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Abstract

Background

Gregarines represent an important transition step from free-living predatory (colpodellids

s.l.) and/or photosynthetic (Chromera and Vitrella) apicomplexan lineages to the most

important pathogens, obligate intracellular parasites of humans and domestic animals such

as coccidians and haemosporidians (Plasmodium, Toxoplasma, Eimeria, Babesia, etc.).

While dozens of genomes of other apicomplexan groups are available, gregarines are

barely entering the molecular age. Among the gregarines, archigregarines possess a unique

mixture of ancestral (myzocytosis) and derived (lack of apicoplast, presence of subpellicular

microtubules) features.

Methodology/Principal findings

In this study we revisited five of the early-described species of the genus Selenidium includ-

ing the type species Selenidium pendula, with special focus on surface ultrastructure and

molecular data. We were also able to describe three new species within this genus. All spe-

cies were characterized at morphological (light and scanning electron microscopy data) and

molecular (SSU rDNA sequence data) levels. Gregarine specimens were isolated from poly-

chaete hosts collected from the English Channel near the Station Biologique de Roscoff,

France: Selenidium pendula from Scolelepis squamata, S. hollandei and S. sabellariae from

Sabellaria alveolata, S. sabellae from Sabella pavonina, Selenidium fallax from Cirriformia

tentaculata, S. spiralis sp. n. and S. antevariabilis sp. n. from Amphitritides gracilis, and S.

opheliae sp. n. from Ophelia roscoffensis. Molecular phylogenetic analyses of these data

showed archigregarines clustering into five separate clades and support previous doubts

about their monophyly.
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Conclusions/Significance

Our phylogenies using the extended gregarine sampling show that the archigregarines are

indeed not monophyletic with one strongly supported clade of Selenidium sequences

around the type species S. pendula. We suggest the revision of the whole archigregarine

taxonomy with only the species within this clade remaining in the genus Selenidium, while

the other species should be moved into newly erected genera. However, the SSU rDNA

phylogenies show very clearly that the tree topology and therefore the inferred relationships

within and in between clades are unstable and such revision would be problematic without

additional sequence data.

Introduction

Gregarine apicomplexans are obligate, unicellular parasites of freshwater, marine and terres-

trial invertebrates infecting the intestine, coelom and reproductive vesicles. As gregarines do

not generally cause any harmful diseases compared to their well-studied closely related sis-

tergroups known as notorious parasites of humans and domestic animals (e.g. Plasmodium,

Cryptosporidium and Toxoplasma), they are still an undersampled and little described group of

protists. There is a strong need to overhaul the complete gregarine taxonomy and Cavalier-

Smith [1] made an attempt in doing so. Unfortunately, his way to tackle the problem by erect-

ing 18 new taxa mainly based on a single SSU rDNA analysis is rather preliminary. The poor

support of most of the clades and branching orders in question does not allow for these taxo-

nomic conclusions to be made. At this point, we will therefore stick with the separation of the

gregarines into the three major groups (archigregarines, eugregarines and neogregarines)

based on trophozoite morphology, host affinity and life history (e.g. [2–9])

The first time a gregarine was officially described was in 1828 by Dufour, who erected the

genus Gregarina [2]. While in the early years of gregarine discovery, morphological descrip-

tions were based exclusively on light microscopic and histologic studies, the importance of

ultrastructural studies using electron microscopy became quickly apparent and shed important

light on differences e.g. between archigregarines and eugregarines (e.g. [10–15]). These data

showed that archigregarines have wide, longitudinal epicytic folds with an underlying layer of

subpellicular microtubules, while eugregarines have narrow epicytic folds with apical filaments

and rippled dense structures (see [16]). Nonetheless, available data are still quite limited. In the

last decades the molecular approach for phylogenetic analyses started to boom and several

genomes of the crown apicomplexans including Plasmodium, Toxoplasma, Crytosporidium,

Babesia, etc. are already available (e.g. [17,18]). The genomes of photosynthetic apicomplexan

lineages including Chromera velia and Vitrella brassicaformis have been published recently

[19], but gregarine apicomplexans have hardly entered the genomic age (apart from a very par-

tial genome draft of Ascogregarina taiwanensis [20]). The importance of molecular phyloge-

netic data and their value in inferring relationships between gregarine species has lead to an

increase in available sequence data in public databases such as GenBank, but these are still very

limited in numbers and mostly restricted to SSU rDNA sequences. One general problem with

molecular phylogenies is that the outcome often heavily depends on the original species dataset

utilized for the analyses [21].

Archigregarines, which are found only in marine invertebrates, especially polychaetes, are

of particular interest, as they are supposed to form the paraphyletic stem group from which all

other gregarines and maybe even all apicomplexans have evolved [2,22–26]. Archigregarines
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possess a unique mixture of ancestral (myzocytosis; e.g. [27]) and derived (lack of apicoplast,

presence of subpellicular microtubules; e.g. [3, 28,29]) features. There are around ~80 archigre-

garine species described to date [11,25,26,29]. Around 65 described species belong to the genus

Selenidium. Levine [3] proposed to erect a new genus Selenidioides to accommodate those 11

species that show merogony, belonging truly to the archigregarines, while the rest of the Seleni-
dium species was shuffled into the order Eugregarinorida. Because it is difficult to prove or dis-

prove the presence or absence of merogony/schizogony (asexual reproduction of trophozoite

stage) within a lifecycle, we and many other authors do not believe it to be a good indicator for

the relationships among archigregarines [16,25,26,29–32]. Therefore, we will not follow this

split of Selenidium species and thus treat Selenidium as the main genus of archigregarines. Just

recently Schrével et al. [33] published for the first time molecular data for the type species Seleni-
dium pendula. The presented phylogenies show one clade of true Selenidiidae around S. pendula
and two other clades of archigregarines, all reflecting their respective host species.

In this study we set out to obtain molecular data of morphologically and ultrastructurally

well-described species including the type species Selenidium pendula, S. hollandei, S. sabellar-
iae, S. sabellae and S. fallax. In addition, we were able to discover three new species. We will

present morphological characterizations of all species by light and scanning electron micros-

copy and discuss the phylogenetic relationships of archigregarines within the context of a

broad apicomplexan phylogeny based on SSU rDNA data.

Material and methods

Collection and isolation of organisms

Different polychaete species were collected by hand from rocks and sandy beaches from the

English Channel near the Station Biologique Roscoff (SBR), France, in May 2013 and in June

2014. No specific permits were required for the sampling locations as they are not privately

owned or protected. This study did not involve any endangered or protected species. The collected

polychaetes were identified based on morphological characteristics. Selenidium pendula was iso-

lated from the intestines of Scolelepis squamata (Mueller, 1806) (Spionida) collected by hand from

a beach close to the SBR (48˚43´31´´N, 3˚59´26´´W). Selenidium hollandei and S. sabellariae were

isolated from the intestines of Sabellaria alveolata (Linnaeus, 1767) (Sabellida) collected by hand

from Saint Efflam (48˚68´48´´N, 3˚61´13´´W). Selenidium sabellae was isolated from the intes-

tines of Sabella pavonina Savigny, 1822 (also Sabellida) hand-collected from Pempoul (48˚68´23

´´N, 3˚95´14´´W). Selenidium fallax was isolated from Cirriformia tentaculata (Montagu, 1808),

S. spiralis sp. n. and S. antevariabilis sp. n. were isolated from Amphitritides gracilis (Grube, 1860)

(both Terebellida) both polychaete species were collected by hand from rock assemblages close to

the SBR (48˚43’44”N, 3˚59’23”W). Selenidium opheliae sp. n. was isolated from Ophelia roscoffensis
Augener, 1910 (Opheliidae) hand-collected from Le Guillec (48˚68´56´´N, 4˚06´78´´W).

The trophozoites of each species were released in seawater by teasing apart the intestines of

the respective host with fine-tipped forceps under a dissecting microscope (Zeiss Stemi 2000).

The gut material was examined under an inverted microscope (Zeiss Axiovert A1) and para-

sites were isolated with a hand drawn glass pipette and washed three times in filtered seawater,

before being examined and photographed under the inverted microscope or prepared for

DNA extraction.

Light and scanning electron microscopy

Differential interference contrast (DIC) and phase contrast (PC) light micrographs of all spe-

cies were taken with a 5 megapixel CMOS camera AxioCam ERc 5s, attached to an inverted

microscope (Zeiss Axiovert 1).
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Between 8 and 60 specimens each of the isolated gregarine species were prepared for scan-

ning electron microscopy (SEM). Some individuals were deposited directly into the threaded

hole of separate Swinnex filter holders, containing a 10 μm polycarbonate membrane filter

(Millipore Corp., Billerica, MA), that was submerged in 10 ml of seawater within a small canis-

ter (2 cm diam. and 3.5 cm tall). A piece of Whatman No. 1 filter paper was mounted on the

inside base of a beaker (4 cm diam. and 5 cm tall) that was slightly larger than the canister. The

Whatman filter paper was saturated with 4% (w/v) OsO4 and the beaker was turned over the

canister. The parasites were fixed by OsO4 vapors for 30 min. Ten drops of 4% (w/v) OsO4

were added directly to the seawater and the parasites were fixed for an additional 30 min. A

10-ml syringe filled with distilled water was screwed to the Swinnex filter holder and the entire

apparatus was removed from the canister containing seawater and fixative. Other individuals

were deposited in hand-made baskets (top end of a 1000μl pipette tip fixed with silicon to the

same 10 μm filters) and placed in 24-well culture plates. These filters were prefixed in 2.5% (v/

v) glutaraldehyde in 0.05 M cacodylate buffer (pH = 7.4) for one hour, washed and post-fixed

with 1% (w/v) OsO4 for 45 minutes. All filters were washed with water and dehydrated with a

graded series of ethyl alcohol. Filters prepared in the Swinnex filter holders were critical point

dried with CO2, filters from the hand-made baskets were air-dried. Filters were mounted on

stubs, sputter coated with 5 nm of gold, and viewed under a scanning electron microscope

(JEOL JBM7401F or Phenom 806). Some SEM data were presented on a black background

using Adobe Photoshop CS5 (Adobe Systems Incorporated, San Jose, CA).

DNA isolation, PCR, cloning, and sequencing

Individual trophozoites of each species were isolated from the dissected hosts, washed three times

in filtered seawater, and deposited into a 1.5-ml microcentrifuge tube: 23 trophozoites of S. pen-
dula from S. squamata, 27 trophozoites of S. hollandei and 75 trophozoites of S. sabellariae from

Sabellaria alveolata, 8 trophozoites of S. sabellae from Sabella pavonina, 45 cells of Selenidium fal-
lax from Cirriformia tentaculata, 11 and 12 trophozoites of S. spiralis sp. n. and S. antevariabilis sp.

n. from Amphitritides gracilis, and 31 trophozoites of S. opheliae sp. n. from Ophelia sp.

DNA was extracted using the MasterPureTM Complete DNA and RNA Purification Kit

(Epicentre Biotechnologies, Madison, WI). Small subunit rDNA (SSU rDNA) sequences were

PCR-amplified either using a total volume of 50 μl containing 1 μl of primer, 5 μl of DNA tem-

plate, 25 μl of OneTaq Mastermix (New England Biolabs, Inc., Ipswich, USA), or using a total

volume of 25μl containing 2 μl of primer, 2.5 μl of DNA template, 20.5 μl of dH2O and one

PuReTaq Ready-to-go PCR Bead (GE Healthcare, Quebec, Canada).

The SSU rDNA sequences from these species were amplified in one fragment (~1800 bp)

using universal eukaryotic PCR primers F1 5´-GCGCTACCTGGTTGATCCTGCC-3´ and R1

5´-GATCCTTCTGCAGGTTCACCTAC-3´ [34] and internal primers designed to match exist-

ing eukaryotic SSU sequences F2 5´-AAGTCTGGTGCCAGCAGCC-3´ and R2 5´-TTTAAG
TTTCAGCCTTGCG-3´. PCR was performed using MJ MiniTM Gradient Thermal Cycler (Bio-

Rad) and the following protocol: After 4 cycles of initial denaturation at 94 oC for 4.5 min, 45
oC for 1 min and 72 oC for 1.75 min, 34 cycles of 94 oC for 30 sec (denaturation), 50 oC for 1

min (annealing), 72 oC for 1.75 min (extension), followed by a final extension period at 72 oC

for 10 min. PCR products corresponding to the expected size were gel isolated using the Ultra-

CleanTM 15 DNA Purification kit (MO Bio, Carlsbad, California) and cloned into the pCR 2.1

vector using the TOPO TA cloning kit (Invitrogen, Frederick, MD). Eight cloned plasmids

were digested with EcoRI and screened for size. One or two clones for each species were se-

quenced with ABI big dye reaction mix using vector primers and internal primers oriented in

both directions.
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The new SSU rDNA sequences were initially identified by BLAST analysis and subsequently

verified with molecular phylogenetic analyses (GenBank Accession numbers: Selenidium pen-
dula MF882901, Selenidium hollandei MF882899, Selenidium sabellariae MF882900, Seleni-
dium sabellae MF882906, Selenidium fallax MF882905, Selenidium spiralis sp. n. MF882902,

Selenidium antevariabilis sp. n. MF882903, Selenidium opheliae sp. n. MF882904).

Molecular phylogenetic analysis

The eight new SSU rDNA sequences were aligned with 163 other SSU rDNA sequences, repre-

senting the major lineages of apicomplexans (with an emphasis on gregarines) and relevant

outgroups (ciliates, dinozoans and chromerids and colpodellids), using local alignment with

generalized affine gap costs (E-INS-I) as implemented in MAFFT [35]. Sites comprised mostly

of gaps and ambiguously aligned regions were manually excluded from the 171-taxon align-

ment in SEAVIEW 4 [36] resulting in 1,488 unambiguously aligned sites (a NEXUS file of this

alignment is available upon request). Alternatively, we have used trimAl 1.2 [37] for automatic

ambiguous sites detection/exclusion under relaxed (parameters set as ’-gt 0.3’ and ’-st 0.001’;

dataset R, 1805 sites) as well as strict (-gappyout option engaged; dataset G, 945 sites) settings.

Based on the results of a preliminary analyses and in agreement with previously published

studies, we have also created a smaller dataset (S) based on the exhaustive sampling of Seleni-

diidae s.s. (as defined by [33]), as well as other archigregarine taxa (81 taxa, 1601 sites) rooted

with marine eugregarines. Homogeneity of base-composition was tested using Tree-Puzzle 5.3

[38]. Root-to-tip distances for main clades of the dataset were measured using the TreeStat 1.2

(http://tree.bio.ed.ac.uk/software/treestat/).

Because the 18S rDNA of several gregarine taxa did not pass the homogeneity test, the

Bayesian inference was carried out with exchange rates defined by the general time-reversible

model and the number of categories limited to 40 (GTR + C40), implemented in Phylobayes

4.1 [39]. This model was chosen as a compromise between the robustness of CAT admixture

model with an infinite number of rate categories, which is however mostly suitable for large

phylogenomic datasets due to its complexity, and simplicity of time-tested GTR model. Two

chains were run until they converged (i.e. the maximum observed discrepancy below 0.2 and

effective number of model parameters reached 100). Posterior probabilities of the branching

were reconstructed after burn-in of the first fifth of the generations. Alternatively, we have also

performed a maximum likelihood analysis under the gamma-corrected GTR model using the

RAxML 8.2a [40]. The highest-scoring topology was estimated using the rapid-bootstrapping

algorithm from 1000 replicates, the branching support was assessed using the non-parametric

bootstrapping and the ‘thorough’ algorithm from 1000 replicates using the same model and

software. The putative monophyly of archigregarines was tested using the approximate likeli-

hood ratio test as implemented in Consel [41]. Prior to the analysis, we have optimized the

topology and branch lengths of the starting tree with forced monophyly of archigregarine

sequences in RAxML.

Nomenclatural acts

The electronic edition of this article conforms to the requirements of the amended International

Code of Zoological Nomenclature, and hence the new names contained herein are available

under that Code from the electronic edition of this article. This published work and the nomen-

clatural acts it contains have been registered in ZooBank, the online registration system for the

ICZN. The ZooBank LSIDs (Life Science Identifiers) can be resolved and the associated infor-

mation viewed through any standard web browser by appending the LSID to the prefix "http://

zoobank.org/". The LSID for this publication is: urn:lsid:zoobank.org:pub:91B0E976-C459-
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46E5-9B93-FA96177BC9CA. The electronic edition of this work was published in a journal

with an ISSN, and has been archived and is available from the following digital repositories:

PubMed Central, Edinburgh Napier Repository (http://www.napier.ac.uk/research-and-

innovation/repository).

Results

Morphological observations

All given measurements are based on light micrographs from fresh material, as some of the

gregarines seemed to have shrunk during preparation for scanning electron microscopy. All

trophozoites were brownish in colour under the LM, reflecting an accumulation of amylopec-

tin granules within the cytoplasm.

Selenidium pendula (Fig 1, Table 1). Trophozoites were isolated from the polychaete

Scolelepis squamata (Mueller, 1806). The morphology matched the original description of

Fig 1. Differential interference contrast (DIC) light micrographs and scanning electron micrographs

(SEM) showing the general morphology and surface ultrastructure of the gregarine Selenidium pendula

isolated from the polychaete Scolelepis squamata. A-C. DIC micrographs showing a spindle-shaped

trophozoite in different positions of the pendular movement. The mucron at the anterior end is rounded

(arrowhead) and visually separated from the rest of the cell with a slight restriction. The axial canal (ac) is

conspicuous at the anterior end, but ran along the entire cell. The oval nucleus (n) is situated in the middle of the

cell. D-E. Two gamonts (G1, G2) in caudal syzygy. The mucrons (arrowhead) are visible. The double arrow

marks the junction between the two gamonts. Gamonts are changing from elongated to stumpy. F. Young

gametocyst, the junction (double arrow) is still visible. G. Gametocysts in different focal planes, packed with

round oocysts. H-K. SEM micrographs of trophozoites showing the epicytic longitudinal folds (arrow), the mucron

(arrowhead) free of folds and some transverse striations in the inner curvature of the cell. Scale bars: Fig 1A-E,

30 μm; Fig 1F, 50 μm; Fig 1G, 70 μm; Fig 1H-I, 5μm; Fig J-K, 2μm.

https://doi.org/10.1371/journal.pone.0187430.g001
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S. pendula by Giard [42] and several accounts in studies on different aspects that followed

[10,11,33,43]). The cells were elongated and spindle-shaped (Fig 1). Trophozoites were 200 μm

(147–260 μm, n = 15) long and 25 μm (12–48 μm, n = 15) wide. There was a slight restriction

between the anterior end and the rest of the body. The anterior end was globular and rounded,

while the posterior end was tapering into a pointed tip (Fig 1A–1C, 1H and 1I). The axial canal

was visible along the entire cell starting from the restriction at the anterior end to the tip of the

posterior end (Fig 1B). The oval nucleus [20 (16–28) μm x 13 (7–22), n = 10] was situated in

the middle of the cell (Fig 1A and 1B). Mature trophozoites (or gamonts) pair up in caudal syz-

ygy (Fig 1D). The two individuals in syzygy underwent continuous change from elongated

cells, which showed active movement to more stumpy cells (Fig 1E), which did show restricted

movement. Different developmental stages of the gamontocyst and gametocyst were observed

(Fig 1F and 1G). The gametocyst was oval [129 (103–146) μm x 88 (61–106) μm, n = 5]. The

junction between the two cells was still visible in the young gametocyst. (Fig 1F). At the end

of sporogony the gametocyst was packed with spherical oocysts (Fig 1G). The oocysts contain-

ing 4 sporozoites were 13.1 μm in diameter (11.8–14.5μm, n = 22). The SEM micrographs

demonstrated that there were around 30–34 longitudinal epicytic folds inscribing the surface

of the trophozoites. The anterior end was free of folds (Fig 1H, 1I and 1K), while some of the

folds terminated towards the posterior end. In bended and shortened cells, transverse folds

appeared on the longitudinal epicytic folds (Fig 1K). In the middle of the cell, the density of

longitudinal folds was 1 fold/micron (Fig 1J). Single trophozoites and two individuals in early

syzygy were capable of pendular movement, which gave this type species of Selendium its

name S. pendula [42].

Selenidium hollandei (Fig 2, Table 1). The trophozoites of this archigregarine were isolated

from the intestines of the polychaete Sabellaria alveolata (Linnaeus, 1767). The morphology

matched the original description of S. hollandei by Vivier and Schrével [13] and several

accounts in studies on different aspects that followed [3,10,11]. Trophozoites were mostly

elongated and extremely flattened (Fig 2A, 2B, 2H and 2I). They were 250 μm (97–411 μm,

n = 25) long and 22 μm (13–43 μm, n = 25) wide (Fig 2A–2D). The anterior and posterior end

were both heart-shaped, but the anterior end was often a lot narrower than the posterior end

(Fig 2B and 2I). The anterior end showed a slight middle ridge in some specimens (Fig 2). In

some cases the anterior end was rounded and swollen and the posterior end was blunt (Fig

2D). The nucleus was spherical or ovoid and measured 9 x 10 μm (4–19 x 6–17 μm, n = 6) (Fig

2C–2E), situated in the middle of the trophozoite or slightly shifted towards the posterior end.

The SEM showed broad epicytic folds covering the cell (Fig 2F–2I). The density of the folds

was up to 1 fold/micron (Fig 2H and 2J). None of the folds terminated on either end of the

cell. When the trophozoites were maximally contracted there were densely packed transverse

striations/folds visible (Fig 2F). Micropores were situated in the shallow grooves between

the epicytic folds (Fig 2J). Syzygy between two cells was observed showing a dorso-ventrally

overlap of the two posterior ends (Fig 2E and 2G). Single trophozoites showed rapid rolling

movements.

Selenidium sabellariae (Fig 3, Table 1). Trophozoites of this archigregarine species were

also isolated from the polychaete Sabellaria alveolata. The morphology matched the original

description of S. sabellariae by Schrével [43] and accounts in later studies (e.g. [3]). The tro-

phozoites were spindle-shaped and slightly flattened dorso-ventrally (Fig 3A–3C and 3F). Tro-

phozoites were 137 μm (68–227 μm, n = 19) long and 16 μm (8–23 μm, n = 19) wide (Fig 3A

and 3B). The anterior and posterior end both tapered into pointed tips. The ovoid nucleus

11 x 9 μm (7–15 x 6–13 μm, n = 15) situated in the middle of the cell contained a circular

nucleolus [5 (4–6) μm in diameter, n = 10) (Fig 3B and 3C). The SEM revealed around 14 epi-

cytic longitudinal folds (Fig 3F–3H). These folds split ‘superficially’ into two folds shortly after
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the mucron with rounded tip, which was free of folds, and merged again shortly before the

posterior end (Fig 3G and 3H). There were numerous micropores visible in the grooves of the

main folds, and none in the “superficially’ or secondary ones (Fig 3E). The density of the folds

was 1 fold/micron at the anterior end (Fig 3G and 3H). Several transverse folds formed the

base of the mucron (Fig 3G). Two cells in syzygy were laterally attached to each other with the

gamonts oriented in opposite directions (Fig 3D). Single trophozoites showed quick coiling

and uncoiling movements.

Selenidium fallax (Fig 4, Table 1). Trophozoites of this archigregarine species infect the

intestines of the polychaete Cirriformia tentaculata (Montagu, 1808). The morphology

matched the original description of S. fallax by MacGregor & Thomasson [44] and accounts

on different aspects that followed (e.g. [3,28]). The trophozoites were spindle-shaped (Fig 4A–

4D). Trophozoites were 174 μm (116–264 μm, n = 23) long and 16 μm (10–26 μm, n = 23)

wide (Fig 4A–4D). The anterior end tapered into a flat-topped tip with a nipple-like structure

in the middle (Fig 4A, 4B and 4E). The posterior end tapered into a pointy tip (Fig 4A–4D and

4F). The ellipsoid nucleus 5 x 11 μm (3–9 x 6–17 μm, n = 21) situated in the anterior third of

the cell (Fig 1A–1C) contained a circular nucleolus [5 (4–5) μm in diameter, n = 7]. The SEM

revealed around 40 to 45 epicytic longitudinal folds (Fig 4D and 4G) and the mucron being

free of folds (Fig 4E). The surface right beneath the bulging rim of the mucron was inscribed

Fig 2. Differential interference contrast (DIC) light micrographs and scanning electron micrographs (SEM)

showing the general morphology and surface ultrastructure of the gregarine Selenidium hollandei isolated from

the polychaete Sabellaria alveolata. A-B. DIC micrographs of elongated and flattened trophozoites. The anterior end

(mucron area, arrowhead) is narrower than the posterior end of the cell. C-D. Contracted trophozoites during peristaltic

movement. The ovoid nucleus is visible (n). Broad epicytic folds (arrow) inscribe the surface of the entire cell. E-F. DIC

and SEM micrographs of two gamonts (G1, G2) in lateral syzygy with overlapping posterior ends (double arrow). G-I.

Trophozoites in different stages of movement. When contracted or bended, transverse striations (double arrow) form on

the surface. The mucron (arrowhead) at the anterior end is free of folds. The broad longitudinal epicytic folds (arrows)

cover most of the body. The lateral view shows dorso-ventrally extremely flattened trophozoites. J. Longitudinal epicytic

folds (arrow) with visible pores (arrowheads) in the grooves between the folds. Scale bars: Fig 2A, C-D, G-H, 20 μm; Fig

2B, E-F, 30 μm; Fig 2I, 25 μm; Fig 2J, 5 μm.

https://doi.org/10.1371/journal.pone.0187430.g002
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by short, narrow, superficial, longitudinal folds (4E). The main folds emerged just after this

area, split subsequently into two folds and merged again shortly before the posterior end (4F).

The main grooves also called ‘primary’ grooves were deeper and wider than the superficial

‘secondary’ grooves (Fig 4E and 4G). Micropores were only visible in the ‘primary grooves’.

The density of the folds was up to 2 doublefolds/micron (Fig 4G). Free trophozoites showed

quick coiling and uncoiling movements (Fig 4C). The motion also involved some helical twist-

ing. The anterior end of the cell was always the center of the formed spiral (Fig 4C). After the

trophozoites had been isolated for some time, they often remained in the coiled position.

Selenidium sabellae (Fig 5, Table 1). Trophozoites of this archigregarine species were iso-

lated from the intestines of the polychaete Sabella pavonina Savigny, 1822. The morphology

matched the original description of S. sabellae by Lankester [45], its re-description by Ray [46],

and several accounts in studies that followed (e.g. [3]). The cells were short and slightly dorso-

ventrally flattened (Fig 5A, 5E and 5F). Trophozoites were 61 μm (40–85 μm, n = 22) long and

14 μm (10–16 μm, n = 23) wide. The anterior end tapered into a narrow, but long, cone-shaped

tip. The posterior end was broadly rounded or blunt (Fig 5A and 5D–5F). The ovoid nucleus 9

x 7 μm (6–12 x 5–11 μm, n = 21) situated in the middle of the cell (Fig 5A and 5B), contained a

circular nucleolus [4 (3–6) μm in diameter, n = 18]. In some cases the trophozoites were

attached to a globular body (Fig 5C). The SEM revealed around 20–40 epicytic longitudinal

folds (Fig 5E). The folds were quite narrow starting at the base of the mucron (free of folds),

Fig 3. Differential interference contrast (DIC) light micrographs and scanning electron micrographs

(SEM) showing the general morphology and surface ultrastructure of the gregarine Selenidium

sabellariae isolated from the polychaete Sabellaria alveolata. A- C. DIC micrographs of trophozoites in

different focal planes and different stages of movement. The mucron (arrowhead) is pointed to rounded and the

ovoid nucleus (n) is situated in the middle of the cell. D. Two gamonts (G1, G2) in lateral syzygy with their

orientation in opposite directions. The anterior ends are marked with arrowheads. Both gamonts are widest in the

area of the junction (double arrow). E. Higher magnification SEM of the surface ultrastructure. There are

numerous micropores (arrowheads) along the grooves of the main folds (arrow), whereas the grooves of the

secondary folds (double arrow) do not display any micropores. F. Trophozoite, showing a rounded mucron

(arrowhead) and longitudinal epicytic folds (arrow) with secondary folds expanding over parts of the cell’s length.

G. Anterior end showing the rounded mucron (arrowhead) that is free of folds, but has a basal cluster of

transverse striations (double arrowhead). Shortly after the mucron the main folds (arrow) start splitting (double

arrowhead) into secondary folds. H. Posterior end of the trophozoite, showing the merging secondary folds

(arrow), before they reach the posterior end. Scale bars: Fig 3A-D, 30 μm; Fig 3F, 20 μm; Fig 3E, G-H, 2 μm.

https://doi.org/10.1371/journal.pone.0187430.g003

Archigregarines of the English Channel

PLOS ONE | https://doi.org/10.1371/journal.pone.0187430 November 3, 2017 10 / 24

https://doi.org/10.1371/journal.pone.0187430.g003
https://doi.org/10.1371/journal.pone.0187430


and enlarged towards the posterior end, where they terminated gradually (Fig 5D–5F). There

were numerous micropores scattered along the grooves of the epicytic folds (Fig 5F and 5G).

The density of the folds was 1 fold/micron at the anterior end (Fig 5E). Syzygy between two

cells was observed showing a dorso-ventrally overlap of the two posterior ends. Trophozoites

were able to bend, as well as expand and contract along their length (Fig 5B).

Selenidium spiralis sp. n. (Fig 6, Table 1). Trophozoites were isolated from the polychaete

Amphitritides gracilis (Grube, 1860). The cells were spindle-shaped (Fig 6A–6C). Trophozoites

were 139 μm (105–194 μm, n = 18) long and 31 μm (21–37 μm, n = 18) wide. The anterior end

narrowed into a rounded mucron (Fig 6B and 6D) with a slight indentation setting it apart

from the rest of the cell. The posterior end tapered into a more pointed tip (Fig 6E). The cells

were wider in the posterior part of the trophozoite compared to the anterior part (Fig 6A–6C).

The ovoid nucleus 12 x 20 μm (10–15 x 15–25 μm, n = 18) situated in the posterior half of the

cell (Fig 6A and 6B), contained a circular nucleolus [7 (5–9) μm in diameter, n = 9). The tro-

phozoites appeared to have a fishnet pattern on the surface in some of the micrographs (Fig

6A and 6B). The SEM revealed six epicytic longitudinal folds (Fig 6B and 6C). These folds split

into two folds shortly after the mucron, which was free of folds, and merged again shortly

before the posterior end (Fig 6A–6F). The main grooves also called ‘primary’ grooves were

deeper than the superficial ‘secondary’ grooves (Fig 6C). The grooves between the secondary

folds become gradually shallower towards the posterior end at which point they disappear

Fig 4. Differential interference contrast (DIC) light micrographs and scanning electron micrographs

(SEM) showing the general morphology and surface ultrastructure of the gregarine Selenidium fallax

isolated from the polychaete Cirriformia tentaculata. A-C. DIC micrographs of trophozoites in different

stages of movement. Trophozoits can be elongated to curled. The mucron (arrowhead) is rounded and

sometimes quite flattened at the tip. The ellipsoid nucleus (n) is situated in the anterior part of the cell. D. SEM

micrograph of a trophozoite, showing a flattened mucron (arrowhead) and longitudinal epicytic folds (arrows)

with secondary folds expanding over parts of the cell’s length. The posterior end is very pointed. E. Anterior end

showing the flat-topped mucron (arrowhead) that is free of folds, but has a nipple-like structure (arrow) in the

middle. The upper rim appears to be a bit bulgy (double arrowhead). The region directly after the bulge is

inscribed by short, narrow, superficial folds. The broader main folds start splitting (asterisks) into secondary folds

shortly after. F. Posterior end of the trophozoite showing the tip free of folds, but with some indentations. G.

Higher magnification SEM of the surface ultrastructure. The grooves between the secondary folds (asterisks) are

often narrower than the grooves between the main folds (arrows). Scale bars: Fig 4A-B, 25 μm; Fig 4C, 15 μm;

Fig 4D, 10 μm; Fig 4E-G, 1 μm.

https://doi.org/10.1371/journal.pone.0187430.g004
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completely (Fig 6C). The folds were more or less helically arranged along the cells body (Fig

6B and 6C). Micropores were observed in the ‘primary grooves’. The density of the folds was

less than 1 fold/micron (Fig 6F). The epicytic folds were covered in thick, evenly spread trans-

verse striations (2–3 transverse striations/micron), which started right after the mucron (Fig

6C–6F). The posterior end was free of the transverse striations. The striations became less

prominent over the length of the cell (4D-F). Trophozoites were not very active and showed

some bending movements.

Selenidium antevariabilis sp. n. (Fig 7, Table 1). Trophozoites were isolated from the poly-

chaete Amphitritides gracilis (Grube, 1860). The cells were spindle-shaped, sometimes with a

slight indentation at the anterior end superficially separating the mucron area from the rest of

the cell (Fig 7A). Trophozoites were 165 μm (131–190 μm, n = 7) long and 29 μm (22–31 μm,

n = 7) wide (at the widest part of the cell). The anterior end was very plastic in shape, changing

from almost rounded to flat with finger-like protrusions, while the posterior end was rounded

(Fig 7A–7C). The ovoid nucleus [17 x 19 μm (13–21 x 15–20 μm) in diameter, n = 7] was situ-

ated in the middle of the cell (Fig 7A–7C). The trophozoites were widest at the position of the

nucleus. The nucleus contained a circular nucleolus [9 (7–11) μm in diameter, n = 4]. The tro-

phozoites appeared to have a fishnet pattern on the surface in some of the micrographs (Fig

Fig 5. Phase contrast (PC), differential interference contrast (DIC) light micrographs and scanning

electron micrographs (SEM) showing the general morphology and surface ultrastructure of the

gregarine Selenidium sabellae isolated from the polychaete Sabella pavonina. A. DIC micrographs of

trophozoites in different focal planes. The mucron (arrowhead) is cone-shaped. The ellipsoid nucleus (n) is

situated in the middle of the cell. Longitudinal epicytic folds (arrow) are visible along the cell. The posterior part

ends in a dorso-ventrally flattened, blunt end. B. PC micrographs showing the plasticity of the cell. The nucleus

(n) keeps its position in the middle of the trophozoite. C. DIC micrograph of an attached trophozoite with visible

epicytic folds (arrow). D. High magnification SEM of the anterior end showing the cone-shaped mucron

(arrowhead) that is free of folds. The longitudinal epicytic folds (arrows) start to broaden after their emergence. E.

Trophozoite, showing the cone-shaped mucron (arrowhead) and longitudinal epicytic folds (arrows) that fan out

right after the mucron. The posterior end is broadly rounded or blunt. F. Posterior end of trophozoite in lateral

view, showing that the very tip is free of folds. The cell is dorso-ventrally flattened. There are micropores

(arrowheads) visible in between the folds. G. Surface ultrastructure towards the posterior end. The epicytic folds

(arrow) enlarge towards the posterior end, and gradually terminate. There are numerous micropores

(arrowheads) along the grooves between the folds. Scale bars: Fig 5A, C, 20 μm; Fig 5B, 30 μm; Fig 5E, 10 μm;

Fig 5F, D, 3 μm; Fig 5G, 1 μm.

https://doi.org/10.1371/journal.pone.0187430.g005
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7A and 7B). Six epicytic longitudinal folds were more or less helically arranged along the cells

body (Fig 7B and 7C). This helical arrangement of the folds leads to the visible fishnet pattern,

due to a crisscross overlap of the longitudinal folds on opposite cell surfaces. The density of

folds was less than 1 fold/micron (Fig 7B). Trophozoites showed some bending movements

and very active change of the morphology of the anterior end (Fig 7A and 7C).

Selenidium opheliae sp. n. (Fig 8, Table 1). Trophozoites were isolated from the polychaete

Ophelia roscoffensis Augener, 1910. The cell shape was generally elongated to slightly reminis-

cent of a pea pod (Fig 8A–8C and 8E). Trophozoites were 151 μm (123–177 μm, n = 19) long

and 13 μm (10–16 μm, n = 19) wide. The anterior end tapered into an elongated, but at the tip

mostly rounded mucron (Fig 8A–8C and 8G). The posterior end was wider with a heart-

shaped or blunt end (Fig 8C, 8E and 8H). The ovoid nucleus 13 x 9 μm (10–16 x 7–11 μm,

n = 19) situated in the middle of the cell or slightly shifted to the posterior end contained a cir-

cular nucleolus [6 (5–8) μm in diameter, n = 9] (Fig 8A–8D). The SEM revealed no epicytic

folds (Fig 8F–8H). The surface of some trophozoites appeared a bit crinkled (Fig 8E and 8H).

On some of the trophozoites transverse striations were visible (Fig 8F). Syzygy of two cells was

Fig 6. Phase contrast (PC), differential interference contrast (DIC) light micrographs and scanning

electron micrographs (SEM) showing the general morphology and surface ultrastructure of the

gregarine Selenidium spiralis sp. n. isolated from the polychaete Amphitritides gracilis. A. PC

micrograph showing the general spindle-like shape of the trophozoites with spirally arranged epicytic folds

(double arrowhead) that appear to overlap each other in a crisscross pattern. The ovoid nucleus (n) with its

round nucleolus (nu) is situated in the posterior half of the cell. The mucron (arrowhead) is set apart from the

rest of the cell through a slight indentation. B. DIC micrographs of the same cell as in A in different focal

planes. The main epicytic folds (double arrowhead) and the secondary epicytic folds (asterisks) are spirally

arranged along the longitudinal axis of the cell. C. SEM micrograph showing the surface ultrastructure of the

trophozoite. The mucron (arrowhead) is free of folds. The main epicytic folds (double arrowheads) start right

after the mucron and split very early into secondary folds. The grooves (asterisks) between the secondary

folds appear quite deep from the anterior end and become gradually shallower towards the posterior end at

which point they disappear completely. The cell is adorned with transverse striations (arrows) along its whole

length apart from the anterior and posterior tip. D. The mucron (arrowhead) is free of folds. The very

prominent transverse striations (arrow) start immediately posterior to the mucron, similar to the main epicytic

folds (double arrowhead) and the split (asterisks) into secondary folds soon after. E. The transverse striations

(arrows) continue to almost the tip of the posterior end, but are less prominent compared to the anterior end.

One slight indentation (asterisk) of a secondary fold is visible on one of the main epicytic folds (double

arrowhead). F. High magnification SEM of the transverse striations (arrow) and the grooves (asterisk)

between the folds. Scale bars: Fig 6A-B, 25 μm; Fig 6C, 10 μm; Fig 6D-F, 2 μm.

https://doi.org/10.1371/journal.pone.0187430.g006
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observed, in which the outer posterior ends were attached through overlap (Fig 8D). Tropho-

zoites were not very active and showed some bending movements.

Molecular phylogenetic analyses

The preliminary phylogenetic analysis of the pan-apicomplexan dataset revealed an increased rate

of evolution in gregarines compared to the already highly divergent crown apicomplexan lineages.

The averaged root-to-tip distance of gregarines as a whole, or archigregarines, was significantly

higher than in other lineages (S1 Fig). Together with the non-homogenous base composition

observed in several gregarine species, this makes the correct phylogenetic reconstruction of api-

complexans very challenging. Therefore, together with the widely-used Maximum likelihood

inference under the gamma-corrected GTR model, we have employed also the CAT admixture

model (or rather the ‘C40’ approximation of CAT; see relevant Methods part for details and rea-

soning), which is supposed to be more robust to phylogenetic artifacts stemming from varying

rates of evolution along the phylogenetic tree, namely long-branch attraction (LBA).

The resulting phylogeny (Fig 9) shows the expected topology with monophyletic myzozo-

ans (dinozoans, chrompodellids [47] and apicomplexans) and ciliates as an outgroup. Both

dinozoans and apicomplexans are monophyletic, while chrompodellids split into two clades.

One, represented by Alphamonas and Vitrella, which branch out as the basal-most myzozoan

lineage, whereas the rest (Chromera, Voromonas and Colpodella) are a sister group to the api-

complexans s.s.
Apicomplexans are further split into two clades. The first contains ‘true’ coccidians, hae-

mosporidians with Nephromyces spp. and the adeleorinid coccidians (Adelina and Hepato-
zoon). The second clade is comprised of gregarines including the cryptosporidians and two

highly divergent apicomplexans Platyproteum vivax and Filipodium phascolosomae, which

show typical archigregarine features, but were classified as an independent myzozoan lineages

by a previous study of Cavalier-Smith [1].

Within the gregarine clade, we were able to identify the three main currently recognized

lineages (Archigregarinorida, Eugregarinorida, Neogregarinorida), as well as Cryptosporidium
as sister clade to the gregarines from terrestrial hosts. Bayesian inference (Fig 9A) split grega-

rines into two main clades. The first contains neogregarines, cryptosporidia, cephaloidophor-

ids and terrestrial gregarines. The second comprised of archigregarines and marine

Fig 7. Differential interference contrast (DIC) light micrographs showing the general morphology of

the gregarine Selenidium antevariabilis sp. n. isolated from the polychaete Amphitritides gracilis.

A-C. DIC micrographs of spindle-shaped trophozoites with plastic anterior (arrowhead) and rounded posterior

ends. The arrowhead marks the mucron area, which can be rounded or flattened, but often showing finger-like

protrusions (double arrowhead). The ovoid nucleus (n) is situated in the middle of the cell or slightly shifted to

the anterior end. Broad longitudinal epicytic folds (asterisks) run along the cells anterior-posterior axis with a

helical turn, which appears like a criss-cross pattern on the surface (arrow). Scale bars: Fig 7A-C, 30 μm.

https://doi.org/10.1371/journal.pone.0187430.g007
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eugregarines. Finally, S. fallax, whose phylogenetic position is for the first time presented here,

as well as Platyproteum vivax and Filipodium phascolosomae were the most basal gregarines

and sister to the two above mentioned clades.

Maximum likelihood analysis split gregarines according to the ecology: terrestrial clade

containing cryptosporidia, neogregarines and terrestrial eugregarines and the marine clade

comprised of cephaloidophorids branching with marine eugregarines and several archigregar-

ine lineages (Fig 9B). Both phylogenetic methods unequivocally and consistently placed the

newly obtained sequences of Selenidium in three separate clades (Fig 9, S2 Fig, S3 Fig). Seleni-
dium pendula branched within the well supported ‘true’ Selenidium clade with S. sabellariae, S.

sabellae, S. hollandei, S. opheliae and nine other representatives, while S. pisinnus formed a

weakly supported clade with S. orientale basal to it. Another putatively archigregarine clade

Fig 8. Differential interference contrast (DIC) light micrographs and scanning electron micrographs

(SEM) showing the general morphology and surface ultrastructure of the gregarine Selenidium

opheliae sp. n. isolated from the polychaete Ophelia roscoffensis. A-C. DIC micrographs of different

trophozoite cells showing the general elongated cell shape that is slightly reminiscent of a pea pod. The mucron

(arrowhead) anterior end is slightly elongated and ends in a rounded tip, while the posterior end (arrow) is wider

and either blunt or heart-shaped. The ovoid nucleus (n) is situated in the middle of the cell or shifted slightly to

the posterior end. D. Two gamonts (G1, G2) in syzygy. This species forms a caudo-lateral syzygy with the two

posterior ends overlapping (arrow). Both gamonts have a visible nucleus (n) in the middle. E. SEM micrograph

showing the general morphology and ultrastructure of the trophozoite, with an elongated mucron (arrowhead)

and a heart- shaped (arrow) posterior end. The surface seemed to be crinkled in places (double arrow). F.

Some surface areas showed few transverse striations (asterisks) but in no obvious pattern. G. Anterior end

with elongated mucron (arrowhead). H. Posterior end with visible crinkles (double arrow) on the surface. Scale

bars: Fig 3A–3D, 30 μm; Fig 3E, 20 μm; Fig 3F–3H, 2 μm.

https://doi.org/10.1371/journal.pone.0187430.g008
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with sequences related to S. terebellae (including two of our new isolates from Amphitritides
gracilis) is found elsewhere among the gregarines. Selenidium fallax probably represents an

independent (archi-) gregarine lineage of uncertain position. However, analysis of auxiliary

datasets R and G (S2 Fig, S3 Fig) shows the gregarine topology is unstable and highly depen-

dent on the phylogenetic method and site selection. It is worth mentioning that the archigre-

garine monophyly was also rejected using the au-test. While all the respective clades are

robustly supported in all analyses, their mutual relationships are unclear to say the least and

the support for deeper branching is missing completely. A pairwise distance calculation based

on the Kimura two-parameter model [48] of 1656 nt (with pairwise exclusion of the indels)

resulted in sequence divergences between 2% and 35.8% between all Selenidium species. The

sequence divergence ranges were 2–15.6% (A1); 5.8–10.5% (A2) and 15.3 (A3) within clades
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A1-A3 and 18.5–35.8% between species from the different clades (S1 Table). Since the

sequence of the archigregarine type species S. pendula has been recently published [33], we

have also attempted to explore the diversity and phylogenetic structure of the genus Selenidium
s.s. Our exhaustive sampling revealed that almost half of the diversity is comprised of environ-

mental sequences without any morphology and host-specificity record. Selenidium pendula is

found near the base of the Selenidium clade, which lacks a strong phylogenetic structure. It is

interesting that while most archigregarine species are described from temperate regions, many

of these environmental sequences originate from tropical and subtropical waters clearly show-

ing their cosmopolitan distribution and research bias.

Formal taxonomic description

Phylum Apicomplexa Levine, 1970

Subphylum Sporozoa Leuckart, 1879

Class Gregarinea J.A.O. Bütschli, 1882, stat. nov. Grassé, 1953

Order: Archgregarinorida Grassé, 1953

Family Selenidiidae Brasil, 1907

Genus Selenidium Giard, 1884

Selenidium spiralis Rueckert and Horák sp. n.

urn:lsid:zoobank.org:act:0687AD8C-E669-47B4-8EC2-9FC22A039B42

Diagnosis. Trophozoites are spindle-shaped and 105–194 μm long (mean length 147 μm) and

21–37 μm wide (mean width 30 μm). Cell tapers into a rounded mucron at the anterior and a

pointed tip at the posterior end. The ovoid nucleus (13 x 20 μm) is situated in the posterior half of

the trophozoite. Trophozoites are brownish in colour under the LM due to the accumulation of

amylopectin granules within the cytoplasm. Six longitudinally and helically oriented broad epicy-

tic folds are present on the cell surface, except the mucron and the posterior tip. They are sepa-

rated by deep, primary grooves and also show shallow secondary grooves in between. Epicytic

folds are covered by thick transverse striations. The trophozoites are capable of some bending.

DNA sequence. The SSU rDNA sequence; GenBank Accession No. MF882900.

Type locality. Rock assemblages close to Station Biologique Roscoff (48˚43’44”N, 3˚

59’23”W), Roscoff, France.

Type habitat. Marine.

Type host. Amphitritides gracilis (Grube, 1860) (Annelida, Polychaeta, Terebellidae).

Location in host. Intestinal lumen.

Hapantotype. Trophozoites on gold sputter-coated SEM stubs have been deposited in the

Beaty Biodiversity Museum (Marine Invertebrate Collection) at the University of British

Columbia, Vancouver, Canada (collection number MI-PR135).

Iconotype. Fig 6B.

Etymology. The species name spiralis refers to the helically arranged longitudinal epicytic

folds.

Selenidium antevariabilis Rueckert and Horák sp. n.

urn:lsid:zoobank.org:act:F830245F-4CF9-4925-9F20-CFFB8699DBCB

Diagnosis. Trophozoites are spindle-shaped and 131–190 μm long (mean length 165 μm)

and 22–31 μm wide (mean width 29 μm). Cell tapers into a rounded posterior end. The ante-

rior end is plastic in shape, being rounded, or flat, or showing finger-like protrusions. The

ovoid nucleus (17 x 19 μm) is situated in the middle of the trophozoite and contains a circular

nucleolus (9 μm in diameter). Trophozoites are brownish in colour under the LM due to the

accumulation of amylopectin granules within the cytoplasm. Six longitudinally and helically

oriented broad epicytic folds are present on the cell surface, except the mucron and the
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posterior tip. The trophozoites are capable of some bending and very active change of the mor-

phology of the anterior end.

DNA sequence. The SSU rDNA sequence; GenBank Accession No. MF882905.

Type locality. Rock assemblages close to Station Biologique Roscoff (48˚43’44”N, 3˚

59’23”W), Roscoff, France.

Type habitat. Marine.

Type host. Amphitritides gracilis (Grube, 1860) (Annelida, Polychaeta, Terebellidae).

Location in host. Intestinal lumen.

Holotype. The name-bearing type of this species is the specimen shown in Fig 7B (see Ico-

notype). This is in accordance with Declaration 45 recommendations to article 73 of the

ICZN. An explanation is provided in the remarks.

Iconotype. Fig 7.

Etymology. The species epithet antevariabilis refers to the plastic morphology of the ante-

rior end and stems from the Latin words ‘ante’ meaning front/before and ‘variabilis’ meaning

changeable.

Remarks. In accordance with Declaration 45 of the ICZN we use the specimen presented in

the light micrographs (7B) as name-bearing type material (Holotype). Here we provide reason-

ing, why no preserved specimen was used as name-bearing type for the new species. This new

gregarine species occurred in very low numbers. The few specimens we were able to isolate

were used for DNA extraction, prepared for SEM and for LM analyses. Trophozoites fixed for

SEM often do represent a gregarine’s morphology better than a fixed and flattened cell on an

object slide. Light micrographs (Iconotype) were obtained from freshly isolated cells and rep-

resent the morphology of the trophozoite and especially of the plasticity of the anterior end

better than a fixed specimen on an object slide could. We were not able to find any gregarines

on the filter prepared for SEM, therefore the only documentation of this species are the light

micrographs and the cell measurements. We do provide the SSU rDNA sequence, which sepa-

rates S. antevariabilis n. sp. clearly from S. spiralis n. sp. isolated from the same host. Therefore,

we feel that we provide enough evidence for the description of a new species.

Selenidium opheliae Rueckert and Horák sp. n.

urn:lsid:zoobank.org:act:8316105E-9419-4F06-9463-E12553F9E2C5

Diagnosis. Trophozoites elongated ellipsoid to pea pod shape and 123–177 μm long (mean

length 151 μm) and 10–16 μm wide (mean width 13 μm). Anterior end is elongated with

rounded mucron, posterior end is wide with heart-shaped or blunt end. The ovoid nucleus

measures13 x 9 μm (10–16 x 7–11 μm, n = 19) and is situated in the middle of the cell or

slightly shifted to the posterior end. Trophozoites are brownish in colour reflecting an accu-

mulation of amylopectin granules within the cytoplasm. Epicytic folds are lacking. Surface of

trophozoites can appear crinkled and some show transverse striations. Trophozoites are capa-

ble of bending movements.

DNA sequence. The SSU rDNA sequence; GenBank Accession No. MF882904.

Type locality. Le Guillec (48˚68´56´´N, 4˚06´78´´W), France.

Type habitat. Marine.

Type host. Ophelia roscoffensis Augener, 1910 (Annelida, Polychaeta, Opheliidae).

Location in host. Intestinal lumen.

Hapantotype. Trophozoites on gold sputter-coated SEM stubs have been deposited in the

Beaty Biodiversity Museum (Marine Invertebrate Collection) at the University of British

Columbia, Vancouver, Canada (collection number MI-PR136).

Iconotype. Fig 8B.

Etymology. The species name opheliae refers to the genus of the polychaete type host Ophe-
lia roscoffensis Augener, 1910.
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Discussion

In the last decade more and more information has been published about the archigregarines,

which occur exclusively in marine habitats and are most likely the stem group from which all

gregarine and maybe even all apicomplexans have derived [24–26,29,32,49,50]). Most of these

publications synergize data on morphology, ultrastructure and SSU rDNA sequences to newly

describe or re-describe species in the most comprehensive way possible to date. Almost all of

the work has been done on the trophozoite stages, the most prominent and abundant life cycle

stages. Recently work on other life-cycle stages of S. pendula has been published [33]. Molecu-

lar data of archigregarines are still very limited compared to other taxa.

Justification for newly erected species

Trophozoites of Selenidium spiralis sp. n. and S. antevariabilis sp. n. were isolated from Amphi-
tritides gracilis. No gregarines have so far been reported for this terebellid polychaete. The anal-

yses of the SSU rDNA sequences available for gregarines of the genus Selenidium placed S.

spiralis sp. n. and S. antevariabilis sp. n. into a clade with other Selenidium species from terebel-

lid worms (Thelepus japonicus), namely Selenidium terebellae and Selenidium melongena.

While S. terebellae is a typical archigregarine of the genus Selenidium, with few longitudinal

epicytic folds, bending/twisting and coiling movements and transverse striations, S. melongena
is quite different (see Table 1 and Wakeman et al. 2014). One of the most distinct features is

that the 30–40 epicytic folds are helically arranged along the longitudinal axis of the cell and

that no movement could be observed. The new species described here present different degrees

of helically arranged epicytic folds, but a lot less in numbers (six broad folds, in one case with

secondary grooves). Along the whole length of the epicytic folds of S. spiralis sp. n. there are

thick transverse folds at regular intervals. While S. spiralis sp. n. and S. antevariabilis sp. n.

were found within the intestine, S. melongena was predominantly found attached to the outer

wall of the intestine [50]. The calculated sequence divergences ranged between 8.7–10.5% for

S. spiralis sp n., S. terebellae and S. antevirabilis sp. n. compared to S. melongena (compare S1

Table). The lowest sequence divergence (2%) was actually found between two established spe-

cies S. idanthyrsae and S. neosabellariae. Apart from their sequence divergence (6.8%), the big-

gest difference between the two new species is the morphology of the anterior end. While S.

spiralis sp. n. has a rounded mucron, the anterior end of S. antevariabilis sp. n. is very plastic

and changing in form constantly. Combining all evidence we are convinced that both isolated

trophozoites represent new Selenidium species.

Ophelia roscoffensis has never been described as hosting any gregarine species. There are

two Rhytidocystis species (Agamococcidiorida) described from opheliid worms, namely R.

opheliae from O. bicornis [51] and R. henneguyi from O. neglecta [52], but their phylogenetic

position is not quite certain yet [9]. Rotari et al. [53] described metchnikovellids (hyperpara-

sites of gregarines) from a Selenidium species infecting Ophelia limacina, but the gregarine spe-

cies was not formally described and only a line drawing is available. Compared to the other

known Selenidium species our newly described S. opheliae sp. n. from O. roscoffensis has very

different morphological features, as this is the only species that does not show any longitudinal

epicytic folds (compare Table 1). The crinkled surface and the few transverse striations could

be the result of the SEM fixation process. The sequence divergence showed values between

6.9% and 15.4% when comparing S. opheliae sp. n. with all other Selenidium species in clade

A1. The distances between all Selenidium species in clade A1 ranged from 2% to 15.6% (S1

Table). The phylogenetic tree based on gregarine SSU rDNA sequences alone (Fig 9) shows

clearly that this species has a distinct position from the other Selenidium species within the S.

pendula clade of true Selenidium species, therefore validating the erection of the new species.
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Archigregarine phylogeny

The so called archigregarines (i.e. apicomplexans mostly with vermiform or spindle-shaped

actively moving trophozoits), represented here by all species with available SSU rDNA

sequences, apparently comprise of five independent lineages: 1) a clade around the Selenidium
type-species S. pendula, 2) a clade containing S. pisinnus and S. orientale, 3) a clade with para-

sites isolated from polychaetes Amphitritides gracilis and Thelepus japonicus and 4) a clade

made up of two very divergent species Platyproteum vivax and Filipodium phascolosomae, and

5) the single sequence of S. fallax at the base of all other gregarines. Although all these lineages

share similar morphology (see Table 1) and possibly (according to the limited insight available)

also general biology, phylogenetic analysis of SSU rDNA clearly reveals well defined and sepa-

rated lineages. However, the deeper branching reflecting their mutual relationship is again

very unstable and poorly supported. All recent studies [1,25,26,33,49,50], as well as the phylog-

eny of our main dataset presented here (Fig 9) suggest their paraphyly. Archigregarine mono-

phyly was also rejected by the approximately-unbiased test. However, short internal branches

suggest rapid archigregarine diversification, which is always hard to capture using phyloge-

netic reconstruction. In our opinion, while improbable, the archigregarine monophyly cannot

be reliably rejected based on current taxon sampling and SSU rDNA. One obvious outcome is

that only the archigregarines of the clade around S. pendula should retain the genus name Sele-
nidium and thorough revision of the whole archigregarine concept is required.

True Selenidiidae vs. Selenidioides

Levine [3] split the genus Selenidium and its species into two: 1) Selenidioides within the family

Selenidioididae in the order Archigregarinorida encompassing species with merogony and 2)

Selenidium within the family Selenidiidae in the order Eugregarinorida without merogony.

There have been many discussions before this split and ever since the split [16,25,26,29,30,32]

about the taxonomy of gregarine species described as Selenidium, as it is difficult to prove or

disprove the existence of merogony within a gregarine life-cycle. No sequence data were avail-

able back then and still the available DNA sequences are quite limited. Our phylogenetic trees

based on SSU rDNA sequence data (Fig 9) show that S. hollandei, which after Levine [3] should

belong to the genus Selenidioides, clusters within the big clade around the type species of the

genus Selenidium, S. pendula, which was moved to the Eugregarinorida due to the ‘absence’ of

merogony. Therefore, S. pendula as well as S. hollandei belong to the true Selendiidae, which

has also been shown by Schrével et al. [33], inferring that the split of the genus Selenidium was

premature, because it is not backed up by molecular sequence data and should therefore be

ignored from hereon. While S. sabellariae and S. sabellae also cluster within the clade A1

together with S. pendula, the species S. fallax that should belong into this genus as well clusters

out with any of the other ‘Selenidium’ sequences, which supports our suggestion to revise this

genus at some point, when better/more sequence data and morphological descriptions of

other species within this genus become available.

Suitability of SSU rDNA for gregarine phylogeny

Molecular diversity is almost exclusively represented by SSU rDNA sequences for gregarine

apicomplexans. Yet, even the most elaborate phylogenetic models designed for phylogenies of

highly divergent datasets [54,55], failed to cope with the extreme diversity of gregarine SSU

rDNA. The topology is unstable and is highly dependent on the particular model used (GTR

+ C40 vs. GTR) as well as taxon and site sampling. Therefore, we intentionally refrain from

any taxonomic revisions of gregarines s.l. as recently proposed by Cavalier-Smith [1], as we do

not find it justified by the available data. It is our opinion that we have to leave the question of
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relationships among the key gregarine lineages open until new sets of markers of sufficient

sampling will be available.

Supporting information

S1 Fig. Boxplots showing averaged root-to-tip distances of main clades used in phyloge-

netic analyses. Three groups of gregarines (representatives of Selenidium s.s., archigregarines

and gregarines as a whole) show significantly longer branch lengths and therefore also

increased rates of evolution as revealed by pairwise t-test comparison to other clades presented

in the dataset.

(EPS)

S2 Fig. Phylogenetic topology of auxiliary dataset G (945 sites) as revealed by Bayesian

inference under the GTR + C40 model as implemented in Phylobayes. Thickened lines

show branching supported by Bayesian posterior probabilities (dark, p.p. 1.0, grey p.p. above

0.94). See relevant parts of methods for details.

(EPS)

S3 Fig. Phylogenetic topology of auxiliary dataset R (1805 sites) as revealed by Bayesian

inference under the GTR + C40 model as implemented in Phylobayes. Thickened lines

show branching supported by Bayesian posterior probabilities (dark, p.p. 1.0, grey p.p. above

0.94). See relevant parts of methods for details.

(EPS)

S1 Table. Estimates of evolutionary divergence between sequences. The numbers of base

substitutions per site between sequences are shown. The analysis involved 50 nucleotide

sequences. All ambiguous positions were removed for each sequence pair. There were a total

of 1654 positions in the final dataset. The sequences for taxa in bold were derived from this

study, taxa highlighted in light grey belong to Selenidium s.s. and taxa highlighted in dark grey

are novel species for the first time described here.

(XLSX)
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Data curation: Sonja Rueckert, Aleš Horák.
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9. Adl SM, Simpson AG, Lane CE, Lukeš J, Bass D, Bowser SS, et al. The revised classification of eukary-

otes. J Eukaryot Microbiol. 2012; 59: 429–93 https://doi.org/10.1111/j.1550-7408.2012.00644.x PMID:

23020233
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11. Schrével J. Observations biologiques et ultrastructurales sur les Selenidiidae et leur consequences sur
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