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Abstract: The marine sponge genus Agelas comprises a rich reservoir of species and natural products
with diverse chemical structures and biological properties with potential application in new drug
development. This review for the first time summarized secondary metabolites from Agelas sponges
discovered in the past 47 years together with their bioactive effects.
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1. Introduction

The search for natural drug candidates from marine organisms is the eternal impetus to
pharmaceutical scientists. For the past six decades, marine sponges have been a prolific and chemically
diverse source of natural compounds with potential therapeutic application [1,2]. The marine sponge
Agelas (Porifera, Demospongiae, Agelasida, Agelasidae) is widely distributed in the marine eco-system
and includes at least 19 species (Figure 1): A. axifera, A. cerebrum, A. ceylonica, A. citrina, A. clathrodes,
A. conifera, A. dendromorpha, A. dispar, A. gracilis, A. linnaei, A. longissima, A. mauritiana, A. nakamurai,
A. nemoechinata, A. oroides, A. sceptrum, A. schmidtii, A. sventres, and A. wiedenmayeri. Since the beginning
of the 1970s, many research groups around the world have carried out chemical investigation on
Agelas spp., resulting in fruitful achievements. Their studies revealed that Agelas sponges harbor
many bioactive secondary metabolites, including alkaloids (especially bromopyrrole derivatives),
terpenoids, glycosphingolipids, carotenoids, fatty acids and meroterpenoids [3]. These natural
products are an attractive resource for drug candidates due to their rich chemodiversity and interesting
biological activities.
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2. Natural Products from Agelas Genus

The chemical diversity of natural products is determined by the biological diversity of organisms.
To date, 291 secondary metabolites (1–291) have been isolated and characterized from the marine
sponge Agelas spp. (Table 1). These chemicals were introduced and assorted as follows according to
their biological sources.
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2.1. Agelas axifera

Three new alkaloids, named axistatins 1 (1), 2 (2), and 3 (3) (Figure 2), were isolated and
characterized from Agelas axifera collected in the Republic of Palau and found to exhibit inhibitory
effects on cancer cell lines, including P388, BXPC-3, MCF-7, SF-268, NCI-H460, KM20L2 and DU-145.
The exquisitely sensitive Gram-negative pathogen Neisseria gonorrheae and the opportunistic fungus
Cryptococcus neoformans were inhibited by 1–3 with MIC values of 1–8, 2–4, and 8 µg/mL, and
1–4, 2, and 8–16 µg/mL, respectively. Furthermore, these compounds had antimicrobial effect on
Gram-positive bacteria, including Staphylococcus aureus, Streptococcus pneumoniae, Enterococcus faecalis
and Micrococcus luteus [4].
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Only one case of chemical study on Agelas ceylonica has been reported [7]. The specimen of A. 
ceylonica collected from India Mandapam coast was found to produce one methyl ester hanishin (7) 
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2.4. Agelas citrina 

The Caribbean specimen of Agelas citrina was firstly found to yield three new diterpene alkaloids, 
(−)-agelasidine E (8), (−)-agelasidine F (9) and agelasine N (10) [9]. Latter chemical investigation 
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2.2. Agelas cerebrum

Marine sponge Agelas cerebrum was classified as a new species in 2001 [5]. Chemical investigation of
Caribbean specimen A. cerebrum led to the isolation of three brominated compounds, 5-bromopyrrole-2-
carboxylic acid (4), 4-bromopyrrole-2-carboxylic acid (5) and 3,4-bromopyrrole-2-carboxylic acid (6)
(Figure 3) [6]. Biological tests indicated that these isolates had strong cytotoxic activities in vitro against
human tumor cell lines at ≥1 mg/mL, including A549, HT29 and MDA-MB-231.
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2.3. Agelas ceylonica

Only one case of chemical study on Agelas ceylonica has been reported [7]. The specimen of
A. ceylonica collected from India Mandapam coast was found to produce one methyl ester hanishin (7)
(Figure 4), which has been previously found in the marine sponge Homaxinella sp. [8].
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2.4. Agelas citrina

The Caribbean specimen of Agelas citrina was firstly found to yield three new diterpene alkaloids,
(−)-agelasidine E (8), (−)-agelasidine F (9) and agelasine N (10) [9]. Latter chemical investigation
showed that this sponge also produces four new pyrrole-imidazole alkaloids, citrinamines A–D
(11–14), and one bromopyrrole alkaloid N-methylagelongine (15) (Figure 5) [10]. Compounds 12–14
had antimicrobial activities whereas no inhibitory effect on cell proliferation of mouse fibroblasts was
found for 11–14.
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2.5. Agelas clathrodes

Marine sponge Agelas clathrodes was the excellent producer of secondary metabolites, including
glycosphingolipid derivatives (GSLs) and alkaloids. Clarhamnoside (16), containing an unusual
L-rhamnose unit in the sugar head, was the first rhamnosylated α-galactosylceramide from A. clathrodes
collected along the coast of Grand Bahamas Island (Sweetings Cay) [11]. The Caribbean sponge
A. clathrodes could metabolize clathrosides A–C (17–19) and isoclathrosides A–C (20–22), which,
respectively, belonged to two families of different glycolipids [12]. Compound 23 was also isolated from
the Caribbean specimen (Figure 6) [13]. It was noted that all the GSLs from A. clathrodes were actually
elucidated as mixtures of homologs, which play an important role in therapeutic immunomodulation.

Six alkaloids, (−)-agelasidine A (24), (−)-agelasidine C (25), (−)-agelasidine D (26), clathramide
A (27), clathramide B (28) and clathrodin (29), were detected in the Caribbean sponge A. clathrodes
(Figure 7). Bioassay results suggested that compound 24 possessed inhibitory effect on Staphilococcus
aureus but no effect on fungi, while 25 and 26 were shown to have antimicrobial activities against
S. aureus, Klebsiella pneumoniae and Proteus vulgaris [14]. In vitro cytotoxic test indicated that
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25 and 26 significantly inhibited the growth of CHO-K1 cells with the ED50 values of 5.70 and
2.21 µg/mL, respectively. Compound 26 also possessed the inhibition against the growth of E. coli
and Hafnia alvei [15], while 27 and 28 had a moderate antifungal activity against Aspergillus niger [16].
Interestingly, compound 29 contained a nonbrominated pyrrole and a guanidine moiety [17]. One
specimen of A. clathrodes from the South China Sea was shown to produce an ionic compound (30),
which had weak cytotoxicity against cancer cell lines A549 and SGC7901 with IC50 values of 26.5 and
22.7 µg/mL, respectively [18]. Four brominated compounds, dispacamides A–D (31–34) (Figure 7),
were detected not only in A. clathrodes, but also in A. conifera, A. dispar and A. longissima, and exhibited
antihistamine activity [19,20].
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2.6. Agelas conifera

Chemical study of two specimens of Agelas conifera from the Florida Keys and Belize led to
the isolation of two new dimeric bromopyrrole alkaloids, bromosceptrin (35) and debromosceptrin
(36), respectively [21,22]. Seven new bromopyrrole metabolites (37–43) were firstly purified from
the Caribbean sponge A. conifera [23], but the detailed structure elucidation of ageliferin (41),
bromoageferin (42) and dibromoageliferin (43) were established by Kobayashi and his co-workers [24].
Bioassay results indicated that compounds 37, 41, 42 and 43 possessed biological activities against
Bacillus subtilis at 10 µg/disk and 41 and 42 could inhibit the growth of E. coli at 10 µg/disk. Using
new protein-guided methods by its affinity to proteins within tumor cell proteomes, one unique
polyhydroxybutyrated β-GSL coniferoside (44), was detected in A. conifera derived from Puerto Rico
as well as another GSL derivative (45) (Figure 8) [25,26].
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2.7. Agelas dendromorpha

Natural product analysis of the marine sponge Agelas dendromorpha revealed three novel
agelastatins (46–48) with pyrrole-2-imidazole structure. Agelastatin A (46) was obtained from the
Axinellid specimen grown in the Coral Sea and had strong cytotoxicity [27]. Agelastatins E (47) and
F (48) (Figure 9) purified from the New Caledonian A. dendromorpha were shown to exhibit weak
cytotoxicity against the KB cell line at 30 µM [28].
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2.8. Agelas dispar

It is notable that Caribbean Agelas dispar harbors a distinct biogeographical bromination trend.
Five compounds containing bromine, dispyrin (49), dibromoagelaspongin methyl ether (50), longamide
B (51), clathramides C (52) and D (53), have been found in the Caribbean sponge A. dispar [29,30].
Only compound 51 had moderate anti-bacterial activities against B. subtilis and S. aureus with MIC
values of about 50 µg/mL. The GSL derivative (54) and betaine alkaloids (55–57) were detected in the
Caribbean A. dispar [31,32]. Antibacterial tests indicated that compounds 55 and 56 had the inhibitory
activities against B. subtilis and S. aureus with MIC values ranging from 2.5 to 8.0 µg/mL [32]. The first
quaternary derivative of adenine in nature, agelasine (58) (Figure 10), was also found in A. dispar [33].
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2.9. Agelas gracilis

Bioassay-guided fractionation of the crude extract of the deep-sea sponge Agelas gracilis collected
in southern Japan afforded three novel antiprotozoan compounds, gracilioethers A–C (59–61)
(Figure 11) [34]. Antimalarial tests showed that these metabolites possessed inhibitory effects on
Plasmodium falciparum with IC50 values of 0.5–10 µg/mL.

2.10. Agelas linnaei

Eleven novel brominated pyrrole derivatives (62–72) (Figure 12) were purified from the Indonesian
sponge Agelas linnaei and compounds 66–69 had prominent activities against the murine L1578Y mouse
lymphoma cell line with IC50 values of 9.55, 9.25, 16.76 and 13.06 µM, respectively [35].
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2.11. Agelas longissima 

Five alkaloids (73–77) (Figure 13) have been isolated from Agelas longissima specimens, all of 
which were collected from the Caribbean Sea. Agelongine (73) contained a pyridinium ring instead 
of the commonly found imidazole nucleus in Agelas alkaloids and was shown to be specific to inhibit 
the agonist 5-hydroxytryptamine (5-HT) [36]. Compound 75 was unique for its unusual 
pyrrolopiperazine nucleus [37]. Two new GSL analogs (76 and 77) were also found in the Caribbean 
A. longissima [38,39]. 
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2.11. Agelas longissima

Five alkaloids (73–77) (Figure 13) have been isolated from Agelas longissima specimens, all of
which were collected from the Caribbean Sea. Agelongine (73) contained a pyridinium ring instead of
the commonly found imidazole nucleus in Agelas alkaloids and was shown to be specific to inhibit the
agonist 5-hydroxytryptamine (5-HT) [36]. Compound 75 was unique for its unusual pyrrolopiperazine
nucleus [37]. Two new GSL analogs (76 and 77) were also found in the Caribbean A. longissima [38,39].

2.12. Agelas mauritiana

Agelas mauritiana is one of the most fruitful producers of secondary metabolites among all
Agelas species. Thirty-five compounds (78–112) have been isolated and identified from A. mauritiana,
including terpenoids, pyrrole derivatives, GSLs, carotenoids and other alkaloids. Specimens of
A. mauritiana collected from the South China Sea were found to metabolize eight terpenoids
(78–85) [40,41]. Compound 79 possessed inhibitory effects on S. aureus with MIC90 value of 1–8 µg/mL
and activities against PC9, A549, HepG2, MCF-7, and U937 cell lines with IC50 values of 4.49–14.41 µM.
Compound 84 possessed activities against C. neoformans, S. aureus, methicillin-resistant S. aureus and
Leishmania donovani with IC50/MIC values of 4.96/10.00, 7.21/10.00, 9.20/20.00 and 28.55/33.19 µg/mL,
respectively. Agelasimines A (86) and B (87) and an unusual purino-diterpene (88) were purified from
Eniwetak A. mauritiana and 86 and 87 had inhibitory effect on L1210 leukemia with ED50 values of
2.1 and 3.9 nM, respectively. From Pohnpei-derived A. mauritiana, epi-agelasine C (89) was isolated
and shown to have no activity against S. aureus, Vibrio costicola, E. coli and B. subtilis [42–44]. Chemical
analysis of one specimen of A. auritiana collected from the Solomon Islands afforded agelasines
J (90), K (91) and L (92) (Figure 14), which exhibited moderate activities against P. falciparum and low
cytotoxicity on MCF-7 cells [45].
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Flavobacterium marinotypicum with the inhibition zone of 10 mm at 10 μg/disk. Interestingly, the Pacific 
sponge A. mauritiana was found to metabolize other pyrroles, including debromokeramadine (99), 
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The same species of A. mauritiana grown in different places were found to produce different
pyrrole derivatives, such as debromodispacamides B (93) and D (94) from Solomon Island
specimen [46], 4-bromo-N-(butoxymethyl)-1H-pyrrole-2-carboxamide (95) from the South China
Sea [41], 5-debromomidpacamide (96) from Enewetak Atoll [47], mauritamide A (97) from Fiji [48]
and mauritiamine (98) from Hachijo-jima Island [49]. Compound 98 exhibited inhibitory effect on
larval metamorphosis of the barnacle Balanus amphitrite with ED50 value of 15 µg/mL and moderate
antibacterial activity against Flavobacterium marinotypicum with the inhibition zone of 10 mm at
10 µg/disk. Interestingly, the Pacific sponge A. mauritiana was found to metabolize other pyrroles,
including debromokeramadine (99), benzosceptrin A (100), nagelamide S (101) and nagelamide T (102)
(Figure 15) [50,51].
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Agelasphins (103–110) from the Okinawan A. mauritiana were the first example of
galactosylceramides containing an α-galactosyl linkage [52,53]. These compounds exhibited high
activity with the relative tumor proliferation rate (T/C) ranging from 160% to 190% and 200–400%
relative 3H-TdR incorporation at <l µg/mL. But no activity was observed against B16 melanoma cells
at 20 µg/mL. Two natural carotenoids, isotedanin (111) and isoclathriaxanthin (112) (Figure 16), were
also detected in the specimen of A. mauritiana from Kagoshima [54].
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1 integrase, E. coli and Pseudomonas aeruginosa at 12.5 μg/mL [60]. 
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2.13. Agelas nakamurai

Thirty-three chemicals have been characterized from Agelas nakamurai, including 16 terpenoids
and 17 pyrrole alkaloids. The Okinawan A. nakamurai seems to occupy the majority of terpenoid
compounds, including agelasidines B (113) and C (114) [55], nakamurols A–D (115–118) [56],
2-oxoagelasiines A (119) and F (120), 10-hydro-9-hydroxyagelasine F (121) [57], agelasines E (122)
and F (123) [58]. Compounds 113 and 114 were found to have inhibitory effects on the growth of S.
aureus at 3.3 µg/mL and on contractile responses of smooth muscles. Compounds 119 and 120 showed
markedly reduced activity against Mycobacterium smegmatis. The Indonesian A. nakamurai was found
to yield two novel diterpenes, (−)-agelasine D (124) and (−)-ageloxime D (125). Antibacterial assay
revealed 124 could inhibit the growth of Staphylococcus epidermidis with a MIC value < 0.0877 µM [35].
Isoagelasine C (126) and isoagelasidine B (127) were isolated from specimen of the South China Sea
and possessed weak cytotoxicities against HL-60, K562 and HCT-116 cell lines with IC50 values ranging
from 18.4 to 39.2 µM [59]. A new diterpene (128) (Figure 17) with a 9-methyladenum moiety produced
by the Papua New Guinean A. nakamurai Hoshino was shown to be inactive against HIV-1 integrase,
E. coli and Pseudomonas aeruginosa at 12.5 µg/mL [60].
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Five non-brominated pyrrole derivatives, nakamurines A–E (129–133), were purified from the 
South China Sea A. nakamurai [59,61]. Bioassay results showed that compound 130 had weak 
inhibition against Candida albicans with a MIC value of 60 μg/mL [61]. Bromopyrrole alkaloid was 
one of the most common secondary metabolites from marine sponges [62]. Two bromopyrrole 
alkaloids (134 and 135) were firstly isolated from the Papua New Guinean A. nakamurai in 1998 [60]. 
Ageladine A (136) containing 2-aminoimidazolopyridine was shown to have inhibitory effects on 
Matrix metalloproteinases-1, -2, -8, -9, -12 and -13 with IC50 values of 1.2, 2.0, 0.39, 0.79, 0.33, and 0.47 
μg/mL, respectively [63]. Chemical investigation of the Indonesia A. nakamurai afforded longamide 
C (137) [35]. Nakamuric acid (138) and its methyl ester (139) were characterized from the Indopacific 
specimen and shown to be active against B. subtilis [64]. The Okinawan A. nakamurai was found to 
produce six brominated pyrrole derivatives, slagenins A–C (140–142) and mukanadins A–C (143–145) 
(Figure 18), of which 141 and 142 showed inhibitory effect on murine leukemia L1210 cells in vitro 
with IC50 values of 7.5 and 7.0 μg/mL, respectively [65,66]. 
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Five non-brominated pyrrole derivatives, nakamurines A–E (129–133), were purified from the
South China Sea A. nakamurai [59,61]. Bioassay results showed that compound 130 had weak inhibition
against Candida albicans with a MIC value of 60 µg/mL [61]. Bromopyrrole alkaloid was one of
the most common secondary metabolites from marine sponges [62]. Two bromopyrrole alkaloids
(134 and 135) were firstly isolated from the Papua New Guinean A. nakamurai in 1998 [60]. Ageladine
A (136) containing 2-aminoimidazolopyridine was shown to have inhibitory effects on Matrix
metalloproteinases-1, -2, -8, -9, -12 and -13 with IC50 values of 1.2, 2.0, 0.39, 0.79, 0.33, and 0.47 µg/mL,
respectively [63]. Chemical investigation of the Indonesia A. nakamurai afforded longamide C (137) [35].
Nakamuric acid (138) and its methyl ester (139) were characterized from the Indopacific specimen
and shown to be active against B. subtilis [64]. The Okinawan A. nakamurai was found to produce six
brominated pyrrole derivatives, slagenins A–C (140–142) and mukanadins A–C (143–145) (Figure 18),
of which 141 and 142 showed inhibitory effect on murine leukemia L1210 cells in vitro with IC50 values
of 7.5 and 7.0 µg/mL, respectively [65,66].
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2.14. Agelas nemoechinata 

Nemoechines A–D (146–149) and nemoechioxide A (150) were obtained from the sponge Agelas 
aff. nemoechinata collected from the South China Sea. Compounds 146–148 had enantiomeric 
configurations and 146 had an unusual cyclopentene-fused imidazole ring system. Bioassay results 
suggested that only 149 had cytotoxicity against HL-60 cell lines with an IC50 value of 9.9 μM [67]. 
Two new nemoechine members, nemoechines F (151) and G (152) possessing N-methyladenine, were 
purified from the South China Sea-derived A. nemoechinata. Compound 152 had weak toxicity against 
Jurkat cell line with an IC50 value of 17.1 μM [68]. Oxysceptrin (153) (Figure 19) derived from the 
Okinawan A. nemoechinata was a potent actomyosin ATPase activator [69]. 
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2.14. Agelas nemoechinata

Nemoechines A–D (146–149) and nemoechioxide A (150) were obtained from the sponge Agelas aff.
nemoechinata collected from the South China Sea. Compounds 146–148 had enantiomeric configurations
and 146 had an unusual cyclopentene-fused imidazole ring system. Bioassay results suggested that
only 149 had cytotoxicity against HL-60 cell lines with an IC50 value of 9.9 µM [67]. Two new
nemoechine members, nemoechines F (151) and G (152) possessing N-methyladenine, were purified
from the South China Sea-derived A. nemoechinata. Compound 152 had weak toxicity against Jurkat
cell line with an IC50 value of 17.1 µM [68]. Oxysceptrin (153) (Figure 19) derived from the Okinawan
A. nemoechinata was a potent actomyosin ATPase activator [69].
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2.15. Agelas oroides

Thirty-six secondary metabolites (154–189) (Figure 20) have been isolated from the marine sponge
Agelas oroides, including pyrrole derivatives, sterols and fatty acids. Chemical investigation of A. oroides
from the Great Barrier Reef afforded three fistularin-3 derivatives, agelorin A (154), agelorin B (155)
and 11-epi-fistularin-3 (156). These metabolites exhibited antimicrobial activities against B. subtilis
and M. luteus and 156 had moderate cytotoxicity against breast cancer cells [70]. Later on, two new
naturally occurring pyrrole derivatives (157 and 158) and 2,4,6,6-tetramethyl-3(6H)-pyridone (159)
were obtained from the same specimen [71,72]. Mediterranean A. oroides was shown to produce
four novel compounds, cyclooroidin (160), taurodispacamide A (161), monobromoagelaspongin (162)
and (−)-equinobetaine B (163), of which 161 displayed strong antihistaminic activity [73,74]. Five
bromopyrrole alkaloids (164–168) and fifteen sterols (169–183) were detected in the sponge A. oroides
collected in the Bay of Naples [75,76]. Interestingly, one imidazole compound (184), taurine (185) and
some fatty acids (186–189) were also found in the Northern Aegean Sea-derived specimen [77].
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2.16. Agelas sceptrum

One novel C29 sterol containing the typical nucleus of ergosterol, 26-nor-25-isopropyl-ergosta-
5,7,22E-trien-3β-ol (190), was purified from the Jamaican A. sceptrum [78]. Sceptrin (191) was obtained
from A. sceptrum collected at Glover Reef and found to have a broad spectrum of antimicrobial
activities against S. aureus, B. subtilis, C. albicans, Pseudomonas aeruginosa, Alternaria sp. and Cladosporium
cucumerinum [79]. Chemical study of the sponge from Bahamas afforded two hybrid pyrrole-imidazole
alkaloids: 15′-oxoadenosceptrin (192) and decarboxyagelamadin C (193) (Figure 21) [80].
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2.17. Agelas schmidtii

Three monohydroxyl sterols (194–196) were isolated from the Caribbean Agelas schmidtii [81].
Additionally, four carotenoids named α-carotene (197), isorenieratene (198), trikentriorhodin (199) and
zeaxanthin (200) (Figure 22) were also derived from this sponge collected from West Indies [82].
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2.18. Agelas sventres

Only one new bromopyrrole alkaloid, sventrin (201) (Figure 23), has been purified from the
Caribbean sponge Agelas sventres. Biological assay showed that this chemical has feeding deterrent
activity against omnivorous reef fish [83].
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2.19. Agelas wiedenmayeri

Chemical investigation of Agelas wiedenmayeri from Florida Keys afforded one new pyrrole
derivative, 4-bromopyrrole-2-carboxyhomoarginine (202) (Figure 24), which might be alternatively
a biosynthetic precursor of hymenidin/oroidin-related alkaloids [84].

Mar. Drugs 2017, 15, 351 16 of 29 

 

2.18. Agelas sventres 

Only one new bromopyrrole alkaloid, sventrin (201) (Figure 23), has been purified from the 
Caribbean sponge Agelas sventres. Biological assay showed that this chemical has feeding deterrent 
activity against omnivorous reef fish [83]. 

201

Figure 23. Chemical structure of compounds 201. 

2.19. Agelas wiedenmayeri 

Chemical investigation of Agelas wiedenmayeri from Florida Keys afforded one new pyrrole 
derivative, 4-bromopyrrole-2-carboxyhomoarginine (202) (Figure 24), which might be alternatively a 
biosynthetic precursor of hymenidin/oroidin-related alkaloids [84]. 

202

Figure 24. Chemical structure of compounds 202. 

2.20. Other Agelas spp. 

Eighty-nine secondary metabolites (203–291) were isolated and chemically identified from 
unclassified Agelas species and assorted into two classes, ionic and non-ionic compounds as below. 

2.20.1. Ionic Compounds 

As described above, ionic compounds are the major secondary metabolites of Agelas sponge, 
which can be grouped in bromine-containing and non-bromine-containing compounds. It is eminent 
that all ionic brominated metabolites were produced by the Okinawan Agelas spp. besides 
dibromoagelaspongin hydrochloride (203) [85]. Agelamadins A (204) and B (205), possessing an 
agelastatin-like tetracyclic moiety and an oroidin-like linear moiety, were shown to have 
antimicrobial activity against B. subtilis, M. luteus and C. neoformans [86]. The same specimen was also 
found to metabolize agelamadins C–F (206–209) and tauroacidin E (210) (Figure 25), of which 209 was 
the first occurrence bromopyrrole alkaloid for containing aminoimidazole and pyridinium moieties 
simultaneously [87,88]. 

 O
HN N

H

H
NHN

HOOC

O

O
NH

Br

Br

NH2

NH3

2CF3COO

203 
204: R=OCH3 

205: R=OH 206 207 

Figure 24. Chemical structure of compounds 202.

2.20. Other Agelas spp.

Eighty-nine secondary metabolites (203–291) were isolated and chemically identified from
unclassified Agelas species and assorted into two classes, ionic and non-ionic compounds as below.

2.20.1. Ionic Compounds

As described above, ionic compounds are the major secondary metabolites of Agelas sponge, which
can be grouped in bromine-containing and non-bromine-containing compounds. It is eminent that all
ionic brominated metabolites were produced by the Okinawan Agelas spp. besides dibromoagelaspongin
hydrochloride (203) [85]. Agelamadins A (204) and B (205), possessing an agelastatin-like tetracyclic
moiety and an oroidin-like linear moiety, were shown to have antimicrobial activity against B. subtilis,
M. luteus and C. neoformans [86]. The same specimen was also found to metabolize agelamadins C–F
(206–209) and tauroacidin E (210) (Figure 25), of which 209 was the first occurrence bromopyrrole alkaloid
for containing aminoimidazole and pyridinium moieties simultaneously [87,88].
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Twenty-one nagelamides (211–231) (Figure 26) have been characterized from the Okinawan
Agelas spp. Nagelamides A–H (211–218) and O (219) were shown to possess antimicrobial activities
against M. luteus, B. subtilis and E. coli. Compounds 211, 217 and 218 were shown to inhibit the growth
of protein phosphatase type 2A with IC50 values of 48, 13 and 46 µM, respectively [89,90]. Nagelamides
K (220) and L (221) had inhibitory effect on M. luteus with a MIC value of 16.7 µg/mL [91]. Bioactivity
test uncovered that nagelamides M (222) and N (223) exhibited inhibition against A. niger with the same
MIC value of 33.3 µg/mL [92]. Nagelamides Q (224) and R (225), of which compound 225 possessed
an oxazoline ring for the first time, showed antimicrobial activity against B. subtilis, Trichophyton
mentagrophytes, C. neoformans, C. albicans and A. niger [93]. Nagelamides U (226) and V (227) were
the first occurence for a bromopyrrole alkaloid containing a γ-lactam ring with an N-ethanesulfonic
acid and guanidino moieties, while nagelamide W (228) was the first monomeric bromopyrrole
alkaloid with two aminoimidazole moieties in the molecule. Compounds 226 and 228 could inhibit
against C. albicans with the same IC50 value of 4 µg/mL [94]. Nagelamides X (229) and Y (230) were
unique for their novel tricyclic skeleton consisting of spiro-bonded tetrahydrobenzaminoimidazole
and aminoimidazolidine moieties. In addition, nagelamide Z (231) was the first example for dimeric
bromopyrrole alkaloid involving the C-8 position in dimerization and displayed strong antimicrobial
activity against C. albicans with an IC50 value of 0.25 µg/mL [95].
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Eight new bromopyrrole alkaloids, 2-bromokeramadine (232), 2-bromo-9,10-dihydrokeramadine 
(233), tauroacidins C (234) and D (235), mukanadin G (236), 2-debromonagelamides U (237) and G (238), 
2-debromonagelamide P (239), keramadine (240) and agelasine G (241) (Figure 27) were detected in the 
Okinawan Agelas spp. [96–99] Antimicrobial tests suggested that compound 236 exhibited inhibitory 
effects on C. albicans and C. neoformans with IC50 values of 16 and 8 μg/mL, respectively [96]. 
Compounds 237 and 239 could inhibit the growth of T. mentagrophytes with IC50 values of 16 and 32 
μg/mL, respectively. Cytotoxicity assay revealed that 241 showed toxicity against murine lymphoma 
L1210 cells in vitro with an IC50 value of 3.1 μg/mL [97,99]. 
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Eight new bromopyrrole alkaloids, 2-bromokeramadine (232), 2-bromo-9,10-dihydrokeramadine
(233), tauroacidins C (234) and D (235), mukanadin G (236), 2-debromonagelamides U (237) and
G (238), 2-debromonagelamide P (239), keramadine (240) and agelasine G (241) (Figure 27) were
detected in the Okinawan Agelas spp. [96–99] Antimicrobial tests suggested that compound 236
exhibited inhibitory effects on C. albicans and C. neoformans with IC50 values of 16 and 8 µg/mL,
respectively [96]. Compounds 237 and 239 could inhibit the growth of T. mentagrophytes with IC50

values of 16 and 32 µg/mL, respectively. Cytotoxicity assay revealed that 241 showed toxicity against
murine lymphoma L1210 cells in vitro with an IC50 value of 3.1 µg/mL [97,99].
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Nineteen non-bromine-containing ionic compounds have been isolated from unclassified Agelas 
spp., including eleven agalasines (242–252) from Okinawa [100,101], two agelasines (253 and 254) 
from Yap Island [102], four higher unsaturated 9-N-methyladeninium bicyclic diterpenoids (255–258) 
from Papua New Guinea [103] and two quarternary 9-methyladenine salts of diterpenes agelines (259 
and 260) from Argulpelu Reef [104]. Compounds 242–245 displayed strong inhibitory effects on Na, 
K-ATPase and antimicrobial activities [100]. Agelasine M (255) exhibited potent activity against 
Trypanosoma brucei [103], while agelines A (259) and B (260) (Figure 28) showed mild ichthyotoxins 
and antimicrobial activities [104]. 
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Figure 27. Chemical structures of compounds 232–241.

Nineteen non-bromine-containing ionic compounds have been isolated from unclassified
Agelas spp., including eleven agalasines (242–252) from Okinawa [100,101], two agelasines (253 and 254)
from Yap Island [102], four higher unsaturated 9-N-methyladeninium bicyclic diterpenoids (255–258)
from Papua New Guinea [103] and two quarternary 9-methyladenine salts of diterpenes agelines
(259 and 260) from Argulpelu Reef [104]. Compounds 242–245 displayed strong inhibitory effects on
Na, K-ATPase and antimicrobial activities [100]. Agelasine M (255) exhibited potent activity against
Trypanosoma brucei [103], while agelines A (259) and B (260) (Figure 28) showed mild ichthyotoxins and
antimicrobial activities [104].
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Only two non-ionic metabolites without bromine, agelasidine A (290) and agelagalastatin (291)
(Figure 30), have been detected in two unclassified specimens of Agelas sp. Compound 290 was the
first marine natural substance possessing sulfone and guanidine units purified from the Okinawan
sample and showed antispasmodic activity [116]. It was notable that compound 24 from the Caribbean
A. clathrodes is the optimal isomer of 290. Compound 291 was a new GSL derived from Agelas sp.
collected in Papua New Guinea and found to exhibit significant in vitro activity against human cancer
cell lines with lung NCI-H460 GI50 0.77 µg/mL to ovary OVCAR-3 GI50 2.8 µg/mL [117].
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Table 1. Agelas-derived secondary metabolites.

Organism Locality Secondary Metabolite References

Agelas axifera the Republic of Palau axistatins 1 (1), 2 (2), 3 (3) [4]

A. cerebrum Caribbean 5-bromopyrrole-2-carboxylic acid (4), 4-bromopyrrole-2-carboxylic acid (5), 3,4-bromopyrrole-2-carboxylic acid (6) [6]

A. ceylonica the Mandapam coast hanishin (7) [7]

A. citrina Caribbean (−)-agelasidine E (8), (−)-agelasidine F (9), agelasine N (10), citrinamines A–D (11–14), N-methylagelongine (15) [9,10]

A. clathrodes
Grand Bahamas Island clarhamnoside (16) [11]

Caribbean clathrosides A–C (17–19), isoclathrosides A–C (20–22), glycosphingolipid (23), (−)-agelasidine A (24), (−)-agelasidine C (25),
(−)-agelasidine D (26), clathramides A (27) and B (28), clathrodin (29), dispacamides A–D (31–34) [12–17,19,20]

South China Sea 3,3-bis(uracil-l-yl)-propan-1-aminium (30) [18]

A. conifera

Florida Keys bromosceptrin (35) [21]
Belize debromosceptrin (36) [22]

Caribbean bromopyrroles (37–43), glycosphingolipid (45) [23,24,26]
Puerto Rico coniferoside (44) [25]

A. dendromorpha the Coral Sea agelastatin A (46) [27]
the New Caledonia agelastatins E (47) and F (48) [28]

A. dispar
Caribbean dispyrin (49), dibromoagelaspongin methyl ether (50), longamide B (51), clathramides C (52) and D (53),

aminozooanemonin (55), pyridinebetaines A (56) and B (57) [29,30,32]

San Salvador Island triglycosylceramide (54) [31]
agelasine (58) [33]

A. gracilis South Japan gracilioethers A–C (59–61) [34]

A. linnaei Indonesia brominated pyrrole derivatives (62–72) [35]

A. longissima Caribbean agelongine (73), 3,7-dimethylisoguanine (74), longamide (75), glycosphingolipids (76 and 77) [36–39]

A. mauritiana

South China Sea
(−)-80-oxo-agelasine B (78), (+)-agelasine B (79), (+)-8’-oxo-agelasine C (80), agelasine V (81), (+)-8’-oxo-agelasine E (82),
8’-oxo-agelasine D (83), ageloxime B (84), (+)-2-oxo-agelasidine C (85), 4-bromo-N-(butoxymethyl)-1H-pyrrole-
2-carboxamide (95)

[40,41]

Enewetak agelasimine A (86), agelasimine B (87), purino-diterpene (88), 5-debromomidpacamide (96) [42,43,47]
Pohnpei epi-agelasine C (89) [44]

Solomon Islands agelasines J (90), K (91) and L (92), debromodispacamides B (93) and D (94) [45,46]
Fiji mauritamide A (97) [48]

Hachijo-jima Island mauritiamine (98) [49]
the Pacific sea ebromokeramadine (99), benzosceptrin A (100), nagelamides S (101) and T (102) [50,51]

Okinawa agelasphins (103–110) [52,53]
Kagoshima isotedanin (111), isoclathriaxanthin (112) [54]



Mar. Drugs 2017, 15, 351 23 of 29

Table 1. Cont.

Organism Locality Secondary Metabolite References

A. nakamurai

Okinawa agelasidines B (113) and C (114), nakamurols A–D (115–118), 2-oxoagelasiines A (119) and F (120),
10-hydro-9-hydroxyagelasine F (121), agelasines E (122) and F (123), slagenins A–C (140–142), mukanadins A–C (143–145) [55–58,65,66]

Indonesia (−)-agelasine D (124), (−)-ageloxime D (125) [35]
South China Sea isoagelasine C (126), isoagelasidine B (127) [59]

Papua New Guinea diterpene (128), bromopyrrole alkaloids (134 and 135) [60]
South China Sea nakamurines A–E (129–133) [59,61]

Japan ageladine A (136) [63]
Indonesia longamide C (137) [35]

Indopacific nakamuric acid (138) and its methyl ester (139) [64]

A. nemoechinata
South China Sea nemoechines A–D (146–149), nemoechioxide A (150), nemoechines F (151) and G (152) [67,68]

Okinawa oxysceptrin (153) [69]

A. oroides

the Great Barrier Reef agelorin A (154), agelorin B (155), 11-epi-fistularin-3 (156), pyrrole-2-carboxamide (157), N-formyl-pymole-2-carboxamid (158),
2,4,6,6-tetramethyl-3(6H)-pyridone (159) [70–72]

Mediterranea Sea cyclooroidin (160) and taurodispacamide A (161), monobromoagelaspongin (162), (−)-equinobetaine B (163) [73,74]
Naples bromopyrroles (164–168), sterols (169–183) [75,76]

the Northern Aegean Sea 3-amino-1-(2-aminoimidazoyl)-prop-1-ene (184), taurine (185), fatty acid mixtures (186–189) [77]

A. sceptrum
Jamaica 26-nor-25-isopropyl-ergosta-5,7,22 E-trien-3β-ol (190) [78]
Belize sceptrin (191) [79]

Bahamas 15′-oxoadenosceptrin (192), decarboxyagelamadin C (193) [80]

A. schmidtii
Caribbean monohydroxyl sterols (194–196) [81]

West Indies α-carotene (197), isorenieratene (198), trikentriorhodin (199) and zeaxanthin (200) [82]

A. sventres Caribbean sventrin (201) [83]

A. wiedenmayeri Florida Keys 4-bromopyrrole-2-carboxyhomoarginine (202) [84]

Unclassified
Agelas sp.

No record dibromoagelaspongin hydrochloride (203) [85]

Okinawa

agelamadins A (204) and B (205), agelamadins C–F (206–209), tauroacidin E (210), nagelamides A–H (211–218), nagelamides
K–O (219–223), nagelamides Q (224) and R (225), nagelamides U–Z (226–231), 2-bromokeramadine (232),
2-bromo-9,10-dihydrokeramadine (233), tauroacidins C (234) and D (235), mukanadin G (236), 2-debromonagelamides U (237)
and G (238), 2-debromonagelamide P (239), keramadine (240), agelasine G (241), agelasines A–D (242–245), agelasines
O–U (246–252), agesamides A (261) and B (262), benzosceptrin C (263), nagelamides J (264) and P (265), mukanadins E (266)
and F (267), nagelamide I (268), 2,2’-didebromonagelamide B (269), agelasidine A (290)

[86–101,105–108,116]

Yap Island agelasines H (253) and I (254) [102]

Papua New Guinea agelasine M (255), 2-oxo-agelasine B (256), gelasines A (257) and B (258), (−)-7-N-methyldibromophakellin (281),
(−)-7-N-methylmonobromophakellin (282), agelagalastatin (291) [103,112,117]

Palau Island agelines A (259) and B (260) [104]

South China Sea
longamides D–F (270–272), 3-oxethyl-4-[1-(4,5-dibromopyrrole-2-yl)-formamido]-butanoic acid methyl ester (273),
2-oxethyl-3-[1-(4,5-dibromopyrrole-2-yl)-formamido]-methyl propionate (274), 9-oxethyl-mukanadin F (275),
hexazosceptrin (276), agelestes A (277) and B (278) and (9S,10R,9’S,10’R)-nakamuric acid (279)

[109,110]

Caribbean Sea monobromoisophakellin (280), brominated phospholipid fatty acids (286–289) [111,115]
Indonesia 5-bromophakelline (283) [113]
No record 2,3-dibromopyrrole (284) and 2,3-dibromo-5-methoxymethylpyrrole (285) [114]
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3. Conclusions

Many efforts have been devoted to implement chemical investigation of Agelas sponges during
the past 47 years, from 1971 to 2017. Meanwhile, great achievements have been made on chemical
diversity of their secondary metabolites. Agelas sponges are widely distributed in the ocean, especially
in the Okinawa Sea, the Caribbean Sea and the South China Sea. Deep ocean technologies for specimen
collecting should be used to search more unknown species of Agelas sponges, such as manned and
remotely operated underwater vehicles. Advanced separation methodologies should be deployed
to explore more bioactive secondary metabolites of these sponges, such as UPLC-MS, metabolomics
approach [74]. Furthermore, special attention should be paid to symbiotic microorganisms of
Agelas sponges owing to the fact that a great number of therapeutic agents of marine sponges are
biosynthesized by their symbiotic microbes [118]. By a combination of gene engineering, pathway
reconstructing, enzyme engineering and metabolic networks, these microbes can be modified to
produce more novel chemicals containing enhanced structural features or a large quantity of known
valuable compounds for pharmaceutical production.
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