Random maximal isotropic subspaces and Selmer groups

Bjorn Poonen
Eric Rains

January 5, 2011

Selmer groups

k : number field
E : elliptic curve over k

$$
\begin{aligned}
& \operatorname{Sel}_{p} E:=\left\{\xi \in H^{1}(k, E[p]): \beta(\xi) \in \operatorname{im}(\alpha)\right\} \\
& \amalg(E):=\operatorname{ker}\left(H^{1}(k, E) \rightarrow \prod_{v} H^{1}\left(k_{v}, E\right)\right) . \\
& 0 \rightarrow \frac{E(k)}{p E(k)} \rightarrow \underset{\text { finite, computable }}{\operatorname{Sel}_{p} E} \rightarrow \amalg(E)[p] \rightarrow 0 .
\end{aligned}
$$

How do Selmer groups vary in a family of elliptic curves?

- Heath-Brown 1994: Define

$$
s(E):=\operatorname{dim}_{\mathbb{F}_{2}} \operatorname{Sel}_{2} E-\operatorname{dim}_{\mathbb{F}_{2}} E(k)[2] .
$$

Then as E varies over quadratic twists of $y^{2}=x^{3}-x$ over \mathbb{Q},

$$
\operatorname{Prob}(s(E)=d)=\prod_{j \geq 0}\left(1+2^{-j}\right)^{-1} \prod_{j=1}^{d} \frac{2}{2^{j}-1}
$$

for each $d \geq 0$.

- Swinnerton-Dyer 2008, Kane 2010: Same for quadratic twists of other E_{0} / \mathbb{Q} with rational 2-torsion and no rational cyclic subgroup of order 4.
- Mazur-Rubin 2010, Klagsbrun 2010: For many E_{0} / k, construct infinitely many twists E with prescribed $s(E)$.

How do Selmer groups vary? Average size?

- Yu 2000: For $k=\mathbb{Q}$, for the family of all elliptic curves with rational 2-torsion,

$$
\overline{\text { Average }}\left(\# \text { Sel }_{2}\right) \text { is finite. }
$$

- de Jong 2002: For $k=\mathbb{F}_{q}(t)$,

$$
\overline{\text { Average }}\left(\# \mathrm{Sel}_{3}\right) \leq 4+O(1 / q)
$$

He had a heuristic that suggested that the truth was 4, and he predicted the same for number fields.

- Bhargava-Shankar 2010: For $k=\mathbb{Q}$,

$$
\begin{aligned}
& \text { Average }\left(\# \text { Sel }_{2}\right)=3 \\
& \text { Average }\left(\# \text { Sel }_{3}\right)=4
\end{aligned}
$$

(and results for Sel_{4} and Sel_{5} are forthcoming!)

Hyperbolic quadratic spaces

Let W be an n-dimensional \mathbb{F}_{p}-vector space. Define

$$
\begin{aligned}
V & :=W \oplus{ }_{\text {dual }}^{W^{*}} \\
Q: \quad V & \rightarrow \mathbb{F}_{p} \\
(w, \phi) & \mapsto \phi(w) .
\end{aligned}
$$

This Q is a quadratic map: the function

$$
\langle x, y\rangle:=Q(x+y)-Q(x)-Q(y)
$$

is bilinear.

Definition

Any such (V, Q) is called a hyperbolic quadratic space.

Definition

A subspace $Z \leq V$ is maximal isotropic if $Z^{\perp}=Z$ and $\left.Q\right|_{Z}=0$.

Random maximal isotropic subspaces

Recall the notation: (V, Q) is hyperbolic, $\operatorname{dim}_{\mathbb{F}_{p}} V=2 n$.

Proposition

Choose maximal isotropic $Z_{1}, Z_{2} \leq V$ at random. Then

$$
\operatorname{Prob}\left(\operatorname{dim}\left(Z_{1} \cap Z_{2}\right)=d\right) \rightarrow c_{d, p}:=\prod_{j \geq 0}\left(1+p^{-j}\right)^{-1} \prod_{j=1}^{d} \frac{p}{p^{j}-1}
$$

as $\operatorname{dim} V \rightarrow \infty$.
When $p=2$, this is the same distribution on nonnegative integers as in Heath-Brown's theorem!

Is this a coincidence?

Quadratic forms on locally compact abelian groups

Let V be a locally compact abelian group.
Let $Q: V \rightarrow \mathbb{R} / \mathbb{Z}$ be a continuous map such that

$$
\langle x, y\rangle:=Q(x+y)-Q(x)-Q(y)
$$

is bilinear. Assume that (V, Q) is nondegenerate; i.e.,

$$
\begin{aligned}
& V \rightarrow V^{*}:=\operatorname{Hom}_{\text {conts }}(V, \mathbb{R} / \mathbb{Z}) \\
& v \mapsto\langle v,-\rangle
\end{aligned}
$$

is an isomorphism.

Definition

(V, Q) is weakly metabolic if and only if it has a compact open maximal isotropic subgroup W.

Restricted direct products of weakly metabolics

Definition (from previous slide)

(V, Q) is weakly metabolic if and only if it has a compact open maximal isotropic subgroup W.

Example (cf. Braconnier 1948)

Suppose that $\left(V_{i}, Q_{i}, W_{i}\right)$ is weakly metabolic for $i \in \mathcal{I}$. Construct

$$
\begin{aligned}
v & :=\prod^{\prime}\left(v_{i}, w_{i}\right) \\
w & :=\prod w_{i}
\end{aligned}
$$

For $v=\left(v_{i}\right) \in V$, define

$$
Q(v):=\sum Q_{i}\left(v_{i}\right)
$$

Then (V, Q, W) is weakly metabolic.

Random maximal isotropic subspaces of an ∞-dim space

 Suppose that- (V, Q, W) is weakly metabolic, $p V=0$
- V is infinite but second countable (topology has countable basis)
Let \mathcal{I}_{V} be the set of maximal isotropic closed subgroups of V.
Theorem
-

$$
\mathcal{I}_{V} \simeq \lim _{X} \mathcal{I}_{X \perp / X},
$$

where X ranges over compact open subgroups of V with $\left.Q\right|_{x}=0$.

- Define the uniform probability measure on the profinite set \mathcal{I}_{V}.
- If $Z \in \mathcal{I}_{V}$ is chosen at random, then

$$
\operatorname{Prob}\left(\operatorname{dim}_{\mathbb{F}_{p}}(Z \cap W)=d\right)=c_{d, p}
$$

(It turns out that Z is discrete with probability 1.)

Alternative description of the distribution

Define independent Bernoulli random variables B_{0}, B_{1}, \ldots where

$$
B_{i}= \begin{cases}1, & \text { with probability } 1 /\left(p^{i}+1\right) \\ 0, & \text { otherwise }\end{cases}
$$

Then

$$
B_{0}+B_{1}+B_{2}+\cdots
$$

converges 100% of the time, and has the same distribution as the dimension of the random intersection of maximal isotropic subspaces.

Note: The probability that this sum is odd is $1 / 2$.

Alternative description of the distribution

Define independent Bernoulli random variables B_{0}, B_{1}, \ldots where

$$
B_{i}= \begin{cases}1, & \text { with probability } 1 /\left(p^{i}+1\right) \\ 0, & \text { otherwise }\end{cases}
$$

Then

$$
B_{0}+B_{1}+B_{2}+\cdots
$$

converges 100% of the time, and has the same distribution as the dimension of the random intersection of maximal isotropic subspaces.

Note: The probability that this sum is odd is $1 / 2$. (This follows since B_{0} is odd with probability $1 / 2$.)

Local fields

Let E be an elliptic curve over a local field k_{v}. Let $V=H^{1}\left(k_{v}, E[p]\right)$, which is locally compact (and even finite if $p \neq$ char k_{v}).

$$
1 \rightarrow \mathbb{G}_{m} \rightarrow \underset{\text { Heisenberg }}{\mathcal{H}} \rightarrow E[p] \rightarrow 1
$$

gives rise to a quadratic form

$$
q_{v}: H^{1}\left(k_{v}, E[p]\right) \rightarrow H^{2}\left(k_{v}, \mathbb{G}_{m}\right) \hookrightarrow \mathbb{R} / \mathbb{Z}
$$

whose associated bilinear form is the cup product of the Weil pairing

$$
H^{1}\left(k_{v}, E[p]\right) \times H^{1}\left(k_{v}, E[p]\right) \xrightarrow{\text { cup }} H^{2}\left(k_{v}, \mathbb{G}_{m}\right) \hookrightarrow \mathbb{R} / \mathbb{Z} .
$$

Moreover, the subgroup $E\left(k_{v}\right) / p E\left(k_{v}\right)$ is maximal isotropic.

Local fields

Let E be an elliptic curve over a local field k_{v}. Let $V=H^{1}\left(k_{v}, E[p]\right)$, which is locally compact (and even finite if $p \neq$ char k_{v}).

$$
1 \rightarrow \mathbb{G}_{m} \rightarrow \underset{\text { Heisenberg }}{\mathcal{H}} \rightarrow E[p] \rightarrow 1
$$

gives rise to a quadratic form

$$
q_{v}: H^{1}\left(k_{v}, E[p]\right) \rightarrow H^{2}\left(k_{v}, \mathbb{G}_{m}\right) \hookrightarrow \mathbb{R} / \mathbb{Z}
$$

whose associated bilinear form is the cup product of the Weil pairing

$$
H^{1}\left(k_{v}, E[p]\right) \times H^{1}\left(k_{v}, E[p]\right) \xrightarrow{\text { cup }} H^{2}\left(k_{v}, \mathbb{G}_{m}\right) \hookrightarrow \mathbb{R} / \mathbb{Z} .
$$

Moreover, the subgroup $E\left(k_{v}\right) / p E\left(k_{v}\right)$ is maximal isotropic.
(Proof: Use Tate local duality.)

Global fields

Let E be an elliptic curve over a global field k. Suppose $p \neq$ char k. Let $V=\prod_{v}^{\prime} H^{1}\left(k_{v}, E[p]\right)$ w.r.t. the subgroups $E\left(k_{v}\right) / p E\left(k_{v}\right)$.
We get (V, Q, W).

$$
\begin{array}{r}
H^{1}(k, E[p]) \\
\prod_{v} \frac{E\left(k_{v}\right)}{p E\left(k_{v}\right)} \xrightarrow{\alpha} \prod_{v}^{\prime} H^{1}\left(k_{v}, E[p]\right)
\end{array}
$$

Theorem

(a) $\operatorname{im}(\alpha)$ and $\mathrm{im}(\beta)$ are maximal isotropic.
(b) β is injective; i.e., $\Pi^{1}(k, E[p])=0$.
(c) $\operatorname{im}(\alpha) \cap \operatorname{im}(\beta)=\beta\left(\operatorname{Sel}_{p} E\right) \simeq \operatorname{Sel}_{p} E$.

$$
\prod_{v} \frac{E\left(k_{v}\right)}{p E\left(k_{v}\right)} \stackrel{\alpha}{\longrightarrow} \prod_{v}^{\prime} H^{1}\left(k_{v}, E[p]\right)
$$

Theorem

(a) $\mathrm{im}(\alpha)$ and $\mathrm{im}(\beta)$ are maximal isotropic.
(b) β is injective.
(c) $\operatorname{im}(\alpha) \cap \operatorname{im}(\beta)=\beta\left(\operatorname{Sel}_{\rho} E\right) \simeq \operatorname{Sel}_{p} E$.

Sketch of proof.

(a) $\operatorname{im}(\alpha)$ is the W.
$\operatorname{im}(\beta)$: Use reciprocity of the Brauer group +9 -term Poitou-Tate exact sequence.
(b) Chebotarev + Sylow p-subgroup of $\mathrm{GL}_{2}\left(\mathbb{F}_{p}\right)$ is cyclic
(c) Definition of $\mathrm{Sel}_{p} E$!

Predictions

Because of the theorem, we model $\operatorname{im}(\alpha) \cap \operatorname{im}(\beta)$ as a random intersection of maximal isotropic subspaces. This suggests:

- Fix k. Fix $p \neq$ char k. As E varies over all elliptic curves over k, for each $d \geq 0$ we have

$$
\operatorname{Prob}\left(\operatorname{dim} \operatorname{Sel}_{p} E=d\right)=\prod_{j \geq 0}\left(1+p^{-j}\right)^{-1} \prod_{j=1}^{d} \frac{p}{p^{j}-1}
$$

- For the same family,

$$
\text { Average }\left(\# \operatorname{Sel}_{p} E\right)=1+p
$$

- For the same family, for each $m \geq 1$,

$$
\text { Average }\left(\left(\# \operatorname{Sel}_{p} E\right)^{m}\right)=(1+p)\left(1+p^{2}\right) \cdots\left(1+p^{m}\right)
$$

Generalization

k : global field
A : abelian variety over k
$\lambda: A \rightarrow \widehat{A}$ self-dual isogeny coming from $\mathscr{L} \in \operatorname{Pic} A$

Everything works as before, except:

- β need not be injective. So one gets only

$$
\frac{\operatorname{Sel}_{\lambda} A}{\amalg^{1}(k, A[\lambda])} \simeq \operatorname{im}(\alpha) \cap \operatorname{im}(\beta)
$$

instead of $\operatorname{Sel}_{\lambda} A$ itself as the intersection.

- There may be "causal" elements of $\operatorname{Sel}_{\lambda} A$.

Jacobians of genus 2 curves

Example

Suppose char $k \neq 2$. Let X range over genus 2 curves $y^{2}=f(x)$ with $\operatorname{deg} f=6$. Let $A=\operatorname{Jac} X$ and $\lambda=[2]$. Then

- $Ш^{1}(k, A[2])=0$ for 100% of the curves (but not all!)
- But \{theta characteristics\} is a torsor under $A[2]$. Its class is in $\mathrm{Sel}_{2} A$, and Hilbert irreducibility shows that it is nonzero for 100% of curves.
A refinement of the random model now suggests that $\operatorname{dim}_{\mathbb{F}_{2}} \mathrm{Sel}_{2} A$ is shifted by +1 , which would imply

$$
\text { Average }\left(\# \operatorname{Sel}_{2} A\right)=6
$$

Predictions for Sel, Ш, rank

Delaunay, in analogy with the Cohen-Lenstra heuristics, proposed a heuristic for the distribution of $\operatorname{dim} \amalg(E)[p]$ as E varies over elliptic curves over \mathbb{Q} of fixed rank r. Assume this.

If we also assume a prior distribution on ranks, then we can compute a distribution for $\operatorname{dim}_{\mathrm{Sel}_{p}} E$.

Question

What prior distributions on ranks lead to the Selmer distribution we predict?

Predictions for Sel, Ш, rank

Delaunay, in analogy with the Cohen-Lenstra heuristics, proposed a heuristic for the distribution of $\operatorname{dim} \amalg(E)[p]$ as E varies over elliptic curves over \mathbb{Q} of fixed rank r. Assume this.

If we also assume a prior distribution on ranks, then we can compute a distribution for $\operatorname{dim}_{\operatorname{Sel}_{p} E}$.

Question

What prior distributions on ranks lead to the Selmer distribution we predict?

Theorem

There is only one such rank distribution: namely, the one for which

$$
\begin{array}{ll}
\operatorname{rk} E(\mathbb{Q})=0 & \text { with probability } 50 \% \text { and } \\
\operatorname{rk} E(\mathbb{Q})=1 & \text { with probability } 50 \%
\end{array}
$$

