPH-H + A•, (1)

SET: DPPH• + AH→ DPPH− + AH+•; AH+• → AH• +H+; DPPH− + H+ → DPPH-H, (2)
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Experimental investigations [111,112] confirm that HAT and SET transformations may
occur at the same time as a sequential proton-loss electron transfer (SPLET), which is also
named as a proton-coupled electron transfer (PCET) [106]:

SPLET: AH→ AH− + H+; AH− + DPPH• → AH• + DPPH−; DPPH− + H+ → DPPH-H (3)

It has been proven that the HAT mechanism dominates in aqueous solutions. In
turn, the SET and SPLET may dominate in non-aqueous solutions due to the possibility
of organic solvents forming hydrogen bonds with molecules of antioxidants [113–116].
Among the SET methods, the most used are DPPH radical scavenging capacity assay,
Trolox equivalent antioxidant capacity (TEAC or ABTS) assay, ferric reducing (FRAP) assay,
reducing power assay (RP), and copper reduction (CUPRAC) assay. HAT assays include the
total per-oxyl radical-trapping antioxidant parameter (TRAP) assay, the crocin bleaching
assay, oxygen radical absorbance capacity (ORAC) assay, and total oxyradical scavenging
capacity (TOSC) assay.

Antioxidant activity can also be estimated using nanoparticle-based assays utiliz-
ing nanoparticles probes exhibiting localized surface Plasmon resonance (LSPR) absorp-
tion [117,118]. It has been established that the LSPR absorption connected with the nanopar-
ticles grove rises linearly depending on antioxidant concentration. Scampicchio et al. de-
scribed such correlation for gold nanoparticles (AuNPs) generated under the influence of
phenolic acid antioxidants being able to donate electrons. Özyürek et al. proved the same
for silver nanoparticles (Ag-NPs), which were formed as a product of AgNO3 reduction
with polyphenolic antioxidants.

Many studies are dedicated to the estimation of the antioxidant power of various
individual chemicals, as well as food samples and natural extracts [119]. For this purpose,
various tests were applied, including, among others, the oxygen radical absorbance capacity
test, the Trolox equivalent antioxidant capacity, and the ability to reduce metal ions, such
as copper or iron. Several reviews have been published that highlight the advantages
and disadvantages of the available tests [120–124]. However, there is still no standard
quantitative method for measuring antioxidant activity. Therefore, it is extremely difficult to
compare the results obtained from different studies. The complexity and variety of research
systems make it impossible to repeat and confirm experiments by independent laboratories.
The most common methods related to the antioxidant assessment are summarized in
Table 2.

Table 2. Examples of the non-enzymatic assays used for in vitro determination of antioxidant capacity with distinguished
chromogenic agents, observed changes, the principle, mode, and mechanism of the assay (Mech).

Assay The
Chromogenic Agents Observed Changes Principle of Assay Mode Mech Ref

Total antioxidant capacities

Crocin bleaching crocin bleaching of crocin The ability of AOs to inhibit
oxidation of crocin.

Abs.
443 nm
pH = 7.0–7.5

HAT [125,126]

ORAC
(Oxygen radical
absorbance capacity)

fluorescein,
dichloro- fluorescein fluorescence decay

The fluorescence caused by
oxidation of the probe by
peroxyl-radical initiated by thermal
decomposition of AAPH, is
delayed/inhibited by AOs.

Fl.
λex = 485 nm
λem = 538 nm
pH = 7.4

HAT [127]

TRAP (Total peroxyl
radical trapping
antioxidant parameter)

β-phycoerythrin fluorescence decay
Fluorescence decay along time due
to oxidation of the probe is delayed
by AOs.

Fl.
λex = 495 nm
λem = 575 nm
pH = 7.5

HAT [128,129]

β-carotene bleaching assay β-carotene bleaching yellow color
of β-carotene

The ability of AOs to slow down the
rate of β-carotene bleaching due to
its reaction with peroxyl radicals,
which are formed by linolenic
acid oxidation.

Abs.
470 nm
pH = 5.5–7.5

HAT [130,131]

PCL
(Photochemiluminescence) luminol blue light emision

An AO-sensitive inhibition of a
photo-induced, chemiluminescence
accompanying autooxidation of
luminol.

Cl.
360 nm
pH = 10.5

HAT [132–134]
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Table 2. Cont.

Assay The
Chromogenic Agents Observed Changes Principle of Assay Mode Mech Ref

Reducing antioxidant power (RP)

FRAP
(Ferric reducing
antioxidant potential)

ferric tripyridyl
triazine yellow color to blue

AOs as reductant at low pH can
reduce ferric tripyridyl triazine to
ferrous form, causing
absorbance ncrease.

Abs.
593 nm
pH = 3.6

ET [135]

CUPRAC
(cupric ion
reducing
antioxidant capacity)

Cu(II) complex light blue to
orange-yellow

Ability of AO for the reduction of
Cu(II) in
bathocuproine(2,9-dimethyl-4,7-
diphenyl-1,10-phenanthroline) or
neocuproine
(2,9-dimethyl-1,10-phenanthroline)
complexes to Cu(I) forms.

Abs.
490 nm 450 nm
pH = 7

ET [136]

CERAC
(Ce(IV)-based
reducing capacity)

Ce (IV) fluorescence
The ability of AO to reduce Ce(IV)
to Ce(III) accopanied with
fluorescence elevation.

Fl.
λex = 256 nm
λem = 360 nm
pH acidic

ET [137,138]

CHROMAC (Chromium
reducing
antioxidant capacity)

Cr (VI) with DPC red–violet product

The reduction of chromate(VI) to
Cr(III) in acidic solution. The
remaining Cr(VI) reacts with DPC to
produce a chelate complex. The
Cr(VI) consumption was correlated
with AO’ concentration.

Abs.
540 nm.
pH = 2.8

ET [139]

Phosphomolybdenum
assay

Phosphormolybdenum
complex green product The reduction of Mo(Vl) to Mo(V)

by AO.
Abs. 695 nm
pH acidic ET [140]

The Folin–Ciocalteu
(FC) assay

Tungstate–molybdate
complexes from yellow to dark blue

FC reagent in a basic medium is able
to oxidize reducing substances,
mainly phenolic and polyphenolic
AOs. The change in color is
connected with transformation of
Mo(VI) to Mo(V), causing
absorbance increase.

Abs.
750–765 nm pH
= 10

ET [109]

PFRAP
(Potassium ferricyanide
reducing power assay)

Ferricyanide reagent:
Fe(III), Fe(CN)6

3− prussian blue

The AOs react with potassium
ferricyanide Fe(CN)6

3−) forming
potassium ferrocyanide Fe(CN)6

4−

which further reacts with FeCl3 to
form prussian blue KFe[Fe(CN)6].

Abs.
700 nm
pH = 6.6

ET [141]

FTC
(Ferric thiocyanate) Fe(S-CN)2 red color

A hydroperoxide formed from a
lipid (linoleic acid) oxidizes a
ferrous ion to a ferric ion. The AO
causes an inhibitory effect on
hydroperoxide formation or by its
ability to donate an electron to
ferric ion.

Abs.
500 nm ET [142,143]

FOX (Ferrous
Oxidation-Xylenol
Orange Assay)

ferric-XO
complex blue-purple color

The presence of hydroperoxides that
oxidize ferrous ion to ferric ion,
which subsequently react with
xylenol orange (XO).

Abs.
550 nm. ET [144]

Assays associated with lipid peroxidations

LPO
(Lipid peroxidation
inhibition assay)

N-methyl-2-
phenylindole dye product

AOs delay radical-induced malonyl
dialdehyde generation. MDA and
HAE are measured as an indicator
of lipid peroxidation. The product
-MDA with chromogenic reagent
gives carbocyanine adduct.

Abs.
586 nm ET [138,145]

TBARS (Thiobarbituric
acid reactive
substances assay)

TBARS red-pink color

The reaction of lipid peroxidation
products (MDA), with TBA, leads to
the formation of MDA-TBA
adducts (TBARS).

Abs.
532 nm
pH = 4

ET [130,131,
146,147]

Conjugated diene assay linoleic acid UV absorbance

Antioxidants delay conjugated
dienes formation. The AO effect can
be evaluated by monitoring the
conjugated diene formation.

Abs.
234 nm [148]

Radical scavenging assays

DPPH
2,2-diphenyl-1-
picrylhydrazyl
radical

deep violet to pale
yellow or colorless

The decrease in DPPH absorbance
depends linearly on
AO’ concentration.

Abs.
515–517 nm
pH = 7

HAT/ET [130]

ABTS

2,2’-azino-bis(3-
ethylbenzothiazoline-
6-sulfonic
acid (ABTS+.)

bluish-green to colorless

ABTS treated with Na/K
persulphate or MnO2 gives a radical
cation (ABTS+). ABTS+. is reduced
by antioxidants. The decrease in
absorbance depends linearly on
AO’concentration.

Abs.
734 nm
pH = 7.4

HAT/ET [149]
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Table 2. Cont.

Assay The
Chromogenic Agents Observed Changes Principle of Assay Mode Mech Ref

DMPD
(N,N-dimethyl-p-
phenylene-diamine)

DMPD·+ radical cation reduction of purple color

DMPD·+ is generated through a
reaction between DMPD and
potassium persulphate the assay
measures scavenging of free radicals
by AOs.

Abs.
517 nm
pH = 5.25

HAT [150,151]

SOSA (Superoxide Anion
Radical
Scavenging Capacity)

NBT yellow to blue

The ability of the AO to compete
with NBT to scavenge O2

•−

generated by an enzymatic
HPX-XOD, X-XOD or
PMS/NADH systems.

Abs.
560 nm
pH = 7.4

ET [135,152]

Nitric oxide free radical
scavenging activity Griess reagent colorless to light pink to

deep purple

NO was generated from sodium
nitroprusside and measured by the
Greiss reaction. AO reduces the
amount of nitrite.

Abs.
546 nm
pH = 7.4

ET [153]

Peroxynitrite Scavenging
Capacity Assay Evans Blue dye bleaching

The percentage of scavenging of
ONOO− by the Evans Blue was
measured in presence of AO.

Abs.
611 nm
pH < 7

ET [154]

HORAC (Hydroxyl
Radical Averting
Capacity Assay)

fluorescein fluorescence decay

OH radicals are generated by a
Co(II)-mediated Fenton-like reaction.
The reaction is confirmed by the
hydroxylation of p-hydroxybenzoic
acid. Metal ion-induced OH radical
generation reaction can be
monitored by the fluorescence decay
of fluorescein. In the presence of AO,
the formation of OH radicals can be
inhibited because the metal is
deactivated due to coordination
with AO.

Fl.
λex = 493
λem = 515 nm

HAT [130,135,
146–155]

HRS (Deoxyribose
Degradation Assay) MDA-TBA adducts pink

A mixture of Fe(III)-EDTA, H2O2,
vit.C generates OH radical, is able to
degrade deoxyribose. The products
heated under acidic conditions form
MDA detected by adduct with TBA.
AO can inhibit deoxyribose damage.

Abs.
532 nm
pH = 7.4

ET [156]

Hydroxyl Radical
Scavenging Capacity
Assay

Fenton-like system
Fe(II)/H2O2

-

The Fenton system generates a
constant flux of pure OH radicals.
ESR measurements evaluate the OH
radicals scavenging capacity of AOs.

Electron spin
resonance
(ESR)

ET [157]

CAA(Cellular Antioxidant
Activity Assays) DCFH-DA fluorescence

decay

The ability of AOs to prevent
oxidation of DCFH by azide
generated peroxyl radicals in human
hepatocarcinoma HepG2 cells.

Fl.
λexc.502 nm,
λem 520 nm

ET [158]

Nonradical reactive oxygen species scavenging assay

Hydrogen peroxide
scavenging activity hydrogen peroxide UV absorbance

Hydroxyl radicals are the
byproducts of H2O2 decomposition.
They initiate lipid peroxidation.
After the addition of AO, the
absorbance is measured against
blank (phosphate buffer).

Abs.
230 m
pH = 7.4

ET [159]

Singlet oxygen scavenger RNO bleaching of RNO

Production of singlet oxygen (1O2)
was achieved by monitoring RNO
bleaching. Singlet oxygen was
generated by a reaction between
NaOCl and H2O2.

Abs.
440
pH = 7.1

ET [160]

ACA
(Aldehyde/carboxylic
acid assay)

Alkylaldehyde/
alkylcarboxylic acid -

The stoichiometric conversion from
alkylaldehyde (hexanal) to
alkylcarboxylic acid in the presence
of radicals induced by heat, O2,
or H2O2.

GC ET [161]

Metal chelating capacity
assays (MCA)

Ferrous ions
chelating assay

Fe(II) with
2,2-bipyridine or
ferrozine

blue

The capacity to chelate ferrous ion
can be disturbed by the presence of
other complexing agents (AOs),
which cause a decrease intensity of
the complex (Fe(II) and ferrozine).

Abs.
562 nm
522 nm
pH = 4–10

ET [162]

Copper(II) chelating
capacity assay Cu(II)- PV dark to

yellow

The chelating activity can be
estimated by the measurement of
the rate of color reduction.

Abs.
632 nm
pH = 6

ET [163]
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Table 2. Cont.

Assay The
Chromogenic Agents Observed Changes Principle of Assay Mode Mech Ref

Nanoparticles (NPs)-based assays

Gold nanoparticles
(Au-NPs) NPs No color into

dark red

The highest capacity of reducing
gold(III) to gold NPs corresponds to
the highest antioxidant activity.
Alternatively, cyclic voltammetry
measures anodic peak potentials

Abs.
555 nm
pH = 8

ET [117,118]

Silver nanoparticles
(Ag-NPs) NPs no color into pale yellow

Nanoparticles generated from metal
salts upon reduction with
antioxidants in the presence of
citrate-stabilized silver seeds.

Abs.
423 nm
pH = 7

ET [118]

Abbreviations: AAPH (2,2′-azobis–2–methyl-propanimidamide,dihydrochloride); Abs. (Absorbance); DPC (1,5-diphenylcarbazide); XO
(xylenol orange); MDA (malondialdehyde); HAE (4-hydroxyalkenals); NBT (nitroblue tetrazolium); Griess reagent (1% sulfanilamide, 2%
H3PO4, and 0.1% naphthylethylenediamine dihydrochloride); DCFH (dichlorofluorescein); Luminol (5-amino-2,3-dihydrophthalazine-
1,4-dione); Cl. (Chemiluminescence), Abs. (Absorbance); Fl. (Fluorescence); HPX-XOD (hypoxanthine–xanthine oxidase); X-XOD
(xanthine–xanthine oxidase); PMS/NADH (phenazine methosulphate systems); AO (antioxidant); PV (pyrocatechol violet); RNO (N, N-
dimethyl-p-nitrosoaniline); DCFH-DA (2’,7’-dichloro-dihydrofluorescein diacetate); triazine (2,3,5- triphenyl-1,3,4-triaza-azoniacyclopenta-
1,4-diene chloride).

3.1. Techniques Used to Assess Antioxidant Capacity

A number of techniques are used to assess antioxidant capacities, such as UV-Vis
spectroscopy, fluorescence spectroscopy, chemiluminescence, electron paramagnetic reso-
nance (EPR), enzyme-catalyzed assays [164–168], and cell culture assays. Moreover, there
are some electrochemical techniques, including controlled potential techniques, electro-
chemical sensors, and biosensors, which are commonly applied [169]. However, the most
widely used techniques for evaluating the ability of an antioxidant to scavenge e.g., ABTS•+,
DPPH•, O2

•−, H2O2, a total antioxidant reducing capacity, e.g., TEAC, ORAC, and FRAP
belong to spectrometric techniques. These methods have been commonly used to determine
the antioxidant capacity of many plant extracts, foods, and dietary supplements [170–174].
These assays despite some drawbacks [129] are easy to use.

3.1.1. DPPH Free Radical Scavenging Assay

To measure antioxidants’ power, their ability to deactivate free radicals was used. One
of the most frequently used stable free radicals is DPPH (1,1-diphenyl-2-picrylhydrazyl)
discovered by Goldsmith and Renn in 1922 [175]. Due to the relocation of the unpaired
electron, DPPH forms a stable radical cation and does not form dimers in alcohol solu-
tions [176,177]. The DPPH solution has a dark purple color with maximum absorbance
at wavelength = 517 nm. By reaction with a substance that gives off a hydrogen atom, a
reduced form of DPPH 2,2-diphenyl-1-picrylhydrazine is formed, and then the purple color
of the solution changes to yellow with a concomitant decrease in absorbance (Figure 4).
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The drop in absorbance is proportional to the amount of DPPH oxidized form that
remains in solution. The color change from purple to yellow can be monitored spectropho-
tometrically and utilized for the assessment of the free radical scavenging potential of
many antioxidants and natural products. For the first time, the colorimetric method was de-
scribed by Blois [177] for the evaluation of the antioxidant properties of the thiol-containing
amino acid cysteine as the model antioxidant. Since that time, an easy and convenient
colorimetric method has been extensively used to evaluate the antioxidant capacity of
many products of natural origin [178–183]. The reaction of DPPH with antioxidants was
adapted for illustration and measuring the kinetics of radical quenching [184,185]. Since
the beginning of the 1960s, the method, as well as antioxidant activity calculations, have
evolved into numerous modifications [186,187].

DPPH Free Radical Scavenging Kinetics

DPPH free radical scavenging has been conducted by using at least two commonly
practiced procedures (a) fixed reaction time, when the researcher imposes reaction times of
15, 30, or 60 min, and (b) steady-state saturation one, when the reaction time is related to the
reaction kinetics. The reaction of DPPH radicals with antioxidants is a kinetically driven
process. It has been proven that the time required to reach saturation state, i.e., the highest
decrease in DPPH absorbance depends on concentration and the kind of antioxidant. To
check out the kinetic behavior of the disappearance of DPPH radicals with individual
antioxidants, kinetic scans should be performed at different concentration levels. Although
at higher concentrations, the scavenging capacity is higher, sometimes the reaction cannot
be completed quickly because of slow kinetics. For instance, the reaction of DPPH with
ascorbic acid is fast and achieves completion within a minute [188], whereas even 3 h is not
enough to finish the reaction for curcumin at so small a concentration as from 5 to 15 µM.
In turn, the reaction time for BHT was found to be around 6 h. Such antioxidants as lipoic
acid, melatonin, and pentoxifylline demonstrate slow reaction with DPPH radical up to
2 mM. Such kinetic measurements have been performed for different chemicals used as
reference antioxidants. Considering the time duration of reaction to achieve the steady-
state, antioxidants can be divided into categories of fast (<30 min), medium (30 min to 1 h),
and slow (>1 h) kinetics. In 2012, Mishra et al. [178] established the nature of individual
chemicals such as alpha-tocopherol, ascorbic acid, sesamol, gallic acid, ferulic acid, and
BHT-butylated hydroxytoluene, which are commonly used as references in the comparative
evaluation of antioxidant properties. Among these reagents, there are examples of fast
(ascorbic acid), medium (gallic acid), and slow reaction kinetics, which is observed for
BHT. Despite the fact that the time to attain an equilibrium state depends on the nature of
antioxidants, researchers have usually chosen a fixed reaction time mode where reaction
time is pre-imposed to be 20–30 min instead of the real-time required to attain completion of
the redox reaction [176], ignoring their kinetic behavior and the fact that many antioxidants
might react with different kinetics or might not react at all. Furthermore, some authors
emphasize the reversibility of the free radical reduction by antioxidants, which results in
underestimation of the antioxidant capacity of many antioxidants [106,189].

Considering numerous methodologies of DPPH assay described in the literature,
involving variation in (i) concentrations of reagents, (ii) sample’ volume, (iii) the kind of
reference molecules, (iv) antiradical parameters used, (v) units of applied parameters, and
(vi) the kind of sample environment (methanol or semi-aqueous media), the antiradical
potential of any sample assessed by DPPH assay, it is very difficult to compare results
between laboratories. Mishra et al. [134] collected IC50 values of reference standards
such as butylated hydroxyl anisole (BHA), ascorbic acid, gallic acid, BHT, and Trolox
that determined by different authors. It appeared that the reported IC50 value of ascorbic
acid was in the range from 11.85 to 629 µM. Unfortunately, such a large variation in IC50
values was also observed for remaining antioxidants. Recently, Xie and Schaich [190] have
reevaluated the DPPH assay considering the solvent kind and pH values.
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Parameters Used to Express the Antioxidant Potential

The DPPH free radical scavenging activity is commonly expressed in terms of the
percentage of inhibition of the free radical by examined antioxidants. The EC50 value
relates to the antioxidant concentration required to achieve a 50% decrease in the DPPH
absorbance. This parameter is typically employed not only to express the antioxidant
capacity but also to compare the activity of different compounds with each other. To find
the above parameter, antiradical curves are plotted, representing the relationship between
the concentration of antioxidants on the x-axis and relative scavenging capacity (E%) on
the y-axis. The radical scavenging capacity can be calculated using the following equation:

Percentage effect (E%) =

(
Abscontrol −Abssample

)
Abscontrol

× 100% (4)

However, to find the most credible EC50 value, an assay should be done using several
antioxidant concentrations located near the estimated ED50 value. The above graph looks
like a typical rectangular hyperbole, but it can be changed into a sigmoidal curve after the
logarithmic transformation of the x-axis (log[mol/L]). The EC50 value is usually located in a
short linear range, and it may be calculated by the use of the right-angled triangle [191,192].
This mathematical method must meet two assumptions: reaching the maximum response
and recording at least two points located near the targeted point of the 50% maximal
response. The following equation enables EC50 value calculation:

EC50 = D− (A− 50%max.response)× (D−C)

(A− B)
(5)

It should be noted that sigmoid curves based on the Hill equation are easier to
interpret [193]. The logarithmic curve does not have to be symmetrical around its midpoint,
thanks to the model using the Richards equation which provides a fitting thanks to the
introduction of the S parameter, quantifying the asymmetry. Chen et al. [192] conducted a
comparative study of several specialized computer programs based on various regression
models towards the aim of EC50 estimation. The EC50 values obtained by the use of the
statistical programs were similar to each other; however, GraphPad Prism@ five-parameter
analysis showed the smallest variance in relation to the experimental estimated EC50. The
authors claim that the observed differences in the results between the statistical processing
programs GraphPad and SigmaPlot are due to the fact that the first one calculates actual
EC50 values, while the second gives the inflection point as the EC50.

Antiradical power (ARP) is another parameter that can be used to define antioxidant
activity. This parameter is defined as a reciprocal of EC50, which is why the higher value of
EC50 is related to smaller antiradical power:

ARP =
1

EC50
(6)

The antioxidant capacity can be expressed as reference chemical equivalent such as
Trolox (µmol TE/g), ascorbic acid, gallic acid (GAE/g), etc. Unfortunately, comparison of
results presented by different studies is difficult because of the variety of units used for the
above recalculations. We can find mass/mass units such as milligrams per gram of dry
material, µmol/g, or mass/volume ones.

DPPH Assay Approaches

In the original DPPH assay, provided by batch experiments, several automation
approaches based on flow injection analysis (FIA) [194,195] and sequential injection analysis
(SIA) [196] have been proposed in recent decades. An interesting approach inspired by
HPLC-FIA [197] has been elaborated on by Koleva [198]. In this method, the HPLC-
separated analytes react postcolumn with the DPPH solution, and the induced bleaching is
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detected as a negative peak by the second detector at 517 nm. Cerda et al. [199] described
multi-syringe flow injection analysis (MSFIA) for determining the total antioxidant capacity
of several food products. Flow injection analysis (FIA), similarly to sequential injection
analysis (SIA), is beneficial for rapid testing of antioxidation/radical scavenging activity of
large series of multicomponent samples [177]. Another advantage of automatic approaches
in comparison to the standard spectrophotometric batch experiments lies in the visible
improvement of measurement reproducibility. Another assay suitable for screening of
either hydrophilic or lipophilic antioxidants is a high-throughput relative DPPH radical
scavenging capacity (RDSC) assay elaborated by Cheng et al. [189]. The assay, which
can be performed in aqueous and organic environments, utilizes a 96-well microplate
reader with the spectrophotometric detector, ensuring acceptable accuracy, precision,
and reproducibility.

The sophisticated instruments are required not only for the rapid determination
of the antioxidant activity of complex mixtures but also for providing separation and
identification of the selected antioxidant compounds. The HPLC method appears to be the
method of choice in this case. For this purpose, HPLC should be used in combination with
an appropriate detector, which is usually connected online to chromatographic apparatus.
However, simultaneous determining of antioxidant capacity requires additional coupling
with another radical scavenging detection mode. Such systems have been described in
the literature; unfortunately, they are not adopted commonly due to their complexity and
the lack of commercial availability. As an example, in 2007, Wu et al. [200] developed
HPLC-ESI-MS and NMR for estimation of antioxidant capacity of polyphenolic acids in the
plant extract. In turn, Nuengchamnong et al. [201] proposed RP-HPLC coupled with an
electrospray ionization MS/MS system for the identification of antioxidant compounds in
an extract of a Thai medicinal plant. An interesting HPLC approach, suitable for searching
natural antioxidants in plant extract of Flos Lonicerae Japonicae, was developed by Tang et al.
in 2008 [202]. The method’s idea assumes that the peak areas of compounds with antioxidant
activity undergo reduction after reaction with DPPH. The authors performed additional
identification of antioxidants by the HPLC-DAD-TOF/MS hyphenated technique.

Traditional thin-layer chromatography with post chromatographic derivatization
using DPPH solution for free radical scavenging activity evaluation, discovered by Glavind
and Holmer in 1967 [203], exists nowadays in the modern version owing to video scanning
technology [204].

3.1.2. Electrochemical Methods

Electrochemical measurements possess some major advantages in comparison to
spectrophotometric methods mainly due to the fact that they are fast, less tedious, cheaper,
and safer for the environment. They include electrochemical techniques of antioxidant
characterization as potentiometry, amperometry, biamperometry, cyclic voltammetry (CV),
square-wave voltammetry (SWV), and differential pulse (DPV). These methods utilize
the fact that antioxidants are involved in redox reactions acting as reducing agents. The
electrochemical techniques are able to measure their redox potentials.

The Cyclic Voltammetry Method

The cyclic voltammetry method is applied to screen the reducing capacity of the
samples. Cyclic voltammetry (CV) operates due to the combination of three electrodes,
namely working electrode, reference, and auxiliary electrode. A polarogram representing
the relationship between current intensity and an increasing potential applied to the work-
ing electrode is recorded. The obtained voltammograms show well-defined voltammetric
peaks corresponding to the oxidation and reduction processes. Lower Epa values are
associated with the higher reducing activity of the tested sample. Therefore, considering
the first oxidation potential, the following classes of chemical compounds can be distin-
guished: if Ep is lower than 0.8 V, antioxidant power is high, and if Ep is between 0.8 and
1.3 V, antioxidant power is low [205]. The area under the curve of the voltammetric peak
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(AUC) corresponds to the concentration of antioxidants. Broad anodic peaks are usually ob-
served due to the response of multiple reducing agents with different oxidation potentials
present in the respective extracts. In such cases, Chevion et al. [206]. Martinez et al. [207],
and Zielińska and Zieliński [208] suggested that the area under the anodic current wave
should be used for the evaluation of reducing the power of the samples. Lower AUC
indicates a lower reducing capacity of the investigated extract. Usually, the reducing
capacity is statistically significantly correlated with the active components of the extracts.
Zielińska et al. [209] found the existence of a significant positive correlation between the
total phenolic content (r = 0.867; p < 0.01) and total flavonoid content (r = 0.752, p < 0.01)
with the reducing capacity of peels of the investigated apple cultivars.

Biamperometry

Determination of the antioxidant activity by biamperometric measurements is based
on a high degree of reversibility redox couple potential, including Fe3+/Fe2+, I2/I−,
Br2/Br−, VO3−/VO2

− Fe(CN)6
3−/Fe(CN)6

4−, and Ce(IV)/Ce(III). The DPPH•/DPPH
couple is also suitable for this purpose. The current intensity is proportional to the decreas-
ing concentration of free radicals after reaction with the antioxidants. The obtained results
of antioxidant activity are usually in very good agreement with those determined by the use
of other conventional methods such as spectroscopic measurements. The biamperometric
technique was applied by Milardovic et al. [210] for evaluation of the selected standard
antioxidants (ascorbic acid, uric acid, gallic acid, N-acetyl-l-cysteine, glutathione, caffeic
acid, ferulic acid, sinapic acid, catechin hydrate, quercetin) and food samples such as coffee,
tea, wine, and juices.

3.1.3. Nanoparticle-Based Approach for the Antioxidant Activity Measurement

More recently, the new nanoparticle-based approach for evaluation of antioxidant
activity has been reported. This approach utilizes the unique optical, electronic, and
catalytic properties of metallic nanoparticles (1–100 nm) [211–214].

For the first time, Scampicchio et al. [117] described a nanoparticle-based method
for measuring antioxidant activity. The idea of the method was based on the catalytic
growth of gold (Au) NPs mediated by phenolic acids as active reducing agents (vanil-
lic acid, propyl gallate, protocatechuic acid, caffeic acid, ferulic acid). It appeared that
the antioxidant (reducing) power of the phenolic acids was correlated with the optical
properties of generated nanoparticles. The absorbance characteristic of the plasmon of
the Au NPs (555 nm) was linearly dependent upon the concentration of the investigated
phenolic acids. The authors confirmed the good agreement between the total phenolic
content estimated by the Folin-Cicolteau spectrophotometric determination and the results
of the Au NPs protocol.

A few years later, Özyürek et al. [118] elaborated on a sensitive colorimetric method
based on the reduction of Ag+ ions to silver nanoparticles (AgNPs) for the detection of
polyphenols. The AgNPs revealed the absorption band at 423 nm, allowing the quantifi-
cation of the polyphenols. The initial seeds were formed by the reduction of silver ions
with trisodium citrate. The addition of antioxidants as secondary reductants caused the
reduction of Ag+ ions on silver seeds and the deposition of more Ag atoms on the seeds,
resulting in the final core−shell AgNP structures. The growth of AgNPs on monodisperse
seed particles caused a linear, concentration-dependent absorbance increase. The method
was named by the research group “Silver NanoParticle Antioxidant Capacity”, abbreviated
as the SNPAC method, which is recommended for measuring the total antioxidant capacity
(TAC) of a wide range of plant samples (Figure 5).

Until now, most assays applied for antioxidant capacity determination have involved
the use of NPS of gold, silver, Fe3O4, quantum dots, and titania nanoparticles. The estima-
tion of antioxidant activity relies on the antioxidant-mediated growth of NPs, monitoring
changes in NPs size, changes in surface oxidation states, the degree of agglomeration
of nanostructures, and optical monitoring of the plasmon absorption bands. AuNPs are
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still the most commonly used for that purpose. AuNPs have a very characteristic ab-
sorbance peak at 517 nm. AuNPs are soluble and stable in different solvents such as water,
dichloromethane, or methanol. NPs formation can be monitored visually owing to AuNPs’
color, which depends on their shape and size, but also surface-adsorbed species, the refrac-
tive index of the dispersion medium, and interparticle interactions [215]. Different tech-
niques have been engaged for detection and characterization of NPs such as the localized
surface plasmon resonance (SPR), Surface-Enhanced Raman Scattering, spectrophotome-
try, Fourier Transform Infrared Spectroscopy (FTIR), Resonance Light Scattering, Raman
spectroscopy, X-ray diffraction (XRD), and transmission electron microscopy (TEM) [216].
Selected methods suitable for measuring size, electric and mechanical properties, size
distribution, hydrodynamic radius, elemental composition, and quantitative analysis of
nanoparticles together with the methods’ detection limits are illustrated in Figure 6.
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Since nanoparticles-based assay is a new analytical tool, calibration is usually per-
formed using control antioxidants [218–221], and additionally, the assay is compared with
reference methods, e.g., ORAC and TEAC. Many authors achieved very good agreement
between the TAC values obtained by the nanoparticle-based approach and the Trolox
Equivalent Antioxidant Capacity (TEAC), CUPRAC [222], Folin-Ciocalteu, FRAP, and
DPPH [218] as reference tests.

Antioxidant capacity determination by nanoparticles-based method also involves
other metallic or metal oxide NPs. Gatselou et al., in 2016 [223], reported that phenolic
compounds (i.e., gallates, catechins, dihydroxybenzoic acids, and cinnamates) generate
changes in the localized surface plasmon resonance of rhodium NPs, causing characteristic
spectral and color transitions in their suspensions. Under the influence of the reaction
between phenolic compounds and rhodium, absorbance at 450 nm and 580 nm increased
linearly together with increasing concentration of antioxidants in the range of 0–500 µM.

Recently, antioxidant activity (AOA) assays using cerium oxide nanoparticles (CeO-
NPs) as a novel colorimetric sensor were developed. Cerium oxide nanoparticles (CeO-NPs)
may act as both an oxidant and an anti-oxidant, switching between trivalent and tetravalent
oxidation states [224]. In 2018, Ozdemir Olgun [225] elaborated on a novel colorimetric
sensor consisting of the poly(acrylic acid) sodium salt (PAANa)-coated CeO-NPs which
oxidized a peroxidase substrate, namely tetramethyl benzidine (TMB) in acidic condi-
tions to charge-transfer complex of a blue color. The analytical wavelength of the colored
product was estimated at 651 nm. The antioxidant activity evaluation was based on the
measurement of decreasing intensity of the nanoceria suspension absorbance caused by
antioxidants. The authors demonstrated that the antioxidant capacities of hydrophilic and
lipophilic antioxidants such as rutin, tetramethyl benzidine, quercetin, ascorbic acid, Trolox
(6-hydroxy-2,5,7,8-tetramethylchroman-2-carboxylic acid), ferulic acid, BHT, caffeic acid,
and catechin estimated by the above procedure were compatible with those of reference
assays ABTS, CUPRAC, and CERAC [225]. Currently, portable nanoparticle-based tests for
rapid detection of food antioxidants (NanoCerac) are being developed, e.g., for nanoparti-
cles of immobilized cerium oxide [226], or nanoparticles of metal oxides TiO2, Fe2O3, ZrO2,
ZnO, and SiO2, which are immobilized on cellulose [227]. Several reviews regarding TAC
determination by using NPs can be found in the literature [228–232].

4. Antioxidant Capacity of Extracts from Natural Sources

Epidemiological research confirms that the conditions related to oxidative stress can
be improved by the consumption of food products rich in numerous compounds with high
antioxidant activity [233,234]. Natural products containing at least 0.1% of antioxidants
can be accepted as dietary supplements with antioxidant properties.

As the total antioxidant capacity (TAC) covers the additive (synergistic/antagonistic)
action of different antioxidants of complex samples, most researchers use this parameter to
assess plant-based extracts rather than the separate determination of the concentrations
of the individual constituents. It should be emphasized that antioxidant capacity reflects
the thermodynamic conversion efficiency of reactive species by antioxidants in contrast to
the antioxidant activity, which is related to the kinetics of this reaction, usually expressed
scavenging percentages per unit time. Unfortunately, many phytochemical studies have
reported conflicting results, which is why TAC assays still require consideration and
standardization in the following issues: (i) procedures of sample preparation, (ii) expressing
results, (iii) statistical validation (e.g., using certified reference compounds that take into
account the different reaction kinetics), and (iv) establishing effects of solvent, concentration,
pH, etc.

The choice of extraction techniques has the greatest impact on the composition and
concentration of the bio-composition of both active compounds and matrix components
obtained from a wide range of plant materials (herbs, vegetables, berries, and fruits) [235].
It has been shown that different extraction methods lead to different extraction yields
on the same plant material [236]. For example, Lisitsyn et al. [237] studied the plant
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extracts (rosemary, black pepper, thyme, and sage) obtained by the use of supercritical CO2
extraction. Owing to this extraction method, they produced extracts with a significantly
different composition in comparison to those obtained in traditional ways. It appeared
that supercritical extracts were rich in a variety of substances with high antioxidant, and
antimicrobial activities such as alkaloids, terpene, phytosterols, waxes, pigments, high
molecular weight unsaturated and saturated fatty acids, and vitamins.

Currently, classic extraction techniques, i.e., Soxhlet extraction, maceration, percola-
tion, and distillation, which use large amounts of volatile organic solvents, or elevated
temperature, are less frequently used due to the requirements of the so-called “green
chemistry”, poor efficiency, and possible thermolability of extracted analytes [238]. High
extraction efficiency and effectiveness are possible thanks to the use of unconventional
techniques, i.e., Solid Phase Microextraction (SPME), Supercritical Fluid Extraction (SFE),
Microwave-Assisted Extraction (MAE), Pulsed-Electric Field (PEF) Extraction, Ultrasound-
Assisted Extraction (UAE), and Enzymatic Treatment or Pressurized Liquid Extraction
(PLE). It should be remembered that antioxidant capacity changes not only in relation
to the extraction techniques but varies with the growth period and drying methods and
between plant parts. These factors’ influence has been confirmed by a multivariate analysis
performed by Buitrago et al. [239] using Chenopodium quinoa Willd.

Plant-derived compounds possess well-known and established antioxidant activity.
However, the microbes are also efficient producers of primary and secondary metabolites
with specific antioxidant potential [240]. Thus far, microbial metabolites have been recog-
nized as efficient remedies against fungal and bacterial infections (tetracyclines, ampho-
tericin, penicillins, erythromycins, streptomycin, and vancomycin), cancer (daunorubicin,
bleomycin, mitomycin, doxorubicin,), transplant rejection (rapamycin, cyclosporine), or
high cholesterol (mevastatin, lovastatin) [241].

Almost all eubacteria possess the ability to produce a variety of extracellular metabo-
lites with significant antioxidant activity, such as thiazostatins A, phenazoviridin, (Z)-1-((1-
hydroxypenta-2,4-dien-1-Yl)oxy)anthracene-9,10-dione, 5-(2,4-dimethyl benzyl) pyrrolidin-
2-one, benthophoenin, benzastatins C, benthocyanins A, B, C, exopolysaccharides (EPS),
and benzastatins A [78]. Exopolysaccharides (EPS) are produced by numerous strains of
microorganisms belonging to the genera Lactobacillus, Leuconostoc, Lactococcus, and Strepto-
coccus, which are abbreviated LAB (Lactic Acid Bacteria) [54]. EPS are characterized by the
presence of reactive functional groups including aldehyde, hydroxyl, and ketone groups.
They can efficiently react with free radicals. These compounds have a polymeric structure.
They are made up of repeating subunits of connected carbohydrates α- and β-glycosidic
bonds. Homopolysaccharides are composed of one type of simple sugar, i.e., glucose
or fructose, while heteropolysaccharides are more complex. The structure of individual
heteropolysaccharides produced by particular species and strains of these bacteria can
significantly vary. A common feature of most of them is occurrence in the composition
of sugars e.g., rhamnose, arabinose, mannose, xylose, fructose, glucose, and galactose,
in various ratios [242]. The EPS may exist in two forms: a cell-bound exopolysaccharide
(c-EPS) that strongly binds to the bacterial surface and a released exopolysaccharide (r-EPS)
that can be released into the medium [243].

Cyanobacteria and blue-green algae are sources of a significant amount of free radical
scavengers such as carotenoids, phycocynanin which are water-soluble pigments possess-
ing N-H reactive groups. Astaxanthin produced by microalga Haematococcus pluvialis
possessing several times higher antioxidant activity in comparison to vitamin E [244,245].
Algae are able to produce also other phenolic compounds with reactive OH moieties respon-
sible for an antioxidant activity like carrageenan, bromophenol, fucophlorethols, galactan
sulphate, phlorotannins, fucoxanthin, phycoerythrin, shinorine, catechin, por-phyran, epi-
catechin, gallate, laminaran, vitamin A, alginic acid, phloroglucinol, eckol, fucodiphlorethol
G, 7-phloroeckol, dieckol, phlorofucofuroeckol A, 6,60-bieckol, 2,70-phloroglucinol-6,60-
bieckol, and triphlorethol-A, [246–248]. As a potential antioxidant, phycobilins rich with
groups i.e., N–H, COOH, C–O, and O–H produced by cyanobacteria have been described.
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However, efficient extraction and purification are required for the recovery of phycobilipro-
teins on an industrial scale [249]. In 2019, the Special Issue of Antioxidants focused on recent
investigations concerning marine algal antioxidants and specific antioxidant networks
functioning in algae [248–259].

Lichens produce various extracellular, secondary metabolites that can be used as
potential sources of natural antioxidants [260]. At the beginning of the 21st century, the
significant free radical scavenging activity of Cetraria islandica aqueous extracts [261] and
Usnea ghattensis [262] methanolic extracts of Platismatia glauca, Parmelia saxatilis, Rama-
lina pollinaria, Umbilicaria nylanderiana, and Ramalina polymorpha [263] were described.
Fernández-Morianoet et al. [264] prepared a systematic review concerning the key antioxi-
dant compounds in lichens extracts. It appeared that flavonoids and phenols are mainly
responsible for the antioxidant activity of the examined extracts [265–268]. Some of them
also exhibited beneficial antimicrobial and anticancer activities [269,270].

Actinomycetes also produce chemically diverse and pharmaceutically useful com-
pounds with antifungal, antibacterial, diabetogenic, antiviral, immunosuppressive, an-
tiparasitic, antitumor, insecticidal, antioxidant, anti-inflammatory, enzyme inhibitory, and
others [271]. Actinomycetes originating from different habitats usually manifest very
different antioxidant activity [272–277]. Published studies show that nitrogen-containing
metabolites, such as the carbazole and phenazinylhetero cycles, constitute the main group
of antioxidant compounds produced by Streptomyces spp. Stealthins contain OH, NH, and
CO groups isolated from S. Aeriouvifer, S. Violaceus, and S. viridochromogenes showed even
several dozen times stronger activity than vitamin E [278].

Other examples of antioxidant capacity assessment of the different extracts from
plants, lichens, fungi, algae, and actinomycetes are collected in Table 3.

Table 3. Examples of antioxidant capacity assessment of extracts obtained from different species.

Analysed Product Antioxidant
Assays

Positive
Control Extraction Procedure Ref.

Plants

Bryonia alba L.
DPPH, CUPRAC,
FRAP, TEAC,
SNPAC

quercetine, BHT, Trolox
Fifty grams of powder was macerated with
500 mL methanol for 24 h. After percolation,
extract was evaporated under vacuum at 40 ◦C.

[279]

Cistus ladanifer L., Cistus
salvifolius L., Cistus albidus L.,
Erica australis L., Arbutus
unedo L., Pistacia lentiscus L.

DPPH, FRAP,
ABTS, RP quercetin

Twenty grams of grounded leaves was mixed
with 200 mL of methanol. The mixture was
kept for 24 h at RT. Then, it was filtered.

[280]

Prunus avium, Prunus persica,
Prunus domestica, Olea
europeae, Pirus communis,
Pirus maus, Pistacia verra,
Castanea sativa

DPPH, FRAP,
TAC Trolox, ascorbic acid

Two grams of sample was mixed with 60%
methanol and kept 1 h at dark at RT. The
procedure was repeated two times. The
combined extracts were centrifuged and filled
to 50 mL by aqueous methanol.

[281]

Vitis vinifera L.
(Maraština, Pošip; Lasin,
Merlot, Syrah, Vranac)

DPPH, FRAP Trolox

The dry plant material (20 g) was extracted
using 100 mL of ethanol/water 80/20, (v/v) at
60 ◦C, for 60 min. The extract was filtered and
dried under a vacuum at 50 ◦C. The dry
residues were redissolved with 50%
methanol-water and centrifuged at 5000 rpm
for 10 min.

[282]

Ornithogalum billardieri

β-carotene-linoleic acid
assay, ABTS,
MCA/ferrous ion,
TAC/H2SO4, Na3PO4,
(NH4)2MoO4)

ascorbic acid

The combined maceration with sonication
either at 25 ◦C for 50% ultra-sound (US)
treatment or the extract obtained under the
optimal conditions: extraction time: 37.1 min,
temperature: 44.2 ◦C, water volume-to-mass
ratio: 33.8 mL/g, and US%:51.7%

[283]
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Table 3. Cont.

Analysed Product Antioxidant
Assays

Positive
Control Extraction Procedure Ref.

Apple cultivars:
antonówka, delikates, Early
Geneva, papierówka,
Paulared, Sunrise, Quinte
Gloster, Jonagored,
Ligol, Rubinola

DPPH, FRAP,
MCA/ferrous ion Trolox, catechin

The material was lyophilized. A total of 250 mg
of sample was extracted by sonication using
1 mL of 80% methanol for 30 s. Then, the
mixture was vortexed, centrifuged for 5 min
(13,200 rpm), and sonicated. The extraction
procedure was repeated five times. The
supernatants were collected together.

[209]

Fraxinus angustifolia Vahl TAC/Folin-Ciocalteu,
FRAP, ABTS, DPPH α-tocopherol

Manna samples (10 g) were dissolved in
methanol-water (2:1) and extraction carried out
at 25 ± 2 ◦C and in darkness for 1 h., and
centrifuged (3000 g, 10 min). The supernatants
were filtered and evaporated at 35 ◦C. Dried
samples were resuspended in 5 mM phosphate
buffer saline pH 7.4.

[284]

Chenopodium quinoa DPPH, FRAP Trolox, gallic acid

Dry plant materials (roots, leaves, stems,
flowers, and seeds) were extracted by the use of
ultrasound-assisted extraction with 96%
ethanol. The extracts were concentrated under
reduced pressure in a rotary evaporator.

[239]

Lycium barbarum,
Lyciumchinense DPPH, ABTS - Samples were dried, powdered, and dissolved

in distilled water. [285]

Aegopodium podagraria L. DPPH GSH, ascorbic acid

A total of 2.5 g of air-dried or fresh aerial parts
was extracted by 100 mL of 80% (v/v) ethanol.
The samples were kept at RT for 3 days, three
months in dark, or in an ultrasonic bath for
60 min. Then, the extracts were filtered.

[286]

Fungi

Achaetomium sp. DPPH ascorbic acid, BHT,
gallic acid, pyrogallol

The organic ethyl acetate extract was
evaporated. The crude extract was dissolved
in DMSO.

[287]

Acremonium charticola,
Rhizopus oryzae ABTS ascorbic acid

Fungi were cultured in potato dextrose broth at
37 ◦C. After 3 days, the cultures were
centrifugated at 5000 rpm for 10 min. The
filtrate (1 g) was mixed with 100 mL methanol
and ultrasonicated for 30 min. The homogenate
was created for three days at RT. Then, it was
evaporated with a rotary vacuum evaporator
(50 ◦C, 100 rpm) to the volume of 25 mL.

[288]

Agaricus bisporus, Pleurotus
ostreatus, Pleurotus eryngii,
Lentinula edodes

TPC/Folin–Ciocalteu,
Ferricyanide/prussian
blue,
DPPH, TBARS
β-carotene/linoleate

Trolox, gallic acid

The product was lyophilized. The obtained
powder was mixed with methanol and kept at
25 ◦C at 150 rpm for 1 h. Then, the mixture was
and filtered. The extracts were evaporated
under reduced pressure and redissolved in
methanol at a concentration of 20 mg/mL.

[171]

Aspergillus wentii, A. wentii,
Penicillium citrinum,
Penicillium granulatum

DPPH, FRAP,
MCA/ferrous ion,
NO• scavenging
activity, RP/potassium
ferricyanide

ascorbic acid, BHT,
rutin, catechin

The fungal mycelia were grown on agar plates
with extracts of yeast and glucose. After 6 to
7 days, the Czapek–Dox’s broth was inoculated
of fungal mycelia. After 10 days of incubation
at 25 ◦C, the culture broth was filtered.

[289]

Aspergillus niger,
Aspergillus peyronelii

DPPH, RP
H2O2 scavenging
activity

ascorbic acid

The dried samples were extracted by the use of
ethyl acetate (1:10) applying cold percolation
for 48–72 h. Then, obtained extracts were
filtered, and concentrated under vacuum at
40 ◦C.

[290]

Aspergillus versicolor ABTS, DPPH Trolox

Aspergillus versicolor was cultivated on rice
for 30 days. The EtOAc extracts of solid
fermentation were fractioned through slica gel
and Sephadex LH-20 column chromatography
(CC), and were further purified by
semi-preparative HPLC.

[291]
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Table 3. Cont.

Analysed Product Antioxidant
Assays

Positive
Control Extraction Procedure Ref.

Auricularia auricular
ABTS, O2

•−, OH•

scavenging activity,
lipid peroxidation

-

A.auricula was extracted by hot water and
ultrasonic-assisted extraction. The supernatants
were precipitated with absolute ethanol (95%)
and maintained at 4 ◦C overnight. The
precipitate was centrifugated, dissolved in DI,
and dialyzed. The non-dialyzed portion was
lyophilized to give a crude polysaccharide
extract. The separation of polysaccharides was
performed using CTAB or CPC.

[292]

Cephalosporium sp. DPPH gallic acid
The fermented material (1.75 kg) was extracted
twice with EtOAc (9.0 L) for 3 days at RT, and
the extract was evaporated under vacuum.

[293]

Cerrena unicolor ABTS, DPPH Trolox, ascorbic acid

Ten-day-old cultures were filtered and washed
with DW. The fungal biomass was used for the
polysaccharides extraction by hot water (90 ◦C,
4 h). The proteins were separated by anion
exchange chromatography on a DEAE
Sepharose column with a linear gradient of
NaCl (0.1–0.5 M). The culture liquid was
subdivided into two fractions by ultrafiltration:
substances above 10 kDa (rude lactase) and
substances below 10 kDa with low molecular
weight metabolites.

[294]

Flammulina velutipes,
Hypsizygus tessellatus

DPPH, H2O2
scavenging activity,
FRAP

gallic acid, quercetin

The stems of the mushrooms were dried at
60 ◦C and pulverized. Samples (180 g) were
extracted overnight with 500 mL of water,
absolute methanol, 95% acetone, or 95% ethyl
acetate at RT. The extracts were filtered,
evaporated to dryness. Aqueous fractions were
concentrated to 50 mL, freeze-dried, and stored
at 4 ◦C.

[295]

Grifola frondosa

DPPH, β-carotene
bleaching assay,
inhibition of lipid
peroxidation, RP,
CUPRAC

quercetin
Mushrooms were boiled in DW at the ratio of
1:10 (w/v) for 30 min. Then, the extract was
filtered, and freeze-dried.

[296]

Penicillium expansum
DPPH, RP, FRAP
MCA/ferrous ion, NO•

scavenging activity
-

The fungi were grown on CDM, MEM, PDM,
and YEM. After incubation at 25 ◦C for 10 days,
the culture broth was filtered through filter
paper. The culture broth was extracted with
petroleum ether, chloroform, ethyl acetate, and
butanol. Then, the extracts were then
evaporated to dryness in a vacuum, and the
precipitates were dissolved in DMSO.

[297]

Phlebia brevispora,
Phlebia floridensis,
Phlebia radiate,
Phlebia fascicularia

DPPH, FRAP,
RP, MCA, NO•

scavenging activity
-

Five grams of dried wheat straw was ground,
washed, and dried at 90 ◦C. Next, it was
moistened by the use of 25 mL of malt extract
(0.5%, w/v) and inoculated with three mycelial
discs (8 mm), which were grown on YGA
plates for 6 days. The inoculated flasks were
kept at 25 ◦C for 30 days. Then, they were
homogenized, filtered, and dried at 90 ◦C.

[298]
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Table 3. Cont.

Analysed Product Antioxidant
Assays

Positive
Control Extraction Procedure Ref.

Pleurotus florida,
Pleurotus sajor-caju,
Pleurotus cystidiosus,
Pleurotus djamor

FRAP, DPPH, RP,
MCA, H2O2,
O2
•− scavenging

activity

-

Sporophores were cleaned and dried at
40 ± 2 ◦C for 10–12 h. The obtained powders
(100 g) were refluxing with light petrol
(60–80 ◦C) for 6 h with the aim of defatting.
Then, the material was extracted with 95%
ethanol (500 mL × 3) by refluxing for 6 h. The
extracts were combined, filtered, and
evaporated to dryness at 40 ◦C. The dried
extracts were redissolved in methanol at a
concentration of 20 mg/mL for analysis.

[299]

Trametes versicolor,
Trametes hirsuta,
Trametes gibbosa

ABTS, FRAP ascorbic acid

Dried material (3.0 g) was grounded.
Extraction was carried out in 96% ethanol
during 72 h. The extracts were centrifuged and
supernatants filtrated. The filtrates were
concentrated under reduced pressure at 40 ◦C
to dryness and redissolved in 96% ethanol

[300]

Bacteria

Bacillus coagulans RK-02

β-carotene-linoleate,
O2
•−, OH•

scavenging
activity, DPPH

ascorbic acid,
α-tocopherol

The 36 h culture was centrifuged at 10,000× g
for 20 min at RT. The supernatant was filtered.
The proteins were isolated by the addition of
10% TCA. After 12 h at 4 ◦C, the mixture was
centrifugated. Four volumes of 95% ethanol
were added to the supernatant and centrifuged.
The pellet was lyophilized, dissolved in 5 mL
DW and dialyzed (MWCO 12,000 Da).

[301]

Weissella cibaria GA44 DPPH, RP, O2
•−, OH•

scavenging activity ascorbic acid

The cultures were heated at 100 ◦C for 10 min.
The cells were removed by centrifugation at
12,000× g for 15 min at 4 ◦C. The supernatant
was precipitated with double volume of chilled
ethanol, shaken, and centrifuged at 98 5000× g
for 30 min at 4 ◦C. The precipitate was dried at
50 ◦C, and dissolved in water. This step was
repeated three times and dialyzed against
distilled water for two days at 4 ◦C using
10 kDa dialysis membrane and then
lyophilized.

[302]

Lactobacillus plantarum C88

OH• scavenging activity,
DPPH, the LPC-1 on
H2O2

− induced
oxidative stress in
Caco-2 cells

ascorbic acid

After 20 h of the incubation period, TCA was
added to achieve 4% (w/v). The mixture was
stirred for 30 min at RT. Cells were removed by
centrifugation (10,000× g, 4 ◦C, 15 min). Crude
EPS was precipitated by the addition of
2 volumes of cold ethanol. Crude EPS was
collected by centrifugation. The pellet was
dissolved in deionized water and dialyzed
(MW cut-off 3500 Da) for 24 h against distilled
water at 4 ◦C and then lyophilized.

[303]

Pseudomonas hibiscicola,
Macrococcus caseolyticus,
Enterobacter ludwigii,
Bacillus anthracis

DPPH ascorbic acid

The bacteria were cultured in 500 mL broth at
35 ◦C. Then, the culture was centrifuged at
8000× g for 5 min. The supernatant was
extracted with ethyl acetate (ratio of 1:1). Then,
the extract was concentrated to dryness in a
rotatory evaporator at 37 ◦C. The solids were
re-dissolved in 20% DMSO and filtered.

[304]

Alteromonas sp.
Shewanella sp.
Serratia sp.,
Citricoccus sp.,
Cellulophaga sp.,
Ruegeria sp.
Staphylococcus sp.

DPPH, ORAC BHT, Trolox

Isolated bacteria were cultured in 500 mL of
Marine Broth for 3 days at 25 ◦C. Bacteria cells
were centrifuged, and the pellet was
lyophilized. Then, the lyophilizes were
extracted with methanol and dichloromethane
(1:1) for 12 h. The solvents were evaporated at
40 ◦C, and the extracts were re-dissolved
in DMSO.

[305]
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Table 3. Cont.

Analysed Product Antioxidant
Assays

Positive
Control Extraction Procedure Ref.

Pseudomonas sp.
(HR04)

anti-lipoperoxidative
activity BHT, α-tocopherol

The mycelial cake was extracted with acetone
followed by purification by column
chromatography on silica gel and
Sephadex LH-20.

[306]

Lactobacillus casei
CRL 431 (IC431)

LPO, ABTS,
ORAC,
CAT, GPx

Trolox

An aliquot (10 mL) of bacteria suspended in
PBS was mixed with lysozyme (1 mg/mL) and
incubated at 37 ◦C for 150 min. Then, cells were
disrupted by sonication in an ultrasonic
processor at 10 ◦C. After centrifugation
(3600× g, 4 ◦C, 10 min), the supernatant was
collected and stored in dark at 4 ◦C.

[307]

Lactobacillus fermentum DPPH, ABTS, FRAP,
OH• scavenging activity ascorbic acid

The cells were washed with 0.85% NaCl and
sonicated. The obtained fluid was mixed with
75% ethanol. The precipitate was collected,
redissolved, deproteinized, purified on an
anion exchange column eluting with deionized
water, 0.1 M, and 0.3 M NaCl and subsequently
loaded onto a Sephadex G-100 column and
eluted with DW. The collected fractions
were lyophilized.

[308]

Lactobacillus plantarum
(LAU103)

ABTS, DPPH, ORAC,
MCA/ferrous ion, OH•

scavenging activity
ascorbic acid

A total of 5 mL of crude EPS solution
(20 mg/mL) was separated with
DEAE-cellulose column using deionized water,
0.2 and 0.5 M NaCl as eluent. Peak fractions
containing polysaccharides were pooled,
dialyzed, and lyophilized. Then, the fraction
was further purified on a Sepharose CL-6B gel
column and eluted with 0.9 M NaCl solution.

[242]

Lactobacillus paracasei
subsp. paracasei NTU 101
(101EP),
Lactobacillus plantarum
NTU 102 (102EP)

DPPH, MCA/ferrous
ion, inhibition of linoleic
acid
peroxidation, RP

ascorbic acid

The cultures were centrifugated at 5000× g at
4 ◦C for 15 min. The supernatant was added to
0.4 TCA at 4 ◦C for 3 h. Then, the supernatant
was mixed with ethanol at 4 ◦C for 24 h,
followed by centrifugation. The obtained
precipitate was dialyzed for 24 h
and lyophilized.

[309]

Algae

Astaxanthin FRAP, TEAC
ORAC, DPPH tert-Butyl alcohol Astaxanthin was dissolved in

tetrahydrofuran (THF). [244]

Desmarestia antarctica,
Iridaea cordata RP, TPC, DPPH gallic acid, ascorbic acid

The samples were rinsed with Milli-Q water,
cut into fine pieces, then boiled at reflux for
15 min. The flask was moved to an ice bath to
complete the extraction. The extract was thus
centrifuged at 4500 rpm for 10 min, and the
supernatant was filtered and stored at 4 ◦C.

[310]

Haematococcus pluvialis,
synthetic astaxanthin ABTS, ORAC, CAA Trolox The extracts were obtained by solvent using

DMSO or supercritical extraction (AstaCO2). [311]

astaxanthin ORAC-EPR -

The acetonitrile solutions of Catechin,
epicatechin, epigallocatechin gallate,
kaempferol, myricetin, resveratrol, and
astaxanthin were diluted with phosphate buffer
containing DM-β-CD.

[312]

Dunaliella salina,
Tetraselmis chuii,
Isochrysis galbana
clone Tahiti.

DPPH -
Methanolic extracts were prepared in different
concentrations (50, 100, 250, 500, and
1000 ppm).

[313]
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Analysed Product Antioxidant
Assays

Positive
Control Extraction Procedure Ref.

Galderia sulphuraria,
Neochloris texensis,
Stichococcus bacillaris,
Ettlia carotinosa,
Chlorella minutissima,
Schizochytrium limacinum,
Crypthecodinium cohnii,
Chlorella vulgaris

DPPH -

Methanol extraction: 20 mL methanol was
added to 0.5 g dry biomass and sonicated
(9 cycles, 50% power) for 20 min. Then,
samples were centrifuged at 3500 rpm for
5 min. Pellets were re-extracted in 20 mL
methanol 3 times and the supernatants were
collected. The samples were filtered and
evaporated at 40 ◦C. Hot water extraction: 1 g
of dry sample was added to 100 mL DW and
boiled for 30 min. After cooling, extracts were
centrifuged at 3500 rpm for 10 min, and
supernatants were freeze-dried.

[314]

Chlorella vulgaris
Spirulina platensis ORAC, DPPH, FRAP Trolox

The extracts were obtained by the use of
ultrasound-assisted extraction by
water/ethanol (50:50, v/v).

[315]

Scenedesmus subspicatus DPPH catequin, gallic acid

Different solvents such as ethanol, methanol,
butanol, acetone, DMSO, and water were used
for extraction. One gram of dried samples were
mixed with 10 mL for each solvent. The
extraction was carried out for 30 min by
sonication (40 kHz) in an ultrasonic bath
followed by a 2 h shake, and centrifugation for
10 min.

[316]

Tetraselmis suecica DPPH α-tocopherol

A total of 100 mg of freeze-dried biomass was
extracted with 1 mL ethanol/water (3:1, v/v)
for 30 min. The mixture was centrifuged at
4500× g, for 10 min, at 20 ◦C. Then, the
ethanolic phase was dried.

[317]

Lichens

Cetraria islandica (L) Ach.
DPPH, the thiocyanate
method, RP, O2

•−

scavenging activity

α-tocopherol, BHT,
BHA

For water extraction, 20 g sample was mixed
with 400 mL boiled DW and stirred for 15 min.
Then, the extract was filtered. The obtained
filtrates were frozen and lyophilized.

[261]

Usnea ghattensis

ABTS, O2
•− scavenging

activity, lipid
peroxidation/linoleic
acid

Trolox BHT, BHA,
quercetin

Cell mass (14.8 g dry wt) was extracted using
20 mL of 10% (v/v) acetone, dimethyl
sulphoxide (DMSO), methanol or light
petroleum (40–60 ◦C) at RT. The extracts were
then filtered, concentrated 4-fold under
vacuum, and freeze-dried and then dissolved
in 1 mL of acetone, DMSO, methanol, or water
for the preparation of test stock solutions.

[262]

Parmelia saxatilis,
Platismatia glauca,
Ramalina pollinaria,
Ramalina polymorpha
Umbilicaria nylanderiana

DPPH, the inhibition of
linoleic acid oxidation gallic acid

Air-dried and powdered lichens (10 g) were
mixed with 250 mL of methanol. The extraction
was conducted in the Soxhlet apparatus for
72 h at a temperature of the boiling point of the
solvent. The extracts were filtered and then
concentrated in vacuo at 40 ◦C.

[263]

Anaptychya ciliaris,
Nephroma parile,
Ochrolechia tartarea
Parmelia centrifuga

MCA/ferrous ion,
TPC/Folin-Ciocalteu
reagent, RP

Trolox, ascorbic acid

One hundred grams of pulverized dried lichen
were extracted with 1 L of methanol using a
Soxhlet apparatus for 72 h. The obtained
extracts were filtered and then concentrated
under reduced pressure.

[266]

Parmotrema praesorediosum,
P. rampoddense,
P. tinctorum
P. reticulatum

DPPH -

Powdered lichen samples (250 g) were
subjected to soxhlet extraction using acetone
and methanol. The extracts were then filtered
through filter paper, concentrated in vacuo, and
air-dried.

[268]

Actinomycetes

Streptomyces
(R56-07) DPPH α-tocopherol

The ethyl acetate extract of the fermentation
broth was subjected to silica gel MPLC and for
further purification to a Sephadex
LH-20 column and RP-HPLC.

[271]
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Analysed Product Antioxidant
Assays

Positive
Control Extraction Procedure Ref.

Streptomyces chromofuscus the inhibition of lipid
peroxidation, DPPH α-tocopherol BHT

Carbazole compounds, carazostatin,
carbazomycin B and their chemically modified
derivatives were isolated from the culture of
Streptomyces chromofuscus by the use of
chromatography on silica gel with
hexane-EtOAc (20:1) as an eluent.

[318]

Streptomyces sp. (CL190) the inhibition of
lipid peroxidation α-tocopherol

The mycelial cake was stirred with acetone.
The extract was concentrated in vacuo and
extracted twice with ethyl acetate. The extract
was dried and concentrated in vacuo. The
fraction was applied to a silica gel column with
n-hexane and ethyl acetate (4:1). The fraction
was concentrated to dryness. The dry residue
was rechromatographed on a silica gel column
with chloroform, methanol, and ammonia
(200:20:1). The elute was concentrated in vacuo
and the residue was dissolved in chloroform
and methanol (1:1) and purified by column
chromatography on Sephadex LH-20 with the
same mixture. The fraction was evaporated to
dryness in vacuo and dissolved in ethyl acetate.

[319]

Streptomyces LK-3
(JF710608)

DPPH, MCA/ferrous
ion, FRAP, β-carotene
assay, NO•

scavenging activity

gallic acid

The crude extracts were diluted in water
containing daidzein- 8-C-glucoside (puerarin),
(−) gallocatechin gallate, sesamol,
cyanidin-3-O-rutinoside, and delphinidinas.

[320]

Abbreviations: DPPH (2,2-diphenyl-1-picrylhydrazyl), CUPRAC (cupric reducing antioxidant capacity), FRAP (ferric reducing ability of
plasma), TEAC (Trolox equivalent antioxidant capacity), EPR (electron paramagnetic resonance method), SNPAC (silver nanoparticles
antioxidant capacity), BHT (butyl-hydroxytoluene), TE (Trolox equivalents), RP (reducing power assay), TPC (Total Phenolic Content),
MCA (metal chelating activity assays), TBARS (Thiobarbituric Acid Reactive Substances), AAP (A. auricula-judae polysaccharide), EPS
(Exopolysaccharide), SDM (A semi-defined medium), LPO (lipid peroxidation–hepatic lipid peroxidation), CAT (Antioxidant Enzymes
Activity–catalase), GPx (glutathione peroxidase), TCA (trichloroacetic acid), ESR (electron spin resonance), XO (xanthine oxidase), GR
(glutathione reductase), PMSF (phenylmethanesulfonylfluoride), CAA (cellular antioxidant activity), RT (room temperature), GSH (Reduced
glutathione), CTAB (Cetyl Trimethyl Ammonium Bromide), CPC (Cetylpyridinium Chloride), CDM (Czapek Dox’s Medium), MEM (Malt
Extract Medium), PDM (Potato Dextrose Medium), YEM (yeast extract glucose medium), YGA (yeast extract glucose agar), Astaxanthin
(3,31-dihydroxy-β,β 1-carotene-4,41–dione), DMSO (dimethyl sulfoxide).

5. Synthesis of Nanoparticles (NPs) by Natural Extracts

The various types of metallic/metal oxides nanoparticles composed of silver, gold,
platinum, palladium, cerium, copper, nickel, selenium, or iron have been described in the
literature. Their unique physicochemical properties make them advanced materials for
industry and biomedical applications [321]. There is also evidence that, besides natural
extracts, some nanoparticles such as carbon nanotubes, metal, and metal oxides, and
various types of polymer-loaded nanoparticles also possess antioxidant activity and can
scavenge the reactive nitrogen and reactive oxygen species (RNS/ROS) [322,323]. The
iron nanoparticles (INPs), due to high catalytic activity, low toxicity, high magnetism,
and microwave absorption ability [324–326], have already found varied applications in
pharmacy (drug delivery), clinical diagnostic (magnetic targeting, negative MRI contrast
enhancement, pigments, stem cell sorting), therapy (gene therapy), and analytical chemistry
(bio-separation), bioprocesses (environmental remediation, food preservation), industry
(lithium-ion batteries) [247,327].

Unfortunately, nanoparticles synthesized by chemical methods often require toxic
reducing and stabilizing agents. These toxic substances adsorbed on the surfaces of the
nanoparticles limit their applications in biomedical fields [143]. Thus to obtain nanomate-
rials, the natural synthesis methods involving the reduction of metallic cations by plant
extracts, yeasts, fungus, and bacteria are used more and more often. The formation of
NPs is achieved via two steps: in the first one, metal ions are reduced, and in the second
one the agglomeration of colloidal suspension causing the formation of the oligomeric
clusters [328]. So-called “green synthesis” or “biogenic synthesis” has gained more and
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more attention as an eco-friendly approach useful for synthesis of not only metal/metal
oxide nanoparticles but also the production of other nanomaterials, such as hybrid ma-
terials, or a variety of bioinspired materials. Nanoparticles produced by green synthesis
methods may be less stable compared to nanoparticles obtained as a product of chemical
synthesis [329–331]. The stabilization of nanoparticles is mainly achieved by electrostatic
repulsion. Unfortunately, this type of stabilization is only effective with low ionic strength
extracts where the repulsion is facilitated by the highly dispersed double layer. In the case
of high ionic strength, aggregation occurs under the influence of strong van der Waals
interactions [332]. Another type of stabilization is the creation of an additional barrier on
the surface of the NPs. Steric stabilization is provided by proteins, if they are components
of the extracts, or by coating the surface with polymers such as PEG or PVP (polyethylene
glycol, polyvinylpyrrolidone). Steric stoppers, thanks to their hydrophilic properties, pro-
vide an additional stabilizing element in the form of short-distance repulsive forces. The
stages of NPs formation and stabilization are schematically illustrated in Figure 7.
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Presently, one can observe an increasing interest in studies on the reactivity of nanopar-
ticles compared to macroscopic objects and their cytotoxicity [333–337] accumulation in the
body, which can generate reactive oxygen species (ROS) [338–341]. A relatively new area
of research is the use of nanoparticles with redox-active potential as radical scavengers.
For example, cerium and yttrium oxides either act as antioxidants [342] or can prevent
the increase of ROS [343,344] by mimicking the activity of the oxidative enzymes, cata-
lase, or superoxide dismutase [345]. It has been proven that silver nanoparticles (AgNPs)
inhibit cell proliferation and modulate the activity of antioxidant enzymes [340,346,347].
Hirst et al. confirmed by an in vivo test on mice the effectiveness of cerium oxide nanopar-
ticles (CONPs) in treating oxidative stress [348]. A comparative study conducted by
Caputo et al. (2015) revealed that the antioxidant potential of N-acetyl-cysteine and Trolox
(soluble analogues of vitamin E) was significantly lower in comparison to CONPs [349].
The authors highlighted the CONPs regenerative redox cycle influencing the stability of
the antioxidants molecules.
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5.1. Microbial Synthesis of NPs

The first experiments on AgNPs biosynthesis using bacteria were carried out in the
culture of Pseudomonas stutzeri AG 259, Morganella sp. Bacillus subtilis [350]. Using
microscopic and spectral techniques SEM, TEM, EDX, and EDS, it was possible to identify
various shapes of nanoparticles, i.e., triangular, hexagonal, and spherical with sizes ranging
from a few to several hundred nm. The synthesis process was initiated within the first
hour of cultivation. The obtained NPs were coated with protein, which allowed them to
maintain stability and avoid their aggregation. It has been shown that the enzyme nitrate
reductase is responsible for the reduction of silver ions. Thus far, the participation of other
groups of enzymes, whose role is electron donation and their further transfer, has been
described and proven, i.e., nitrate and iron reductases, dependent on the nicotinamide
adenine dinucleotide (NAD+)/NADH and the nicotinamide adenine dinucleotide phos-
phate NADP+/NADPH redox couples hydrogenase, and oxidase. Silver ions, due to their
interaction with cytochromes and inhibition of electron transport, lead to disturbances in
the functioning of the respiratory chain. The mechanism of silver nanoparticle synthesis
in lactic acid bacteria was investigated in detail [351]. It was noted that the alkaline en-
vironment clearly favors the formation of nanoparticles as it catalyzes the enolization of
monosaccharides. The resulting aldehyde is oxidized to carboxylic acid, while the metal
ions are reduced to nanoparticles.

The effect of nanoparticles on bacteria is complex and not fully understood due to the
existence of numerous mechanisms of action (Figure 8). Bacteria and other microorganisms
such as viruses, fungi, flagella, yeasts, and actinomycetes possess the ability to produce
metallic NPs intracellularly as well as extracellularly. The studies showed the action of
AgNPs on Escherichia coli and Staphylococcus ureus [352]. The appearance of pits in the
bacterial envelope has been observed, which lead to a change in the electrostatic potential,
an increase in the permeability of membranes, and damage to the DNA of the cell. Later,
research was extended to other species of bacteria, which allowed for the emergence of two
more mechanisms of action in the form of overproduction of free radicals (ROS) and the for-
mation of complexes with various intracellular compounds, i.e., nucleic acids [353,354]. It is
particularly interesting that even a short incubation with nanoparticles leads to the accumu-
lation of chaperones and the S6 protein [355] and inhibition of the bacterial communication
system (quorum sensing, QS), which is associated with a change in gene expression con-
trolled by transcription regulators. It is known that disturbances in the functioning of these
genes cause a change in the behavior of cells in the environment, e.g., the ability to create
biofilms. This applies even to pathogenic bacterial strains such as Pseudomonas aeruginosa
and Staphylococcus aureus. Biofilms create populations of microorganisms (bacteria, fungi,
protozoa) that live at the interface [356]. They are surrounded by a protective substance
composed of polysaccharides, proteins and nucleic acids, called a matrix. Biofilm forma-
tion is a multi-step process but is always initiated by adhesion. Within the biofilm, there
may be synergistic or antagonistic interactions between the species inhabiting it, which
may lead to the matrix disintegration [357]. The most dangerous are biofilms composed
of pathogenic bacteria E. faecalis, S. aureus, Staphylococcus epidermidis, E. coli, Klebsiella
pneumoniae, and P. aeruginosa [358], which are mostly responsible for hospital infections
that are difficult to cure and are characterized by increased resistance to therapies [359].
The antibiotic resistance of biophimes is the result of, among other things, the presence of a
matrix that is a barrier to drug penetration and the production of enzymes responsible for
the hydrolysis of ß-lactam antibiotics [360,361]. Research on the potential of nanoparticles
to combat biofilms meets the expectations of modern medicine. However, the number of
publications on this topic has so far been rather small. It was shown that P. aeruginosa and
S. epidermidis biofilms were inhibited in over 95% of cases by silver nanoparticles with a
spherical shape and an average diameter of 50 nm [362]. The inhibition of biofilms formed
by Multidrug-Resistant Klebsiella pneumoniae [363], Methicillin-Resistant Staphylococcus
aureus [364], and Mycobacterium tuberculosis [365] has been proven. Unfortunately, the
aggregation of nanoparticles inhibits their effective activity. Consequently, various stabiliz-
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ers such as starch, citrate, and amino silica are used, and numerous composites composed
of nanoparticles and other compounds have been identified. There are also reports on the
inhibition of biofilm formation by AgNPs on medical devices, i.e., urological catheters,
the surface of which was covered with nanosilver, were characterized by resistance to
E. coli, S. aureus, and Candida albicans, even under continuous fluid flow conditions. [366].
Metallic/metal oxide nanoparticles, i.e., silver, gold, magnesium, titanium, zinc, aluminum,
tantalum, and zirconium have been tested in orthopedics [367–370]. Nanoparticles embed-
ded in implants and orthopedic scaffolds provide mechanical strength and antimicrobial
protection. However, it should be remembered that many nanoparticles exhibit cytotoxicity
and genotoxicity, especially in the case of their small size and higher concentrations [371].
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Figure 8. Schematic representation of intra- and extracellular NPs synthesis together with their possible mechanisms of
antibacterial action.

Interesting examples of NPs that were produced by microorganisms are iron oxide
nanoparticles which were produced by aquatic magnetotactic bacteria (MTB). These bac-
teria are able to biomineralize, magnetic magnetite, or greigite nanocrystallites called
magnetosomes. When isolated from the MTB, magnetosomes exceed synthetic magnetic
nanoparticles exhibiting promising anti-tumor efficacy against glioblastoma tumors in vivo
tests [372,373]. It should be emphasized, however, that the anticancer activity is based on
various mechanisms of action (heat, the release of chemotherapeutic drugs under a pH
variation, nanoparticle excitation by radiation, and apoptotic tumor cell death). Magnetic
nanoparticles are useful for targeted cancer therapies because they can be manipulated
by external magnetic fields. Moreover, they are attracted toward hypoxic areas, such as
the tumor regions, while retaining the therapeutic and imaging capacities of the isolated
magnetosomes [374]. In nature, we can find other examples of a variety of nanomateri-
als synthesized by biological processes like example diatoms, which synthesize siliceous
materials or S-layer bacteria forming NPs of gypsum and calcium carbonate layers.

5.2. Plant Extracts-Mediated NPs Synthesis

Plant extracts contain diverse compounds, which can be utilized as potent reducing
agents, stabilizing agents, and precursor molecules for NPs formation [375,376]. In order
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to prepare the extracts, both the biomass of the whole plant and selected parts such as
leaves, fruit, seeds, and above-ground parts can be used. The plant material can be fresh
or powder-dried. Various techniques are used to prepare the extracts, but most consist
of classical maceration with various solvents including water or water–alcohol mixtures.
Nanoparticle synthesis is mediated by extract components with reducing potential includ-
ing alkaloids, terpenoids, polyphenols, phenols, flavonoids, and proteins, which have
additionally been identified as nanoparticle stabilizers. As compared with ordinary metal
salts or initial materials alone, biologically synthesized nanoparticles have been found to be
better scavengers of free radicals [377]. The antioxidant activity of NPs frequently depends
on their size [378,379] as well as shape [380,381].

So far, many examples of the phytogenic synthesis of NPs have been described,
including, among others, copper oxide and copper nanoparticles by the use of the leaf
extract of Cissus arnotiana with antioxidant ability [382,383]. Apart from zinc oxide
(ZnONPs), selenium (SeNPs), and nickel oxide nanoparticles (NiONPs), one of the biggest
groups of plant-mediated NPs is iron nanoparticles (INPs). This group is divided into (a)
iron oxide nanoparticles (IONs), (b) iron oxide hydroxide (FeOOH) nanoparticles, and (c)
zero-valent iron (ZVI) nanoparticles [384–387]. Iron oxide (magnetite Fe3O4, magemite
Fe2O3) NPs of certain sizes have superparamagnetic properties; therefore, they are useful
as contrast agents and drug carriers.

The main problems encountered in the biogenic synthesis of nanoparticles concern
achieving their appropriate shape, size, and monodispersity in the solution phase. Un-
doubtedly, the size and shape of NPs depend on the synthesis conditions and the chem-
ical composition of the extract. Usually, optimization of synthesis conditions concerns
such factors as the extract concentration, pH, temperature, and reaction or incubation
time [388–391]. The reports on a plant-mediated approach to synthesize NPs by the use of
different extracts are collected in Table 4.

Table 4. Examples of biosynthesis of nanoparticles (NPs).

Shape/Size Activity Assay/
Control

Biological
Material

Effective
Molecules Preparation of Extract Bio-Synthesis of NPs Ref.

Silver (Ag) NPs,
Absorbance at 430–450 nm

spherical
410–450 nm

DPPH/
ascorbic acid Lantana camara L. terpenes

Powder (10 gm) of dried leaves
was extracted with petroleum
ether (30 mL) at RT for 6 h with
shaking. It was treated with
30 mL of warm 10% aqueous
KOH, shaken and two layers
were separated. The petroleum
ether layer was concentrated to
dryness under
reduced pressure.

One milliliter of
concentrated extract was
added to 6 mL of 1 mM
AgNO3 at RT, and kept
in the dark for 24 h. The
slurry was dried
under vacuum.

[392]

spherical 5–38 nm DPPH/ ascorbic
acid Costus afer

Carbohydrates
flavonoids,
phenolics, alkaloids,
organic acids

Fresh leaves were air-dried.
Two grams of the powder was
macerated with 150 mL DW
and heated at 90 ◦C for 1 h.

Eighty milliliters of
filtered extract was
mixed with 400 mL of
1 mM AgNO3. The
mixture was stirred at 90
◦C for 120 min.

[393]

spherical
5–30 nm

ABTS, DPPH,
NO f.r.s.a.

Taraxacum
officinale

flavonoids, primary
aromatic
amines, terpenoids,
triterpenes

The dried leaves were
powdered and sieved. Five
grams of powder was added to
50 mL of DW and boiled at 60
◦C for 15 min, followed by
cooling and filtration.

The extract was mixed
with AgNO3 (1 mM)
with a 1:5 ratio for
15 min. at pH 6.0, at RT.

[394]

spherical
12–40 nm.

DPPH, ABTS, O2
•− ,

NO• f.r.s.a. Morus alba
carbohydratesproteins,
secondary
metabolites

Ten grams of the chopped
leaves were refluxed with
100 mL DDW for 60 min. The
product was filtered and
centrifuged at 2000 rpm for
5 min.

Ten milliliters of extract
was mixed with 90 mL
AgNO3 solution with
stirring for 10 min.

[395]

spherical
50–60 nm DPPH/BHT Thymus kotschyanus phenolic, flavonoid

compounds

The plant was washed, dried at
25 ◦C, powdered with mortar.
Two grams of powder was
added to 300 mL of boiling
water and kept for 30 min. The
obtained extract was filtered.

The extract (10 mL) was
mixed with 100 mL of
1 m M aqueous solution
of AgNO3 at RT and
stirred for 30 min in a
dark place.

[396]



Materials 2021, 14, 4135 31 of 54

Table 4. Cont.

Shape/Size Activity Assay/
Control

Biological
Material

Effective
Molecules Preparation of Extract Bio-Synthesis of NPs Ref.

spherical
5–45 nm

DPPH, H2O2, OH• ,
O2
•− f.r.s.a. Cestrum nocturnum

phenolic
compounds,
amines, amides,
aldehydes, nitriles,
flavonoids, tannins

The leaves were dried and
powdered. Eight grams of
powder was added to 100 mL
DI and heated at 70 ◦C for 2 h.
The extract was centrifuged at
3000 rpm for 5 min followed
the filtration.

Twenty milliliters extract
was stirred with 180 mL
1 mM AgNO3 solution
for 5 min at RT.

[397]

spherical
5–50 nm

DPPH, FRAP,
TAC/ascorbic acid

Streptomyces
naganishii (MA7) Proteins, enzymes

The strain was inoculated into
50 mL of ISP 2. The mycelium
was centrifugated at 5000 rpm
for 30 min.

Five grams of wet
biomass was exposed to
50 mL of 1 mM AgNO3.
The mixture was
incubated for 28 ◦C at
120 rpm, and then
ultracentrifugation.

[398]

variables
150–250 nm DPPH, FRAP, TAC

Parmeliopsis ambigua,
Punctelia subrudecta
Evernia mesomorpha,
Xanthoparmelia
plitti mycelia
mats

polyphenols, native
proteins

The cultures were inoculated on
MYE. The plates were
incubated at 28 ◦C. After
7–10 days, the isolated
mycobiont was subcultured
into a fresh medium. The
mycobiont was grown
aerobically in MYE at 28 ◦C
with shaking at 150 rpm. After
10 days, mycelia were
separated by filtration.

The mycelia mats were
mixed separately with
100 mL SDW and 1 mM
AgNO3, and incubated
at RT on a rotary shaker
at 150 rpm. The reaction
was carried out in bright
conditions for 24 h.

[399]

spherical
15–30 nm DPPH marine algae

Ecklonia cava

polyphenols,
polysaccharides,
amine, amide
species

Five grams of powder and
500 mL of DW were kept at
100 ◦C for 1 h. Then, the
mixture was centrifuged at
3000 rpm for 20 min, and
filtered by a filter paper.

Ten milliliters of
aqueous extract was
mixed with 90 mL of
1 mM AgNO3 solution
and stirred for 72 h.
AgNPs were lyophilized.

[400]

spherical 2–10 nm DPPH, H2O2 f.r.s.a. Pestalotiopsis
microspora VJ1/VS1

phenolic
compounds,
proteins

The culture was cultivated in
100 mL of PDB at 25 ◦C. After
6 days fungal biomass was
transferred to 100 mL of SDDW,
boiled, and filtered.

10 mL of filtrate was
incubated with 90 mL of
1 mM AgNO3 in
darkness for 24 h at RT.

[401]

100 nm DPPH/
ascorbic acid

Cladosporium
cladosporioides -

NADPH-dependent
reductase, phenolic
compounds,
proteins

The mycelial was grown in PDB
for 72 h. The biomass was
filtered and then incubated at
RT for 48 h in 100 mL DW.

Ten milliliters of filtrate
was added to 90 mL of
1 mM AgNO3.

[402]

spherical 3–40 nm DPPH/
ascorbic acid

Aspergillus versicolor
ENT7-isolated from
the ethnomedicinal
plant Centella
asiatica.

-

The fungal isolate was grown in
100 mL of PDB at 26 ◦C with
shaking at a speed of 100 rpm.
After the seventh day, the
fungal biomass was separated
and washed with SDDW. 10 g
of biomass was mixed with
100 mL SDDW and kept at
28 ◦C for 72 h in a
constant shaking.

The aqueous solution
was filtered (100 mL)
and added to 100 mL of
1 mM of silver nitrate
and incubated at 28 ◦C
for 24 h in
dark condition.

[403]

15–25 nm DPPH Trichoderma
atroviride KNUP001 -

The freshly prepared mycelial
filtrate was prepared by
aerobically growing in PDB
with the agitation of 180 rpm at
28 ◦C for 4 days. Then, the
biomass was filtrated and
washed SDDW. The biomass
(20 g) was ground in 100 mL of
deionized water and filtered.

The filtrate (100 mL) was
mixed with AgNO3
(5 mM or 10 mM) and
the solution was kept at
40 ◦C under darkness.

[404]

spherical
65 nm

DPPH,
FRAP/ascorbic acid

endophytic fungi,
Penicillium species
of Glycosmis
mauritiana

tannins, saponins,
terpenoids
flavonoids,

Sterilized (HgCl2, 1 mg ml−1)
bark material was incubated in
PDA at RT for 7–8 days. The
isolated fungi were cultured in
PDB for 10 days. The mycelial
mat was centrifuged (6000 rpm,
10 min) and the supernatant
was shaken for 24 h.

Eighty milliliters of
3 mM AgNO3 was
added to 20 mL of
extract. NPs were
centrifugated at
7000 rpm for 10 min.

[405]

spherical
15–35 nm ABTS/BHT Inonotus obliquus proteins

Ten grams of mushrooms were
washed, crushed mixed with
200 mL DDW, and stirred for
about half an hour.

Five milliliters of the
filtered solution was
mixed with 95 mL of
1 mM AgNO3 at RT for
80 min.

[406]
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Table 4. Cont.

Shape/Size Activity Assay/
Control

Biological
Material

Effective
Molecules Preparation of Extract Bio-Synthesis of NPs Ref.

spherical FRAP, DPPH,
/ascorbic acid Cladosporium

carbohydratestannin,
phenolic glycosides,
terpenoids,
alkaloids, phenol
anthraquinones,
flavanones

The species was cultured using
PDB for 15 days at RT.

Five grams of dried and
milled mycelia mat was
mixed with 20 mL of
SDDW, The mixture was
heated to 100 ◦C for
10 min. Then, 10 mL of
5 mM AgNO3
was added.

[407]

10–80 nm DPPH Agaricus bisporus,
Ganoderma lucidum

flavoproteins,
lysine, tryptophan,
glutamic acid,
riboflavin

Fresh mushrooms were washed
with DDW, dried for 4 days,
powdered. 1 g of powder was
added to100 mL of DDW, and
stirred for 60 min.

The filtered extract
(10 mL) was added to
90 mL of 1 mM AgNO3.
This solution was kept at
RT for 12 h or heated at
60 ◦C for 5 h.

[408]

spherical
15–22 nm

DPPH/trolox,
ascorbic acid Ganoderma lucidum

proteins, steroids,
nucleotides, amino
acids, terpenoids,
phenols, vitamins,
glycoproteins,
poly-saccharides

Five grams of powdered
mushrooms were added to
100 mL of 70% ethanol solution.
The extract was prepared by the
microwave-assisted process.

Twenty milliliters of
filtered extract was
diluted to 100 mL by
DDW, and then 15 mg of
AgNO3 was added and
mixed by the magnetic
stirrer system.

[409]

spherical
10–30 nm DPPH Ganoderma lucidum

polyphenol,
carbonyl species,
amino acid

The sample was washed with
DW and dried at 40 ◦C for
3 days. The dried sample was
grounded into a powder. 5 g of
powder was extracted using
water (20 mL via Soxhlet
extractor at 80 ◦C for 8 h. The
extract was filtered, and
concentrated to 100 mL under
60 ◦C in a rotary evaporator.

Ten millilitres of extract
was added to 90 mL of
1 mM AgNO3 solution
and incubated at 60 ◦C
in dark, with an interval
the stirring for 4 h of
incubation. Ag-NPs
were collected by
centrifugation at
10,000 rpm for 30 min at
4 ◦C. The pellet was
washed and dried
at 60 ◦C.

[410]

spherical 5–20 nm DPPH/
ascorbic acid

Streptomyces
griseorubens AU2 -

The pure culture was
inoculated on ISP-2 broth and
incubated at 28 ◦C and 130 rpm
for 7 days. After that, the
culture was centrifuged at
4000 rpm for 20 min and the
biomass was washed with DW,
suspended in DW, and
incubated at 28 ◦C and 130 rpm
for 48 h, and finally centrifuged
at 4000 rpm.

Ten milliliters of
supernatant with 50 mL
of 1 mM AgNO3 were
incubated at 28 ◦C and
130 rpm for 48 h.

[411]

spherical
12–16 nm DPPH, ABTS, FRAP Raphanus sativus L. -

The fresh leaves were washed,
pat dried, and chopped,
shade-dried to constant mass at
RT. Ratio: product/solvent was
kept at 1:12 w:v, extraction time:
3 h. mechanical stirring,
temperature: 70 ◦C
(hydroalcoholic mixture), 67 ◦C
(ethanol); microwave-assisted
extraction: time:10 min. at
140 ◦C, max. power 1000 W.

One hundred milliliters
of each filtered extract
were mixed with 100 mL
of 10 mM aqueous
AgNO3 solution and
incubated at RT for
30 min.

[412]

Gold (Au) NPs,
Absorbance at 530–535 nm

multiply twinned
quasi-
spherical
5–35 nm

DPPH
Acroscyphus
sphaerophoroides Lev,
Sticta nylanderiana

carboxylic acids,
esters, phenols,
quinones

The samples were cleaned with
DDW, shade dried, and ground
in a glass mortar.

One gram of powder
was stirred with 100 mL
aqueous solution (10−3

M) of HAuCl4, at RT for
12 h. The supernatant
was centrifugated
(10,000 rpm). The
biomass was washed
with DDW and dried.

[413]
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Table 4. Cont.

Shape/Size Activity Assay/
Control

Biological
Material

Effective
Molecules Preparation of Extract Bio-Synthesis of NPs Ref.

Spherical
5–15 nm DPPH Lemanea fluviatilis

(L.) proteins
The red alga samples were
cleaned by DW and then dried
for a one week in a dark place.

One gram of powder
was stirred with 100 mL
aqueous solution (10−3

M) of HAuCl4, at RT for
12 h. The supernatant
was centrifugated
(10,000 rpm). The
biomass was washed
with DDW and dried.

[143]

spherical 79 nm - Tetraselmis suecica
water-soluble
heterocyclic
compounds

The cultures were harvested on
the sixth day, then centrifuged
at 2000 g for 10 min at 4 ◦C. The
biomass was washed with 0.9%
NaCl and centrifuged. The cells
were damaged in a mortar in a
presence of liquid N2 and then
again centrifuged under the
same conditions.

The cell extracts were
added to 4 mL of 1 mM
HAuCl4. The mixtures
were incubated in a
water bath. The
recommended
conditions: 1 mL of
extract, 5 min of
incubation, 90 ◦C of
incubation temperature.

[414]

triangular,
circular,
hexagonal

DPPH/
ascorbic acid Escherichia coli -

E. coli was grown in a nutrient
broth at 25 ◦C under agitation
at 180 rpm. The biomass sieved
and washed with DW. 1 mg of
biomass mixed with 50 mL of
SDW, and after 24 h,
precipitated by NH4(SO4)2. The
pellet was dissolved in
phosphate buffer (0.05 M, pH
8.0) and dialyzed.

Five milliliters of
solution (50 mg of
HAuCl4 in 250 mL of
water) was mixed with
24 or 30 mL of the
protein solution and
vigorously stirred
for 4 h.

[415]

spherical DPPH, OH, O2
•− ,

NO• f.r.s.a. Solanum torvum -

The dried fruit was made to a
fine powder. The 1% of
aqueous extract was obtained
by using soxhlet apparatus.

Eight milliliters of
extract was mixed with
2 mL of 1 mM HAuCl4
and incubated at RT for
24 h, then the mixture
was centrifuged at
10,000 rpm for 10 min.
The pellet was
re-suspended in ethanol.

[416]

spherical
13–15 nm -

Phormidium
valderianum, P.tenue,
Microcoleus
chthonoplastes,
Rhizoclonium
fontinale,
Ulva intestinalis,
Chara zeylanica,
Pithophora
oedogoniana

-

The samples were cultured in
an artificial seawater medium.
Algal biomass was mixed with
betadine and antibiotic
mixtures. After 12 the biomass
was washed with SDW.

Au-loaded biomass was
obtained by its expose to
15 ppm Au (III) solution
at pH (5, 7, 9). After 72 h,
it was washed with
SDDW, and dried on air.
The biomass was
sonicated for 30 min
with 7.5 mM sodium
citrate, followed by
centrifugation of 5 min
at 3000 rpm.

[417]

100 nm DPPH, FRAP Cladosporium
cladosporioides

NADPH-
dependent
reductase, phenolic
compounds

The endophytic fungal isolates
were cultured using PDB for
21 days at 25 to 28 ◦C. The
biomass was filtered and
washed with DW. This biomass
was incubated at RT for 48 h in
100 mL DW.

A 1 mM HAuCl4
solution was mixed with
the fungal
suspension filtrate.

[402]

spherical,
triangle,
hexagonal rod
23 nm

ABTS Inonotus obliquus proteins

Ten grams of cut mushrooms
were stirred with 100 mL of
DDW, for 30 min. Then, the
solution was filtered through
Whatman filter paper.

The extract (5 mL) was
added to 95 mL, 1.0 mM
HAuCl4. The mixture
was stirred at RT for
30 min.

[418]

spherical 5–30 nm DPPH
Lactobacillus
kimchicus
DCY51T 19

-

Bacterial cells isolated from
kimchi were inoculated into
100 mL MRS broth and
incubated at 37 ◦C for 24 h.
After incubation, the broth was
centrifuged at 6300× g for
5 min.

The biomass was
washed with SDW and
resuspended in 15 mL of
SDW. Then, 1 mM of
gold salt was added. The
mixture was incubated
at 30 ◦C and shaken at
150× g in darkness. The
product was centrifuged
at 2500× g for 5 min.

[419]
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Table 4. Cont.

Shape/Size Activity Assay/
Control

Biological
Material

Effective
Molecules Preparation of Extract Bio-Synthesis of NPs Ref.

spherical 8–50 nm DPPH Enterococcus species
proteins and other
nitrogenous
molecules

A distinct colony of each strain
was used to inoculate 10 mL of
sterile broth and incubated at
37 ◦C for 18 h. Then, the
cultures were centrifuged at
4000 rpm at 10 ◦C for 15 min.

One milliliter of the
cell-free extract and
30 mL of 1 mM HAuCl4
solution were mixed.

[420]

8–12 nm - Sargassum wightii - Seaweed was cleaned, dried for
3–5 days, ground to powder.

One gram of seaweed
powder was added to
100 mL of 1 mM HAuCl4
solution within 12 h in a
stirring condition.

[421]

Spherical, cubic
15–60 nm - S. platensis -

The strain was cultivated in a
standard Zaroukh water-salt
nutrient medium. After
5–6 days of cultivation, the
bacterial cells were harvested
and then were washed in DW.

The wet biomass (1 g)
was mixed with 100 mL
of HAuCl4 solution
(10−2–10−4 M). The
mixture was shaken for
5 days at RT.

[422]

20–70 nm DPPH, NO• f.r.s.a. Vitex negundo Flavonoids,
polyphenols

Leaves were dried for 3 days in
a dark place. The biomass (10 g)
was stirred with DDW (50 mL)
for 12 h at 500 rpm. The extracts
were filtered and lyophilized.

Lyophilized extract
(0.5 g) was reconstituted
in 5 mL DDW at 100
µgmL−1. To 1 mL of
extract, 20 mL of
HAuCl4 (0.01 M) was
added drop-wise and
stirred at 500 rpm. The
solution was
kept overnight.

[423]

Zinc oxide (ZnO) NPs,
Absorbance at 340–360 nm.

hexagonal
10–61 nm DPPH Pichia kudriavzevii amino acids

The yeast was grown on PDB in
a vibrating incubator at 150 rpm
for 72 h at 28 ◦C. Mycelia were
centrifugated (10,000 rpm,
10 min, 4 ◦C), washed with
SDW. 20 g of biomass was
suspended in 100 mL of SDW
and incubated for 72 h. Then,
biomass was filtrated.

One hundred milliliters
of filtrate was added
to10 mL of 10 mM
Zn(Ac)2·2H2O,
incubated at 35 ◦C with
agitation at 150 rpm for
12–36 h. The biomass
was centrifugated at
10,000 rpm for 10 min
and dried at 150 ◦C for
6 h.

[424]

20–40 nm DPPH Berberis aristata

polyphenols,
alcohol, carboxylic
acid, ether ester
amino acid

The leaves were washed, dry at
RT. Later 10 g of leaves were
cut, soaked in 100 mL of DDW,
heated at 50 ◦C for 10 min.,
and filtered.

Sixty milliliters of extract
was heated to 70 ◦C and
stirred with 0.1 M
Zn(Ac)2·2H2O) at basic
conditions. Then, the
solution was centrifuged
at 6000 rpm for
20–25 min.

[425]

Selenium (Se) NPs,
Absorbance at 510 nm

10–250 nm DPPH, FRAP, TAC
Streptomyces
minutiscleroticus
(M10A62)

protein, peptide,
amine, amide
compounds

A 0.1 g soil sample was plated
in starch casein agar plates
enriched with nystatin
(100 µg/mL) and nalidixic acid
(20 µg/mL). The strain was
transferred to 100 mL of MYE
broth and incubated in a rotator
shaker (200 rpm) for 5 days,
and centrifugated at 5000 rpm
for 30 min

Five grams of biomass
washed with SDDW was
mixed with 100 mL of an
aqueous solution of
1 mM Na2SeO3 and kept
in a rotator shaker for
72 h.

[426]

30–300 nm DCF in HUVEC Pantoea agglomerans
strain UC-32 -

Bacterial cells were cultivated
in TSB enriched with 1 mM
Na2SeO3 at 25 ◦C.

Cell suspensions were
sonicated at 100 W for
2 min and centrifuged at
10,000× g for 10 min.
Pellets were suspended
in SDS 0.1%/1 M NaOH,
and centrifuged.

[427]

spherical
tetragonal
14–26 nm.

DPPH/ ascorbic
acid Ephedra aphylla

phenolic
compounds,
flavonoid tannin

Twenty grams of the dried
plants were shaken with
200 mL DW for 30 min in a
water bath at 70 ◦C. The
mixture was filtered.

Twenty milliliters of
1 mM selenium sulfate
was stirred with 20 mL
of the plant extract for
2 h at RT.

[428]
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Table 4. Cont.

Shape/Size Activity Assay/
Control

Biological
Material

Effective
Molecules Preparation of Extract Bio-Synthesis of NPs Ref.

Copper (Cu) NPs
Absorbance at 350–380 nm.

spherical
60–90 nm

DPPH/
ascorbic acid Cissus arnotiana -

One gram of the powder of the
dried leaves was added to
100 mL DDW, boiled at 70 ◦C
for 30 min. The mixture
was filtered.

Ten milliliters of the
extract was stirred with
90 mL of 10 mM of
CuSO4, for 4 h at RT. The
mixture was
centrifugated at
10,000 rpm for 5 min.,
The pellet was washed
with DDW, and ethanol.

[382]

12–16 nm DPPH, NO• , O2
•−

f.r.s.a. Dioscorea bulbifera ascorbic acid

The washed and sliced tubers
were dried in a dark place for
3 days. Five grams of the
obtained powder and 100 mL of
SDW were boiled for 5 min.
The extract was filtered

Five milliliters of extract
was shaken at 150 rpm
in the dark place at
40 ◦C with 95 mL of
1 mM CuSO4·5H2O.

[429]

Copper oxide (CuO) NPs
Absorbance at 280–360 nm

1.5–20 nm - Lens culinaris

primary and
secondary amines,
aldehydes, phenols,
proteins

The plant was homogenized in
mortar. After that, 100 mL of
distilled water was added.

1 mM CuSO4 was stirred
with the filtrated extract
(ratio: 1:5, v/v) for 1 h at
37 ◦C (pH 9). Then, it
was centrifuged at
12,000× g for 15 min.
The pellet was washed
with DW, re-suspended
in DW and
ultra-sonicated.

[430]

10 nm DPPH Galeopsidis herba
flavonoids, phenolic
acids,poly-
saccharides

A total of 4.5 g powdered plants
were mixed with 300 mL DDW,
and stirred for 50 min at 85 ◦C.
Then, the mixture was filtered.

The extract was mixed
with Cu(NO3)2 in the
proportion: 90:1 (w/w),
and vigorously stirred
for 4 h at 80 ◦C.

[431]

Spherical,
agglomerated - Terminalia

phanerophlebia -

Extract from the oven-dried
leaves was prepared from 2 g of
the ground powdered and
150 mL deionized water,
ethanol, or acetone. The
extracts were filtered.

Thirty milliliters of
CuSO4·5H2O (0.1 M)
was stirred with 10 mL
of the plant extract, and
heated at 90 ◦C for 5 h.
The solution was kept
overnight at RT. The
CuO NPs were
centrifuged, washed
with DW, dried in
hot air.

[432]

Iron (Fe) NPs
Absorbance at 214 nm

Spherical,
cubic
43–220 nm

DPPH Amaranthus dubius
amaranthine,
phenolic
compounds

The leaves were cleaned,
chopped into small pieces. 20 g
of leaves were mixed with
100 mL DW and keep at 50 ◦C
for 45 min. The mixture
was filtered.

The leaf extract (pH 6)
was added a drop to
0.5 M FeCl3 with stirring
for 90 min.

[433]

20–25 nm DPPH, ABTS,
H2O2 f.r.s.a.

Asphodelus
aestivus Brot.

phenolic
compounds, poly-
sachharides

The infusion was prepared in a
ratio of 5%. The filtrate was
concentrated using a
vacuum evaporator.

Five milliliters of extract
was mixed with 5 mL of
1 mM aqueous FeCl3.
The mixture was kept at
50–60 ◦C for 20 min with
shaking. Then, it was
centrifuged at 5000 rpm
for 30 min.

[434]

Iron oxide (FeO) NPs
Absorbance at 290 nm

spherical
58–530 nm DPPH Amaranthus

spinosus L.

amaranthine,
compounds with
hydroxyl or
amines groups,
free amino,
carboxylic moieties

Ten grams of fresh leaves were
washed with DW, and chopped
into pieces, and mixed with
50 mL water, and keep at 50 ◦C
for 45 min. The supernatant
was filtered.

The leaf extract (pH 6)
was added to 50 mL of
0.5 M FeCl3 stirring at
37 ± 1 ◦C for 90 min.
The precipitate (FeO
NPs) was washed with
ethanol and dried at
60 ◦C for 180 min.

[383]
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Table 4. Cont.

Shape/Size Activity Assay/
Control

Biological
Material

Effective
Molecules Preparation of Extract Bio-Synthesis of NPs Ref.

Nickel oxide (NiO) NPs
Absorbance at 305 nm

spherical
agglomerated
NPs
20–50 nm

DPPH stevia leaf broth
terpenoids,
polyphenols,
proteins, aldoses

To 5 g of dried leaves, 100 mL
DW was added and boiled
(2 min.), and finally filtered.

One gram of nickel
acetate in 200 mL DW
was stirred with 25 mL
extract for 2 h. The
mixture was then heated
at 100 ◦C, and then at
500 ◦C for 2 h.

[435]

agglomerated
NPs

TAC/phosph-
omolybdenum,
DPPH

Berberis
balochistanica

polyphenols,
carboxylic acids,
alcohols, sulfur
compounds

The material was washed,
oven-dried for 10 h at 40 ◦C.
20.66 g of powder was stirred
with 200 mL of DW for 12 h.
Then, the extract was filtered
and centrifuged at 3000 rpm for
30 min.

A 50 mL extract was
added drop by drop to
the solution of NiNO3
(0.3 M). The mixture was
heated at 60 ◦C with
stirred at 500 rpm for
3 h.

[436]

Manganese (Mn) NPs
Absorbance at 415–417 nm

spherical
granular
57–69 nm

- Ctenolepis garcini
(Burm. f.) native proteins

To 2 g air-dried sample, 30 mL
of SDW was added, and boiled
(2 min.).

Five milliliters of the
filtered extract was
added to 25 mL of 1 mM
KMnO4 solution and
stored in RT for 24 h.

[437]

Manganese oxide (MnO) NPs
Absorbance at 460 nm

spherical
80± 0.5 nm - Abutilon indicum -

Twenty grams of leaves powder
was mixed with 50% methanol.
It was placed on a magnetic hot
plate and underwent stirring
for about 30 min at 55 ◦C and
allowed to settle overnight.

One hundred milliliters
of 0.1 M MnSO4·H2O
was mixed with 100 mL
of plant extract. A total
of 0.1 M NaOH solution
was added dropwise to
the beaker with constant
stirring for about 1 h at
pH 8.0 and 50 ◦C.

[438]

Magnesium Oxide Nanoparticles (MgO) NPs
Absorbance at 250 nm

Spherical
7–40 nm - Penicillium

chrysogenum

polysaccharides
hydrocarbons,
amines, carboxylate,
amino groups

The fungal strains were
inoculated into MAB, and
incubated for 5 days at
30 ± 2 ◦C and shaking state at
150 rpm. Then, the biomass was
centrifuged and resuspended in
100 mL in DDW.

A total of 76.9 mg of
Mg(NO3)2.6H2O was
dissolved in 10 mL DW,
mixed with 90 mL of
biomass filtrate and
incubated for 24 h. The
white precipitate was
collected and rinsed
with DW, and
oven-dried at 400 ◦C for
3 h.

[439]

Abbreviations: room temperature (RT); double-distilled water (DDW), tryptic soy broth (TSB), human umbilical vein endothelial cells
(HUVEC), starch casein agar medium (SCA), malt extract broth media (MAB), Malt Yeast Extract medium (MYE), sterile double distilled
water (SDDW), double distilled water (DDW), sterile distilled water (DW), deionized water (DI), potato dextrose broth (PDB), potato
dextrose agar (PDA), International Streptomyces (ISP 2), dichlorofluorescein (DCF), free radical scavenging activity (f.r.s.a).

5.3. Trends of NPs Modification

Increasing attention is paid to nanoparticles functionalized by various antioxidants
obtained from various natural sources, such as algae, bacteria, fungi, lichens, and plants.
It should be emphasized that most authors reported that the functionalized NPs exhibit
a few times greater antiradical activity. The effective transport across the cell membrane
through pinocytosis and the possibility of targeted localization give rise possibility of
NPs utilization also as carriers for antioxidants. In those cases, inert metalcore and an-
tioxidants attached to the nanoparticle surface can exert also independent activity [63].
In 2020, a review on antioxidant functionalized NPs was published [247]. Most papers
present the synthesis of gold and silver nanoparticles that are easily functionalized with
different small molecules of antioxidants, for instance, gold nanoparticles functionalized
with tocopherol [440,441], gold nanoparticles coated with chitosan [442], silver NPs with
glutathione [443], or more complex ones like graphite layered 30 nm cobalt nanomag-
nets with attached tocopherol derivatives [444]. Konopko et al. [440] and Nie et al. [441]
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prepared and characterized gold nanoparticles (AuNPs) coated with α-tocopherol-like
residues. Both research groups proved that the assembly of chromanol groups on gold
nanoparticles could efficiently enhance the activity of the vitamin E-derived antioxidant.
In 2019, Mohd Taib et al. [445] synthesized Au-NPs utilizing water extract of Hibiscus
sabdariffa leaves. Owing to the UV–VIS, FTIR, and HPLC analysis, chlorogenic acid was
identified as the major antioxidant compound involved in the reduction of Au3+ ions.
Moreover, the thiol groups can interact directly with the gold core to form gold–sulfur
bonds (Au-S) responsible for the mucoadhesion properties of the synthetized AuNPs [446].
In 2017, Choi et al. [447] described nanoparticles modified by caffeic acid, which was im-
mobilized on the surfaces of micro-dielectric barrier discharge (DBD) plasma-treated ZnO
nanoparticles. Obtained nanoparticles showed strong antioxidant (ABTS), antibacterial
activity against Gram-positive bacteria (Staphylococcus aureus), including resistant bacteria
such as methicillin-resistant S. aureus, and against Gram-negative bacteria (Escherichia coli).
Nanostructural materials such as nanotubes have been described as novel synergistic
nano-antioxidants [448], for example, ascorbic acid loaded into the inner lumen of natural
halloysite nanotubes [449] or halloysite externally deco-rated with tocopherol-like moieties
and containing quercetin inside the nanotube [450]. Many studies have described function-
alized silver and gold nanoparticles derived from fungal or bacterial extracts obtained from
species Ganoderma lucidium [408–410], Aspergillus versicolor, Cladosporium cladosporioides,
Pestalotiopsis microspore [401,403,451], and bacteria Lactobacillus kimchicus [419].

Another promising trend of nanobiotechnology represents the development of nano-
drug delivery systems composed of biocompatible and biodegradable polymeric nanoma-
terials (polylactide-PLA, poly-lactic-co-glycolic acid- PLGA) that are able to encapsulate
the therapeutic agent and progressively release it at the target site. Chlorogenic acid en-
trapped in hybrid materials composed of SiO2 and polyethylene glycol has been identified
as a system able to control the overproduction of RNS/ROS [452]. Another example is
curcumin encapsulated in a nanocarrier and covered with chitosan. Authors observed
a protective effect of chitosan on the antioxidant activity of curcumin [453,454]. While
inorganic nanoparticles, especially those with semiconductor properties, have found appli-
cations in in vitro diagnostics and imaging, nano-drugs ensure effective biodistribution
thanks to the ability to overcome biological barriers. Thus far, many medicinal preparations
in the form of nanoparticles have been developed, belonging to different classes of NPs
(polymeric, inorganic, and lipid-based), such as polymer-drug conjugate, protein–drug
conjugate, polymer–protein conjugate, antibody–drug conjugate, dendimeric drug, poly-
meric micelle, polymersome, liposome, PEGylated liposome, organic/inorganic colloid,
quantum dot, Si-NPs, Au-NPs, and INPs. Extensive reviews on this subject have already
been published [455–458]; unfortunately, it is beyond the scope of the current study.

Interesting nano-formulas are also doubly hydrophilic self-assembling block copoly-
mers (DHBC), which in recent years have aroused more and more interest not only for the
production of nanoparticles, but also as controlled drug distribution systems. A valuable
review on DHBC was published in 2020 by Jundi et al. [459].

6. Concluding Remarks and Future Perspectives

Considering the key role of antioxidants to treat oxidative diseases, the development
of reliable antioxidant activity assays of different products with high antioxidant content,
as potential drugs or supplements, is needed. Several analytical techniques can be applied
for this purpose such as spectroscopic, chromatographic, and electrochemical ones. At
the beginning of the 21st century, antioxidant assays based on NPs were developed. The
use of NPs as optical or electrochemical probes appears to be a very promising approach;
however, this technique has still been scarcely followed. Over 5 years of research on the
NPs-based method has resulted in a negligible number of publications, which illustrates
the fact that in the PubMed database, the phrases “antioxidant capacity”, “nanoparticles”,
and “plant extracts” are associated with no more than 70 scientific papers. One should
emphasize that performing the comparative analysis of antioxidant potentials on the
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basis of results published by different research groups is very difficult. The antioxidant
potential of natural products, and even single chemicals, depends on many factors such as
conditions of samples collections, as well as the extracts preparation method and the way
of expressing results.

On the other hand, the plant extracts rich in antioxidants that act as both reducing and
stabilizing agents appear to be useful for creating metallic nanoparticles. Green synthesis
surpasses classical methods, providing such benefits as low-cost, environmentally friendly
strategies not requiring high pressure, energy, temperature, or external toxic chemical
agents. Furthermore, green synthesis ensures the formation of nanoparticles free of toxic
contaminants, which makes them suitable in therapeutic applications such as antimicrobial
agents in bandages, applications in targeted drug delivery, or clinical diagnostics as contrast
agents (MRI-Magnetic Resonance Imaging). The popularity of green nanoparticle synthesis
toward bio and medical applications is reflected in the number of around 5000 publications
that have appeared in the PubMed database in the last five years.

A promising trend that has been developing dynamically in recent years is the synthe-
sis of antioxidant functionalized nanoparticles. Such modification improves the bioavail-
ability of antioxidants providing the benefits of biocompatibility, high stability, and tar-
geted delivery.
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121. Iveković, D.; Milardović, S.; Roboz, M.; Grabarić, B.S. Evaluation of the antioxidant activity by flow injection analysis method

with electrochemically generated ABTS radical cation. Analyst 2005, 130, 708. [CrossRef] [PubMed]
122. Apak, R.; Güçlü, K.; Ozyürek, M.; Karademir, S.E. Novel total antioxidant capacity index for dietary polyphenols and vitamins C

and E, using their cupric ion reducing capability in the presence of neocuproine: CUPRAC method. J. Agric. Food Chem. 2004, 52,
7970–7981. [CrossRef]

123. Mannino, S.; Brenna, O.; Buratti, S.; Cosio, M.S. A New Method for the Evaluation of the “Antioxidant Power” of Wines.
Electroanalysis 1998, 10, 908–912. [CrossRef]

124. Amorati, R.; Valgimigli, L. Methods To Measure the Antioxidant Activity of Phytochemicals and Plant Extracts. J. Agric. Food
Chem. 2018, 66, 3324–3329. [CrossRef] [PubMed]

125. Ordoudi, S.A.; Tsimidou, M.Z. Crocin bleaching assay step by step: Observations and suggestions for an alternative validated
protocol. J. Agric. Food Chem. 2006, 54, 1663–1671. [CrossRef] [PubMed]

126. Prieto, M.A.; Vázquez, J.A.; Murado, M.A. Crocin bleaching antioxidant assay revisited: Application to microplate to analyse
antioxidant and pro-oxidant activities. Food Chem. 2015, 167, 299–310. [CrossRef]

127. Lussignoli, S.; Fraccaroli, M.; Andrioli, G.; Brocco, G.; Bellavite, P. A microplate-based colorimetric assay of the total peroxyl
radical trapping capability of human plasma. Anal. Biochem. 1999, 269, 38–44. [CrossRef]

128. Gupta, D. Methods for Determination of Antioxidant Capacity: A Review. Int. J. Pharm. Sci. Res. 2015, 6, 546–566. [CrossRef]
129. Pisoschi, A.M.; Negulescu, G.P. Methods for Total Antioxidant Activity Determination: A Review. Biochem. Anal. Biochem. 2011, 1,

106. [CrossRef]
130. Ndhlala, A.R.; Moyo, M.; Van Staden, J. Natural antioxidants: Fascinating or mythical biomolecules? Molecules 2010, 15, 6905–6930.

[CrossRef]
131. Kaur, I.P.; Geetha, T. Screening methods for antioxidants-a review. Mini Rev. Med. Chem. 2006, 6, 305–312. [CrossRef]
132. Christodouleas, D.; Fotakis, C.; Papadopoulos, K.; Dimotikali, D.; Calokerinos, A.C. Luminescent Methods in the Analysis of

Untreated Edible Oils: A Review. Anal. Lett. 2012, 45, 625–641. [CrossRef]
133. Gámiz-Gracia, L.; García-Campaña, A.M.; Huertas-Pérez, J.F.; Lara, F.J. Chemiluminescence detection in liquid chromatography:

Applications to clinical, pharmaceutical, environmental and food analysis—A review. Anal. Chim. Acta 2009, 640, 7–28. [CrossRef]
[PubMed]

134. Popov, I.; Lewin, G. Antioxidative homeostasis: Characterization by means of chemiluminescent technique. Methods Enzymol.
1999, 300, 437–456. [CrossRef] [PubMed]

135. Robak, J.; Gryglewski, R.J. Flavonoids are scavengers of superoxide anions. Biochem. Pharmacol. 1988, 37, 837–841. [CrossRef]
136. Apak, R.; Güçlü, K.; Ozyürek, M.; Karademir, S.E.; Altun, M. Total antioxidant capacity assay of human serum using copper(II)-

neocuproine as chromogenic oxidant: The CUPRAC method. Free Radic. Res. 2005, 39, 949–961. [CrossRef] [PubMed]
137. Ozyurt, D.; Demirata, B.; Apak, R. Determination of total antioxidant capacity by a new spectrophotometric method based on

Ce(IV) reducing capacity measurement. Talanta 2007, 71, 1155–1165. [CrossRef] [PubMed]
138. Ozyurt, D.; Demirata, B.; Apak, R. Modified cerium(IV)-based antioxidant capacity (CERAC) assay with selectivity over citric

acid and simple sugars. J. Food Compos. Anal. 2010, 23, 282–288. [CrossRef]

http://doi.org/10.1016/j.aca.2008.02.047
http://doi.org/10.1021/jp037247d
http://doi.org/10.1021/ja002455u
http://doi.org/10.1016/j.foodres.2011.01.034
http://doi.org/10.1016/j.aca.2011.10.063
http://www.ncbi.nlm.nih.gov/pubmed/22152802
http://doi.org/10.1016/j.jff.2015.06.018
http://doi.org/10.1016/j.jff.2015.01.047
http://doi.org/10.1021/ac052007a
http://doi.org/10.1021/ac301925b
http://doi.org/10.1039/b009171p
http://doi.org/10.1016/S0924-2244(01)00027-9
http://doi.org/10.1039/b415939j
http://www.ncbi.nlm.nih.gov/pubmed/15852141
http://doi.org/10.1021/jf048741x
http://doi.org/10.1002/(SICI)1521-4109(199810)10:13&lt;908::AID-ELAN908&gt;3.0.CO;2-L
http://doi.org/10.1021/acs.jafc.8b01079
http://www.ncbi.nlm.nih.gov/pubmed/29557653
http://doi.org/10.1021/jf052731u
http://www.ncbi.nlm.nih.gov/pubmed/16506817
http://doi.org/10.1016/j.foodchem.2014.06.114
http://doi.org/10.1006/abio.1999.4010
http://doi.org/10.13040/IJPSR.0975-8232.6
http://doi.org/10.4172/2161-1009.1000106
http://doi.org/10.3390/molecules15106905
http://doi.org/10.2174/138955706776073448
http://doi.org/10.1080/00032719.2011.649461
http://doi.org/10.1016/j.aca.2009.03.017
http://www.ncbi.nlm.nih.gov/pubmed/19362614
http://doi.org/10.1016/s0076-6879(99)00149-4
http://www.ncbi.nlm.nih.gov/pubmed/9919545
http://doi.org/10.1016/0006-2952(88)90169-4
http://doi.org/10.1080/10715760500210145
http://www.ncbi.nlm.nih.gov/pubmed/16087476
http://doi.org/10.1016/j.talanta.2006.06.015
http://www.ncbi.nlm.nih.gov/pubmed/19071427
http://doi.org/10.1016/j.jfca.2009.09.005


Materials 2021, 14, 4135 43 of 54
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