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Abstract

Diversity patterns of the deep-sea megafauna in the Caribbean Basin and the Guiana ecore-

gion were analyzed in order to test the hypothesis of species richness variation as a function

of depth and the hypothesis of non-differences between ecoregions by analyzing spatial pat-

terns of five taxa and a merged assemblage. Collections of five taxa (corals, sea stars, sea

urchins, sea lilies and gastropods) were obtained from seven oceanographic expeditions

aboard the R/V Pillsbury at 310 stations between 60 and 7500 m depth. Data were sorted

according to depth zones and ecoregions and were analyzed in order to estimate species

richness, changes in species composition and distinction of β-diversity by species turnover

or by nestedness. The observed patterns of diversity were consistent between taxa and

their assemblage: Species richness increased from the continental shelf (60–200 m deep)

to the slope (200–2000 m deep), followed by a decrease at the continental rise-abyssal

zone. We detected marked changes in species composition according to depth ranges.

Changes in species composition in relation to ecoregions were also detected. In general,

the Caribbean Basin lacks important physical barriers, causing high deep-sea ecosystem

connectivity; however, variation in composition could be related to changes in environmental

conditions associated with productivity and/or continental influences.

Introduction

The Caribbean Sea is an important hotspot of marine shallow and deep-water diversity in the

Atlantic Ocean [1, 2]. The diversity of deep-water megafauna such as corals [3], echinoderms

[4] and other taxa [5] in the area tends to be higher than in other Atlantic provinces. This

semi-enclosed sea of 2.75x106 km2 has an average depth of 2400 m with approximately 6% of

the area corresponding to shallow-water and shelf depth (< 200 m). The presence of ridges,
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sills and trenches separates the Caribbean seafloor into the Grenadian, Venezuelan, Colom-

bian and Yucatan basins and the Cayman Trough. The Greater and Lesser Antilles form the

Northern and Eastern boundaries with the Atlantic Ocean, the Gulf of Mexico and the Baha-

mas-Florida regions. The habitats of the Caribbean deep-sea benthos include hydrothermal

vents, methane seep, volcanoes, mud volcanoes, seamounts, ridges and deep-waters reefs.

Moreover, the basin exhibits different environmental configurations of water masses [6–8]

and particulate organic carbon influx [8, 9]. Such spatial heterogeneity allows for a high spatial

β-diversity of benthic organisms, both vertically (i.e., across depth) and horizontally (i.e.,

across regions). This, however, has not been tested.

Assessing diversity patterns of deep-sea benthic communities in the Caribbean Basin

represents a major challenge due to the limited logistical capacity of Caribbean countries for

deep-sea exploration and the intrinsic challenges involved in studying these ecosystems [5].

However, there are some good examples of recent approaches to conducting an exhaustive

exploration of the Colombian continental margin [10] and the analysis of deep-water coral

assemblages in Colombia, Curaçao and Honduras [11–14]. Benthic assessments have been

extended to investigate the fauna in the sill passages of the Greater Antilles [15], cold seeps in

the Barbados Prism, Trinidad and Tobago, and Colombia [16–19], hydrothermal vents of Cay-

man Trough and Grenada [20–22] and the deep-water effects of eruptions on Montserrat

Island [23]. However, despite past and current efforts, many gaps concerning the pattern of

diversity across depths and different ecoregions in the Caribbean Basin, persist.

Early hypotheses and paradigms suggest a homogenous habitat and species-poor ecosys-

tems occurring in the deep sea [24]. Nevertheless, recent research suggests that deep-water

ecosystems are, in general, highly heterogeneous and diverse along spatial and temporal axes

of variability at different scales [24, 25]. Depth gradients play an important role in governing

the structure of deep-sea communities [24, 26], but there is still debate concerning the changes

in diversity associated with depth [27]. Contrary to early hypotheses of decreasing diversity

with depth, current models of deep-sea diversity assume a unimodal curve with high values of

diversity at the continental slope (200–2000 m deep) or continental rise (2000–4000 m) with

lower values in deeper habitats [24, 25, 28]. Evidence of diversity patterns as a function of

depth, including clues in the Caribbean Basin, are based on the estimation of species ranges [3,

29], which could generate a spurious unimodal model [30]. For the Caribbean Basin, sample-

based estimations of diversity applied to deep-water corals have revealed more diversity at the

continental slope than on the shelf [31] but species richness in deeper habitats is uncertain.

The changes in diversity with depth could also be caused by turnover in species composition,

species loss promoted by ecological filters associated with depth, or a combination of both pro-

cesses [25, 32]. In general, for deep-sea environments, the balance between turnover and nest-

edness is usually associated with available energy [32], and their identification provides clues

about causes of assemblage structure [25]. Although changes in species richness with depth are

expected [24, 25], there is no evidence that variation on Caribbean megafauna composition

associated with depth is constant at regional scales or among different taxa.

In addition to the general ideas about vertical patterns of deep-sea communities, the exis-

tence of regional variation as the depth increases is a point of current debate. For coastal and

shelf areas, the Tropical Northwestern Atlantic province is divided into nine ecoregions, five

of which are within the Caribbean Sea: Greater Antilles, Eastern Caribbean, Western Carib-

bean, Southwestern Caribbean and Southern Caribbean [33]. An assessment of various taxa of

coastal and shelf benthic megafauna from the Caribbean does not show significant differences

in species composition across regions [4, 5], suggesting that ecoregional classification does not

apply on this basin. Also an analysis of deep-sea corals suggests a lack of variation in species

composition within the Caribbean Sea [29].
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Nevertheless, there is evidence suggesting regional variation among the abyssal fauna in the

Caribbean (3411–5062 m deep)[34], for deep-water scleractinian corals (> 50 m deep)[3, 35]

and in diverse groups of corals on the continental shelf and slope [31]. Additionally, the spatial

variation in species composition of deep-sea corals changes between the continental shelf and

the slope [31].

In this study, the patterns of species diversity from the Caribbean deep-sea megafauna were

analyzed to test the hypotheses that: 1) megafaunal species diversity changes along Caribbean

depth zones, 2) the species composition changes according to ecoregions (for Caribbean ecore-

gions and the Guianian ecoregion) and, 3) the effect of a depth gradient on megafauna diver-

sity is constant across Caribbean ecoregions and taxa. Data-bases were obtained from seven

expeditions performed by the R/V Pillsbury (1966 to 1971), encompassing 310 sites bordering

the Caribbean Basin (Fig 1) at depths ranging between 60 and 7500 m [36–42]. The dataset

includes records of deep-water corals (Anthozoa: Scleractinia, Alcyonacea, Antipatharia and

Hydrozoa: Anthoathecatae), sea stars (Asteroidea), sea urchins (Echinoidea), sea lilies (Crinoi-

dea) and gastropods (Gastropoda). At each site, samples were collected by otter trawls (10-ft or

41 ft) and brought on-board for taxonomic examination. Specimens were identified (in many

cases described for first time) by major taxonomic experts and included in many revisions [4,

35, 43]. This broad and standardized sampling effort is ideal to make estimates of species diver-

sity that is comparable between regions, depths and taxa.

Fig 1. Sampling stations (red dots) along the Caribbean basin and Guiana region. Ecoregions: GA, Greater Antilles; EC, Eastern Caribbean; WC Western

Caribbean; SWC, Southwestern Caribbean; SC, Southern Caribbean; Gui, Guiana. Southern locations of the Bahamas were included as Greater Antilles (see methods).

Yellow dots are deeper stations not included in ecoregion test, only included in estimation of general diversity below 2000 m depth.

https://doi.org/10.1371/journal.pone.0201269.g001
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Methods

Data collection

Data base records were obtained from the National Museum of Natural History, Smithsonian

Institution (NMNH-SI) collection database (http://invertebrates.si.edu/collections.htm), and

the Marine Invertebrate Museum of the Rosenstiel School of Marine and Atmospheric Sci-

ences (MIM-RSMAS) at the University of Miami where specimens from the R/V Pillsbury

expedition were deposited. Station information, collection data and additional information

were verified from the NMNH-SI collection database and R/V Pillsbury reports [36–42].

Prior to our analyses, species information were revised and their taxonomy updated accord-

ing to taxonomic treatises and various online data bases including the World Marine Species

Database (www.marinespecies.org/), the Integrated Taxonomic Information Service (www.

itis.gov), and Octoclass (http://researcharchive.calacademy.org/research/izg/OCTOCLASS.

htm). Information with unresolved inconsistencies were excluded from the dataset. The data-

set was sorted as a presence-absence matrix of species per station, thus avoiding duplicate rec-

ords from collections. Although dataset from the R/V Pillsbury expeditions does not comprise

all species and records of Caribbean deep-water species up to date, the dataset could furnish a

representative sample for estimate general patterns of diversity. The number of species, the

number of records, the station distribution and the fact that collections were performed sys-

tematically during short period (1966–1971) by the same research team using one type of gear

(trawling) and carefully identified and recorded, provide a reliable information to test diversity

patterns hypotheses.

Data were sorted according to major deep-sea zones and ecoregions. The major depth

zones include: 1) the shelf, the mesophotic-aphotic realm, 60–200 m depth, close to coastal

habitats, and relatively connected with shallow-water systems; 2) the slope, following the shelf,

at 200–2000 m depth, aphotic, very close to the coast depending on their profile, and variable

coastal influence; 3) the rise, open-sea stations, at 2000–4000 m depth, on the border of the

Caribbean continental margin, includes the depth of the Aragonite saturation horizon in the

Atlantic (approximately 2500 m deep [44]); 4) the abyssal, internal plains at Caribbean sub-

basins, 4000–6000 m deep, and 5) the hadal (> 6000 m, restricted to the Puerto Rico trench)

[31, 45]. The biogeographical subdivisions follow Spalding et al. [33] and includes 1) the

Greater Antilles (59 Stations), 2) Eastern Caribbean (45 Stations), 3) Western Caribbean (21

Stations), 4) Southern Caribbean (53 Stations), 5) Southwestern Caribbean (79 Stations) and

6) the Guianian Ecoregion (21 Stations). Southern locations of the Bahamian regions were

included as part of the Greater Antilles due to a lack of differences in assemblage composition

of deep-water corals (following Hernández-Ávila [31]) and on other taxa analyzed in the cur-

rent study (preliminary analyses) (Fig 1).

Statistical analyses

Species richness. To identify shifts in species richness distributions as a function of depth

by ecoregion, the values of richness registered at each sampling site were plotted against depth

values. The relationship was fitted using a linear model to detect general trends, as well as with

a local polynomial regression to detect potential unimodal relationships. In order to quantita-

tively compare the species richness at each depth range, sample-based species accumulation

curves, based on Chao2 estimations, were plotted using ESTIMATES [46]. Due to sample con-

straints, records from the continental rise, the abyssal and the hadal depths were pooled into a

single depth range, herein called a deeper range. Species richness estimations were extrapo-

lated to 150 samples for each depth range to obtain comparisons under the same sample size.
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Estimations were performed for each taxon (corals, Asteroidea, Echinoidea, Crinoidea and

Gastropoda) and for the merged assemblage. Differences in species richness as a function of

depth ranges were tested using t-tests based on the parameters obtained by ESTIMATES. In

addition, we compared the confidence intervals of each curve [47]. The estimations per taxon

were performed considering all previously verified data, including those with null records for a

particular taxon, and stations with null records for all taxa, but with verified proper sampling

and collections of other megafaunal taxa.

Species composition. We assessed the overall multiple-site Sorensen index of dissimilar-

ity for each region, as a proxy of total beta diversity (βSOR), as well as the spatial turnover

(βSIM) and nestedness (βNES) components of beta diversity [48] using the betapart package

implemented in R [49]. These estimators identify whether the change in species composition

across sites and depth ranges in each ecoregion is generated by species turnover, species loss,

or a combination of both processes. Simultaneously, differences in β-diversity among ecore-

gions considering two depth ranges (i.e., continental shelf and slope) were tested using multi-

variate dispersion over the site × site Sorensen dissimilarities matrix [50]. In this case, the null

hypothesis is that of homogeneity in the multivariate dispersions among the six ecoregions

based on the Sorensen dissimilarity at each of the two depths. The hypotheses of non-differ-

ences in species composition between ecoregions, as well as the effects of depth, were tested

using Permutational Multivariate Analysis of Variance (PERMANOVA) with depth as a covar-

iate [51]. Additionally, the hypothesis of similar vertical change in species composition across

ecoregions was tested considering the interaction ecoregion × depth. The p-values for the tests

were obtained by 9 999 permutations of residuals under the reduced model. A canonical analy-

sis of principal coordinates (CAP) was used to plot the relationship among change in species

composition and depth at each ecoregion [52]. Finally, central tendencies of species composi-

tion between depth ranges and ecoregions were represented by bootstrap averages of ecore-

gions in multidimensional scaling plots (MDS) and their corresponding 95% bootstrap

intervals [53].

To identify groups of species that tend to appear together across depth range and ecore-

gions, a cluster analysis of species was done using the Whittaker’s Index of Association. Only

the 60 most frequent species were considered for this analysis. A shade plot (a.k.a. heat map)

was used to represent those groups of species according to the correspondent depth range and

ecoregion in which they tended to appear [54]. These analyses were done using the matrix dis-

play routine in Primer v.7 [55].

Results

Vertical and horizontal patterns of species richness

In general, richness tends to decrease linearly with depth. The strength of this relationship was

higher in the Southern, Southwest and Western Caribbean (Fig 2) than in the Eastern Carib-

bean, Guianian and Greater Antilles. However, in all ecoregions, variability in the number of

species per site was considerably higher in the continental shelf sites than in deeper sites. The

polynomic regression showed no clear pattern of unimodal species richness at continental

slopes, but in some cases indicated bimodal species richness (Fig 2), whose peaks varied

according to ecoregion. In the Southern, Southwestern and Western Caribbean, bimodal

peaks of species richness were observed within the first 1000 m, and in the Eastern Caribbean,

Guianian and Greater Antilles, bimodal peaks were observed within the first 500 m as well as

the interval 1000–2000 m.

For all taxa, higher species richness was observed on the continental slope than on the con-

tinental shelf and in the continental rise-abyssal range (t-test, p< 0.05, in all cases) (Fig 3). In
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addition, all taxa but Asteroidea showed lower diversity values for the deeper range (> 2000 m

deep) than on the continental shelf (t-test, p< 0.05). For Crinoidea, few records were observed

below a depth of 2000 m. For the total assemblage, the continental slope showed 1.4 times

more species (420.12 ± 14.66 spp.) than the upper continental shelf (304.46 ± 10.51 spp.) and

4.5 times more species than the deeper range (> 2000 m deep) (92.83 ± 20.04 spp.). The incre-

ment in species number at the continental slope was also observed using both the accumulative

species curve and the Chao2 estimator, despite the differences in the approach of the estima-

tors (S1 Fig).

Vertical and horizontal patterns of species composition

In general, magnitudes of the estimated overall beta diversity (βSOR) showed high values in all

ecoregion × depth (> 0.95) and for all taxa (> 0.86) (Table 1A and 1C). The partitioning of the

Sorensen multi-site index (βSOR>> 0.50) [48] indicates that beta diversity across depth and

ecoregions is mainly due to species turnover rather than species loss. In addition, there were

no differences in multivariate dispersion between ecoregions at the continental shelf (F = 2.68,

Fig 2. Relationship between numbers of species at each site versus depth and ecoregion. Residual standard errors (RSE) of linear (red) and polynomial models (blue)

are shown.

https://doi.org/10.1371/journal.pone.0201269.g002
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Fig 3. Species accumulation curves and 95% confidence intervals (shaded areas) for the upper continental shelf (red), continental slope (blue), and deeper range

(grey) for each taxon and the merged assemblage. All differences between depth ranges were significant in each case (p< 0.05), except between the continental shelf

and deeper range for Asteroidea. Crinoidea were not recorded below 2000 m in this data set.

https://doi.org/10.1371/journal.pone.0201269.g003
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dfd = 124, p = 0.432). However, on the continental slope, differences in dispersion among ecor-

egions were detected (PERMDISP, F = 8.67, dfd = 113, p = 0.004), generated mainly by lower

dispersions in Guianian and the Southern Caribbean (Table 1B).

Potential effects of depth on species composition were not constant across ecoregions, as

shown by the significance of the interaction terms depth × ecoregion in most PERMANOVA

tests (Table 2). Only the analysis of asteroids indicated that the effect of depth seemed to be

constant across ecoregions. In general, depth explained between 7–15% of the total variation,

while the effect of ecoregions explained approximately 12–22% of the variation. Fig 4A shows

changes in species composition according depths in all ecoregions. Additionally, Fig 4B shows

differences between all ecoregions at the continental shelf and slope.

A multivariate pairwise t-test indicated significant differences in species composition

among ecoregions in almost all cases (Table 3). The only exception is the comparison between

the Eastern Caribbean and Western Caribbean; however, these two ecoregions are separated

by the centre of the Caribbean Basin and by distinct ecoregions (Greater Antilles, Southern

and Southwestern Caribbean). Merging of the Eastern Caribbean and Western Caribbean as a

single ecoregion is not geographically coherent. Based on these analyses, the separation of all

Caribbean and Guianian ecoregions is sustained by changes in the composition of the merged

assemblage. Analyses of each taxon separately are consistent with those on the merged assem-

blage but show more complex patterns where 1) non-differences between the Greater Antilles

and Eastern Caribbean in all taxa except for corals were observed; 2) non-differences detected

between the Southern Caribbean and Guianian in corals and echinoids; 3) non-differences in

sea-star composition between the Greater Antilles and Southwestern Caribbean; 4) lack of dif-

ferences in gastropod composition in southern ecoregions (Southern, Southwestern Caribbean

and Guianian).

Similarities in species association

Particular patterns for species with a frequent presence at specific depths were observed in

almost all ecoregions. This is the case of crinoids Comactinia echinoptera, the echinoids Coelo-
pleurus floridanus, Clypeaster euclastus, Agassicia excentrica, and the corals Telesto sp.,

Table 1. Relative contribution of β-diversity by species turnover (βSIM) and species nestedness (βSNE) related with Sorensen β-diversity (βSOR) [48].

Eastern Caribbean Guianian Greater Antilles Southern Caribbean Southwestern Caribbean Western Caribbean

A

βSIM 0.96 0.93 0.97 0.96 0.96 0.94

βSNE 0.02 0.03 0.01 0.02 0.02 0.03

βSOR 0.98 0.96 0.98 0.98 0.98 0.97

B

MD Cont. Shelf 61.90 61.56 64.88 61.68 64.34 50.34

n Cont. Shelf 12 14 15 35 53 3

MD Cont. Slope 66.25 54.13 66.72 60.86 65.85 66.51

N Cont. Slope 31 5 31 16 26 17

C Cnidaria Asteroidea Echinoidea Crinoidea Gastropoda Merged Assemblage

βSIM 0.78 0.83 0.79 0.77 0.87 0.85

βSNE 0.09 0.08 0.07 0.08 0.06 0.09

βSOR 0.87 0.90 0.86 0.86 0.93 0.94

In A, decomposition of Sorensen index by ecoregions. In B, multivariate dispersion (MD) by ecoregions. In C, decomposition of Sorensen index for each particular

taxon.

https://doi.org/10.1371/journal.pone.0201269.t001
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Antipathes lenta and Elisella sp., for the continental shelf. At the continental slope the corals

Madrepora oculata, Stephanocyathus diadema, Acanella sp., the crinoid Democrinus conifer,
the echinoid Phormosoma placenta, and the asteroids Zoroaster fulgens and Nymphaster arena-
tus were observed. Species frequently found at the bathyal and abyssal realm included the

asteroids Litonotaster intermedius, Calyptraster personatus, Dytaster spp., the echinoid Saleno-
cidaris profundi, the coral Fungicyathus marenzelleri, and the gastropod Bathyphytophilus cari-
baeus (Fig 5).

Table 2. PERMANOVA tests of species composition (Sorensen) for each major taxon and the merged assemblage.

Taxa/Source df SS MS Pseudo-F P(perm)
p

CV

Deep-Water Corals

Depth (cov) 1 26549 26549 6.2 0.0001 10.69

Ecoregion 5 51224 10245 2.4 0.0001 14.00

Depth x Ecoregion 5 48199 9639.7 2.7 0.0001 16.09

Residual 183 7.78E+05 4253.9 65.22

Total 194 9.04E+05

Asteroidea

Depth (cov) 1 17562 17562 4.0 0.0001 9.93

Ecoregion 5 38470 7693.9 1.8 0.0002 12.70

Depth x Ecoregion 5 24479 4895.8 1.1 0.1644 5.18

Residual 122 5.32E+05 4356.9 66.01

Total 133 6.12E+05

Echinoidea

Depth (cov) 1 36096 36096 8.8 0.0001 13.72

Ecoregion 5 55666 11133 2.7 0.0001 16.20

Depth x Ecoregion 5 39201 7840.2 1.9 0.0001 12.99

Residual 158 6.47E+05 4094.2 63.99

Total 169 7.78E+05

Crinoidea

Depth (cov) 1 32333 32333 9.6 0.0001 14.81

Ecoregion 5 65557 13111 3.9 0.0001 22.14

Depth x Ecoregion 5 43745 8749.1 2.6 0.0001 17.45

Residual 120 4.06E+05 3385.4 58.19

Total 131 5.48E+05

Gastropoda

Depth (cov) 1 21624 21624 5.1 0.0001 12.09

Ecoregion 5 43184 8636.7 2.0 0.0002 15.71

Depth x Ecoregion 5 28087 5617.5 1.3 0.0108 10.57

Residual 107 4.51E+05 4218.7 64.95

Total 118 5.44E+05

Merged assemblage

Depth (cov) 1 19166 19166 4.26 0.0001 7.30

Ecoregion 5 61352 12270 2.72 0.0001 13.48

Depth x Ecoregion 5 37566 7513.2 1.67 0.0001 9.96

Residual 263 1.18E+06 4503.9 67.11

Total 274 1.30E+06

Sampling depth is included as covariable (cov). Square root of estimated component of variance (
p

CV) per source is shown.

https://doi.org/10.1371/journal.pone.0201269.t002
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Discussion

Changes in species richness across ecoregions and depth

The occurrence of high species diversity in deep-water has been a slowly emerging paradigm

since the early works of Sanders [56], Dayton and Hessler [57] and Rex [58]. A unimodal dis-

tribution of species richness according to depth, with a peak around the continental slope, had

been previously proposed for the deep-water fauna [24, 26, 59–61]. However, there are various

exceptions to this distribution model [62–64]. In the Caribbean basin, the increase in species

richness in coral communities at the continental slope has been previously reported [29, 31].

The probable sources of variation in deep-sea richness patterns according to depth include

spatial heterogeneity in substrate characteristics and carbon input [25, 26, 64, 65]. Our findings

confirm previous observations on diversity distribution patterns [31] by providing an inte-

grated analysis among different taxa, and show an increment of species diversity from the con-

tinental shelf to the slope with a posterior decrease at deeper ranges. A consistent species

turnover along depth was observed, in line with the separation of major deep-sea habitats [45],

but variation according to depth is different between ecoregions.

Levin et al. [26] underlined that a combination of species distribution as a function of depth

and boundary constraints could generate a unimodal model of species without a real associa-

tion with environmental factors. The results from this study suggest that changes in species

composition and richness trends, especially between adjacent depth ranges, are not generated

by boundary constraints, but by species turnover. In a model generated merely by boundary

constraints, differences in assemblage composition in adjacent ranges could overlap due to the

species depth ranges. However, the species depth ranges could have contributed to the model

of richness distribution patterns. The wide depth distribution intervals of mesophotic species

and the occurrence of endemic deep-water species could contribute to the high diversity

observed on the continental slope [29, 31] as well as for the variability in the observed distribu-

tion pattern.

The observed decrease in species diversity below the continental slope could be related to

deep-sea productivity as a result of particulate organic carbon (POC) flux produced in the pho-

tic zone. Carbon supply in deep-sea habitats depends on input from shallow waters except in

Fig 4. a. Canonical analysis of principal coordinates (CAP) of ecoregions-depth centroids and mean sampling depth. b. MDS of bootstrap averages of

ecoregion-depth centroids for species composition of the merged assemblage for the continental shelf and slope. a. Deep ranges, symbols: red circles,

continental shelf; blue triangles, slope; dark blue squares, bathyal; black rhombus, abyssal. Ecoregions: GA, Greater Antilles; EC, Eastern Caribbean; WC,

Western Caribbean; SWC, Southwestern Caribbean; SC, Southern Caribbean; Gui, Guianian. b. Ecoregions at the continental shelf (red) and slope (blue).

Ecoregions as 4a. Western Caribbean upper continental shelf was omitted due to insufficient data for bootstrapping. The positions of symbols represent the

position of centroids per bootstrap, with dark symbols as averages and shaded areas the 95% confidence intervals.

https://doi.org/10.1371/journal.pone.0201269.g004

Table 3. The p-values of multivariate pairwise t-tests for differences in species composition between ecoregions for the merged assemblage.

Regions GA EC Gui SC SWC WC

GA

EC 0.0161

Gui 0.0001 0.0001

SC 0.0001 0.0001 0.0398

SWC 0.0001 0.0001 0.0010 0.0001

WC 0.0072 0.1490 0.0003 0.0004 0.0001

Based on 9999 permutations of raw data. Ecoregions: GA, Greater Antilles, EC, Eastern Caribbean, Gui, Guianian, SC, Southern Caribbean, SWC Southwestern

Caribbean, WC, Western Caribbean.

https://doi.org/10.1371/journal.pone.0201269.t003
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deep-water chemosynthetic habitats where significant primary productivity from bacteria

occurs. POC flux from the ocean upper layer decreases exponentially with depth and only

approximately 1% of the primary production is transported below to 1500 m depth [66]. This

food deprivation could affect the lower depths by limiting the distribution of some species

[67], and hence shape the diversity of the deep ocean [32] at global scale [68]. The decrease of

bottom productivity could also have an effect on the reduction of environmental heterogeneity

because of the magnitude of differences on the Caribbean primary production, especially in

coastal margins [69], which could be mitigated by exponential reduction of POC flux to the

depths. However, regional differences in species composition at the continental rise and the

abyssal depth are still observed in the Caribbean Basin.

The decrease in diversity below a depth of 2000 m could be related to the depth of the ara-

gonite saturation horizon (ASH, ΩARAG< 1) in the tropical northwestern Atlantic (approxi-

mately 2500 m deep) [44]. Low saturation carbonate states are correlated with decreased

calcification rates in invertebrates that form shells and carbonate skeletons [70, 71] and seem

to limit the depth ranges of most of deep-water corals species [72]. However, the Caribbean

bathyal and abyssal zones are not completely deprived of calcified taxa, with persisting species

apparently tolerant to Aragonite unsaturated stages [3, 73], as shown in this study. The com-

bined effect of low productivity and Aragonite unsaturated states may represent an ecological

filter for species distribution causing species-poor assemblages in deep-sea habitats.

Variation in species composition across ecoregions and depth

Ecoregional variation on species composition was detected in the studied area. These findings

reject previous hypotheses that suggest a homogeneous distribution of the Caribbean deep-sea

fauna [4, 5, 29] and support the hypothesis of variation of deep-water Caribbean fauna accord-

ing to ecoregions and depth. Our results show consistent patterns among taxa suggesting the

occurrence of a general trend of heterogeneous distribution, as previously demonstrated for

deep-water corals [3, 31]. A marked variation in deep-water assemblages could occur at

smaller scales, as observed at the shelf and slope of the Colombian margin [74].

Fig 5. Shade plot and cluster analyses for 60 of the most frequent species based on Whittaker’s Index of

Association and its occurrence for each ecoregion-depth. Colors on cells represent the standardized species

frequency, during sampling, along ecoregion-depth zone combinations. Top symbols: red circles, continental shelf;

blue triangles, slope; dark blue triangles, bathyal; black rhombus, abyssal; gray circle, hadal. Taxa symbols: open

triangles, corals; asteriscs, Asteroidea; open circles, Echinoidea; X, Crinoidea; open rhombus, Gastropoda.

https://doi.org/10.1371/journal.pone.0201269.g005
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For depth ranges below 2000 m Briggs et al. [34] reported differences in faunal assemblages

between three sites at the Venezuelan Basin (at a depth of 3411–5062 m) separated by hun-

dreds of kilometers. Although this variation was detected at the centre of the Venezuelan sub-

Basin, it denotes the occurrence of spatial variation of faunal assemblages at continental rise-

abyssal depths.

Despite differences in species assemblages among ecoregions, there are different degrees of

association between ecoregions, and various species were widespread among samples. Models

of deep-water larval dispersal in the Caribbean denote a high potential connectivity between

ecoregions and with adjacent areas [75], especially when no major physical barriers are present

as in the Caribbean Basin. Ecoregional differences in species assemblages could be driven by

ecological more than physical barriers, thus limiting connectivity. Differences in bottom water

masses, and changes in environmental conditions such as sediment characteristics and POC

flux on the Caribbean seafloor [9, 76], could contribute to the observed differences in species

assemblages among ecoregions.

In spite of the general trends described here, it is important to note that our analysis did not

include information on particular Caribbean deep-water ecosystems such as hydrothermal

vents, submarine volcanoes and cold seeps occurring along the basin. For instance, hydrother-

mal vent ecosystems have been found at the Cayman Trough, between 2290–4945 m in depth,

[21, 77]. Additionally, active venting at a depth of 240–260 m is reported for the Barbados sub-

marine volcano Kick’em Jenny but low hydrothermal fauna is found [22, 78]. Caribbean cold-

seeps are found at the El Pilar region (1000–1300 m deep) and the Orinoque sector (1700–

2000 m deep), between the mouth of Orinoco River, Trinidad and Tobago, and the Lesser

Antilles [19, 79]. Additionally, cold-seep chemosynthetic communities are found at the

Colombian margin (La Fuente area, 1000–2500 m deep) [80] and on mud volcanoes at the

eastern border of the basin at a depth of 4710–4980 m [81]. In Barbados, at the submarine vol-

cano, Kick’em Jenny, there are occurrences of cold-seep ecosystems associated with volcano

debris deposits (1952–2042 m deep), and hydrothermal venting, but few hydrothermal-vent

fauna had been found up to date [22, 82]. The cold-seep ecosystems are still largely unexplored

but first insights suggest the presence of shared taxa on these ecosystems along the Atlantic

Equatorial Belt [17, 83]. Olu et al. [17] proposed that the occurrence of more cold-seep ecosys-

tems spread along the Atlantic equatorial belt (which includes the Caribbean) could serve as

stepping-stone habitats for ecosystem connectivity. More exploration of the Caribbean deep-

water benthos is necessary to determine the precise distribution of chemosynthetic communi-

ties and their diversity patterns.

Conclusions and general considerations

Patterns of Caribbean deep-water megafauna diversity are similar among the five taxa exam-

ined in this study. In general, species diversity increases from the continental shelf to the slope

followed by a decrease toward deeper environments. Our findings show that variation in spe-

cies composition occurs according to ecoregions proposed by Spalding et al. [33] for coastal

and shelf systems. The variation in species composition associated with depth also changes

according to ecoregions, denoting different patterns of zonation and supporting the hypothesis

of ecoregional variation. Patterns of β-diversity among ecoregions and depth range combina-

tions were dominated by species turnover. The heterogeneous distribution of environmental

conditions such as bottom topography, POC flux, aragonite saturation, and deep-water masses

might act as potential drivers of Caribbean deep-water diversity.

The general distribution trends of species assemblage compositions observed here have

important implications in terms of understanding the patterns and drivers of deep-water

Diversity of Caribbean deep-water megafauna

PLOS ONE | https://doi.org/10.1371/journal.pone.0201269 August 1, 2018 13 / 18

https://doi.org/10.1371/journal.pone.0201269


ecosystems in the Caribbean basin. Historical data, such as those used here, allow observations

of the general trends of deep-water megafauna distribution in the Caribbean Basin. Nonethe-

less, since the data were collected, human threats such as oil exploitation [72], bottom trawling

[84, 85] and overfishing could have modified the observed patterns of deep-water diversity.

Notwithstanding, managing actions at different scales are important and represent an advance

for the conservation of deep-water marine ecosystems in the Caribbean [86]. More regional-

scale actions are needed in order to preserve megafaunal diversity in the Caribbean basin, tak-

ing into account the diversity patterns of these assemblages.
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