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Selmer groups

k: number field
E: elliptic curve over k

E(k)
pE(k) Hl(k,E[p])4>H1(k,E)[p]4>O
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Selp £ := {£ € H'(k, E[p]) : B(€) € im(a)}
II(E) := ker (Hl(k, E) = [[H (k. E)) :

E(k)
0—»—-~— Sel, E — HI(E)[p] — O.
pE(k) finite, coﬁputable



How do Selmer groups vary in a family of elliptic curves?
@ Heath-Brown 1994: Define
S(E) = disz Se|2 E— dimIF2 E(k)[2]

3

Then as E varies over quadratic twists of y2 = x> — x over Q,

d
Prob(s(E) = d) = [J(1+27) 1H21
Jj>0 Jj=1
for each d > 0.

@ Swinnerton-Dyer 2008, Kane 2010: Same for quadratic twists
of other Ep/Q with rational 2-torsion and no rational cyclic
subgroup of order 4.

@ Mazur—Rubin 2010, Klagsbrun 2010: For many Eq/k,
construct infinitely many twists E with prescribed s(E).



How do Selmer groups vary? Average size?

@ Yu 2000: For k = Q, for the family of all elliptic curves with
rational 2-torsion,

Average(# Sely) is finite.
e de Jong 2002: For k = Fg(t),
Average(# Sel3) < 4+ O(1/q).

He had a heuristic that suggested that the truth was 4,
and he predicted the same for number fields.

@ Bhargava—Shankar 2010: For k = Q,

Average(# Sely) =3
Average(# Sel3) = 4

(and results for Sels and Sels are forthcoming!)



Hyperbolic quadratic spaces

Let W be an n-dimensional F,-vector space. Define

V::W@dW’T
Q: V=T,

(w,9) = o(w).

This @ is a quadratic map: the function

(x,y) = Qx+y)— Q(x) - Qy)
is bilinear.
Definition
Any such (V, Q) is called a hyperbolic quadratic space.
Definition

A subspace Z < V is maximal isotropic if Z* = Z and Q|7 = 0.



Random maximal isotropic subspaces

Recall the notation: (V, Q) is hyperbolic, dimp, V' = 2n.

Proposition
Choose maximal isotropic Z1,Z> < V at random. Then

d
. _. _ p
Prob(dim(Z1 1 22) = ) —+ cap = [J1+p7) " [] 2
Jj=0 j=1
asdimV — oco.

When p = 2, this is the same distribution on nonnegative integers
as in Heath-Brown's theorem!

Is this a coincidence?



Quadratic forms on locally compact abelian groups

Let V be a locally compact abelian group.
Let Q: V — R/Z be a continuous map such that

(xy) = Qlx+y) — Q(x) — Q(y)
is bilinear. Assume that (V/, Q) is nondegenerate; i.e.,

V — V* := Homeonts(V, R/Z)
V= <V7 _>

is an isomorphism.

Definition
(V, Q) is weakly metabolic if and only if it has a compact open
maximal isotropic subgroup W.



Restricted direct products of weakly metabolics

Definition (from previous slide)

(V, Q) is weakly metabolic if and only if it has a compact open
maximal isotropic subgroup W.

Example (cf. Braconnier 1948)
Suppose that (V;, Q;, W;) is weakly metabolic for i € Z. Construct

V= H,(V,', W)
w=][w
For v = (v;) € V, define
Q(v) =) Qi(vi).

Then (V, Q, W) is weakly metabolic.



Random maximal isotropic subspaces of an co-dim space

Suppose that
o (V,Q, W) is weakly metabolic, pV =0
@ V is infinite but second countable
(topology has countable basis)
Let 7\, be the set of maximal isotropic closed subgroups of V.

Theorem
]

I\/ = MIXL/X?
X

where X ranges over compact open subgroups of V' with
Qlx =0.
@ Define the uniform probability measure on the profinite set Ty, .

e If Z € Ty is chosen at random, then
Prob (dimp,(Z N W) = d) = cq .

(It turns out that Z is discrete with probability 1.)



Alternative description of the distribution

Define independent Bernoulli random variables By, By, ... where

B — 1, with probability 1/(p’ + 1)
T 0, otherwise.

Then
Bo+Bi+By+---

converges 100% of the time, and has the same distribution as the
dimension of the random intersection of maximal isotropic
subspaces.

Note: The probability that this sum is odd is 1/2.



Alternative description of the distribution

Define independent Bernoulli random variables By, By, ... where

B — 1, with probability 1/(p’ + 1)
T 0, otherwise.

Then
Bo+Bi+By+---
converges 100% of the time, and has the same distribution as the

dimension of the random intersection of maximal isotropic
subspaces.

Note: The probability that this sum is odd is 1/2.
(This follows since By is odd with probability 1/2.)



Local fields

Let E be an elliptic curve over a local field k, .
Let V = H'(k,, E[p]), which is locally compact
(and even finite if p # char k).

1-Gn— H —Ep—1

Heisenberg

gives rise to a quadratic form
av: H' (ky, Elp]) = H?(ky, Gm) = R/Z

whose associated bilinear form is the cup product of the Weil
pairing

H(k,, E[p]) x H(ky, E[p]) =2 H?(ky,Gpm) < R/Z.

Moreover, the subgroup E(k,)/pE(k,) is maximal isotropic.



Local fields

Let E be an elliptic curve over a local field k, .
Let V = H'(k,, E[p]), which is locally compact
(and even finite if p # char k, ).

1-Gn— H —Ep—1

Heisenberg

gives rise to a quadratic form
av: H' (ky, Elp]) = H?(ky, Gm) = R/Z

whose associated bilinear form is the cup product of the Weil
pairing

H(k,, E[p]) x H(ky, E[p]) =2 H?(ky,Gpm) < R/Z.
Moreover, the subgroup E(k,)/pE(k,) is maximal isotropic.

(Proof: Use Tate local duality.)



Global fields

Let E be an elliptic curve over a global field k. Suppose p # char k.
/

Let V = H H(k,, E[p]) w.r.t. the subgroups E(k,)/pE (k).

We get (V, Q, W).

H (k. Elp)
|

E(kV) a "t
e H H* (kv E[p])

v

Theorem

(a) im(a) and im(B) are maximal isotropic.
(b) B is injective; i.e., II*(k, E[p]) = 0.
(c) im(a) Nim(B) = B(Selp E) ~ Sel, E.



Global fields: proofs H* (k, E[p])

|
E(kh) o0 TTh
e H H' (k.. E[p])

v

Theorem

(a) im(«) and im(B) are maximal isotropic.
(b) S is injective.

(c) im(a) Nim(B) = B(Sel, E) ~ Sel, E.

Sketch of proof.

(a) im(«) is the W.
im(8): Use reciprocity of the Brauer group
+ 9-term Poitou—Tate exact sequence.
(b) Chebotarev + Sylow p-subgroup of GL(IF,) is cyclic
(c) Definition of Sel, E!



Predictions

Because of the theorem, we model im(a) Nim(8) as a random
intersection of maximal isotropic subspaces. This suggests:

@ Fix k. Fix p # char k. As E varies over all elliptic curves over
k, for each d > 0 we have

Prob (dimSel, E =d) = [[(1+p~/

j>0

||:Q

@ For the same family,
Average(#Sel, E)=1+p
@ For the same family, for each m > 1,

Average((# Sel, E)™) = (1 + p)(1+ p2)--- (1 + p").



Generalization

k: global field
A: abelian variety over k
A: A — A self-dual isogeny coming from .Z € Pic A

Everything works as before, except:

@ (3 need not be injective. So one gets only

Sel,\A

T (k. AD) ~ im(a) Nim(53)

instead of Sely A itself as the intersection.

@ There may be “causal” elements of Sely A.



Jacobians of genus 2 curves

Example

Suppose char k # 2. Let X range over genus 2 curves y? = f(x)
with degf = 6. Let A= JacX and A = [2]. Then

o III!(k, A[2]) = 0 for 100% of the curves (but not alll)

@ But {theta characteristics} is a torsor under A[2]. lts class is
in Sely A, and Hilbert irreducibility shows that it is nonzero for
100% of curves.

A refinement of the random model now suggests that dimp, Sel, A
is shifted by +1, which would imply

Average(# Selx A) = 6.



Predictions for Sel, III, rank

Delaunay, in analogy with the Cohen-Lenstra heuristics, proposed a
heuristic for the distribution of dim III(E)[p] as E varies over
elliptic curves over Q of fixed rank r. Assume this.

If we also assume a prior distribution on ranks, then we can
compute a distribution for dim Sel, E.

Question

What prior distributions on ranks lead to the Selmer distribution we
predict?



Predictions for Sel, III, rank

Delaunay, in analogy with the Cohen-Lenstra heuristics, proposed a
heuristic for the distribution of dim III(E)[p] as E varies over
elliptic curves over Q of fixed rank r. Assume this.

If we also assume a prior distribution on ranks, then we can
compute a distribution for dim Sel, E.

Question
What prior distributions on ranks lead to the Selmer distribution we
predict?

Theorem
There is only one such rank distribution: namely, the one for which

rk E(Q) =0 with probability 50% and
rk E(Q) =1 with probability 50%.



