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Abstract: The Mycobacterium fortuitum group (MFG) consists of about 15 species of fast-growing
nontuberculous mycobacteria (NTM). These globally distributed microorganisms can cause diseases
in humans and animals, especially fish. The increase in the number of species belonging to MFG and
the diagnostic techniques panel do not allow to clarify their real clinical significance. In this study,
biomolecular techniques were adopted for species determination of 130 isolates derived from fish
initially identified through biochemical tests as NTM belonging to MFG. Specifically, gene sequencing
and phylogenetic analysis were used based on a fragment of the gene encoding the 65 KDa heat
shock protein (hsp65). The analyzes made it possible to confirm that all the isolates belong to MFG,
allowing to identify the strains at species level. Phylogenetic analysis substantially confirmed what
was obtained by gene sequencing, except for six strains; this is probably due to the sequences present
in NCBI database. Although the methodology used cannot represent a univocal identification system,
this study has allowed us to evaluate its effectiveness as regards the species of MFG. Future studies
will be necessary to apply these methods with other gene fragments and to clarify the real pathogenic
significance of the individual species of this group of microorganisms.

Keywords: Mycobacterium fortuitum; Mycobacterium peregrinum; Mycobacteria Other Than Tuberculo-
sis (MOTT); Nontubercolus mycobacteria (NTM); fish mycobacteriosis; zoonoses; heat shock protein;
Sanger sequencing; phylogenetic tree

1. Introduction

The Mycobacterium fortuitum group (MFG) includes several rapidly growing nontu-
berculous mycobacteria (NTM) with very similar cultural, biochemical, and molecular
features. The group takes its name from the most representative species, Mycobacterium
fortuitum, described for the first time in 1938 [1] and included in group IV (rapid growers
mycobacteria) of the Runyon’s classification [2]. With the improvement of diagnostic tech-
niques, this group has undergone several additions and taxonomic changes as happened
for most species of the genus Mycobacterium. This is evident also in the founding species of
MFG, divided into two subspecies, M. fortuitum subsp. fortuitum and M. fortuitum subsp.
acetamidolyticum [3]. Based on biochemical and cultural characteristics, several authors had
proposed a division of M. fortuitum isolates into three biovars [4], subsequently separated
into two distinct species (M. fortuitum and M. peregrinum) and a third biovariant complex
with two unnamed taxa [5]. However, Schinsky and collaborators [6] demonstrated that
the aforementioned “third biovariant complex” was composed of different species, subse-
quently named M. boenickei, M. brisbanense, M. houstonense, and M. neworleansense. Based on
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Bergey’s Manual and papers of the International Journal of Systematic and Evolutionary
Microbiology regarding the official nomenclature, the MFG currently includes 13 NTM
species: M. alvei, M. boenickei, M. brisbanense, M. conceptionense, M. farcinogenes, M. fortuitum
(subs. fortuitum/acetamidolyticum), M. houstonense, M. neworleansense, M. peregrinum, M.
porcinum, M. senegalense, M. septicum, and M. setense [7–13]. Moreover, other species closely
related to MFG are reported, although not officially included in the group: specifically,
these mycobacteria are M. arceuilense, M. lutetiense and M. montmartrense [14].

The importance of MGT studying lies in that several of its members are implicated in
human and animal diseases. Being ubiquitous bacteria, the infection sources are represented
by both natural (water and soil) [15,16] and anthropic environments (water distribution
systems, swimming pools) [17–20]. Concerning human medicine, mycobacteria belonging
to MFG are mainly the cause of dermal infections in immunocompromised patients [21].
Mycobacterium fortuitum is recognized as an etiological agent of pulmonary [22], bone [23],
skin and soft tissue diseases following surgery [24] and catheter-associated infections [25].
Albeit sporadically, cases of infections in human due to members of the MFG are also reported
in literature for M. alvei [26], M. brisbanense [27], M. conceptionense [28], M. houstonense [29],
M. peregrinum [30,31], M. porcinum [32], M. senegalense [33,34], and M. septicum [35].

As mentioned, other animal species are also susceptible to NTM infection belonging to
the MFG. M. fortuitum has been found in several terrestrial animal species, including bovine
with mastitis [36,37], wild boars [38], dogs [39], and cats [40]. Mycobacterium senegalense
and M. farcinogenes are well known in Africa as bovine pathogens, in which they are
causative agents of a cutaneous diseases called “farcy” [7,41]. These same mycobacteria
caused abscesses and death in guinea pigs following experimental infection [42]. Similar
to what has been described for humans, other members of MFG have also been reported
sporadically for wild and domestic animals [8,43–46].

However, based on scientific literature, the highest reports number of MFG members
infections are in fishes. Mycobacterium fortuitum, like M. marinum and M. chelonae, is recog-
nized as the main causative agent of fish mycobacteriosis [47]. Usually, these pathologies
begin with nonspecific clinical signs (emaciation, abnormal behavior, scale loss, ulcerative
skin lesion, skeletal deformities), then can become chronic with the formation of whitish
military nodules in parenchymatous organs (liver, spleen, kidney) [48]. Mycobacteriosis
caused by this group of pathogens affects both fresh and saltwater fishes, especially with
regard to ornamental species [49–51]. Despite the large number of studies, MFG members
isolated from fish are not always identified at the species level. In fact, it is possible to
find works in which is not possible to discriminate between closely related species or the
isolates are indicated as mycobacteria belonging to the MFG [52,53]. This is particularly
evident as regards the isolates recognized with the sole use of biochemical tests, which do
not allow to discriminate between the various species of MFG (Table 1).

Table 1. Cultural and biochemical characteristics of the MFG members. The information about the main cultural and
biochemical tests used comes from Bergey’s Manual of Systematics Bacteriology, 2nd ed. [54], with additions on the species
subsequently described [14].

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Growth at 22 ◦C + + + + + + + + + + + + + + + + +
Growth at 28 ◦C + + + + + + + + + + + + + + + + +
Growth at 37 ◦C + + + + + + + + + + + + + + + - -
Growth at 42 ◦C v + − − − − nd + − − + nd − - - - -
Growth at 45 ◦C - - - - - - nd nd - - - - - - - - -

Growth on 5% NaCl + - - + + + nd + + + + + + + nd nd nd
Growth on MacConkey
Agar w/o crystal violet + + - + + nd nd + + + nd - + nd nd nd nd

Pigment production - - - - - - - - - - - - - - - - -
Nitrate reduction + + + + + + + + + + - + + + + - v
Catalase at 22 ◦C + nd + + nd + − nd nd + + + nd nd + + +
Catalase at 68 ◦C + nd + + − nd nd + + + nd nd nd + + v −

Iron uptake + + − nd + − nd nd + nd − nd + − − −
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Table 1. Conts.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Tween-80 hydrolysis v nd + nd nd nd nd nd v + nd nd nd + + +
Arylsulphatase (3 days) + + + + + nd + + + + + − + + + +
Arylsulphatase (7 days) + + + + + nd + + + + + nd nd nd nd nd

Urease + + + + − v nd + + + + nd + + v −
Utilization of:

Sodium citrate − − − − − + − − − + + nd − nd nd nd
Inositol − nd − nd + nd nd nd + + nd nd nd nd nd nd

Mannitol v − − nd − nd nd nd nd + nd nd + nd nd nd

Table interpretation. 1: M. fortuitum subsp. fortuitum; 2: M. fortuitum subsp. acetamidolyticum; 3: M. alvei; 4: M. boenickei; 5: M. brisbanense;
6: M. conceptionense; 7: M. farcinogenes; 8: M. houstonense: 9: M. neworleansense; 10: M. peregrinum; 11: M. porcinum; 12: M. senegalense; 13: M. septicum;
14: M. setense; 15: M. arceuilense; 16: M. lutetiense; 17: M. montmartrense; +: positive; −: negative; v: variable outcome; nd: not determined.

Therefore, it is likely that over the years there has been an underestimation of the less
known and more recent Mycobacterium species of belonging to MFG. In addition, causing a
loss of information, this lack of identification does not allow to attribute an accurate clinical
significance to the different species of MFG. Thus, the aim of this study is to identify at
species level the mycobacteria isolated from fish previously recognized by biochemical
tests as M. fortuitum or as members belonging to the MFG.

2. Materials and Methods
2.1. Strains Collection and Preliminary Identification

To perform this study, strains of NTM isolated from fish identified by biochemical
tests as MFG members were selected during the years 2015–2019. The strains were isolated
from parenchymatous organs (spleen, liver, kidney) of fish with external clinical signs
attributable to mycobacteriosis. Before inoculation on Löwenstein–Jensen (Microbiol,
Uta-Cagliari, Italy) and Stonebrink medium (Microbiol, Uta-Cagliari, Italy), the organs
were homogenized, washed with a 1.5% aqueous solution of cetylpyridinium chloride
monohydrate (AppliChem, Darmstadt, Germany) for 30 min and centrifuged for 20 min
to obtain a pellet. For the first isolation, two tubes for each medium were incubated at
28 ± 1 ◦C and at 37 ± 1 ◦C for two months, respectively. All tubes were constantly checked
for evaluating microorganisms growth. At the end of the incubation, colonies grown were
then subjected to Ziehl-Neelsen (ZN) staining and biochemical tests as described by Kent
and Kubica [55] with updates of Magee and Ward [54]. The tests carried out are those
listed previously in Table 1. Following preliminary identification, the strains were stored in
cryobank at −80 ◦C pending subsequent analyses.

2.2. DNA Extraction and Amplification

The stored strains were reactivated using Middlebrook 7H9 broth (Microbiol, Uta-
Cagliari, Italy) incubated at 28 ± 1 ◦C. Then, the broth was inoculated by a 10 µL sterile dis-
posable loop in Löwenstein–Jensen medium to allow a better visualization of the colonies;
this medium was incubated again at 28 ± 1 ◦C. Colonies were placed in a sterile eppendorf
containing 200 µL of nuclease-free water (Sigma-Aldrich, St. Louis, MO, USA) and the
bacterial DNA was extracted by ExtractMe Genomic DNA kit (Blirt S.A., Gdańsk Poland)
following the manufacturer’s guidelines. The extracted nucleic acid was immediately
tested or stored at −20 ◦C before amplification.

For species identification, the protocol proposed by Telenti et al. [56] for the amplifica-
tion of a 441 bp fragment of the 65 kDa heat shock protein (hsp65) gene was chosen. Com-
pared to the original protocol, the PCRs were conducted in a volume of 50 µL using 25 µL
of PrimeDirect™ Probe RT-qPCR Mix, with UNG (Takara Bio Inc., Shiga, Japan), primers
Tb11 (5′-ACCAACGATGGTGTGTCCAT) and Tb12 (5′-CTTGTCGAACCGC-ATACCCT)
at the concentration of 10 µM, 5 µL of template and nuclease-free water (Sigma-Aldrich,
St. Louis, MO, USA) to bring to volume. A reference strain of M. fortuitum (M. fortuitum
subsp. fortuitum da Costa Cruz, ATCC® 6841™) was used as PCR positive control and water
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as negative control. PCR were performed on a 2720 Thermal Cycler (Applied Biosystems,
Waltham, MA, USA) using the following thermal protocol: 50 ◦C for 2 min for Uracil-DNA
Glycosylase (UDG) activation, 96 ◦C for 2 min for the initial denaturation, 40 amplification
cycles (denaturation: 95 ◦C × 30′; annealing: 59 ◦C × 30′; extension: 72 ◦C × 30′) and
72 ◦C for 5 min for the final elongation.

PCR products were visualized using 2% agarose gel (Merck, Darmstadt, Germany),
prepared using tris acetate-EDTA buffer 1× (Merck Millipore, Darmstadt, Germany) and
GelRed® Nucleic Acid Gel Stain (Biotium, Fremont, CA, USA). Fragment size was assessed
using AmpliSize molecular ruler 50–2000 bp ladder (Bio-Rad, Segrate, Italy).

2.3. Sanger Sequencing and Species Determination

PCR products were purified by columns using Extractme DNA Gel-Out kit (Blirt
S.A., Gdańsk, Poland). Then, the purified amplicons were subjected to Cycle Sequenc-
ing using BigDye™ Terminator v3.1 Cycle Sequencing Kit (Thermo Fisher Scientific,
Waltham, MA, USA) following the manufacturer instruction concerning mix preparation
and thermal protocol. Cycle sequencing products were purified using DyeEx 2.0 Spin Kit
(Quiagen, Hilden, Germany). A total of 5 µL of DNA were loaded into a 96-well plate
with 10 µL of formamide (Merck Millipore, Darmstadt, Germany) and analyzed by Abi
Prism 310 Genetic Analyzer (Thermo Fisher Scientific, Waltham, MA, USA). A consensus
sequence was generated using ClustalW [57], which was then compared with the data on
NCBI (National Center for Biotechnology Information) using Nucleotide Blast (Blastn) [58]
for species determination. Following identification, the obtained sequences were deposited
on the GenBank database.

2.4. Hsp65 Phylogenetic Tree

As a further analysis for species determination, a phylogenetic tree was constructed
using the data obtained by sequencing the hsp65 gene fragment. Alignment and phylo-
genetic analysis were performed with a 421 bp fragment using MEGAX software [59].
The tree was built using sequences of reference strains of the various members of MFG,
plus M. chelonae strain ATCC 35,749 with the function of outgroup. The statistical method
used was maximum likelihood analysis with the general time reversible (GTR) nucleotide
substitution model; 1000 bootstrap replications were performed.

3. Results
3.1. Strains Collection after Preliminary Identification

Following identification by biochemical tests, 130 strains of NTM belonging to MFG
were isolated from diseased fish. All isolates were fast-growing (growth in less than
seven days), non-chromogenic (no pigment production), alcohol-acid-resistant (ZN+)
bacilli. The isolates were identified from 25 different fish species, mostly freshwater
(110/130, p = 84.6%). Furthermore, the analyzed mycobacteria were mainly recovered from
aquarium fish (109/130, p = 83.8%); the remaining microorganisms came from farmed fish
species (21/130, p = 16.2%). All the strains collected were analyzed with biomolecular
methods for the species determination.

3.2. Sanger Sequencing and Species Determination

The DNA extracted from all the isolates was amplified by the method described in
the previous section (see Material and Methods, Section 2.2). Agarose gel electrophore-
sis allowed to verify the correct size of all the amplicons. Then, all 130 stored strains
were subjected to Sanger sequencing. The comparison of the sequences obtained with
those deposited in the NCBI database allowed to identify all the mycobacteria as species
belonging to the MFG, with an identity percentage between 98.34% and 100%. Specifi-
cally, the isolates belonged to 9 different species, divided as follows: 63 M. peregrinum
(p = 48.5%), 38 M. fortuitum (p = 29.2%), 12 M. senegalense (p = 9.2%), four M. arceuilense
(p = 3.1%), four M. brisbanense (p = 3.1%), four M. conceptionense (p = 3.1%), two M. alvei
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(p = 1.5%), two M. setense (p = 1.5%), and one M. septicum (p = 0.8%). Table 2 summarizes
the results of the species identification, in relation to the fish species analyzed. Details of
isolates, including GenBank Accession Number of the deposited sequences, are available
in Supplementary Materials (Table S1).

Table 2. Results of the identification by hsp65 gene sequencing of the isolated strains.

Fish Species 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 Tot

Acipenser ruthenus - - - - - - - - 1 - - - - - - - 1
Astatotilapia obliquidens 1 - - - - - - - - - - - - - - - 1

Aulonocara sp. 2 - - - - - - - 6 - - - - - - - 8
Botia macracantha - - - - - - - - - - 1 - - - - - 1
Capoeta tetrazona - - - - - - - - - - 1 - - - - - 1
Carassius auratus 4 2 - - 1 - - - 4 - 3 1 - 1 - - 16

Cyprinus carpio var. koi - - - - - - - - 1 - 1 - - 2 - - 4
Colisa lalia - - - - 1 - - - 1 - - - - - - - 2

Copadichromis borley 3 - - - - - - - 3 - - - - - - - 6
Copadichromis sp. 2 - - - - - - - 13 - - - - - - - 15

Dicentrarchus labrax 16 - - - - - - - - - - - - - - - 16
Garra rufa 1 - - - - - - - 1 - - - 2 - - - 4

Hypostomus plecostomus - - - - - - - - 1 - - - - - - - 1
Maylandia lombardoi - - - - - - - - 4 - - - - - - - 4

Misgurnus sp. - - - - - - - - 1 - - - - - - - 1
Nimbochromis livingstonii 2 - - - - - - - 12 - - - - - - - 14
Nimbochromis venustus 1 - - - - - - - 3 - - - - - - - 4

Placidochromis sp. 1 - - - - - - - 7 - 1 - - - - - 9
Poecilia latipinna 1 - - - - - - - - - - - - 1 - - 2
Poecilia reticulata 3 - - - - - - - - - - - - - - - 3

Pseudotropheus sp. - - - - - - - - 3 - - - - - - - 3
Pterophyllum scalare - - - - 1 - - - - - - - - - - - 1
Sciaenops ocellatus - - - 4 - - - - - - - - - - - - 4

Symphysodon discus 1 - - - 1 - - - - - 5 - - - - - 7
Xiphophorus maculatus - - - - - - - - 2 - - - - - - - 2

38 2 - 4 4 - - - 63 - 12 1 2 4 - - 130

Table interpretation. 1: M. fortuitum; 2: M. alvei; 3: M. boenickei; 4: M. brisbanense; 5: M. conceptionense; 6: M. farcinogenes; 7: M. houstonense:
8: M. neworleansense; 9: M. peregrinum; 10: M. porcinum; 11: M. senegalense; 12: M. septicum; 13: M. setense; 14: M. arceuilense; 15: M. lutetiense;
16: M. montmartrense.

3.3. Hsp65 Phylogenetic Tree

As a further analysis to determine the species of the isolates, a phylogenetic tree was
construct with the obtained sequences compared with those of selected reference strains. The
phylogenetic analysis substantially confirmed what previously obtained, except for 6 isolates
(indicated by “�” in the tree). The aforementioned strains are respectively MYC M5-4 (isolated
from Aulonocara sp., identified as M. fortuitum, ID% 99.05), MYC 39 (isolated from Colisa lalia,
identified as M. conceptionense, ID% 98.34), MYC 80 (isolated from Acipenser ruthenus, identified
as M. peregrinum, ID% 99.76), MYC 81 (isolated from Misgurnus sp., identified as M. peregrinum,
ID% 99.76), MYC 119 (isolated from Hypostomus plecostomus, identified as M. peregrinum, ID%
99.76), and MYC 153 (isolated from Carassius auratus, identified as M. peregrinum, ID% 99.76).
Furthermore, with regard to the correctly-identified strains, the tree allowed to distinguish
the M. fortuitum isolates in the two subspecies (Figure 1).
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 Figure 1. Phylogenetic tree obtained with a 421 bp fragment of the hsp65 gene. The strains indicated

with the symbol “�” gave conflicting results between gene sequencing and phylogenetic analysis.
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4. Discussion

MFG members are globally distributed rapidly growing non-chromogenic mycobac-
teria. Since the first identification of the founding member of the group, M. fortuitum,
the number of related species recognized has gradually increased in relation to the new
identification techniques adopted. Given the wide distribution of these microorganisms,
humans and animals can easily come into contact with them. In some cases, certain species
of MFG are known to cause disease; among them, there are fish mycobacteriosis. Although
M. fortuitum is one of the major etiological agents of these pathologies, the other MFG
species are not to be excluded. In the present study, we tried to clarify the possible pres-
ence and role of the other species of MFG causing fish mycobacteriosis, in addition to
M. fortuitum, using biomolecular techniques as an identification tool.

In the first instance, 130 NTM strains preliminarily recognized with biochemical meth-
ods as MFG members were analyzed. These strains were isolated from fish that showed
external and/or internal (granulomas) clinical signs. Analyzing the positive fish species
and holding conditions, we have a fairly accurate representation of what is reported in the
literature on fish mycobacteriosis. In fact, most of the species (109/130, p = 83.8%) come
from aquaria, whose conditions (limited space, water recirculation, possible overcrowd-
ing) are predisposing factors for the onset mycobacteriosis in fish [49,60]. The remaining
samples (21/130, p = 16.2%) came from farmed fish: Additoinally, in this case there are
predisposing factors for the onset of infectious diseases, including high density in tanks
and intensive farming conditions [61]. As further confirmation of the wide distribution of
MFG species [15,62,63], the isolates come from both freshwater (110/130, p = 84.6%) and
saltwater (20/130, p = 15.4%) fish.

The preliminary identification of these isolates was carried out with biochemical
tests. Among them, some are easy to perform and interpret (e.g., growth rate, pigment
production, growth at different temperatures), given the presence of exhaustive data in
the bibliography. For other tests, however, updated and necessary data are not always
available in order to correctly given the result to determining the species of the isolate (see
Table 1). In these cases, the data may lack or there may be a variable behavior between
isolates of the same species (e.g., Tween-80 hydrolysis for M. fortuitum). It should also be
considered that, although rapidly growing, the biochemical tests conducted on members
of MFG are time consuming compared to the same ones performed on other more easily
cultivable bacterial genera.

In relation to this and to the increase in the number of recognized species [64,65],
biomolecular methods are a quick, effective and cheaper way to NTM species determination.
Our study appears to confirm this statement: In fact, all the isolates were identified at
species level by hsp65 gene sequencing with a percentage between 98.34 and 100%. Based on
the study of McNabb and collaborators [66], the identification of species through sequence
analysis of a portion of hsp65 gene can be considered valid when the ID percentage is
greater than 97%. Based on this, all identifications obtained were considered valid. The
most isolated species was M. peregrinum (p = 48.5%). This species is already known
as an etiological agent of fish mycobacteriosis, even if it is attributed a secondary role
compared to other species (e.g., M. marinum, M. chelonae., M. fortuitum) [47]. Other authors
have previously reported high prevalence of this species of mycobacterium [49]: It must
therefore be considered whether these are sporadic cases linked to occasional mortality or
whether there is an underestimation. To follow, the most identified species was M. fortuitum
(p = 29.2%). Being among the species most involved in fish mycobacteriosis onset [47,48],
our study confirms when already known from previous studies. As mentioned, the use
of biomolecular techniques has led to the recognition of new species of MFG [14,64,67].
The application of these techniques in the diagnosis of fish mycobacteriosis has allowed
to highlight nine different MFG species in our study. Previous studies using analytical
methodologies comparable to those used in our study were able to identify these same
species [52,53]. As several MFG species have also been found in humans [11–13,68], correct
identification at species level is essential, without limiting to the use of methods such
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as biochemical tests. In fact, the improvement of diagnostic techniques is fundamental
for these poor studied microorganisms to implement our knowledge, especially for their
potential zoonotic implication.

As a further test, a phylogenetic analysis was performed to confirm the sequencing
results. Compare to gene sequencing, this analysis provides an easily interpretable and
immediate result, even on a graphic level. Despite the high identification rates in sequencing,
6 isolates (p = 4.6%) did not confirm the results obtained following phylogenetic analysis. For
example, MYC 80, MYC 81, MYC 119 and MYC 153 were all identified as M. peregrinum with
an ID% of 99.76 (similarity with strain MK341520.1) following Blastn analysis; instead, the
phylogenetic tree shows a greater resemblance to M. porcinum DSM 44242. These cases pose a
known problem for those who work with gene sequences databases, that is the quality controls
of the deposited sequences [69]. Finally, compared to Blastn identification, the phylogenetic
tree allowed the division between the strains of M. fortuitum in the two related subspecies,
further implementing the information regarding the identification of these isolates.

5. Conclusions

NTM belonging to the MFG represent both a problem for fish and for public health,
being potential zoonotic agents [47,52]. Being a group made up of several species, correct
identification is the first step for accurate diagnosis and therapy, as well as to increase
knowledge on relatively recent identified species (e.g., M. arceuilense, M. lutetiense, M. mont-
martrense). These little known and poorly diagnosed species pose several problems, includ-
ing the use of adequate diagnostic techniques for the identification and assignment of a
precise clinical significance. Our study confirmed that the use of a portion of the hsp65 gene
is a valid diagnostic tool for MFG species identification, through several hypervariable
regions present in its sequence (Table 3).

Table 3. Mutations in the hsp65 gene sequences of the portion considered in the study found in the NCBI Nucleotide
database. Reference strains indicated as type strain in Bergey’s manual [54] were considered. Nucleotide positions refer to
those obtained by aligning type strains sequences with the complete genome of M. fortuitum subsp. fortuitum strain ATCC
6841 (Sequence ID: CP014258.1). The dot (·) indicates identical base compared to M. fortuitum subsp. fortuitum strain ATCC
6841 taken as reference species.

Nucleotide Position 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

5398016 T · · · · · · · · · · · C · · · ·
5398010 C · G G G G · · · G G G G G G G G
5398004 A · · · · G · · · · · G · · · · ·
5398001 G · · · · A · · · · · A · · · · ·
5397986 C · · · · T · · T · · T T · T · ·
5397976 G · · · · · · · · · T · · · · · ·
5397974 G · · · · · · · · · · · · A · · ·
5397971 C · · · · T · · · T T T · · · · ·
5397968 C · · · · · · · · · · · · · · T ·
5397941 A · T C C C C C C C C C C C C C T
5397935 C · · · · · · · · · · · · · A · ·
5397926 T · C C C · C C C C C · C C C C C
5397920 T · · · C · · · · · · · · · · C ·
5397914 C · · · · · · · · · · T · · · · ·
5397890 G · · · · · · · · · · · · · · · T
5397860 C · T · · · · · · T · · · · · T T
5397857 C · · · · · · · G · · · · G · · ·
5397854 G · · · · · · · A · · · · A · · ·
5397839 G · C C · · · · C C C · C · C C ·
5397836 G · C C · · · · C C T · C · C C ·
5397833 G · · · · C C · · · · C · · · · ·
5397829 A · T T · · · · T T T · T · T T ·
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Table 3. Conts.

Nucleotide Position 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

5397828 G · C C · · · · C C C · C · C C ·
5397797 C · · · · · · · · · T · · · · · ·
5397783 G · · · · · · · · · · C · · · · ·
5397782 T · · · · · · · · · · G · · · · ·
5397776 C · · · · · · · · · · G · · · · ·
5397773 C · · · · · · · · · · G · · · · ·
5397770 T · · A A · · · · A A C A · A A A
5397766 C · · · · · · · · · · A · · · · ·
5397765 A · · · · · · · · · · C · · · · ·
5397764 G · · · · · · · · · · C · · · · ·
5397763 T · · · · · · · · · · C · · · · ·
5397762 C · · · · · · · · · · A · · · · ·
5397761 C · · · · · · · · · · G · · · · ·
5397755 T · C C · · · · · C C C C C C C C
5397754 G · · · · · · · · · · A · · · · ·
5397752 C · · · · · · · · · · G · · · · ·
5397701 C · · · · · · · · · · T · · · · ·
5397694 A · T · · · · · · · · T · · · · ·
5397693 G · C · · · · · · · · C · · · · ·
5397692 C · G · · · · · · · · · · · · · ·
5397680 C · G · G · · · · G G G T · G G G
5397677 G · C C · · · · · · C · C · · C ·
5397671 G · · · · · · · · · · C · C · · ·
5397656 T · · · · · · · · C · · C · C C C
5397650 C G G G G G G G G · · · · · · · ·

Table interpretation. 1: M. fortuitum subsp. fortuitum ATCC 6841; 2: M. fortuitum subsp. acetamidolyticum ATCC 35931; 3: M. alvei CIP 103464;
4: M. boenickei CIP 107829; 5: M. brisbanense DSM 44680; 6: M. conceptionense CIP 108544; 7: M. farcinogenes DSM 43637; 8: M. houstonense
ATCC 49403: 9: M. neworleansense ATCC 49404; 10: M. peregrinum ATCC 14467; 11: M. porcinum DSM 44242; 12: M. senegalense ATCC 35796;
13: M. septicum ATCC 700731; 14: M. setense CIP 109395; 15: M. arceuilense DSM 46715; 16: M. lutetiense DSM 46713; 17: M. montmartrense
DSM 46714.

Despite the advantages, our study also highlighted several limitations in the methods
used. First, the sequences present in the database must be of good quality for a correct
identification of the species. Although qualitatively acceptable, some species have only
single sequences for the hsp65 gene. Therefore, although the hsp65 gene provides more
accurate identifications than other genes (e.g., rRNA16S) for MFG members, the most
suitable approach in case of sequencing is the multigenic one [70]. Therefore, in cases of
doubtful identification, the use of more fragments of the genome of these microorganisms
is recommended, as a single gene able to discriminate all the species of the genus Mycobac-
terium is not yet known. In addition to sequencing, phylogenetic analysis provides a further
diagnostic tool. Although there are advantages, even with respect to gene sequencing,
phylogenetically similar species are a limitation for this method. In this perspective, a
taxonomic revision of the MFG from a clinical point of view could bring advantages in the
diagnostic process [71,72].

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/microorganisms9040797/s1, Table S1. Details about the strains analyzed in the study.
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