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Abstract: Euodia pasteuriana A. Chev. ex Guillaumin, also known as Melicope accedens (Blume) T.G.
Hartley, is a herbal medicinal plant native to Vietnam. Although Euodia pasteuriana is used as a
traditional medicine to treat a variety of inflammatory diseases, the pharmacological mechanisms
related to this plant are unclear. This study aimed to investigate the anti-inflammatory effects
of a methanol extract of Euodia pasteuriana leaves (Ep-ME) on the production of inflammatory
mediators, the mRNA expression of proinflammatory genes, and inflammatory signaling activities
in macrophage cell lines. The results showed that Ep-ME strongly suppressed the release of nitric
oxide (NO) in RAW264.7 cells induced with lipopolysaccharide (LPS), pam3CysSerLys4 (Pam3CSK),
and polyinosinic-polycytidylic acid (poly I:C) without cytotoxicity. A reverse transcription-polymerase
chain reaction further confirmed that Ep-ME suppressed the expression of interleukin 6 (IL-6),
matrix metalloproteinase-1 (MMP1), matrix metalloproteinase-2 (MMP2), matrix metalloproteinase-3
(MMP3), tumor necrosis factor-α (TNF-α), and matrix metalloproteinase-9 (MMP9) at the transcriptional
level and reduced the luciferase activities of activator protein 1 (AP-1) reporter promoters. In addition,
immunoblotting analyses of the whole lysate and nuclear fraction, as well as overexpression assays
demonstrated that Ep-ME decreased the translocation of c-Jun and suppressed the activation
of transforming growth factor beta-activated kinase 1 (TAK1) in the AP-1 signaling pathways.
These results imply that Ep-ME could be developed as an anti-inflammatory agent that targets TAK1
in the AP-1 signaling pathway.
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1. Introduction

Inflammation is a fast, complex biological response in mammals that aids in the elimination of
harmful stimuli and the repair of damaged tissue [1]. Immune cells, such as neutrophils, monocytes,
and macrophages, can be quickly recruited to sites of injury and inflammation, where they identify
foreign invaders and release chemokines, cytokines, and eicosanoids to regulate immunity and restore
the body’s physiological balance [2,3].

Among immune cells, macrophages have been most extensively investigated. Numerous studies
have attempted to explain the potential molecular mechanism by which various proinflammatory
stimuli in macrophages cause an inflammatory response [4,5]. The pathogen-associated molecular
pattern (PAMP) is a complex formed through pathogen recognition receptors (PRRs) in cells and
the conserved structure of pathogens, which can be recognized by the related receptor and induce
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the expression of inflammatory factors and cytokines through a signal cascade of stimulation [6,7].
Once macrophages are triggered by PRRs, these molecules induce an inflammatory response.

Toll-like receptors (TLRs) are transmembrane signal transmission receptors discovered in macrophages
as one of the most important PRRs. These receptors mediate the secretion of host-related cytokines and
the production of natural immune responses via a variety of PAMPs such as lipopolysaccharide (LPS),
pam3CysSerLys4 (Pam3CSK), and polyinosinic-polycytidylic acid (poly I:C) [8–10]. Different TLRs have
different responses to different pathogens. In particular, LPS can activate TLR4 expressed through
macrophages and facilitate inflammatory responses by triggering a signaling cascade [11].

TLRs form dimers and transform their structure after recognizing the corresponding factors.
Simultaneously, they recruit and induce TIR-domain-containing adaptor-inducing interferon-β (TRIF)
and TLR adaptor molecule myeloid differentiation primary response 88 (MyD88). TRIF and MyD88
transduce the signal to downstream cascades and ultimately activate inflammatory transcriptional
factors such as nuclear factor-κB (NF-κB) and activating protein-1 (AP-1) [12]. With regard to AP-1,
the activated signals from TLRs are transmitted by the interleukin-1 receptor-associated kinase
(IRAK)/transforming growth factor β-activated kinase 1 (TAK1)/mitogen-activated protein kinase
(MAPK) pathway [13,14]. Interestingly, MAPKs can phosphorylate AP-1 subunits such as c-Fos,
c-Jun, and ATF [15]. Furthermore, activated macrophages trigger inflammation through the release of
inflammatory cytokines and mediators such as nitric oxide (NO), cyclooxygenase (COX)-2, interleukin
(IL)-6, and tumor necrosis factor (TNF)-α [16–18]. However, prolonged inflammation could lead
to severe chronic inflammatory diseases such as rheumatoid arthritis, diabetes, cancer, asthma,
and atherosclerosis [19,20]. Natural products with pharmacological activities extracted or isolated from
plants produce anti-inflammatory activities by targeting specific signaling cascades [21]. Nevertheless,
the anti-inflammatory potential of numerous plants related to ethnic pharmacology remains to be studied.

Euodia pasteuriana A. Chev. ex Guillaumin, also known as Melicope accedens (Blume) T.G.
Hartley, is a species of Euodia, a genus in the family Rutaceae, and is mainly distributed in Vietnam.
Although Euodia pasteuriana is used in traditional medicine to treat a variety of inflammatory diseases,
the pharmacological mechanism related to this plant remains unclear. Accordingly, in this study,
we investigated the anti-inflammatory effects and molecular mechanisms of a methanol extract of
Euodia pasteuriana leaves (Ep-ME) using LPS-induced macrophages and determined a pharmacological
target of the extract through an overexpression strategy.

2. Results

2.1. Effects of Ep-ME on Production of NO and Cytotoxicity

To evaluate the inhibitory activities of Ep-ME on NO production, RAW264.7 cells, a murine
macrophage cell line, were pretreated with various concentrations of Ep-ME (0, 25, 50, and 100 µg/mL)
for 30 min before adding LPS, Pam3CSK, or Poly I:C, and the NO release levels were examined.
As shown in Figure 1a–c, Ep-ME dramatically dose-dependently inhibits the NO production in LPS-,
Pam3CSK-, or poly I:C-induced RAW264.7 cells. Specifically, the generation of NO was decreased
by up to 22.93%, 26.19%, and 29.70% after treatment with 100 µg/mL of Ep-ME in LPS-, poly I:C-,
and Pam3CSK-treated RAW264.7 cells, respectively. In addition, there was no obvious cytotoxicity in
RAW264.7 or HEK293T cells after 24 h of incubation with a pharmacologically effective dose of Ep-ME
(Figure 1d).
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Figure 1. The effects of Euodia pasteuriana methanol extract (Ep-ME) on the production of nitric oxide 
(NO). The level of NO production in the culture supernatant of RAW264.7 cells treated with (a) 
lipopolysaccharide (LPS) (1 μg/mL), (b) polyinosinic-polycytidylic acid (poly I:C, 200 μg/mL), or (c) 
Pam3CSK (10 μg/mL) with or without Ep-ME for 24 h. (d) The cytotoxic effects of Ep-ME against 
RAW264.7 cells and HEK293T cells after incubation for 24 h. Data are presented as mean ± SD (n = 3). 
## p < 0.01 vs. untreated control group, * p < 0.05, and ** p < 0.01 vs. LPS group. 

2.2. Effect of Ep-ME on Expression of Inflammatory Genes in LPS-Stimulated RAW264.7 Cells 

To demonstrate whether the Ep-ME-mediated suppression of inflammation was involved in the 
regulation of IL-6, TNF-α, MMP1, MMP2, MMP3, and MMP9 gene expression, RAW264.7 cells were 
pretreated with Ep-ME for 30 min; induced with LPS, Poly I:C, or Pam3csk for 6 h; and analyzed by 
RT-PCR. As shown in Figure 2a–c, the mRNA levels of genes related to the AP-1 pathway were 
upregulated through LPS, poly I:C, or Pam3CSK. In contrast, Ep-ME dramatically dose-dependently 
downregulated the mRNA expression of MMP1, MMP2, IL-6, TNF-α, MMP3, and MMP9 in LPS-, 
Pam3CSK-, or poly I:C-stimulated RAW264.7 cells. Because Ep-ME affects the transcriptional levels 
of inflammatory genes, the effects of Ep-ME on the activation of the inflammatory transcription factor 
AP-1 were determined by a luciferase reporter gene assay in HEK293T cells. Ep-ME had a dose-
dependent inhibitory effect on MyD88- or TRIF-induced AP-1 luciferase gene activities (Figure 2d,e). 
Furthermore, the nuclear translocation levels of AP-1 subunits (c-Jun and c-Fos) were investigated 
using nuclear fractionation and immunoblotting analysis. As shown in Figure 2f, the nuclear level of 
c-Jun was strongly suppressed by Ep-ME at 15, 30, and 60 min after LPS stimulation; however, the 
level of c-Fos was not inhibited by Ep-ME, which indicated that Ep-ME could diminish the activity 
of AP-1 by inhibiting the dimerization of AP-1 via the reduction of the nuclear level of c-Jun. 

Figure 1. The effects of Euodia pasteuriana methanol extract (Ep-ME) on the production of nitric
oxide (NO). The level of NO production in the culture supernatant of RAW264.7 cells treated with
(a) lipopolysaccharide (LPS) (1 µg/mL), (b) polyinosinic-polycytidylic acid (poly I:C, 200 µg/mL),
or (c) Pam3CSK (10 µg/mL) with or without Ep-ME for 24 h. (d) The cytotoxic effects of Ep-ME against
RAW264.7 cells and HEK293T cells after incubation for 24 h. Data are presented as mean ± SD (n = 3).
## p < 0.01 vs. untreated control group, * p < 0.05, and ** p < 0.01 vs. LPS group.

2.2. Effect of Ep-ME on Expression of Inflammatory Genes in LPS-Stimulated RAW264.7 Cells

To demonstrate whether the Ep-ME-mediated suppression of inflammation was involved in the
regulation of IL-6, TNF-α, MMP1, MMP2, MMP3, and MMP9 gene expression, RAW264.7 cells were
pretreated with Ep-ME for 30 min; induced with LPS, Poly I:C, or Pam3csk for 6 h; and analyzed
by RT-PCR. As shown in Figure 2a–c, the mRNA levels of genes related to the AP-1 pathway were
upregulated through LPS, poly I:C, or Pam3CSK. In contrast, Ep-ME dramatically dose-dependently
downregulated the mRNA expression of MMP1, MMP2, IL-6, TNF-α, MMP3, and MMP9 in LPS-,
Pam3CSK-, or poly I:C-stimulated RAW264.7 cells. Because Ep-ME affects the transcriptional levels of
inflammatory genes, the effects of Ep-ME on the activation of the inflammatory transcription factor AP-1
were determined by a luciferase reporter gene assay in HEK293T cells. Ep-ME had a dose-dependent
inhibitory effect on MyD88- or TRIF-induced AP-1 luciferase gene activities (Figure 2d,e). Furthermore,
the nuclear translocation levels of AP-1 subunits (c-Jun and c-Fos) were investigated using nuclear
fractionation and immunoblotting analysis. As shown in Figure 2f, the nuclear level of c-Jun was
strongly suppressed by Ep-ME at 15, 30, and 60 min after LPS stimulation; however, the level of c-Fos
was not inhibited by Ep-ME, which indicated that Ep-ME could diminish the activity of AP-1 by
inhibiting the dimerization of AP-1 via the reduction of the nuclear level of c-Jun.

2.3. Effect of Ep-ME on Activation of the AP-1 Upstream Signaling Pathway

To investigate the modulation of the signaling cascade involved in the AP-1 activity of Ep-ME,
the AP-1 upstream signaling cascade was assessed in LPS-induced RAW264.7 cells using immunoblotting
analysis. As shown in Figure 3a, the phosphorylation of JNK was inhibited at 15 and 30 min by Ep-ME
(100 µg/mL) when compared with cells treated with LPS alone. Similarly, Ep-ME downregulated the
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phosphorylation of MKK4 and MKK7 (upstream proteins of JNK) at all time points (Figure 3b). Moreover,
the expression of phospho-TAK1 (upstream kinase of MAPKKs) was blocked by Ep-ME at earlier
time points (2, 3, and 5 min) in LPS-treated RAW264.7 cells in a dose-dependent manner. In contrast,
the induction of LPS reduced the protein level of IRAK1 and IRAK4, whereas Ep-ME treatment did not
restore the reduced level to a normal state under the same conditions (Figure 3c,d), implying that IRAK-1/4
are not targeted by Ep-ME. This also indicates that TAK1 could be a putative target of Ep-ME in AP-1
inhibitory activities.
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Figure 2. The effects of Ep-ME on the expression of inflammatory genes and transcription factor
activation. The mRNA expression levels of MMP1, IL-6, MMP2, TNF-α, MMP3, and MMP9 in (a) LPS
(1 µg/mL)-, (b) poly I:C (200 µg/mL)-, or (c) Pam3CSK (10 µg/mL)-induced macrophages treated with
Ep-ME were measured by semiquantitative RT-PCR. The relative intensity is quantified through ImageJ.
HEK293T cells transfected with (d) MyD88 or (e) TRIF were transfected with plasmid constructs of
AP-1-Luc for 24 h, followed by treatment with Ep-ME for an additional 24 h. (f) The nuclear fraction
of LPS-stimulated RAW264.7 cells was analyzed using immunoblotting to determine the nuclear
translocation levels of the AP-1 subunit (c-Jun and c-Fos) and Lamin A/C. The data presented in
(a–f) are a representative of three independent experiments. ## p < 0.01 vs. untreated control group,
and * p < 0.05 and ** p < 0.01 vs. control group.
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Figure 3. The effects of Ep-ME on the activation of the AP-1 signaling pathway. (a–d) The levels of the
phosphorylated and total forms of JNK, ERK, p38, MKK7, TAK1, MKK4, IRAK1, IRAK4, and β-actin
were identified by immunoblotting analyses. The relative intensity is quantified through ImageJ.
The data presented in (a–d) are a representative of three independent experiments. ** p < 0.01 vs.
control group.

2.4. Anti-Inflammatory Effects of Ep-ME by Targeting TAK1 Kinase

To validate the assumption that TAK1 is targeted by Ep-ME, an overexpression strategy was used
with an HA-TAK1 plasmid. As expected, Ep-ME significantly inhibited the phosphorylation of TAK1
and dramatically downregulated the mRNA expression of MMP1, MMP2, and MMP9 in HEK293T
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cells overexpressing TAK1 (Figure 4a,b). Subsequently, we tested the effect of the resorcyclic acid
lactone TAK1 inhibitor 5Z-7-oxozeaenol on inflammation [22]. The 5Z-7-Oxozeaenol decreased the
NO production of LPS-treated RAW264.7 cells in a dose-dependent manner and had no significant
cytotoxicity in the concentration range from 20 nM to 80 nM (Figure 4c,d). Intriguingly, 5Z-7-oxozeaenol
dramatically suppressed the mRNA expression of MMP1 at 80 nM in LPS-stimulated RAW264.7 cells
(Figure 4e). Finally, the luciferase reporter gene showed that Ep-ME dose-dependently reduced the
luciferase activity of TAK1, indicating that it could control TAK1 signaling (Figure 4f). Based on these
findings, we confirmed that TAK1 played a crucial role in inflammatory responses.
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Figure 4. Anti-inflammatory effects of Ep-ME by targeting TAK1 kinases. HEK293T cells were
transfected with HA-TAK1, followed by treatment with Ep-ME for an additional 24 h. (a) HA, β-actin,
and phosphorylated and total forms of TAK1 were examined by immunoblotting. (b) The mRNA
expression levels of MMP1, GAPDH, MMP2, and MMP9 were assessed by RT-PCR in LPS-induced
RAW264.7 cells after treatment with Ep-ME. (c) Cytotoxic effects of 5Z-7-oxozeaenol, a TAK1 inhibitor,
against RAW264.7 cells after incubation for 24 h. (d) NO production was determined through the
Griess assay in LPS-induced RAW264.7 cells after treatment with 5Z-7-oxozeaenol. (e) The mRNA
expression levels of MMP1 and GAPDH were assessed through RT-PCR. (f) HEK293T cells transfected
with HA-TAK1 plasmid were transfected with AP-1-Luc for 24 h, followed by treatment with Ep-ME for
an additional 24 h. The data presented in (a,b,e) are representative of three independent experiments.
## p < 0.01 vs. untreated control group, * p < 0.05, and ** p < 0.01 vs. control group.
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3. Discussion

The aim of this research was to demonstrate the anti-inflammatory effects of Euodia pasteuriana
and its molecular mechanisms in the AP-1 signaling pathway. A methanol extract of Euodia
pasteuriana (Ep-ME) was administered in macrophage models of LPS-induced inflammation, and its
pharmacological target in the treatment of inflammation was confirmed. We first investigated whether
Ep-ME regulated the production of inflammatory mediators. NO is not only a signaling molecule that
plays a crucial role in the pathogenesis of inflammation but also a proinflammation mediator that causes
inflammation due to excessive production under abnormal conditions [23]. Therefore, we detected NO
secretion in RAW264.7 cells induced with LPS (a TLR4 ligand), pam3CSK (a TLR2 ligand), and poly I:C
(a TLR3 ligand). Ep-ME strongly suppressed NO production in LPS-, pam3CSK-, and poly I:C-treated
RAW264.7 cells dose-dependently without an obvious cytotoxicity up to 100 µg/mL (Figure 1a–d),
indicating that it has the ability to block the production of NO in macrophages.

Proinflammatory cytokines (such as IL-1β, TNF-α, and IL-6) are mainly produced through
activated macrophages and participate in the upregulation of inflammatory responses [24]. Recently,
several studies have identified that the matrix metalloproteinase (MMP) family regulates the immune
response, suppressing inflammation as soluble factors, and that its different members play a critical role
in the remission phase of acute inflammation and in regulating inflammatory cytokines, chemokines,
and growth factor receptors [25–27]. For instance, some MMPs, such as MMP2, MMP3, and MMP9,
influence the inflammatory process positively through the activation of pro-IL-1β [28]. Since MMP9
is secreted through inflammatory cells, it could increase arthritis by degrading anti-inflammatory
factors, activating inflammatory factors, or promoting the migration of inflammatory cells [29].
Because immune regulation is correlated to post-transcriptional control, we next investigated the
mRNA expression of MMP1, MMP2, IL-6, MMP3, TNF-α, and MMP9 genes in LPS-, pam3CSK-,
or poly I:C-stimulated RAW264.7 cells. The results of the semiquantitative RT-PCR showed that Ep-ME
dramatically downregulated the gene expression of TNF-α, IL-6, MMP1, MMP2, MMP3, and MMP9 in
a dose-dependent manner (Figure 2a–c), suggesting that Ep-ME exhibits anti-inflammatory properties.

TLRs are type I transmembrane molecules that play an instructive role in immune responses.
TLRs can interact with different combinations of adaptor proteins and transduce downstream signaling
via the TRIF-dependent pathway or the MyD88-dependent pathway, before activating the AP-1 and
NF-κB signaling pathway to stimulate the production of proinflammatory cytokines [30]. To better
understand the anti-inflammatory response of Ep-ME at the molecular level, the AP-1 luciferase
reporter gene assay was used in Ep-ME-treated HEK293T cells that were cotransfected with TRIF
and MyD88. As shown in Figure 2d,e, the AP-1-driven luciferase activities induced through MyD88
or TRIF transfection were dose-dependently dampened by Ep-ME. The results indicate that Ep-ME
exhibits anti-inflammatory effects by targeting the MyD88- or TRIF-mediated AP-1 pathway. Based on
the above results, we examined the nuclear translocation level of AP-1 in LPS-induced macrophages
using a western blot assay. Surprisingly, the nuclear translocation level of c-Jun of AP-1 subunits was
attenuated by Ep-ME treatment at a concentration of 100 µg/mL, although the treatment had no effect
on the nuclear translocation level of c-Fos (Figure 2f). Consequently, the present results demonstrate
that the suppressive effects of Ep-ME on the mRNA expression of proinflammatory genes and the
production of inflammation regulatory molecules were attributed to the inhibition of the nuclear
translocation and activation of AP-1.

AP-1, composed of various members such as c-Fos and c-Jun, is a transcription factor that
plays a key role in regulating the expression of inflammation-related genes in response to multiple
stimuli [31]. Abnormally activated AP-1 is responsible for many inflammatory diseases (including
rheumatoid arthritis, sepsis, asthma, and psoriasis) [32]. Hence, the suppression of the AP-1 pathway
has become one of the potential methods for the treatment of inflammatory diseases [13,33]. To identify
the pharmacological target molecules of Ep-ME in the AP-1 pathway, we analyzed the effect of
Ep-ME on intracellular molecules in the AP-1 pathway using western blotting. The AP-1 upstream
signaling molecules of JNK, ERK1/2, p38 MAPK, MKK4/7, TAK1, IRAK1, and IRAK4 were assessed
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in LPS-induced RAW264.7 cells. Ep-ME notably suppressed the level of p-JNK at 15 and 30 min and
that of p-MKK4/7 at all times (5–60 min) (Figure 3a,b). As TAK1 is reported to regulate p-MMK4/7
at earlier time points [34], we assessed TAK1, IRAK1, and IRAK4 at 2, 3, and 5 min. As shown in
Figure 3c,d, the phosphorylated level of TAK1 was downregulated at 2, 3, and 5 min after LPS induction
in RAW264.7 cells, and there was a dose-dependent inhibitory manner at 5 min. However, IRAK1 and
IRAK4 were not affected by the Ep-ME treatment. Together, these results demonstrate that TAK1 could
be a specific target protein of Ep-ME.

TAK1 is considered a momentous therapeutic target for various types of inflammatory diseases [35,36].
Several studies previously reported that TAK1 could enhance the activities of the downstream molecules
MEK1/2, MKK3/6, and MKK4/7 during overexpression [37,38]. These findings imply that TAK1 is
immediately regulated through Ep-ME, which was confirmed using the overexpression strategy.
The level of p-TAK1 was highly decreased when HEK293T cells were treated with 100 µg/mL
(Figure 4a); a similar suppression was obtained at the mRNA level (Figure 4b). Additionally, we further
validated the functional effect of the selective TAK1 inhibitor 5Z-7-oxozeaenol, which irreversibly
inhibits TAK1 by forming a covalent complex [39,40]. Interestingly, the chemical suppression of
TAK1 by 5Z-7-oxozeaenol diminished the activation of AP-1 related to the inhibition of inflammatory
responses (Figure 4c–e). The luciferase reporter gene result showed that Ep-ME dose-dependently
reduced the luciferase activities of TAK1 (Figure 4f). In addition, these results indicate that Ep-ME can
target TAK1 during its anti-inflammatory activity of the AP-1 regulation cascade.

Based on our previous liquid chromatography-mass spectrometry results (LC-MS) (Kim et al.,
2020, submitted), Ep-ME contains several biologically active ingredients, such as euxanthone, daidzein,
dracorhodin, nevadensin, 5-hydroxyauranetin, 6-hydroxy-7-methoxy-2-(2-phenylethyl) chromone,
and so on. It has been reported that euxanthone exerts anti-inflammatory effects by inhibiting
the production of TNF-α, IL-1β, and IL-6 in sevoflurane-induced neonatal mice [41]. Peng et al.
reported that daidzein dramatically repressed the TNF-α-induced phosphorylation of JNK [42].
Furthermore, daidzein suppressed the production of NO and IL-6 in LPS-treated RAW264.7 cells [43].
Consequently, we speculate that the daidzein and euxanthone in Ep-ME could be responsible for its
anti-inflammatory activity.

In summary, this study demonstrates the potent anti-inflammatory effects of Ep-ME, a methanol
extract of Euodia pasteuriana, and the abilities of Ep-ME to dampen the production of inflammatory
mediators (NO) and the transcription of IL-6, TNF-α, MMP1, MMP2, MMP3, and MMP9, following LPS,
pam3CSK, or poly I: C challenges. Furthermore, our findings imply that the mechanism underlying
the activities of Ep-ME on inflammatory mediators involves blocking AP-1 nuclear translocation via
the downregulation of JNK, MKK4, MKK7, and TAK1 in the LPS-activated AP-1 signaling pathway
of macrophages. Hence, the anti-inflammatory activity of Ep-ME could be achieved through the
direct suppression of TAK1, an upstream kinase in the AP-1 signaling pathway, as summarized in
Figure 5. These data indicate that Ep-ME is a potential herbal medicine candidate for the treatment
of inflammatory diseases, and that it could be exploited as a therapeutic agent for the resolution of
inflammatory symptoms. This study also provides a better understanding of the inflammatory disease
pathway and paves the road for the discovery of new targets for therapeutic applications.
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AP-1 signaling pathway.

4. Materials and Methods

4.1. Materials

A methanol extract of the leaves of Euodia pasteuriana (Ep-ME) was obtained from the International
Biological Material Research Center (Daejeon, Korea). Briefly, dried and refined leaves of Euodia
pasteuriana (100 g) were extracted with 1 L of 95% methanol for 2 h, twice. The extract was
percolated with filter paper (3 mm; Whatman PLC, Kent, UK), condensed using a Buchi rotary
evaporator (Merck, Darmstadt, Germany), and lypophilized using a laboratory freeze dryer (Martin
Christ Gefriertrocknungsanlagen GmbH, Harz, Germany) with a 17% yield. Ep-ME was dissolved
in 100% dimethylsulfoxide (DMSO) to make stock solution (100 mg/mL) and then diluted with
medium. Lipopolysaccharide, 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide
(MTT), Pam3CSK, dimethylsulfoxide (DMSO), poly I:C sodium salt, 5Z-7-oxozeaenol, and polyethylene
imidazole (PEI) were obtained from Sigma Chemical Co. (St. Louis, MO, USA). Dulbecco’s
modified Eagle’s medium (DMEM), fetal bovine serum (FBS), penicillin-streptomycin solution,
phosphate-buffered saline (PBS), and Roswell Park Memorial Institute (RPMI) 1640 were obtained
from HyClone (Logan, UT, USA). Trypsin-EDTA (0.25%) was obtained from Corning (Manassas, VA,
USA). The antibodies for Lamin A/C, ERK, p-ERK, β-actin, p38, c-Fos, p-p38, MKK7, Jun, p-MKK7,
JNK, p-JNK, MKK4, p-MKK4, TAK1, p-TAK1, IRAK4, IRAK1, and HA were purchased from Cell
Signaling Technology (Beverly, MA, USA).

4.2. Cell Line and Cell Culture

RAW264.7 and HEK293T cells were purchased from the American Type Culture Collection
(Rockville, MD, USA). The two cell lines were cultured in RPMI and DMEM containing 10% (or 5%)
FBS, 0.1 mg/mL streptomycin, and 100 U/mL penicillin at 37 ◦C under 5% CO2.
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4.3. Determination of NO Production

RAW264.7 cells were seeded in 96-well plates at a density of 1 × 105 cells per well and cultured
overnight. The cells were pretreated with Ep-ME (0, 25, 50, and 100 µg/mL) for 30 min and incubated
with LPS (1 µg/mL), poly I:C (200 µg/mL), and Pam3CSK (10 µg/mL) for 24 h. The NO production was
measured by Griess reaction, as reported previously [44].

4.4. In Vitro Cell Viability Assay

The effects of Ep-ME on the cytotoxicity were assessed through a conventional MTT assay.
Briefly, RAW264.7 and HEK293T cells were incubated for 16–20 h and then treated with Ep-ME at
concentrations of 0, 25, 50, and 100 µg/mL for 24 h. Subsequently, 10 µL of MTT solution was added to
each well and incubated for an additional 3 h, and the purple formazan crystals were solubilized by
adding 100 µL of 15% sodium dodecyl sulfate. Finally, the absorbance was measured at 570 nm by a
Synergy HT Multi-Mode (Winooski, VT, USA).

4.5. mRNA Expression Analysis Using Reverse Transcription-Polymerase Chain Reaction (RT-PCR)

To estimate cytokine mRNA expression levels, such as MMP1, MMP3, IL-6, MMP2, TNF-α,
and MMP9, the total RNA was extracted with TRIzol reagent, according to the manufacturer’s
instructions, from RAW264.7 cells that had been pretreated with Ep-ME at different concentrations
for 30 min before being stimulated with LPS, Pam3CSK, or poly I:C for 6 h. RT-PCR reactions were
performed as described in our previous study [45]. The primers used in this experiment were from
Bioneer (Seoul, Korea) and are listed in Table 1.

Table 1. The primer sequences for the RT-PCR analysis.

Gene Name Direction Sequences (5′ to 3′)

MMP1 (Mouse) Forward ACAACGGAGACCGGCAAAAT
Reverse GCTGGAAAGTGTGAGCAAGC

MMP2 (Mouse) Forward GCCCCCATGAAGCCTTGTTT
Reverse GTCAGTATCAGCATCGGGGG

MMP3 (Mouse) Forward ACTCCCTGGGACTCTACCAC
Reverse TTCTTCACGGTTGCAGGGAG

MMP9 (Mouse) Forward TCTTCCCCAAAGACCTGAAA
Reverse TGATGTTATGATGGTCCCAC

TNF-α (Mouse) Forward TAGCCCACGTCGTAGCAAAC
Reverse ACCCTGAGCCATAATCCCCT

IL-6 (Mouse) Forward GCCTTCTTGGGACTGATGCT
Reverse TGGAAATTGGGGTAGGAAGGAC

GAPDH (Mouse) Forward ACCACAGTCCATGCCATCAC
Reverse CCACCACCCTGTTGCTGTAG

MMP1 (Human) Forward CACAGCTTCCCAGCGACTC
Reverse GTCCCGATGATCTCCCCTGA

MMP2 (Human) Forward CCCACTGAGGAGTCCAACAT
Reverse CATTTACACGTCTGCGGATCT

MMP3 (Human) Forward ATCCTACTGTTGCTGTGCGT
Reverse CATCACCTCCAGAGTGTCGG

GAPDH (Human) Forward GGTCACCAGGGCTGCTTTTA
Reverse GATGGCATGGACTGTGGTCA
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4.6. Luciferase Reporter Gene Activity Assay

HEK293T cells (1 × 106 cells/well) were transfected with 1 µg/mL of plasmid including β-gal
and AP-1-Luc with or without inducing molecules (MyD88 and TRIF) by a polyethyleneimine (PEI)
assay in 24-well plates for 24 h. Then, the cells were treated with Ep-ME (0, 50, and 100 µg/mL) for an
additional 24 h. Subsequently, luciferase activities were detected through the luciferase assay system
(Promega, WI, USA). To assess the anti-inflammatory activity of Ep-ME on the overexpression of a
specific molecule, HEK293T cells were transfected with HA-TAK1 plasmids diluted in Opti-MEM for
24 h.

4.7. Preparation of Nuclear Extracts and Whole-Cell Lysates

RAW264.7 or HEK 293T cells were seeded in 60 × 60 mm plates (5 × 106 cells/well) and incubated
overnight. Following treatment with Ep-ME (100 µg/mL), the cells were collected in PBS. Whole-cell
lysates were extracted by lysing with ice-cold lysis buffer (2 mM ethylenediaminetetraacetic acid (EDTA),
2 mM ethylene glycol tetraacetic acid, 20 mM Tris-HCl, 50 mM glycerol phosphate, 2 µg/mL aprotinin,
1 mM 1,4-dithiothreitol (DTT), 50 µM phenylmethylsulfonyl fluoride (PMSF), 1 mM benzamide,
1 µg/mL pepstatin A, 10% glycerol, 20 mM sodium fluoride, 1.6 mM pervanadate, 2% Triton X-100,
2 µg/mL leupeptin, and 0.1 mM of sodium vanadate) and were centrifuged at 12,000 rpm for 10 min at
4 ◦C. Nuclear extracts were acquired with lysis buffer A (0.5% Nonidet P-40, 10 mM HEPES, 2 mM
magnesium chloride, 1 mM DTT, 2 µg/mL aprotinin, 10 mM potassium chloride (KCl), 0.1 µM PMSF,
2 µg/mL leupeptin, 0.1 mM EDTA) and sonicated to lyse the cells. The lysates were centrifuged at
12,000 rpm for 1 min. The pellet was suspended in extraction buffer (0.1 mM EDTA, 50 mM KCl,
0.1 mM PMSF, 10% glycerol, 1 mM DTT, and 300 mM sodium chloride) and incubated on ice for 25 min.
Finally, the supernatant was collected as a nuclear extract by centrifugation for 10 min at 12,000 rpm.

4.8. Western Blot Analysis

The protein concentrations of nuclear or whole-cell lysates were quantified with the Bradford assay
with BSA as the standard. Proteins were size-dependently resolved through 8–12% SDS-polyacrylamide
gel electrophoresis and then transferred to a polyvinylidene difluoride (PVDF) membrane. After blocking
PVDF membranes with 3% BSA for 1 h, the membranes were incubated overnight with primary
antibody at 4 ◦C, washed three times with Tris-buffered saline with Tween-20 (TBST), and incubated
for 1 h with a secondary antibody. The protein bands were detected using an ECL western blotting kit
and photographed by a Tanon-5200 multi-imaging system.

4.9. Statistical Analysis

Data are presented as the mean ± standard deviation (SD). The significance was analyzed
between the control and treatment groups using Student’s t-test. p values under 0.05 or 0.01 were
considered significant.
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Pam3CSK4, Pam3-Cys-Ser-Lys4; MMP2, matrix metalloproteinase-2; Poly I:C, polyinosinic-polycytidylic acid;
MMP3, matrix metalloproteinase-3; TNF-α, tumor necrosis factor α; TLR, Toll-like receptor; NF-κB, nuclear
factor-κB; MMP9, matrix metalloproteinase-9; MTT, (3-4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide;
AP-1, activator protein 1; IL-6, interleukin 6; MyD88, myeloid differentiation primary response 88; DMSO,
dimethyl sulfoxide; FBS, fetal bovine serum; RT-PCR, reverse transcriptase-polymerase chain reaction; TRIF,
TIR domain-containing adaptor including interferon-β; TAK1, transforming growth factor beta-activated kinase 1;
MAPK, mitogen-activated protein kinase; GAPDH, glyceraldehyde-3-phophate dehydrogenase.
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