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Abstract

The genetics of native plants influence the success of ecological restoration, yet genetic var-

iability of local seed collections and commercial seed releases remains unclear for most

taxa. Poa secunda, a common native grass species in Intermountain West grasslands and

a frequent component of restoration seed mixes, is one such species. Here, we evaluate the

genetic variation of local Poa secunda collections in the context of wild populations and com-

mercial seed releases. We evaluated AFLP markers for seven Poa secunda collections

made over a 4000-hectare area and four commercial releases (High Plains, MT-1, Opportu-

nity, and Sherman). We compare the genetic distance and distribution of genetic variation

within and between local collections and commercial releases. The extent and patterns of

genetic variation in our local collections indicate subtle site differences with most variation

occurring within rather than between collections. Identical genetic matches were usually,

but not always, found within 5 m2 collection sites. Our results suggest that the genetic varia-

tion in two Poa secunda releases (High Plains and MT-1) is similar to our local collections.

Our results affirm that guidelines for Poa secunda seed collection should follow recommen-

dations for selfing species, by collecting from many sites over large individual sites.

Introduction

Poa secunda is a cool-season perennial bunchgrass common to grasslands of western North

America. A polyploid complex, P. secunda is composed of variants that may have distinct

ecological and biogeographical roles [1], though they are polymorphic variants of a single

species [2,3] with a ploidy range from 2n = 42–100 [4–7]. These variants include big blue-

grass (‘Ampla’), Canby’s bluegrass (‘Canbyi’), Pacific/slender bluegrass (‘Gracillima’),

Nevada bluegrass (‘Nevadensis’), alkali bluegrass (‘Junctifolia’), Sandberg bluegrass (‘Sand-

bergii’), and pine bluegrass (‘Scabrella’) [1,8]. Poa secunda is a facultative apomict, reproduc-

ing via selfing, outcrossing, and apomixis [3,9,10]. Apomixis is pseudogamous in P. secunda
[10], so pollination is biochemically necessary for seed development, but is not associated

with paternal inheritance [11]. Poa secunda individuals often produce viable pollen and can

contribute to selfing, outcrossing, and apomictic seed development even if they are entirely

or highly apomictic [10].
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Despite the common belief among growers and restoration practitioners that selfing and

outcrossing are rare in P. secunda and that the species is predominantly apomictic [12], the rel-

ative prevalence of reproductive modes in P. secunda is unknown. Kellogg [10] demonstrated

that apomixis varies in frequency in P. secunda at the individual (up to 40% apomictic ovules)

and population (25–100% apomictic ovules) levels, as well as with site conditions. Kelley et al.

[7], however, found apomictic seed development in six out of seven P. secunda wild-collected

seed lots, suggesting high levels of apomictically generated seed. Clausen et al. [13] and Kellogg

[10] established that P. secunda does outcross at a fairly low rate, averaging 0.46% and 0.6%,

respectively, though the former characterized hybrids as poor performers.

Patterns of gene flow influence genetic variation across the landscape. Genes translocate

and/or recombine by outcrossing, selfing, and asexual reproduction [14–16] such that land-

scape genetic structure depends on the distance of pollen exchange and/or seed dispersal, as

well as environmental constraints to seedling establishment and persistence. In asexual plants,

dispersal and environmental selection structure plant genotypes, leading to a patchy mosaic of

genetically similar plants [11,17–20]. When plants self-pollinate, populations diverge over time

as they lose heterozygosity and experience environmental selection [14–16,21]. Outcrossing

plants form less spatially structured and more heterogeneous populations [14–16].

Patterns of genetic variation are difficult to predict in plants with mixed reproductive

modes, such as P. secunda [22,23]. Even infrequent outcrossing in species that primarily self-

fertilize can cause patterns of variation resembling outcrossing species [14,24,25,26], while

apomictic reproduction increases the risk of under-sampling genetic diversity. Recommenda-

tions for germplasm collection are often based on species characteristics such as life history

and mating system [27]; to capture genetic diversity efficiently, collection programs benefit

from knowledge of population genetic structure.

Gene flow depends on propagule dispersal that, in grasses, is mostly localized with rare long

distance dispersal events [28,29]. Propagules must then germinate, establish, and persist to

reproductive maturity; the environment thus constrains landscape genetics in plants. Intro-

duced germplasm in restoration plantings often results in translocation over distances much

greater than expected in wild populations. This practice risks negative impacts on population

fitness, including inbreeding and outbreeding depression resulting from the introduction of

limited diversity or divergent/maladapted genotypes, respectively [30]. At the same time, these

risks must be weighed in light of plant communities that have undergone novel anthropogenic

alterations and/or invasion by exotic species [31].

Commercial seed releases are often used in restoration plantings [32–35]. Local plant popu-

lations and commercial plant materials experience different selective pressures [36,37]. Direc-

tional selection reduces the effective population size of releases [36] and seed increase

processes provide myriad opportunities for genetic truncation via selection and drift [38–41].

Although P. secunda has a capacity for apomictically “fixed” genotypes, as in the Sherman (sin-

gle genotype) and Canbar (three genotypes) releases [42], the genetic consequences of seed

increase in P. secunda are unknown.

We evaluated local P. secunda collections to assess small-scale genetic variation and to

inform germplasm sampling strategies. We also examined four P. secunda releases to compare

their genetic variability and evaluate their suitability for use as plant materials in nearby resto-

ration sites. Our study is the first to compare genetic variation and structure in P. secunda local

collections and commercial releases. We examined this common bunchgrass species, which

shares an early spring phenological niche with the important invasive species Bromus tectorum
with the aim of broadening native plant genetic information to inform restoration manage-

ment. In particular, we predicted that: 1) local collections are moderately variable given previ-

ous studies of phenotypic variability [43,44]; 2) commercial releases differ in their genetic
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identities and level of variation as a function of variant identity, geographic distance between

source collection sites, and sourcing paradigm; and 3) local collections will differ significantly

from commercial releases as a function of geographic distance between source collections and

local site and variant identity.

Methods

Plant materials

Poa secunda individuals (‘Sandbergii’) were collected from seven sites located on MPG ranch,

a private 4,000-hectare conservation property near Florence, MT (11T, 728907.423,

5175718.659; Fig 1) with permission from the landowner. Green tissue was clipped from

approximately 20 randomly selected local plants at each 5 m2 collection site. Additionally, we

evaluated four commercial releases of P. secunda, including High Plains, MT-1, Opportunity,

and Sherman (Table 1). The High Plains germplasm was developed from three collections

made in Natrona, Co. (1980), Campbell Co. (1980), and Uinta Co. (1983), WY, and released as

Fig 1. Local Poa secunda collection sites. Poa secunda collection sites are indicated by white dots and

letters. Approximately 20 plants were collected from each site. The red line outlines the boundary of MPG

Ranch.

https://doi.org/10.1371/journal.pone.0173221.g001
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a selected class germplasm in 2000 [45]. The MT-1 germplasm was developed from collections

made in Toole, Co., MT in 1996–1997 and released as a source-identified plant material in

2008 (Western Reclamation, Eltopia, WA, USA). Both High Plains and MT-1 represent the

‘Sandbergii’ variant. Opportunity (‘Nevadensis’) germplasm was developed from a collection

made in a mine-contaminated site east of Anaconda, MT in 1998 and released as selected glass

germplasm in 2007 [46]. Sherman (‘Ampla’) was increased from a collection made in Moro

Co., OR in 1932 and released in 1945 as a cultivar [47]. Commercial P. secunda releases

(Table 1) were grown from seed in 66 mL Ray-Leach cone-tainers (Stuewe & Sons, Tangent,

OR, USA) under grow lights to obtain tissue for genetic analysis. All local and commercial tis-

sue samples were frozen (-20˚C), lyophilized, and pulverized by bead beating prior to DNA

extraction.

Molecular methods

We extracted total DNA from ~10 mg of pulverized, lyophilized leaf tissue using a CTAB-chlo-

roform protocol modified for use in a 96-well format. The extracted DNA was quantified

using a Quibet 2.0 fluorometer (Thermo Fisher Scientific Inc., Waltham, MA USA). We per-

formed AFLP analysis according to Vos et al. [48] as modified by Blignaut et al. [49]. Modifica-

tions to Blignaut et al. [49] included: substitution of the restriction enzyme MseI and

corresponding adapters/primers for TruI, use of GoTaq1 Colorless MasterMix (Promega,

Madison, WI, USA), omission of DNA purification, and the addition of a second unlabeled,

selective MseI+NNN primer (see Table 2).

Briefly, approximately 200 ng of DNA was digested with the rare cutter restriction enzyme

EcoRI-HF (New England Biolabs, Ipswich, MA) and the frequent cutter MseI (New England

Biolabs), ligated to corresponding adapters with T4 DNA ligase (New England Biolabs), and

diluted (1:10 v:v) with molecular grade dH20. The restriction-ligation mix was PCR-

Table 1. Poa secunda commercial release source information.

Release Variant Geographic origin (collection date) Plant material type (release date)

MT-1 ‘Sandbergii’ Toole Co., MT (1996–1997) Source-identified seed (2008)

High Plains ‘Sandbergii’ Natrona Co., WY (1980) Campbell Co., WY (1983) Uinta Co., WY (1980) Selected class release (2000)

Opportunity ‘Nevadensis’ East of Anaconda, MT (1998) Selected class release (2007)

Sherman ‘Ampla’ Moro, Sherman Co. OR (1932) Cultivar (1945)

https://doi.org/10.1371/journal.pone.0173221.t001

Table 2. Adapters and primers used in AFLP genotyping.

Primer Name Label Sequence (5’-3’)

EcoRI-forward adapter NONE CTC GTA GAC TGC GTA CC

EcoRI-reverse adapter NONE AAT TGG TAC GCA GTC TAC

MseI-forward adapter NONE GAC GAT GAG TCC TGA G

MseI-reverse adapter NONE CTA CTC AGG ACT CAT

EcoRI+0 NONE GAC TGC GTA CCA ATT C

MseI+0 NONE GAT GAG TCC TGA GTA A

EcoRI+ATG 6-HEX (IDT) GAC TGC GTA CCA ATT CAT G

EcoRI+CAT FAM (IDT) GAC TGC GTA CCA ATT CCA T

EcoRI+AAT NED (AB) GAC TGC GTA CCA ATT CAA T

MseI+CTT NONE GAT GAG TCC TGA GTA ACT T

MseI+CTC NONE GAT GAG TCC TGA GTA ACT C

https://doi.org/10.1371/journal.pone.0173221.t002
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amplified using EcoRI and MseI pre-selective primers (Table 2; Integrated DNA Technolo-

gies (IDT), Coralville, Iowa, USA) without selective bases and diluted (1:19 v:v) prior to

selective amplification. Selective amplification with six primer combinations followed, with

EcoRI+NNN primers 5’ fluorescently end-labeled with FAM (IDT), 6-HEX (IDT) or NED

(Applied Biosystems) and unlabeled MseI+NNN (see Table 2). Primer combinations were

multiplexed with each unlabeled MseI+NNN primer separately. Polymerase chain reactions

followed Blignaut et al. [49]. Approximately 15% of samples were replicated to evaluate

reproducibility [50]. Additionally, the release Sherman, determined by Larson et al. [42] to

be genetically uniform, was used as a positive control and molecular grade deionized water

as a negative control.

Capillary electrophoresis was performed with 3730 XL DNA analyzers (Applied Biosystems,

California, USA) using LIZ-500 (Applied Biosystems) and ROX-500 (Applied Biosystems) size

standards for primer combinations 1–3 and 4–6, respectively (Table 2). Fragments between

50–300 bp were scored visually for presence or absence using GeneMarker V2 4.0 software

(Softgenetics, State College, PA USA). Replicated samples were scored independently and pro-

files were compared to calculate reproducibility by dividing the number of scoring mismatches

by the total number of AFLP markers.

Data analyses

We calculated polymorphism within local and commercial sources by dividing the number

of polymorphic bins (markers) that occurred at a rate greater than the error threshold

(5%) by the total number of reproducible bins [50]. Monomorphic bins (including markers

that were polymorphic at a level below the error threshold) were excluded from further

analyses.

We constructed Jaccard distance matrices of polymorphic AFLP profiles and performed

pairwise comparisons of average Jaccard distance of releases, within collections, between col-

lections and overall for local collections. Samples with complete pairwise similarity with

respect to the 5% error threshold were identified in the dataset using pairwise Jaccard similar-

ity indices. To calculate the total percentage of identical genotypes, we divided the number of

individuals with one or more identical genotype by the total number of individuals within

each collection or release. Genetic identical match rates were calculated within and among

local and commercial collections. Additionally, we calculated the overall number of identical

genetic matches in combined local collections and the frequency of within and between collec-

tion genetic matches.

We performed overall comparisons of releases and collections using principle coordinates

analysis with a Jaccard similarity index. We evaluated the relationship between local genetic

and geographic variation and elevation using Mantel tests [51]. We used a digital elevation

model, derived from Shuttle Radar Topography Mission data, from the USGS Earth Resources

Observation and Science (EROS) Center (http://eros.usgs.gov) to estimate elevation on each

site. To evaluate the importance of spatial distance, we constructed a Euclidean distance matrix

from spatial coordinates of collection sites. Mantel tests were performed using PASSAGE

software.

Analysis of molecular variance (AMOVA) [52,53] evaluated the proportion of variance

within and among local collections and/or releases and was calculated using GenAlEx 6.5

[54,55]. Distance-based redundancy analysis (DB-RDA) [56] was used to evaluate variation

among AFLP profiles in terms of collection and release identity. We used Bray-Curtis distance

matrices and constrained each analysis by P. secunda source identity (9999 iterations) using

Canoco (ver. 5) software.
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Results

Polymorphism and error reporting

We scored 236 AFLP markers with an average error rate of 2.36%. Twenty percent of these

markers were polymorphic among samples at a rate greater than the error threshold of 5%,

resulting in 47 polymorphic markers, 19.9% overall polymorphism, and an error rate of 4.92%.

Polymorphism rates varied between sources (local population or commercial release), with the

proportion of polymorphic markers ranging from 0% (Sherman) to 30.93% (High Plains).

Local variation of Poa secunda

Distance-based redundancy analysis explained 14.3% of AFLP variation (F = 4.0; P< 0.002)

among local collections (Table 3). Five out of seven collections had at least one individual with

one or more within-collection identical genetic match (Fig 2). To evaluate the importance of

identical genetic matches for between-site variation, we excluded samples with one or more

within-collection genetic match and found that collection site explained 12% of variance

(F = 2.2; P< 0.002), indicating that identical genetic matches explained only 2.3% of the varia-

tion among collection sites. Overall, 18.7% of local individuals had one or more identical

genetic match, 16.2% of which had one or more same-collection genetic match and 4.9% had

one or more genetic match among collections. AMOVA indicated that most genetic variation

occurred within collections (90%; FPT = 0.10; P� 0.001; see Table 4). Results of Mantel tests

(permutation N = 9999) indicated that a significant proportion of genetic variation was

explained by collection site proximity (R = 0.09; P = 0.001) and elevation (R = 0.15; P = 0.001).

Variation in commercial Poa secunda releases

We analyzed releases (Opportunity, High Plains, MT-1, and Sherman) separately from local

collections and found that 31.3% of variation was explained by release identity (DB-RDA;

F = 8.192; P< 0.002). In analyses including only ‘Sandbergii’ variant releases (High Plains and

MT-1), 6.6% of data variation could be explained by release identity (DB-RDA; F = 2.2;

P< 0.004). No identical genetic matches were found within or between MT-1 and High Plains.

Thirty-three percent of Opportunity individuals had one or more within-release genetic

match. All Sherman individuals were genetically identical.

Variation in commercial releases and local Poa secunda

We compared local collections, MT-1, and High Plains AFLP profiles and found that 23.8% of

AFLP variance could be explained by collection site or release identity (F = 5.3; P< 0.002).

Table 3. Distance-Based Redundancy Analysis (DB-RDA) results by category.

Source Trace F P

Local collections 14.3% 4.021 <0.002

Local collections (identical genetic matches removed) 12% 2.2 <0.002

Releases (MT-1, High Plains, Opportunity, Sherman) 31.3% 8.192 <0.002

‘Sandbergii’ releases (MT-1 and High Plains) 6.6% 2.204 <0.004

‘Sandbergii’ (Local Collections, MT-1, High Plains) 23.8% 5.31 <0.002

‘Sandbergii’ (pooled local collections, MT-1, High Plains) 3.8% 3.082 <0.002

Trace values indicate the percentage of variation explained for by source identities at the given F and P

levels.

https://doi.org/10.1371/journal.pone.0173221.t003
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However, when we pooled local collections, only 3.8% of the variance in AFLP profiles could

be explained by release or local identity (F = 3.1; P< 0.002). Similar to local collections, this

result suggested most of the variation occurs within rather than between ‘Sandbergii’ sources.

Principle coordinates analysis explained 19.22% of the variation in local collections and

releases in the first two axes, with 11.14% of variation explained by the first axis and 8.08% by

the second axis (Fig 3). Analysis of molecular variance (AMOVA) of MT-1 and High Plains

also showed that more genetic variance was within (92%) than between releases (8%) (FPT =

0.080; P� 0.001).

Fig 2. Poa secunda genetic matches within and between local collections. Percentage of Poa secunda

individuals with one or more genetic match within (black bars) or between (white bars) local Poa secunda

collections. Pooled collections indicate variation in genetic matches within and between all collections and the

overall percentage of individuals with one or more genetic match (gray bar).

https://doi.org/10.1371/journal.pone.0173221.g002

Table 4. Distribution of variation within and between Poa secunda source identities.

Source Within % (est. var.) Between % (est. var.) Total est. var. ΦPT P

Local collections 90% (4.989) 10 (0.567) 5.556 0.102 � 0.001

Local collections (genetic matches removed) 93% (5.389) 7% (0.408) 5.796 0.070 � 0.001

Releases (MT-1, High Plains, Opportunity, Sherman) 57% (3.751) 43% (2.871) 6.622 0.434 � 0.001

‘Sandbergii’ releases (MT-1 and High Plains) 92% (5.575) 8% (0.487) 6.063 0.080 � 0.001

‘Sandbergii’ (local collections, MT-1, High Plains) 90% (5.116) 10% (0.587) 5.703 0.103 � 0.001

‘Sandbergii’ (pooled local collections, MT-1, High Plains) 93% (5.493) 7% (0.393) 5.886 0.067 � 0.001

Opportunity, MT-1, High Plains 70% (4.593) 30% (1.949) 6.543 0.298 � 0.001

Distribution of variance by Poa secunda source identities (collection or release) was determined by analysis of molecular variance (AMOVA).

https://doi.org/10.1371/journal.pone.0173221.t004
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Discussion

Genetic diversity of local P. secunda collections varied significantly among collection sites, and

correlated with geographic distance and elevation. Variation among collection sites indicated

spatial genetic structure at the scale of sampling. Our collections varied more strongly with ele-

vation than space, suggesting that environmental conditions, such as temperature and precipi-

tation, which co-vary with elevation at our study site, contribute to genetic structuring across

the landscape. Most genetic variation was distributed within collections, consistent with the

findings of Larson et al. [42]. These authors interpreted their results as being consistent with

high levels of outcrossing. Although we cannot determine the frequency or isolate the specific

influence of a given reproductive mode, our data suggest that there is localized genotypic

variation.

We found identical genetic matches in our dataset, with most matches occurring within,

rather than between, collections. Genetic matches varied between collections, ranging from 0

to 46% of individuals with one or more intra-collection genetic match. Although our analysis

are insufficient to determine the relative frequency of reproductive mode, these results are not

inconsistent with the variable frequency of apomixis in P. secunda demonstrated by Kellogg

[10]. Inter-collection identical genetic matches occurred less often, with only 4.9% of individu-

als having one or more such match, a rate similar to our error threshhold. While intra-collec-

tion genetic matches occurred more frequently than inter-collection genetic matches, when

they did occur it was usually between the most proximate collections (Fig 1). Our analyses,

though limited in spatial scale, support a localized, mosaic patterning of genetic lines [17,57].

We evaluated population genetic structure to identify patterns relevant for the collection of

representative local germplasm and the introduction of restoration plant materials. We found

Fig 3. PCoA of local and commercial release Poa secunda. Principle coordinates analysis (PCoA) of all local collections and releases

using a Jaccard similarity index, collection or release identity are indicated by dot color according to legend. The first axis explains 11.14% of

the variation in the AFLP profiles and the second explains 8.08%, both axes describe 19.22% of variation.

https://doi.org/10.1371/journal.pone.0173221.g003
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significant differences among collection sites. Poa secunda collections would best capture local

diversity if sampled using guidelines typical for selfing or asexual species by emphasizing the

collection of many individuals from large populations and many locations [27]. This mitigates

the risk of over-sampling similar genotypes and also improves capture of site-specific

genotypes.

Restoration plantings are often accomplished with commercial releases of native plants. We

evaluated the High Plains, MT-1, Opportunity, and Sherman releases of P. secunda to compare

them to one another and to wild populations represented by local collections. The four releases

differed significantly from one another, consistent with phenotypic variation between P.

secunda releases noted in previous studies [58,59]. High Plains and MT-1 diverged the least

while Sherman and Opportunity differed from each other as well as High Plains and MT-1.

Only Sherman and Opportunity had intra-release identical genetic matches, and the former

constituted a single, shared genotype while 33% of Opportunity individuals were represented

by one or more genetic matches, consistent with a high level of apomixis. We did not find

genetic matches that included more than one release, as is expected given the distance among

sources.

Variant identity likely drives the divergence of Opportunity and Sherman from the ‘Sand-

bergii’ variants [1,60]. We evaluated only a single release of each of the non-‘Sandbergii’ vari-

ants and they both have unique provenances, so we cannot quantify this divergence

definitively. Sherman is apomictically fixed and represents a reproductively isolated subset of

diversity within P. secunda [42]. Opportunity was sourced from remnant populations of ‘Neva-

densis’ P. secunda on heavy metal contaminated, low pH sites and evaluated for performance

at similarly degraded sites [46]. These sourcing and evaluation conditions constitute selective

filters not shared by any other collection or release.

MT-1 was sourced more recently and in closer geographic proximity to local collections

than High Plains, but neither was significantly more or less similar to local collections. High

Plains was established from three source collections, but we did not find subgroupings as

would be expected if the source populations were retained during selection and commercial

increase. Opportunity was sourced from sites nearest to our local collections, but there was no

evidence of genetic overlap, likely due to variant identity and/or sourcing and development

history. We did not find any identical genetic matches between any of the releases and locally

collected individuals.

Genetic variation in populations is desirable because it functions as a pool of adaptive

capacity. Despite a strong theoretical basis [38,39], empirical evidence for genetic truncation

resulting from plant materials development is limited. Ferdinandez et al. [61] found limited

(8%) loss of genetic variation after two generations of seed increase in a multisite composite

collection of the self-compatible Elymus trachycaulus ssp. Subsecundus. Fu et al. [62] examined

the highly outcrossing Bouteloua gracilis (blue grama) and found no evidence for gene shifts

after two generations of seed increase. We found comparable levels of variation in local (wild)

collections and the ‘Sandbergii’ releases, High Plains and MT-1. The genetic diversity of the

original High Plains and MT-1 source populations is unknown and the evaluation of genetic

truncation is outside the scope of this study, but our analyses do not indicate that these releases

lack variability compared to our local collections.

Facultative apomixis may confer genetic stability in diverse populations by slowing genetic

equilibration to new environmental conditions [24], and may also mitigate the effects of agri-

cultural selection [63]. Oversampling genotypes or collecting low-diversity populations would

undermine this stability. Seeds of the low diversity Sherman and Canbar releases exemplify

this risk, though no other P. secunda release or collection displays this level of genetic unifor-

mity. Collections such as Sherman, that represent a fixed genotype, might displace other

Genotypic evaluation of local and commercial Poa secunda

PLOS ONE | https://doi.org/10.1371/journal.pone.0173221 April 3, 2017 9 / 13

https://doi.org/10.1371/journal.pone.0173221


genotypes through “genetic swamping,” limiting overall population diversity in restoration

plantings and impacting remnant, wild populations [30].

AFLPs generally represent neutral genetic variation, and therefore do not correspond to

functional variation. Although genetic diversity is important for long-term adaptability, how

genetic variation manifests as phenotype in restoration plantings determines plant establish-

ment and persistence [33,41,64]. Concurrent with genetic differentiation among collections,

previous studies found phenotypic differences as well. Herget et al. [58,59] found that survival,

biomass, seed size, days to emergence, and competitiveness with Bromus tectorum differed

between the High Plains release and our local P. secunda collections. Herget et al. [65] also

identified differences in germination timing, early, and total root growth among our local col-

lections, MT-1, High Plains and Opportunity. Along similar lines, Baughman et al. [66] com-

pared local P. secunda collections with the Mountain Home release in the context of cheatgrass

die-offs and found better performance in the local collections. Johnson et al. [63] found higher

survival and greater leaf area in cultivars (of the variant ‘Sandbergii’) than in other collections

in common gardens.

The closer we can get to evaluating restoration genetic concerns at their source, the better

we can mitigate them. A clear understanding of how native plant species vary genetically in the

landscape is essential. In the meantime, the use of commercial releases is common and wide-

spread, so we must identify genotype and phenotype mismatches with natural populations,

monitor their performance and persistence in restoration plantings, and incorporate them

into the development of trait-based, plant material transfer zones.
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