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INTRODUCTION

Fusarium (Hypocreales, Nectriaceae) is one of the most re-
nowned genera in kingdom Fungi. It includes in its broad sense, 
a large number of morphologically and phylogenetically diverse 
fungi, commonly found as air-, soil- or water-borne saprobic 
organisms, and also found either in dead or living plant material 
as endophytes or epiphytes (Leslie & Summerell 2006, 2011, 
Aoki et al. 2014). Many Fusarium spp. are also important plant 
pathogens or secondary invaders with worldwide distribution, 
while numerous species are significant mycotoxigenic species 
or agents of devastating human and animal diseases, often 
isolated from immunocompromised hosts (O’Donnell et al. 
2010, 2016, Aoki et al. 2014, Van Diepeningen et al. 2014).
First described by Link (1809) and typified by Fusarium roseum 
(presently F. sambucinum nom. cons.) (Gams et al. 1997), 
the generic and species concepts in Fusarium have endured 
significant changes since the cornerstone phenotypically-based 
taxonomic treatments that grouped species into sections, 
morphological varieties or forms and later in formae speciales 
based on pathogenicity and host ranges (Wollenweber & Rein
king 1935, Snyder & Hansen 1940, Toussoun & Nelson 1976, 
Gerlach & Nirenberg 1982, Nelson et al. 1983, Burgess et al. 
1988); and the following redistribution of species into complexes 
after the introduction of modern molecular tools (O’Donnell et 
al. 2000, 2013, Geiser et al. 2013, Aoki et al. 2014). Currently, 
more than 1 400 Fusarium names are listed in the Index Fun-
gorum and MycoBank databases.

Gräfenhan et al. (2011) and Schroers et al. (2011) provided com- 
pelling phylogenetic evidence indicating that the traditional mor-
phology-based concept of Fusarium is polyphyletic, suggesting 
the splicing of the genus into several linages, many of them 
linked to known distinct sexual-morphs. Contrary arguments 
were presented by Geiser et al. (2013), arguing for a wider 
definition of the genus in order to conserve the long standing 
use of Fusarium avoiding the exclusion of many agriculturally 
and medically relevant species, especially those in the Fusarium 
solani species complex (FSSC). More recently, Lombard et al. 
(2015) revised the generic limits of the Nectriaceae based on a 
10-gene phylogenetic approach combined with morphological 
observations; as a result Fusarium was confined to species 
producing a Gibberella sexual morph (perithecial ascomata, 
white, yellow, orange to dark purple-black coloured with warty 
superficial peridium cells, forming (0–)1–3-septate, smooth, 
ellipsoidal ascospores) and in this new circumscription it in-
cludes at least 16 species complexes and numerous monotypic 
lineages (O’Donnell et al. 2013). Neocosmospora now includes 
one the most recognised groups of plant, human and animal 
pathogens previously assigned to the Fusarium solani species 
complex, characterised by forming yellow, orange or red-brown 
coloured perithecial sexual-morphs, with smooth to coarsely 
warted, large and angular superficial peridial cells, producing 
aseptate or 1-septate, globose to ellipsoidal, finely striate as-
cospores. Lastly, two new genera were proposed, Bisifusarium 
which encompasses asexual species previously included in 
the Fusarium dimerum species complex, including species 
associated with fruit rot and roots of Citrus spp. as well as 
clinically relevant fungi (Schroers et al. 2009), morphologically 
characterised by the lack of microconidia, a rather slow growth, 
forming slimy colonies on artificial media, and the production 
of short fusarium-like 0–1(–2)-septate macroconidia, while no 
sexual-morph has ever been described (Gerlach & Nirenberg 
1982, Leslie & Summerell 2006, Schroers et al. 2009), and 
Rectifusarium to include species previously allocated to the 
Fusarium ventricosum species complex, characterised by the 
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absence of sporodochia and the production of wedge-shaped 
macroconidia, terminal chlamydospores and dark-red, smooth-
walled perithecia, forming 1-septate and verrucose ascospores 
(Wollenweber 1913, Booth 1971).
Fusarium was recently included in the top 10 globally most 
important genera of plant pathogenic fungi, based on perceived 
scientific and economic importance, in particular because 
of the F. graminearum (FGSC) and F. oxysporum (FOSC) 
phylogenetic species complexes (Dean et al. 2012). Further 
impactful fusaria include Fusarium subglutinans and F. verticil­
lioides as well as Neocosmospora (Fusarium) solani s.str., and 
other members of the Neocosmospora solani species complex 
(FSSC) (Zhang et al. 2006).
Citrus is one of the most important fruit crops worldwide, sec-
ond only to apple (FAO 2016). European countries, especially 
Italy and Spain, are among the largest producers and export-
ers worldwide (FAO 2016). Fusarium species are commonly 
found in soils and plants of citrus, in both orchard and nursery 
environments, and have been reported to be associated with 
major diseases of citrus plants (Menge 1988, Derrick & Timmer 
2000), connected to several symptoms, such as dry root rot, 
root rot, feeder root rot, wilt, twig dieback and citrus decline 
(Menge 1988, Spina et al. 2008). Neocosmospora (Fusarium) 
solani s.lat. is the causal organism of a disease named dry 
root rot of citrus. The association between stressed plants and  
N. solani can be destructive causing a sudden decline when the 
plant is weakened by factors such as root girdling or injuries, 
association with Phytophthora rot, grafting incompatibility, poor 
drainage, poor soil aeration, excess fertilizer or soil pH altera-
tion (Menge 1988, Polizzi et al. 1992). Members of FOSC are 
associated with Fusarium wilt of various citrus hosts (Timmer 
et al. 1979, Timmer 1982). Chlorosis and epinasty of young 
leaves, wilt, leaf abscission and young twig dieback are the 
first symptoms of this vascular disease. Often gum exudation 
and vascular discoloration are observed on affected twigs  
(Timmer et al. 1979, Timmer 1982). Fusarium equiseti has been 
isolated from citrus roots in Florida (Smith et al. 1988), while  
F. proliferatum, F. sambucinum and Neocosmospora (Fusarium) 
solani were isolated from roots in citrus orchards in Greece 
(Malikoutsaki-Mathioudi et al. 1987). Moreover, F. oxysporum 
f. sp. citri was recently found causing wilt on citrus in Tunisia 
(Hannachi et al. 2014).
By contrast, positive ecological interactions between fusaria and 
Citrus spp. have been recorded for species formerly included 
in Fusarium, i.e., Microcera coccophila (Syn Fusarium cocco­
philum) and Microcera larvarum (Syn Fusarium larvarum), 
successfully employed as biocontrol agents against citrus fruit 
attacking armoured scales (McCoy et al. 2009, Dao et al. 2015, 
Moore & Duncan 2016).
While Fusarium taxonomy is actively changing, with numerous 
species being described each year mostly based in molecular 
phylogenetic approaches, just a handful of studies deal with the 
distribution of Fusarium spp. in Citrus, and there is scant data 
for the Mediterranean basin. During a recent survey to identify 
fungal pathogens associated with Citrus in Europe, several 
fusarium-like isolates were obtained from diverse symptomatic 
tissues. This study was conducted in order to fully characterise 
these isolates using morphological and molecular characters. 
Furthermore, many papers discuss the dilemma to reproduce 
Fusarium diseases of citrus via artificial inoculations because of 
an uncertain interaction with biotic and abiotic factors (Graham 
et al. 1985, Dandurand & Menge 1993). In the present study, 
we thus only tested those Fusarium spp. isolated from twig 
and trunk canker disease symptoms, to determine their ability 
to induce those same disease symptoms.

MATERIALS AND METHODS

Sampling
During 2015 and 2016 surveys were performed in important 
citrus-producing regions of Europe. Twigs, trunks and crown 
sections were collected from plants showing cankers, dry root 
rot, wilt and decline.
Fragments (5 × 5 mm) of symptomatic tissues were cut from 
the leading edges of lesions, surface-sterilised in a sodium 
hypochlorite solution (10 %) for 20 s, followed by 70 % etha-
nol for 30 s, and rinsed three times in sterilised water. Tissue 
fragments were dried in sterilised filter paper, placed on 2 % 
potato dextrose agar (PDA) amended with 100 μg/mL penicil-
lin and 100 μg/mL streptomycin (PDA-PS) and incubated at 
25 °C until characteristic Fusarium colonies were observed, 
after which pure cultures were obtained by transferring single 
conidia to fresh PDA.

Fungal isolates
A total of 39 fusarium-like isolates were obtained from symp-
tomatic tissues of living Citrus spp. (Table 1).

Morphological characterisation
All isolates were characterised based on their cultural and 
morphological characteristics following protocols described 
by Aoki et al. (2003, 2005). Colony morphology, pigmentation, 
odour and growth rates were evaluated at 3, 4 and 7 d on 
PDA and oatmeal agar (OA) (recipes in Crous et al. 2009) at 
25 °C with a 12/12 h cool fluorescent light /dark cycle, while 
colony colours were rated according to Rayner (1970). Mycelial 
growth rates were evaluated according to protocols described 
elsewhere (Aoki et al. 2013), with some modifications; briefly, 
cultures were prepared on PDA and OA by transferring agar 
blocks of approximately 5 × 5 mm from cultures on SNA. These 
cultures were incubated in the dark at temperatures ranging 
from 6–40 °C in 3 °C intervals and growth rates were recorded 
after 1, 4 and 7 d. Radial mycelial growth rates were calculated 
as mean values per day by measuring the difference in colony 
size in 16 directions around the colony, all measurements 
were made in duplicate. Morphological observations included 
the presence and characteristics of sporodochia, sporodochial 
and microconidial size, shape and degree of septation; dispo-
sition of the microconidia; conidiophore length and branching 
patterns, nature of the conidiogenous cells and presence or 
absence of chlamydospores using synthetic nutrient poor agar 
(SNA; Nirenberg 1976) with and without sterilised pieces of 
carnation leaves (Snyder & Hansen 1947, Fisher et al. 1982), 
incubated at room temperature (approximately 20 °C) (Leslie 
& Summerell 2006), using the same photoperiod described 
above. Micromorphological characteristics were examined 
and photo-documented using water as mounting medium on 
a Nikon Eclipse 80i microscope with Differential Interference 
Contrast (DIC) optics and a Nikon AZ100 stereomicroscope, 
both equipped with a Nikon DS-Ri2 high definition colour digital 
cameras. Photographs and measurements were taken using 
the Nikon software NIS-elements D software v. 4.50. The length 
and width of at least 30 conidiogenous cells and 50 conidia were 
measured, and the mean values, SD plus maximum-minimum 
values were calculated. To facilitate the comparison of relevant 
morphological features of the micro- and macroconidia, com-
posite photo plates were assembled from separate photographs 
using PhotoShop CS5.1.
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DNA isolation, PCR and sequencing
Isolates were grown for 7 d on PDA at 25 °C using a 12/12 h 
photoperiod. Total DNA extraction was performed from fresh 
mycelium scrapped from the colony surface using the Wizard® 
Genomic DNA purification Kit (Promega Corporation, Madison, 
WI, USA), according to the manufacturer’s instructions. Frag-
ments of the calmodulin (CAM), the intergenic spacer region 
of the rDNA (IGS), the internal transcribed spacer region of 
the rDNA (ITS), a partial fragment of the large subunit of the 
rDNA (LSU) (spanning the variable domains D1 to D3), RNA 
polymerase largest subunit (RPB1), RNA polymerase second 
largest subunit (RPB2), the translation elongation factor 1-alpha 
(EF-1α) and beta-tubulin (TUB) genes were amplified and se-
quenced using PCR protocols described elsewhere (O’Donnell 
et al. 1998a, 2007, 2009a, b, 2010, Geiser et al. 2004) using 
the primer pairs CL1/CL2 for CAM (O’Donnell et al. 2009b), 
iNL11/iCNS1 and the internal sequencing primers NLa/CNSa 
for IGS (O’Donnell et al. 2009a), ITS4/ITS5 for ITS (White et al. 
1990), LR0R/LR5 for LSU (Vilgalys & Hester 1990, Vilgalys & 
Sun 1994), Fa/G2R for RPB1 (O’Donnell et al. 2010), 5f2/7cr 
plus 7cf /11ar for RPB2 (O’Donnell et al. 2010), EF-1/EF-2 for 
EF-1α (O’Donnell et al. 1998b) and 2Fd/4Rd for TUB (Wouden-
berg et al. 2009). Consensus sequences were assembled from 
forward and reverse sequences using Seqman Pro v. 10.0.1 
(DNASTAR, Madison, WI, USA). All sequences generated in 
this study were deposited in GenBank (Table 1). A further 585 
DNA sequences representing 191 strains were retrieved from 
GenBank and included in the phylogenetic analyses (Table 2).

Phylogenetic analysis
Sequences of the individual loci were aligned using MAFFT on 
the web server of the European Bioinformatics Institute (EMBL-
EBI) (http://www.ebi.ac.uk/Tools/msa/mafft/) (Katoh & Stand-
ley 2013, Li et al. 2015), and the alignments were checked and 
manually corrected if necessary using MEGA v. 6.06 (Tamura 
et al. 2013). A first phylogenetic analysis was carried out using 

RPB2 sequences in order to assess the isolate distribution on 
the different species complexes of Fusarium and fusarium-like 
genera. To establish the identity of the isolates to the species 
level, different phylogenetic analyses were conducted first 
individually for each locus and then as multilocus sequence 
analyses using the following loci combinations: CAM, EF-1α, 
ITS, RPB1, RPB2 and TUB for members of the Fusarium fujiku­
roi species complex (FFSC) (O’Donnell et al. 2000, Edwards et 
al. 2016); RPB1, RPB2 and TUB, for members of the Fusarium 
lateritium species complex (FLSC); EF-1α, ITS, LSU, RPB1 
and RPB2 for isolates related with the Fusarium tricinctum spe-
cies complex (FTSC); and lastly EF-1α, ITS, LSU and RPB2 
for isolates belonging to Neocosmospora (formerly known as 
the Fusarium solani species complex, FSSC) (O’Donnell et 
al. 2008, Lombard et al. 2015, Chitrampalam & Nelson 2016). 
Isolates belonging to the FOSC were characterised based 
on their haplotype distribution using a two-locus dataset that 
included EF-1α and IGS sequences following the procedures 
and alignments of O’Donnell et al. (2009a). Phylogenetic infer-
ence was based on three independent algorithms: Maximum 
Parsimony, RaxML and Bayesian analyses. Maximum Parsi-
mony (MP) analyses were conducted using PAUP v. 4.0b10 
(Swofford 2002). Heuristic searches were carried out with 
1 000 random stepwise addition replicates, with tree bisection 
and reconstruction (TBR) branch swapping, with all characters 
treated as equally weighted and gaps treated as missing data. 
Branches of zero length were collapsed and all multiple, equally 
parsimonious trees were saved. Tree length, consistency index, 
retention index and rescaled consistency index (TL, CI, RI and 
RC, respectively) were calculated. Statistical support for the 
branches was evaluated using a bootstrap analysis (BS) of 
1 000 replicates.
RaxML (ML) and Bayesian analyses (BI) were run on the CIP-
RES Science Gateway portal (Miller et al. 2012) using RaxML 
v. 8.2.9 and MrBayes v. 3.2.6, respectively. Evolutionary models 
were calculated using MrModelTest v. 2.3 (Nylander 2004) 

Genus/species complex (SC)1 Locus2	 Number of sites	 Evolutionary model3

 	 Total	 Constant	 Variable	 Parsimony informative	

Overview tree RPB2	 1559	 882	 670	 607	 GTR+I+G

F. citricola SC EF-1α	 532	 335	 194	 164	 GTR+G
 ITS	 523	 428	 95	 91	 GTR+G
 LSU	 524	 481	 43	 39	 HKY+I
 RPB1	 605	 419	 186	 141	 SYM+G
 RPB2	 1501	 1005	 496	 454	 GTR+I+G

F. fujikuroi SC CAM	 655	 518	 134	 76	 SYM+G
 EF-1α	 455	 316	 134	 67	 SYM+G
 ITS	 459	 421	 38	 31	 SYM+I
 RPB1	 1279	 1038	 241	 141	 SYM+I+G
 RPB2	 1640	 1305	 335	 216	 GTR+I+G
 TUB	 507	 387	 119	 59	 SYM+G

F. oxysporum SC EF-1α	 621	 483	 138	 97	 NA
 IGS	 2220	 1422	 744	 552	 NA

F. lateritium SC EF-1α	 562	 435	 125	 85	 GTR+G
 RPB1	 628	 508	 120	 61	 SYM+G
 RPB2	 696	 540	 156	 77	 GTR+I+G

N. solani SC EF-1α	 328	 211	 108	 66	 GTR+G
 ITS	 503	 372	 127	 101	 GTR+I+G
 LSU	 482	 439	 43	 35	 GTR+I+G
 RPB2	 1648	 1212	 436	 361	 GTR+I+G
1	 F: Fusarium. N: Neocosmospora.
2	 CAM: Calmodulin; EF-1α: Translation elongation factor 1-alpha; IGS: Intergenic spacer region of the rDNA; ITS: Internal transcribed spacer regions of the rDNA and 5.8S region; LSU: Partial 

large subunit of the rDNA; RPB1: RNA polymerase largest subunit; RPB2: RNA polymerase second largest subunit; TUB: Beta-tubulin.
3	 G: Gamma distributed rate variation among sites; GTR: Generalised time-reversible; HKY: Hasegawa-Kishino-Yano; I: Proportion of invariable sites; SYM: Symmetrical model.

Table 3   Characteristics of the gene partitions used in this study.
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Fig. 1   One of 36 Maximum parsimony (MP) best-tree phylograms obtained from RPB2 sequences of 99 strains from Fusarium and Neocosmospora species. 
Branch lengths are proportional to distance. Numbers on the nodes are MP and RaxML bootstrap values above 70 % and Bayesian posterior probability values 
above 0.95. Full supported branches and names of each species complex is indicated in bold. Isolates obtained from Citrus are indicated in red font. Species 
complexes not including Citrus-derived isolates were collapsed. Ex-type and ex-epitype and ex-neotype strains are indicated with T, ET and NT, respectively. 
The names of known species complexes are shown in bold. The tree was rooted to Fusicolla aquaeductuum (NRRL 20686) and Fusicolla sp. (NRRL 22136).
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selecting the best-fit model for each data partition according 
to the Akaike criterion. The characteristics of the different gene 
partitions and evolutionary models employed in this study are 
summarised in Table 3. For ML analyses the default parameters 
were used and BS was carried out using the rapid bootstrapping 
algorithm with the automatic halt option. Bayesian analyses 
included two parallel runs of 5 000 000 generations, with the 
stop rule option and a sampling frequency set to each 1 000 
generations. The 50 % majority rule consensus trees and poste-
rior probability (PP) values were calculated after discarding the 
first 25 % of the samples as burn-in. The resulting trees were 
plotted using FigTree v. 1.4.2 (http://tree.bio.ed.ac.uk/software/
figtree). The individual gene datasets were assessed for incon-
gruence before being concatenated by checking their individual 
phylogenies for conflicts between clades with significant MP, ML 
and BI support (Mason-Gamer & Kellogg 1996, Wiens 1998). 
Alignments and phylogenetic trees derived from this study were 
uploaded to TreeBASE (www.treebase.org).

Genealogical concordance phylogenetic species 
recognition (GCPSR)
In order to determine the recombination level between the spe-
cies newly proposed here and its closest phylogenetic relatives, 
pairwise homoplasy index (PHI) tests were performed using 
the respective concatenated multilocus datasets (Bruen et al. 
2006). The tests were conducted using SplitsTree v. 4.14.4 (Hu-
son & Bryant 2006) as described by Quaedvlieg et al. (2014). 
A PHI value below 0.05 (Фw < 0.05) indicated the presence of 
significant recombination in the dataset. In addition, split graphs 
were constructed for visualisation of the relationship between 
closely related species.

Pathogenicity tests
Pathogenicity tests with the fungal species isolated from twig- 
and trunk-cankers were performed to satisfy Koch’s postulates. 
Six representative isolates were selected (F. citricola: CPC 
27805, CPC 27709; F. salinense: CPC 26403, CPC 26973; 
F. sarcochroum: CPC 27921, CPC 28116). The isolates were 
inoculated on potted 1-yr-old healthy Citrus limon (‘Femminello 

Fig. 2   One of five Maximum parsimony (MP) best-tree phylograms obtained from combined CAM, EF-1α, ITS, RPB1, RPB2 and TUB sequences of 39 strains 
belonging to the Fusarium fujikuroi species complex. Branch lengths are proportional to distance. Numbers on the nodes are MP and RaxML bootstrap values 
above 70 % and Bayesian posterior probability values above 0.95. Full supported branches are indicated in bold. Isolates obtained from Citrus are indicated 
in red font. Ex-type and ex-neotype strains are indicated with T and NT, respectively. Names of newly proposed taxa are shown in bold. The tree was rooted to 
Fusarium inflexum (NRRL 20433) and Fusarium oxysporum (NRRL 22902, NRRL 25387).
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Siracusano 2KR’), C. sinensis (‘Tarocco’) and C. reticulata 
(‘Tardivo di Ciaculli’) plants. Three plants for each isolate/citrus 
species combination were inoculated. Following the methods 
used in a recent citrus canker study (Adesemoye et al. 2014), 
five wounds per plant were made on twigs using a sterile blade. 
A 3-mm-diam mycelial plug from a 5–7-d-old culture growing on 
PDA was placed on each wound, and the inoculated area was 
covered with Parafilm® (American National Can, Chicago, IL, 
USA). The same number of wounds/plants were inoculated with 
sterile PDA plugs and served as controls. Inoculated plants and 
controls were incubated at 25 °C in moist chambers for 4 wk. 
Symptoms development was evaluated 4 wk after inoculation. 
In order to fulfil Koch’s postulates, the inoculated fungi were 
re-isolated from twigs showing lesions and the identity of the 
re-isolated fungi was confirmed by sequencing the RPB2 locus 
as described above.

RESULTS

In total 39 monosporic isolates resembling Fusarium spp. were 
collected from three Citrus species, i.e., Citrus limon, C. reti- 
culata and C. sinensis. Most isolates were associated with dry 
root rot of orange trees, 10 isolates were recovered from twig- 
and trunk-cankers and five from twig dieback. The majority of 
isolates (35) were obtained from samples collected in Italy, 
while three and one isolate were recovered, respectively, in 
Spain and Greece (Table 1).

Phylogenetic identification
A first phylogenetic analysis based in RPB2 sequences was 
conducted in order to position the isolates in the treated genera 
and their respective species complexes (Fig. 1). The analysis 
included sequences from 102 isolates spanning the different 
species complexes of the genera Fusarium and Neocosmo­
spora, and two outgroup taxa (Fusicolla aquaeductuum NRRL 
20686 and Fusicolla sp. NRRL 22136). From the 38 isolates 
obtained from Citrus species 23 belonged to Fusarium and 
were distributed in three known species complexes, i.e., FFSC 
(two isolates), FLSC (seven isolates) and FOSC (six isolates), 

eight isolates clustered in two clades forming a distinct, well-
supported, unnamed lineage sister to the FTSC. The remaining 
15 isolates nested within Neocosmospora, previously known 
as the Fusarium solani species complex (FSSC).
To further characterise the isolates belonging to FOSC, a haplo
type distribution analysis was performed following O’Donnell 
et al. (2009a). The six Fusarium isolates from Citrus belonged 
to six different haplotypes. The genotypes of the isolates CPC 
27194 and CPC 27196 were identical to the haplotypes 30 
and 113 of F. oxysporum f. sp. vasinfectum, while each of four 
isolates (CPC 27700, 27701, 27702, 28190) corresponded to 
new genetically distinct populations in FOSC (data not shown).
Seven isolates belonging to the FLSC were identified as Fusa­
rium sarcochroum based on a phylogenetic analysis comprising 
EF-1α, RPB1 and RPB2 loci (data not shown, all trees are 
available in TreeBASE).
The phylogenetic analysis of the isolates that belonged to 
the FFSC included sequences from six loci (CAM, EF-1α, 
ITS, RPB1, RPB2 and TUB) and 42 isolates including the 
outgroup taxa (F. inflexum NRRL 20433, F. oxysporum NRRL 
22902 and NRRL 25387), representing 33 taxa covering the 
three main phylogenetic clades known in this species complex 
(African, American and Asian clade sensu O’Donnell et al. 
1998a) (Fig. 2). The two Fusarium isolates from Citrus (CPC 
27188, 27189) clustered within the Asian clade of FFSC in a 
well-supported group sister to F. globosum and F. proliferatum. 
However, they were morphologically and genetically distinct 
from the latter species, as also confirmed by the PHI analysis 
(Фw = 1.0, Fig. 3a), and are described here as a new species, 
F. siculi.
In order to establish the phylogenetic position of the eight 
Fusarium isolates that formed a distinct new lineage in the 
original RPB2 phylogeny, we carried out a more inclusive analy-
sis, which included 3 685 bp from five loci (EF-1α, ITS, LSU, 
RPB1 and RPB2) and 41 isolates representing 19 phylogenetic 
species, covering four known related species complexes of 
Fusarium, i.e., F. chlamydosporum species complex (FCSC),  
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Fig. 3   Splitgraphs showing the results of the pairwise homoplasy index (PHI) test of newly described taxa and closely related species using both LogDet 
transformation and splits decomposition. PHI test results (Φw) < 0.05 indicate significant recombination within the dataset. a. Fusarium siculi sp. nov. in the 
F. fujikuroi species complex; b. Fusarium salinense and F. citricola sp. nov. in the F. citricola species complex; c, d. Neocosmospora croci and N. macrospora 
sp. nov., respectively, in N. solani species complex.
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F. heterosporum species complex (FHSC), F. incarnatum-
equiseti species complex (FIESC) and FTSC; a representative 
of a known related single lineage (F. nurragi) plus two outgroup 
taxa. MP, ML and BI produced topologically similar trees, of 
which one of the most parsimonious trees is shown in Fig. 4. The 
analysis supported six different highly supported lineages which 
corresponded to F. nurragi, four Fusarium species complexes, 
i.e.; FCSC, FIESC, FHSC, FTSC and a new fully-supported 
lineage, phylogenetically and morphologically divergent from 
its sister clades, which is named here the F. citricola species 
complex (FCCSC). Within FCCSC, the isolates from Citrus 
grouped into two distinct highly supported phylogenetic clades 
as also confirmed by PHI analysis (Фw = 0.8 in both cases, Fig. 
3b). These two clades are described below as the new species 
F. citricola and F. salinense.
The multilocus analysis of Neocosmospora encompassed 
2 961 bp from four loci (EF-1α, ITS, LSU and RPB2) and 83 
isolates spanning 47 known taxa and/or phylogenetic clades 
of this species complex (Fig. 5). The isolates from Citrus were 
distributed within four previously known clades: N. solani (six 
isolates), and the unnamed phylogenetic species FSSC 9 
(one isolate), FSSC 28 and FSSC 15 (two isolates, each). Two 
isolates (CPC 27186, 27187) clustered in a new phylogenetic 
lineage sister to F. striatum, while three isolates (CPC 28191, 
28192, 28193) formed a new lineage closely related to the 
phylogenetic species FSSC 26 and FSSC 27. The genealogical 
exclusivity of both new lineages was confirmed by the PHI test, 

showing no evidence of recombination (Фw = 1.0, Fig. 3c, d). 
They are described below as the new species Neocosmospora 
croci and N. macrospora.

Taxonomy

Fusarium citricola Guarnaccia, Sandoval-Denis & Crous, sp. 
nov. — MycoBank MB820246; Fig. 6

 Etymology. Refers to Citrus, the host genus from which this fungus was 
isolated.

Colonies on PDA growing in the dark with an average radial 
growth rate of 2.9–4.7 and 2.5–4.2 mm/d at 21 and 24 °C, 
respectively (reaching 35–43 mm diam in 7 d at 24 °C). Colony 
surface pale luteous to pale yellow (orange to red when incu-
bated in light), flat or slightly raised at the centre, radially stri-
ated, membranous to dusty, aerial mycelium scant or absent; 
colony margins irregular, lobate, serrate or filiform. Odour ab-
sent. Reverse pale luteous to straw. Diffusible pigment absent 
in the dark, an orange to red pigment sometimes present when 
incubated in the light. Colonies on OA incubated at 24 °C in the 
dark reaching a maximum of 60–62 mm diam at 7 d. Colony 
colour sulphur to pure yellow with white periphery, flat, radially 
finely striated, membranous and shiny to slightly velvety in 
the outer margins, aerial mycelium absent or scant, if present 
floccose, forming irregular rings at the periphery of the colony; 
margins regular, filiform. Reverse sulphur to pure yellow, without 
diffusible pigments. On SNA, hyphae hyaline, smooth-walled, 
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Fig. 6   Fusarium citricola CBS 142421. a–b. Colonies on PDA and OA, respectively, after 7 d at 24 °C in the dark; c. colony on PDA after 7 d at 24 °C under 
continuous white light; d–e. sporodochia formed on the surface of carnation leaves; f–h. sporodochial conidiophores and phialides; i– j. aerial conidiophores; 
k–n. aerial phialides; o. aerial conidia (microconidia); p. sporodochial conidia (macroconidia). — Scale bars = 10 µm (scale bar in j also applies to k–n).
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1–10 μm wide. Chlamydospores absent. Sporulation abundant 
from sporodochia, rarely from conidiophores formed directly on 
the substrate mycelium. Conidiophores in the aerial mycelium 
4–50 μm tall, unbranched or sparingly branched, bearing ter
minal or intercalary monophialides, often reduced to single 
phialides. Phialides subulate to subcylindrical, smooth- and 
thin-walled, 4–22.5 × 2–4.5 μm, without periclinal thickening; 
conidia hyaline, ellipsoidal to falcate, smooth- and thin-walled, 
0–3-septate, (6.4–)9.9–22.9(–32.6) × (3.1–)3.9–5.2(–6.5) 
μm, forming small false heads on the tips of monophialides. 
Sporodochia bright orange coloured, formed abundantly on car- 
nation leaves or the surface of the agar. Conidiophores in 
sporodochia 20–62.5 μm tall, verticillately branched and dense- 
ly packed, bearing apical whorls of 2–3 monophialides or 
rarely single lateral monophialides; sporodochial phialides 
subulate to subcylindrical, 10–18 × 2.5–4 μm, smooth- and 
thin-walled, sometimes showing a reduced and somewhat flared 
collarette. Sporodochial conidia falcate, curved dorsiventrally 
with almost parallel sides tapering slightly towards both ends, 
with a blunt to papillate, curved apical cell and a foot-like basal 
cell, (1–)2–4(–6)-septate, commonly with one or more empty 
cells hyaline, thin- and smooth-walled. One-septate conidia: 
(35.5–)36.2–39.9 × 4.1–4.8 μm; two-septate conidia: (33.7–) 
34–37.9(–39.9) × 4.4–5.7(–6.2) μm; three-septate conidia: 
(27.5–)32.3–37.3(–40.5) × (3.8–)4.2–5.1(–6) μm; four-sep-
tate conidia: (32.1–)34.4–39.8(–42.5) × (4.1–)4.6–5.4(–5.7) 
μm; six-septate conidia: 39–41.9(–42.5) × (4.4–)4.6–5.5 μm.
 Cardinal temperatures for growth — Minimum 12 °C, maxi-
mum 30 °C, optimal 18–21 °C.

 Specimens examined. Italy, Cosenza, Rocca Imperiale, from Citrus limon 
twigs, 9 June 2015, V. Guarnaccia (CPC 27067); Taranto, Massafra, from 
Citrus sinensis twigs, 9 June 2015, V. Guarnaccia (CPC 27709); Cosenza, 
Rocca Imperiale, from Citrus reticulata ‘Caffin’ crown, 10 Aug. 2015, V. Guar­
naccia (CBS H-23020, holotype, dried culture on SNA with carnation leaves, 
culture ex-type CBS 142421 = CPC 27805); Cosenza, Rocca Imperiale, from 
Citrus reticulata ‘Caffin’ crown, 1 Sept. 2015, V. Guarnaccia (CPC 27813).

 Notes — Fusarium citricola was recovered from diverse 
Citrus species with advanced canker symptoms in Apulia and 
Calabria, Southern Italy. The role of this species in the canker 
disease was confirmed by pathogenicity tests.
Fusarium citricola has similar morphological characters to F. sa­
linense, with both species forming the new lineage here named 
FCCSC (see general notes under F. salinense). The former 
species can be distinguished by its slightly smaller sporodochial 
conidia, often with a gentle and symmetrical dorsiventral cur-
vature, produced on somewhat larger sporodochial phialides, 
and its 0–3-septate microconidia (vs the often asymmetri- 
cally curved macroconidia and 0–1(–2)-septate microconidia in  
F. salinense).

Fusarium salinense Sandoval-Denis, Guarnaccia & Polizzi, 
sp. nov. — MycoBank MB820245; Fig. 7

 Etymology. Refers to Salina, one of the Aeolian Islands, in the north-
eastern coast of Sicily, where the ex-type strain of this fungus was collected.

Colonies on PDA growing in the dark with an average radial 
growth rate of 3.1–4.7 and 2.8–5.2 mm/d at 21 and 24 °C, 
respectively (reaching 39–43 mm diam in 7 d at 24 °C). Colony 
surface pale luteous to sulphur yellow with white to pale lute-
ous margins, flat, velvety to felty with abundant floccose aerial 
mycelium; colony margins irregular, undulate to lobate. Odour 
strongly mouldy. Reverse pale luteous to orange toward the 
centre of the colony. Yellow diffusible pigment sometimes pre-
sent, while red colonies and diffusible pigments occur when 
incubated in light. Colonies on OA incubated at 24 °C in the 
dark reaching a maximum of 65–70 mm diam in 7 d. Colony 
colour pale luteous, flat, membranous to slightly velvety or 

cottony, aerial mycelium scarce or absent; margins regular, 
filiform. Reverse pale luteous without diffusible pigments. 
On SNA, growth almost entirely pionnotal; hyphae hyaline, 
smooth-walled, 1–10 μm wide. Chlamydospores absent, but 
rounded, thin-walled hyphal swellings sometimes present in 
old cultures. Sporulation abundant from sporodochia, rarely 
from conidiophores formed directly on the substrate mycelium. 
Conidiophores in the aerial mycelium 25–150 μm tall, irregularly 
branched, bearing terminal or lateral monophialides; phialides 
subulate, ampulliform, subcylindrical to doliiform, smooth- and 
thin-walled, often reduced to small phialidic pegs, 7.5–23 × 
2.5–5 μm, without periclinal thickening; collarettes small and 
barely visible or lacking; conidia hyaline, oval, ellipsoidal to 
falcate, smooth- and thin-walled, 0–1(–2)-septate, (4.7–)9.2–
17.2(–23) × (2.8–)4–5.5(–7) μm, single or forming small false 
heads. Sporodochia flesh, salmon to orange coloured, formed 
abundantly on the surface of the agar and on carnation leaves. 
Conidiophores in sporodochia 42.5–106 μm tall, densely and 
irregularly branched, often bi- or tri-verticillately, sometimes 
slightly stipitate, bearing 1–2 terminal, rarely lateral monophial-
ides; sporodochial phialides subulate to subcylindrical, 10–22.5 
× 2.5–4 μm, smooth- and thin-walled, often with a minute apical 
collarette. Sporodochial conidia falcate, slender, with a gentle 
curvature and nearly parallel dorsiventral lines or an unequal 
curvature, slightly more pronounced in the upper part of the 
spore, tapering slightly towards the basal end, with a papillate 
and curved apical cell and a barely notched to foot-like basal 
cell, (2–)3–4(–5)-septate, often showing one or more empty 
cells, hyaline, thin- and smooth-walled. Three-septate conidia: 
(19.8–)30.7–41.3(–45.6) × (2.8–)3.6–5.2(–6.2) μm; four-
septate conidia: (36.5–)39–44.5(–45.4) × (4.1–)4.4–5.5(–6.1)  
μm; five-septate conidia: (41.8–)42.9–48(–49.1) × 5.5–5.8 
(–5.9) μm.
 Cardinal temperatures for growth — Minimum 12 °C, maxi-
mum 33 °C, optimal 21–24 °C.

 Specimens examined. Italy, Sicily, Catania, Riposto, from Citrus sinensis 
‘Valencia’ twigs, 2 Mar. 2015, V. Guarnaccia (CPC 26403); Sicily, Catania, 
Riposto, from Citrus sinensis ‘Valencia’ twigs, 2 Mar. 2015, V. Guarnaccia 
(CPC 26457); Sicily, Messina, Leni, from Citrus sinensis twigs, 5 June 2015, 
V. Guarnaccia (CBS H-23019, holotype, dried culture on SNA with carnation 
leaves, culture ex-type CBS 142420 = CPC 26973).

 Notes — Fusarium salinense was isolated from two locations 
in close proximity in Sicily and Salina, one of the Aeolian Is-
lands, which might suggest some level of geographical isolation 
restricted to the Tyrrhenian Sea. It was a prominent pathogen, 
producing canker symptoms on three different Citrus species.
Fusarium salinense and F. citricola, also described here, 
constitute the Fusarium citricola species complex (FCCSC), 
characterised by abundant production of bright orange sporo-
dochia, the presence of red pigments when incubated under 
continuous white light and the reduced size of its aerial conidio
phores and phialides. Fusarium salinense produces sparingly 
branched conidiophores in the aerial mycelium, especially in 
young cultures, but its growth soon becomes almost entirely 
pionnotal, while some aerial conidiation can still be observed 
from reduced phialides or phialidic pegs. The latter feature is 
somewhat reminiscent of Bisifusarium which, however, differs 
in the absence of microconidia and sporodochia, its distinctly 
shaped, curved and short macroconidia, and by presenting a 
yeast-like growth on PDA, also being phylogenetically distant 
(Schroers et al. 2009).
Other closely related taxa include species from the phylogeneti-
cally allied FTSC from which F. salinense differs by its gently 
curved macroconidia, and the absence of pyriform microconidia 
and chlamydospores. The shape and size of the macroconidia 
and the characteristics of the sporodochia also aligns F. salin­
ense with species in the FCSC. However, a clear phylogenetic 
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Fig. 7   Fusarium salinense CBS 142420. a–b. Colonies on PDA and OA, respectively, after 7 d at 24 °C in the dark; c. colony on PDA after 7 d at 24 °C under 
continuous white light; d. sporodochia formed on the surface of carnation leaves; e. sporodochia formed on the agar surface; f–g. sporodochial conidiophores; 
h. aerial phialides; i. aerial conidia (microconidia); j. sporodochial conidia (macroconidia). — Scale bars = 10 µm.
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separation exists between the two species complexes as well 
as clear morphological differences as the rounded, almost papil-
late apical cell in F. salinense (vs pointed in FCSC), the scant 
production of microconidia and the absence of chlamydospores.
Fusarium salinense and its closest phylogenetic ally F. citricola 
can be distinguished by the formation, in the former species, of 
shorter sporodochial phialides and slightly longer and robust 
macroconidia often with an unequal dorsiventral curvature.

Fusarium siculi Sandoval-Denis, Guarnaccia & Polizzi, sp. 
nov. — MycoBank MB820248; Fig. 8

 Etymology. From Latin Siculi, ‘Sicels’, an old italic tribe that inhabited 
Sicily, and from which the name of the island has derived.

Colonies on PDA growing in the dark with an average radial 
growth rate of 5.1–6.1 and 5.5–6.8 mm/d at 21 and 24 °C, 
respectively (reaching 77–90 mm diam in 7 d at 24 °C). Colony 
colour peach to pale rose with saffron margins, flat and radi-
ally striated, membranous with scant loose aerial mycelium. 
Odour strong, mouldy. Margins filiform to arachnoid. Reverse 
at first white, turning pale orange, luteous to scarlet coloured. 
Colonies on OA incubated at 24 °C in the dark reaching a 
maximum of 75–79 mm diam at 7 d. Colony colour salmon to 
coral in irregular patches, flat, membranous, aerial mycelium 
scantly present as patches or absent; margins regular and 
fimbriate. Reverse flesh, coral to pale rust coloured with slight 
production of a pale rust diffusible pigment. On SNA, hyphae 
hyaline, smooth-walled, 0.5–11.5 μm wide. Chlamydospores 
absent. Sporulation abundant from aerial conidiophores or 
sporodochia. Conidiophores in the aerial mycelium or erect, 
47–165 × 2–5.5 μm, simple or sparsely branched, often branch- 
ing verticillately or less common sympodially, bearing terminal 
mono- and polyphialides, or more rarely intercalary phialides; 
phialides short acicular, subulate to subcylindrical, smooth- and 
thin-walled, 16.5–33.5 × 2–4 μm, without periclinal thickening 
or distinct collarettes, rarely proliferating subapically; conidia 
subcylindrical to clavate, often with a somewhat flattened base, 
straight or slightly curved, smooth- and thin-walled, 0(–1)-sep-
tate, (5.3–)8.5–12.3(–16.8) × (2.3–)2.9–3.5(–3.8) μm, ar-
ranged in long basipetal chains that quickly collapse into false 
heads. Sporodochia saffron to apricot coloured, formed on 
the surface of carnation leaves and often almost completely 
covered by aerial mycelium. Conidiophores in sporodochia 
29.5–45.5 μm tall, branched, mono- or biverticillate, bearing 
1–2 terminal monophialides; sporodochial phialides subulate, 
lageniform or cylindrical, tapering abruptly toward apex, 9–22 
× 2–4.5 μm often with a minute collarette; sporodochial conidia 
falcate, slender, straight or slightly curved, tapering towards 
both ends, with a blunt and often curved apical cell and a 
foot-like to slightly notched basal cell, 3–5-septate, hyaline, 
thin- and smooth-walled. Three-septate conidia: (27.1–)34.4–
47.3(–56.1) × (3–)3.3–3.8(–4.4) μm; four-septate conidia: 
(41.4–)43.4–49.6(–50.8) × (3.4–)3.6–4.1 μm; five-septate 
conidia: (48–)48.3–53(–53.1) × 3.4–3.7(–3.8) μm.
 Cardinal temperatures for growth — Minimum 12 °C, maxi-
mum 36 °C, optimal 21–27 °C.

 Specimens examined. Italy, Sicily, Catania, Paternó, from Citrus sinensis 
crown, 9 Mar. 2015, V. Guarnaccia (CBS H-23021, holotype, dried culture on 
SNA with carnation leaves, culture ex-type CBS 142422 = CPC 27188); Sicily, 
Catania, Paternó, from Citrus sinensis crown, 9 Mar. 2015, V. Guarnaccia 
(CPC 28189).

 Notes — Fusarium siculi is phylogenetically related to F. glo­
bosum, a species known from maize and wheat from Africa and 
Asia (Rheeder et al. 1996, Aoki & Nirenberg 1999). However, 
the two species are morphologically clearly differentiated by 
the presence of clavate and globose microconidia in F. globo­
sum. It is known that the incubation conditions can influence 

conidial development in the latter species, with the production 
of globose conidia being suppressed by continuous exposure 
to black light (Aoki & Nirenberg 1999, Leslie & Summerell 
2006). We confirmed the production of globose conidia by all 
F. globosum strains available in the CBS culture collection, 
including the ex-type strain (CBS 428.97) under the incuba-
tion conditions used in this study. Additionally, F. siculi can still 
easily be recognised considering the degree of septation of 
its clavate conidia (0–1-septate vs 0–3-septate in F. globo­
sum). Fusarium siculi also resembles other species in FFSC 
producing mono- and polyphialides, and clavate, 0–1-septate 
microconidia arranged in chains and false heads like F. fujikuroi,  
F. nygamai or F. pseudoanthophilum. Nevertheless, F. fujiku­
roi and F. pseudoanthophilum produce additional obovoid to 
pyriform microconidia, a character not seen in F. siculi, while 
the latter species can be distinguished from F. nygamai by the 
absence of chlamydospores. In addition to the morphological 
differences and the clear phylogenetic delimitation, F. siculi dif-
fers in its host association, with none of the species mentioned 
above yet reported from Citrus (Farr & Rossman 2017).

Neocosmospora croci Guarnaccia, Sandoval-Denis & Crous, 
sp. nov. — MycoBank MB820251; Fig. 9

 Etymology. From Latin crocum ‘saffron’, referring to the production of red 
diffusible pigments at high temperatures.

Colonies on PDA growing in the dark with an average radial 
growth rate of 2.5–3.8 and 2–4.8 mm/d at 21 and 24 °C, re-
spectively (reaching 52–54 mm diam in 7 d at 24 °C). Colony 
colour at first white, becoming straw to pale buff; flat, at first 
membranous, becoming felty with scant aerial mycelium; mar-
gins regular and fimbriate; odour absent. Reverse white to 
straw coloured without diffusible pigments. A slight production 
of a pale saffron to saffron diffusible pigment may occur when 
incubated in the dark at 36 °C. Colonies on OA incubated at 
24 °C in the dark reaching a maximum of 33–37 mm diam at 
7 d. Colony colour at first white, becoming straw, flat, mem-
branous and shiny, aerial mycelium absent; margins regular 
and fimbriate. Reverse white to pale luteous, without diffusible 
pigments. On SNA, hyphae hyaline, smooth-walled, 0.5–12 
μm wide. Chlamydospores scarcely produced in hyphae, sub-
globose to globose, hyaline to subhyaline and smooth-walled, 
terminal and intercalary, often in pairs or in chains, 5–9.5 μm 
diam. Sporulation abundant from erect conidiophores formed 
on the agar surface or aggregated in sporodochia. Conidio­
phores in the aerial mycelium 54.5–94 × 3.5–5.5 μm, mostly 
unbranched, rarely basally dichotomously branched, forming 
monophialides on the apices; phialides slender, subulate to 
subcylindrical, monophialidic, smooth- and thin-walled, 18–63.5 
× 2–5 μm, with slight periclinal thickening at the tip and a short 
flared apical collarette; conidia of two types: a) obovoid, ellipsoi-
dal to cylindrical, sometimes gently curved becoming reniform 
to allantoid, hyaline, smooth and thin-walled, 0–1(–3)-septate, 
(5.2–)7.2–17.2(–33.9) × (2.4–)3.2–4.8(–6.5) μm, arranged in 
slimy heads at the tip of phialides; and b) cylindrical to falcate, 
formed on the agar surface and morphologically indistinguish-
able from sporodochial conidia. Sporodochia cream coloured, 
scantly produced on the surface of carnation leaves. Conidio­
phores in sporodochia 30–82 μm tall, irregularly branched, 
short stipitate, bearing terminal monophialides; sporodochial 
phialides subulate to subcylindrical, smooth- and thin-walled, 
11.5–27.5 × 3.5–5.5 μm, with periclinal thickening and a small, 
flared collarette; sporodochial conidia cylindrical to falcate, 
gently curved with nearly symmetrical dorsal and ventral lines 
or slightly wider at the middle or apical part, typically with a blunt 
and almost rounded apical cell and a barely notched foot cell, 
3–5-septate, hyaline, thick- and smooth-walled. Three-septate 
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Fig. 8   Fusarium siculi CBS 142422. a–b. Colonies on PDA and OA, respectively, after 7 d at 24 °C in the dark; c. sporodochia formed on the surface of 
carnation leaves; d–e. aerial conidiophores; f. sporodochial conidiophores formed on the surface of carnation leaves; g–i. aerial phialides and conidia; j. aerial 
conidia (microconidia); k. sporodochial conidia (macroconidia). — Scale bars = 10 µm.
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Fig. 9   Neocosmospora croci CBS 142423. a–b. Colonies on PDA and OA, respectively, after 7 d at 24 °C in the dark; c–d. sporodochia formed on the sur-
face of carnation leaves; e–h. aerial conidiophores; i– j. sporodochial conidiophores and phialides; k–l. chlamydospores; m–o, aerial phialides and conidia; 
p. aerial conidia (microconidia); q. sporodochial conidia (macroconidia). — Scale bars: k, l = 5 µm, all others = 10 µm.
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Fig. 10   Neocosmospora macrospora CBS 142424. a–b. Colonies on PDA and OA, respectively, after 7 d at 24 °C in the dark; c–e. sporodochia formed on 
the surface of carnation leaves; f– i. aerial conidiophores; j. sporodochial conidiophores and phialides; k. chlamydospores; l–n. aerial phialides and conidia; 
o. aerial conidia (microconidia); p. sporodochial conidia (macroconidia). — Scale bars: k = 5 µm, all others = 10 µm.
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conidia: (32.7–)33.4–43.8(–52.6) × (5.3–)5.4–6(–6.2) μm; 
four-septate conidia: (42.9–)46.9–53.7(–56.2) × (5.3–)5.6–
6.2(–6.8) μm; five-septate conidia: (47.8–)51.7–60.5(–65.3) 
× (5–)5.7–6.3(–6.6) μm.
 Cardinal temperatures for growth — Minimum 9 °C, maxi-
mum 36 °C, optimal 24–30 °C.

 Specimens examined. Italy, Sicily, Catania, Paternó, from Citrus sinensis 
crown, 9 Mar. 2015, V. Guarnaccia (CBS H-23022, holotype, dried culture on 
SNA with carnation leaves, culture ex-type CBS 142423 = CPC 27186); Sicily, 
Catania, Paternó, from Citrus sinensis crown, 9 Mar. 2015, V. Guarnaccia 
(CPC 27187).

 Notes — Neocosmospora croci belongs to clade 3 of Neo­
cosmospora, a group including important plant pathogens 
and human and animal opportunistic parasites (O’Donnell et  
al. 2008, Schroers et al. 2016). It matches in all aspects with 
the morphological characteristics of the Neocosmospora 
(Fusarium) solani species complex, known to include several 
cryptic species with overlapping morphological traits (Schroers  
et al. 2016). However, N. croci can be distinguished from  
N. solani s.str. by the slower growth rates on artificial media,  
the presence of a saffron diffusible pigment when incubated on 
PDA at 36 °C and its somewhat reduced conidiophores (54.5–
94 × 3.5–5.5 μm vs (27–)67–123(–230) × (2–)3.5–5(–7) μm 
in N. solani) (Schroers et al. 2016).

Neocosmospora macrospora Sandoval-Denis, Guarnaccia & 
Polizzi, sp. nov. — MycoBank MB820253; Fig. 10

 Etymology. Refers to the large macroconidia produced by this species.

Colonies on PDA growing in the dark with an average radial 
growth rate of 2.5–5 and 3–6.1 mm/d at 21 and 24 °C, respec
tively (reaching 66–70 mm diam in 7 d at 24 °C). Colony colour 
at first white, becoming pale grey to pale buff with scarce inter-
leaved red coloured hyphae; flat to slightly umbonate, felty to 
cottony. Aerial mycelium abundant, loose to densely floccose; 
margins regular and fimbriate; odour absent or mouldy. Reverse 
white, pale yellow, straw, peach to pale saffron coloured at the 
centre, a luteous to saffron coloured diffusible pigment can be 
present when incubated at temperatures equal or above 30 °C. 
Colonies on OA incubated at 24 °C in the dark reaching a maxi-
mum of 60–68 mm diam at 7 d. Colony surface pale luteous, at 
first flat, membranous and glabrous becoming felty to cottony 
with the formation of an elevated marginal ring composed of 
white loose and floccose aerial mycelium; margins regular, 
fimbriate to crenate. Reverse pale luteous. On SNA, hyphae 
hyaline, smooth-walled, 1–10 μm wide. Chlamydospores can 
be formed in the hyphae, globose, subglobose to oval, sub-
hyaline, smooth-walled, terminal or intercalary, solitary, in pairs 
or catenate, 5–8.5 × 4.5–8 μm. Sporulation scant from erect 
conidiophores or aggregated in sporodochia. Conidiophores in 
aerial mycelium 56.5–96.5 × 3–4.5 μm, mostly unbranched or 
sparingly and irregularly branched, forming terminal phialides; 
phialides subulate to subcylindrical, straight to flexuous, mono-
phialidic, smooth- and thin-walled, 19–67 × 2–5 μm, with a 
minute flared apical collarette; conidia short obovate, clavate to 
cylindrical, straight or gently curved, hyaline or showing pale yel-
low intracellular inclusions, smooth- and thin-walled, 0(–1)-sep-
tate, (5.6–)6.6–9.9(–13.2) × (2.2–)2.7–6.3(–9.7) μm, arranged 
in slimy heads at the tip of monophialides. Sporodochia cream 
to pale pink coloured, produced on the surface of carnation 
leaves. Conidiophores in sporodochia 28–123 μm tall, densely 
and irregularly or verticillately branched, bearing 1–2 apical 
monophialides; sporodochial phialides short lageniform, sub-
cylindrical to doliiform, 10–23 × 2–4.5 μm, often with periclinal 
thickening at the tip and a small flared collarette; sporodochial 
conidia cylindrical to falcate and curved with nearly symmetrical 
dorsal and ventral lines or finely tapering towards the basal and 

apical part, with a blunt to slightly papillate apical cell and a 
well-developed foot-shaped basal cell, 3–9-septate (commonly 
7-septate), hyaline, thick- and smooth-walled. Three-septate co-
nidia: (68–)72.1–77.1(–75.7) × 5.7–6 μm; four-septate conidia: 
(73.5–)74–83.9(–84.5) × 5.9–6.3 μm; five-septate conidia: 
(59.3–)61–76.6(–85.3) × (5.2–)5.5–6(–6.2) μm; six-septate 
conidia: (73.8–)74.5–81.4(–84) × (5.3–)5.6–6.3(–6.5) μm; 
seven-septate conidia: (72–)75.2–84.1(–89.2) × (5.7–)5.9–
6.4(–6.7) μm; eight-septate conidia: (79.4–)81.9–86.3(–87) 
× (5.8–)5.9–6.4(–6.6) μm; nine-septate conidia: (86–)86.3–
89.7(–90) × 5.4–6.1(–6.2) μm.
 Cardinal temperatures for growth — Minimum 9 °C, maxi-
mum 36 °C, optimal 21–30 °C.

 Specimens examined. Italy, Sicily, Catania, Guardia, from Citrus sinensis 
crown, 9 Mar. 2015, V. Guarnaccia (CBS H-23023, holotype, dried culture on 
SNA with carnation leaves, culture ex-type CBS 142424 = CPC 28191); Sicily, 
Catania, Guardia, from Citrus sinensis crown, 9 Mar. 2015, V. Guarnaccia 
(CPC 28192); Sicily, Catania, Guardia, from Citrus sinensis crown, 9 Mar. 
2015, V. Guarnaccia (CPC 28193).

 Notes — Neocosmospora macrospora was isolated from 
Citrus sinensis in Catania province, Italy. The new species is 
totally divergent from the traditional morphological concept of  
N. solani s.lat. (Wollenweber 1913, Wollenweber & Reinking 
1935 Snyder & Hansen 1940), differing from most currently 
accepted taxa in Neocosmospora by the presence of large 
3–9-septate (commonly 7-septate) sporodochial conidia. 
Other taxa of this complex producing long multiseptate sporo-
dochial conidia are two species not yet formally transferred to 
Neocosmospora, ‘Fusarium’ ensiforme and ‘F’. eumartii; and 
N. pseudensiformis (Carpenter 1915, Wollenweber & Rein- 
king 1925, Nalim et al. 2011). However, ‘F’. ensiforme and 
N. pseudensiformis produce macroconidia with up to seven 
and eight septa, respectively, while those in ‘F’. eumartii are 
commonly 5–7-septate, but rarely 8–9-septate (Gerlach & 
Nirenberg 1982, Domsch et al. 2007). In contrast, nine-septate 
macroconidia are a commonly observed feature of N. macro­
spora, being also longer (up to 90 μm long vs up to 81 μm 
long in ‘F’. ensiforme; and up to 85 μm long in ‘F’. eumartii and  
N. pseudensiformis).
Neocosmospora macrospora is also reminiscent of ‘Fusarium’ 
decemcellulare, particularly in the macroconidial features; 
however, the latter species produces aseptate microconidia 
arranged in long chains and an Albonectria sexual morph  
(A. rigidiuscula), being also phylogenetically distant (Gräfenhan 
et al. 2011, Schroers et al. 2011, O’Donnell et al. 2013). 

Pathogenicity
The four tested isolates of F. citricola and F. salinense were 
pathogenic to the three Citrus hosts used. Monosporic isola-
tions of the causal agent from the lesions had identical RPB2 
sequences to those of the ex-type strains of F. citricola and  
F. salinense (CBS 142421 and CBS 142420, respectively). The 
inoculated twigs developed identical cankers to those detected 
in the orchards, thus fulfilling Koch’s postulates (Fig. 11). Canker 
and internal discolouration symptoms were observed corre-
sponding to inoculation points. On the contrary, no symptoms 
were observed on control plants and on plants inoculated with 
isolates of F. sarcochroum. No evident difference in aggres-
siveness was observed among the isolates.

DISCUSSION

Molecular phylogenetic and morphological analyses were used 
to evaluate the diversity of Fusarium and fusarium-like species 
from Citrus in the Mediterranean basin, focusing especially on 
Southern Italy.
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These fungi are well established in the Mediterranean environ-
ment in association with significant agricultural crop diseases 
(Wong & Jeffries 2006, Vitale et al. 2014). In Europe, different 
Fusarium species are reported as pathogens of citrus, i.e., F. oxy- 
sporum, F. proliferatum, F. sambucinum and F. solani s.lat. 
(Malikoutsaki-Mathioudi et al. 1987, Polizzi et al. 1992, Yaseen 
& D'Onghia 2012). Citrus is the most important agricultural crop 
in Southern Italy, and is already compromised by a range of 
other fungal pathogens (Aiello et al. 2015), and fusaria repre-
sent a further serious threat to this crop.
Six Fusarium and five Neocosmospora species were isolated 
from symptomatic trees in three Mediterranean countries, all 
isolated from symptomatic Citrus tissues. However, consider-
ing the narrow geographic area studied, it is likely that many 
other species would also be isolated if a wider sampling area 
was surveyed.
Three of the species newly described here (F. siculi, N. croci 
and N. macrospora) and five known species (F. ensiforme,  
F. oxysporum, N. solani, and the unnamed phylogenetic spe-
cies Neocosmospora sp. FSSC 9 and Neocosmospora sp. 
FSSC 28) were associated with dry root rot of orange trees in 
our survey. Of these, only F. oxysporum, F. proliferatum and 
N. solani s.str. were considered pathogens associated with this 

disease prior to the present study (Menge 1988, Adesemoye 
et al. 2011). Our results reveal a large diversity of Fusarium 
species spanning several species complexes, associated with 
dry root rot in a restricted area of Southern Italy, and major 
and minor Italian islands. Considering the uncertainty of a 
well-established method to artificially reproduce this disease 
(Graham et al. 1985, Dandurand & Menge 1993), the patho-
genicity of these eight fusaria could not be tested in the present 
study. Nevertheless, we demonstrated their ability to produce 
cankers on Citrus sinensis stem tissues. Further surveys in 
other citrus-producing areas of the globe, more Fusarium isola-
tions and studies on pathogenicity in association with abiotic 
factors, should be performed.
Fusarium sarcochroum was isolated from lemon and mandarin 
twigs showing dieback, being found on citrus for the first time 
in Italy and Spain in the present study; though, it was already 
reported from Greece (Pantidou 1973). We confirm the ability 
of this species to colonise several Citrus spp. as endophyte. 
However, even though F. sarcochroum, F. citricola and F. sa­
linense were recovered from citrus cankers, we were able to 
confirm pathogenicity on multiple hosts only for the latter two 
species. Fusarium salinense is described in the present study 
as causing cankers on twigs of C. sinensis in Sicily and the 

Fig. 11   Natural (a–c) and artificial symptoms (d–g) on citrus with F. citricola species complex spp. associated. a. Trunk canker; b. injured crown of orange 
tree sampled; c. canker on lemon twigs with gum exudation; d–e. external and internal canker caused by F. salinense inoculation; f–g. internal discoloration 
of twigs inoculated with F. citricola.
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Aeolian Islands, while F. citricola was recovered in other south-
ern regions of Italy, on multiple Citrus spp., causing cankers 
on different woody organs of these plant hosts. These results 
suggest a geographical distinction between the species. How-
ever, more surveys are needed to clarify their host specificity. 
Furthermore, these species can be added to other citrus canker 
causing pathogens reported worldwide (Adesemoye et al. 2014, 
Mayorquin et al. 2016).
The results of our molecular analyses indicate that the two 
new species, F. citricola and F. salinense, not only represent 
new taxa but constitute a novel lineage in Fusarium, closely 
related to the FTSC, here designated as FCCSC. The reduced 
production of aerial microconidia on short phialides or phialidic 
pegs, the abundant bright orange sporodochia and the shape 
of its sporodochial conidia are characters that compare FCCSC 
morphologically with other species complexes in Fusarium such 
as the FCSC, the F. graminearum species complex (FGSC) or 
the Fusarium sambucinum species complex (FSASC). How-
ever, clear differences do exist, particularly in the robustness, 
degree of septation and curvature of the macroconidia, while 
microconidia are always lacking in FGSC and are an uncommon 
feature in FSASC. Species in FTSC, the closest phylogenetic 
relatives, share similar cultural characteristics with FCCSC 
like the production of red pigments on PDA; nevertheless, the 
newly proposed species do not produce pyriform conidia or 
chlamydospores as many of the currently described species in 
FTSC, which also with the exception of F. torulosum, are char-
acterised by the production of strongly curved to lunate conidia 
with pointed ends, differing from the gently curved conidia in 
FCCSC. In addition to the morphological traits, species in the 
new lineage show considerable ecological differences allowing 
for its clear delimitation. Both species in this complex seemed to 
be confined to particular geographical regions in Italy. Fusarium 
salinense was isolated from two different locations in Sicily and 
Salina (Aeolian Islands), from the same host in two independent 
collections, and was demonstrated to be pathogenic to Citrus, 
as supported by our pathogenicity tests. Fusarium citricola, 
however, was isolated from two regions in southern continental 
Italy, also appearing to be a prominent canker pathogen on 
many different Citrus species. In contrast, species in FTSC 
are common in temperate areas where they are mostly weak 
pathogens causing foot and root rot of cereals (Yli-Mattila et 
al. 2002, Leslie & Summerell 2006). Some species in FTSC 
have been reported previously from Citrus in Asia and USA, 
like F. acuminatum and F. avenaceum (Gerlach & Ershad 1970, 
Tai 1979, French 1987, 1989); however, there is no certainty 
about their true pathogenicity to this host, while the identity of 
the isolates has been confirmed by DNA sequencing for only 
a limited number of cases (Nalim et al. 2009).
Although F. siculi was isolated from symptomatic crowns of 
Citrus sinensis, we were unable to confirm its pathogenicity 
to this host given the difficulties in replicating disease symp-
toms. Fusarium siculi is nested within the FFSC, a species-rich 
complex that includes many species of economic significance, 
mycotoxigenic species and agent of plant disease mostly 
related to graminicolous plants and soil, but also includes im-
portant tree pathogenic species affecting woody organs, such 
as Fusarium circinatum, agent of pitch canker of Pinus spp. 
(Nirenberg & O’Donnell 1998, Herron et al. 2015). Reports 
from Citrus spp. are scarce with only F. proliferatum reported 
from fruit rot in Asia and associated with dry root rot (Hyun 
et al. 2000, Adesemoye et al. 2011, Farr & Rossman 2017). 
Further testing is needed to confirm the ecological relevance 
of the new species.
The recent works by Gräfenhan et al. (2011) and Lombard et 
al. (2015) and the resulting segregation of Fusarium has been 
controversial in the sense that it excludes many agricultural and 

medically important species from Fusarium, particularly those 
belonging to the F. solani and F. dimerum species complexes, 
a move which could bring confusion to the Fusarium research 
community (Geiser et al. 2013, Aoki et al. 2014). However, 
despite the practical considerations, splitting the genus seem 
justified phylogenetically and morphologically (Gräfenhan et 
al. 2011, Geiser et al. 2013, O’Donnell et al. 2013, Aoki et al. 
2014, Lombard et al. 2015). Here, two new saprophytic spe-
cies are described in Neocosmospora. Neocosmospora croci, 
although phylogenetically well defined, is difficult to distinguish 
morphologically from N. solani s.str. (Schroers et al. 2016). This 
reflects the limitations of the morphological species recognition 
criteria in this genus, known to include at least 60 narrowly 
defined phylogenetic species, distributed into three main clades, 
for which distinct morphological traits are minimal or absent 
(O’Donnell et al. 2008, Geiser et al. 2013).
The present study introduces new insights into the biodiver-
sity of Fusarium and Neocosmospora species associated 
with Citrus in Europe. Surprisingly, a remarkable diversity of 
Fusarium and Neocosmospora species was found in a some-
what reduced sampling area. Furthermore, five new species 
were described, two of them belonging to a new, undescribed 
lineage in Fusarium, with demonstrated pathogenicity to Citrus. 
This shows that despite the worldwide distribution of Citrus, 
and previous knowledge about its associated microbes, the 
fungal species-richness in Citrus spp. is still underestimated. 
More studies are therefore needed on these new taxa in order 
to elucidate their host range, specificity, and global distribution, 
as well as their potential impact on the Citrus industry.
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