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Abstract: Mosses are critical components of tropical forest ecosystems and have multiple essential
ecological functions. The drying and rehydrating and often hot environments in tropical regions
present some of the greatest challenges for their photosynthetic activities. There is limited knowledge
available on the physiological responses to the changing environments such as temperature and
water pattern changes for terrestrial mosses. We examined the seasonal dynamics of photochemical
performance of PS II through the measuring of chlorophyll fluorescence of 12 terrestrial mosses in
situ from five different elevations by Photosynthesis Yield Analyzer MINI-PAM-II, along with the
seasonal changes of climatic factors (air temperature, dew point, relative humidity and rainfall),
which were collected by local weather stations and self-deployed mini weather stations. The results
showed a great seasonality during observing periods, which, mainly the changes of rainfall and
relative humidity pattern, presented significant impacts on the photochemical performance of PS II
of terrestrial mosses. All these tested moss species developed a suitable regulated and non-regulated
strategy to avoid the detrimental effect of abiotic stresses. We found that only Hypnum plumaeforme,
Pterobryopsis crassicaulis and Pogonatum inflexum were well adapted to the changes of habitat tempera-
ture and water patterns, even though they still experienced a lower CO2 assimilation efficiency in the
drier months. The other nine species were susceptible to seasonality, especially during the months
of lower rainfall and relative humidity when moss species were under physiologically reduced PS
II efficiency. Anomobryum julaceum, Pogonatum neesii, Sematophyllum subhumile, Pseudotaxiphyllum
pohliaecarpum and Leucobryum boninense, and especially Brachythecium buchananii, were sensitive to
the changes of water patterns, which enable them as ideal ecological indicators of photosynthetic
acclimation to stressed environments as a result of climate change.

Keywords: chlorophyll fluorescence; ecophysiology; environmental stress; photosystem II; terres-
trial mosses

1. Introduction

Photosynthesis is particularly sensitive to adverse environmental factors, such as high
air temperature and vapor pressure deficits [1], making photosynthetic measurements an
important component in environmental and ecological studies. To avoid the abiotic stresses,
land plants have developed photoprotective mechanisms that enable them to dissipate
excess excitation energy as heat via the so-called non-photochemical quenching (NPQ)
mechanism [2–4]. Even though bryophytes (liverworts, hornworts and mosses) are the
earliest diverging lineages of the extant land plants [5–7], they still face great challenges of
the cycle of drying and rehydrating and often high temperatures in tropical regions. Given
the poikilohydric nature of their water relations, bryophyte carbon dynamics are affected
by the respiratory demands of desiccation and rehydration as well as by the photosynthetic
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assimilation of active thallus when hydrated [8]. Temperature, one of the key factors
determining metabolism, growth, and distribution in plants, exerts asymmetrical effects on
respiration and photosynthesis [9].

When photosynthetic organisms are in a normal physiological state, ~5% of harvested
light energy by Photosystem II (PSII) is reemitted as chlorophyll fluorescence [10]. Changes
in chlorophyll fluorescence induced by illumination of dark-acclimated leaves can be
qualitatively correlated with changes in CO2 assimilation. Fluorescence emissions in photo-
synthetic organisms can be correlated to the photosynthetic rates [11,12]. Consequently, the
interest in identifying feedbacks of plants to habitat stresses by measuring chlorophyll fluo-
rescence is increasing. Pulse-amplitude-modulated (PAM) fluorometry is one of the most
common techniques used to study the induction and quenching of chlorophyll fluorescence
in physiological studies [13]. PAM fluorescence system is a powerful and widely used tool
in the study of plant photosynthesis under abiotic stresses [12,14–19]. Effective quantum
yield of PS II (∆F/Fm′) derived from chlorophyll fluorescence measurement is a sensitive
indicator of plant photosynthetic performance. Its decline is regarded as a reduction in PS
II efficiency. Seasonal dynamics in response to an effective quantum yield of PS II photo-
chemistry (Y(II)) to photosynthetically active radiation (PAR) have been deduced to reflect
changes in the physiological status of plants in changing environments. The component
of the Stern–Volmer type NPQ that plays a crucial role under fluctuating light conditions
is the fast component (∆pH-PsbS dependent-qE3 or zeaxanthin dependent-qZ4) [20,21],
which increased with increasing light intensities in all the seasons. In addition, it is a
simple, rapid and non-destructive widely utilized technique [11,22–24]; meanwhile, it can
be performed on tiny plants such as mosses [25].

Mosses are critical components of tropical forest ecosystems [26] and have essential
ecological functions [27]. The drying and rehydrating and hot environments in tropi-
cal regions present some of the greatest challenges for bryophyte photosynthetic activi-
ties [8]. Meanwhile, as climate conditions in the tropics are expected to become hotter and
drier [28,29], many moss species might be negatively affected or even at risk of extinction.
Therefore, the ecophysiological responses of these plants to seasonal changes of temper-
ature and water patterns should be explored, particularly under global climate change.
Here in southern China, we firstly investigated the seasonal dynamics of the potential
photochemical performance of PS II of terrestrial mosses in their current habitat to assess
their acclimation to the seasonal fluctuations of temperature and water patterns during the
growing season.

2. Results
2.1. Seasonal Changes of Environmental Factors

To monitor the photosynthetic performance of terrestrial moss species at five different
elevations on Tai Mo Shan, we recorded several PSII parameters during the growing season
in the year 2019 along with changes in monthly average air temperature, dew point, relative
humidity and rainfall of the five study elevations (Figure 1).
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Figure 1. Seasonal changes of mean air temperature (a), dew point (b), relative humidity (c) and rainfall (d) at five elevations
during the 2019 growing season. Bars of same elevation marked by different letters are significantly different (p < 0.05).
Error bars indicate the 95% confidence interval (n = 3).

Multi-way ANOVAs showed significant effects of observing time on air temperature,
dew point, relative humidity and rainfall for all five elevations (Table A1). The dynamics
of air temperature, dew point, relative humidity and rainfall exhibited similar seasonal
patterns among the five elevations (Figure 1). For simplicity, here we only present the
detailed climatic factors at 900 m.

At 900 m, the mean air temperature of July (22.5 ◦C), August (22.4 ◦C) and June
(22.1 ◦C) was significantly higher than that of September (21.3 ◦C), May (19.5 ◦C) and
October (18.7 ◦C), with significant differences between that of September, May and October.
The mean dew point showed a similar trend compared with air temperature, with mean
values of July (22.0 ◦C), June (21.7 ◦C) and August (21.6 ◦C) significantly higher than that
of May (19.0 ◦C), September (18.8 ◦C) and October (17.0 ◦C). We detected the relative
humidity of July (98.3%), May (97.7%), June (97.3%) and August (96.3%) was significantly
higher than that of October (88.7%) and September (86.3%). The mean rainfall of July
(507 mm) was significantly higher than August (492 mm), June (348 mm), May (286 mm),
September (192 mm) and October (105 mm), and significant differences were measured
between the other observing times (Figure 1).

2.2. PSII Photochemistry

Multi-way ANOVAs showed significant effects of observing time on effective quantum
yield of PS II (Y(II)) for all species at five elevations (Table A2). Maximal quantum yields of
PS II (Fv/Fm defined as control) were significantly higher than effective quantum yields at
any other measuring time for all moss species (Table A2, Figures 2–6).

From Figure 2, we know that Hypnum plumaeforme, Brachythecium buchananii, Thuidium
glaucinoides, Anomobryum julaceum and Pterobryopsis crassicaulis from 900 m responded to
the environmental factors in three different general ways. Y(II) of H. Plumaeforme in August
(98.8% of control) was significantly better than those of October, July, June, September and
May; no significant differences existed between June, July and October, so as those between
September, June and May. The lowest Y(II) in May, however, still reached 96.7% of control
(Figure 2a). B. buchananii was especially susceptible to the abiotic factors. The highest
Y(II) of it only reached 33.6% of control in June, which was statistically higher than those
of May, October, July, August and September, and significant differences were measured
between these five months, except August (lowest, 20.1% of control) and September (lowest,
18.9% of control) (Figure 2b). The highest Y(II) of T. glaucinoides was in July (96.5% of
control), statistically higher than those of August, June, May, September and October
(lowest, 41.1%); and significant differences were found between the other five observing
months (Figure 2c). Y(II) of A. julaceum in September (65.4% of control) was significantly
greater than those of July, June and May (lowest, 40% of control); no significant differences
existed between September, August and October, compared to that of August, October and
July (Figure 2d). We detected the highest Y(II) of P. crassicaulis in July (83.2% of control),
which was significantly greater than those of June, May and September (lowest, 74.8%
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of control); however, Y(II) of October with lower rainfall and relative humidity was not
significantly lower than those of July, August and June (Figure 2e). The highest Y(II) of
P. angustata was found in July (98.7% of control), which was statistically better than those
of May, September and October (lowest, 36.0% of control). We measured no significant
differences between July, August and June, as that between June and May (Figure 2f).
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(b), Thuidium glaucinoides (c), Anomobryum julaceum (d), Pterobryopsis crassicaulis (e) and Pseudosymblepharis angus-
tata (f) from 900 m during 6 months of measurements. 0: the initial photochemical quantum yield of PS II, i.e., maximum
photochemical quantum yield Fv/Fm defined as control. Numbers 1 to 6 mean from May to October, which is employed
by following Figures 3–11. Values marked by different letters are significantly different (p < 0.05). Error bars indicate 95%
confidence interval (n = 3).

Even though the Pogonatum neesii and Leucobryum scabrum were from the same habitat
at 700 m, they responded to the seasonal changes of climate totally differently. The highest
Y(II) of P. neesii was in July (56.9% of control), which was significantly higher than that
of June, August and October (lowest, 35.5% of control). No significant differences were
detected between the wetter months of July and May and the relatively drier month of
September (Figure 3a). L. scabrum obtained the best Y(II) in July (94.7% of control), which
was significantly higher than those of June, September and October (lowest, 47.6% of
control). In the drier months, it achieved the least Y(II) (Figure 3b).
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of PS II, i.e., maximum photochemical quantum yield Fv/Fm defined as control. Values marked by
different letters are significantly different (p < 0.05). Error bars indicate 95% confidence interval (n = 3).
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We observed the highest Y(II) of Sematophyllum subhumile in June (67.6% of control),
which was significantly better than those of October, July, September and August (lowest,
44.0% of control). The Y(II) of October under the lowest rainfall and relative humidity was
significantly higher than those of July and August with better environmental conditions.
No significant differences existed between that of June and May (Figure 4a), except the
other 4 months. Leucobryum boninense achieved the best Y(II) in May (53.5% of control),
significantly higher than those of June, August, September, July and October (lowest, 42.6%
of control) (Figure 4b).
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Figure 4. Changes of photochemical quantum yield of PS II of Sematophyllum subhumile (a) and
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The highest Y(II) of Pseudotaxiphyllum pohliaecarpum was detected in June (only 57.0%
of control), which was significantly greater than those of September, July, May and October
(lowest, 42.3% of control); however, under the higher rainfall and relative humidity of July,
the Y(II) was relatively lower (Figure 5).
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300 m during 6 months of measurements. 0: the initial photochemical quantum yield of PS II, i.e.,
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Y(II) of Pogonatum inflexum in May (96.2% of control) was significantly better than
those of August, September and October (lowest, 90.0% of control); even under the lower
rainfall and drier months of September and October, it still achieved better performance
such as that of June and August (Figure 6).
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Figure 6. Changes of photochemical quantum yield of PS II of Pogonatum inflexum from 100 m during
6 months of measurements. 0: the initial photochemical quantum yield of PS II, i.e., maximum
photochemical quantum yield Fv/Fm defined as control. Values marked by different letters are
significantly different (p < 0.05). Error bars indicate 95% confidence interval (n = 3).

2.3. Regulated and Non-Regulated Energy Dissipation

Multi-way ANOVAs showed significant effects of sampling time on Y(NO) (non-
regulated losses of excitation energy including heat dissipation and fluorescence emission)
and Stern–Volmer type NPQ (parameters of non-photochemical quenching) of PS II for all
species at five elevations (Table A3). Changes in Y(NO) of each species showed a reverse
trend compared with counterpart ∆F/Fm′ of moss species, and the initial Y(NO) was sig-
nificantly lower than that of any other month for all moss species (Table A3, Figures 7–11).

Y(NO) of H. plumaeforme in May was significantly higher than those of July, October
and August (Figure 7a). In all six observing months, the fast component did not reach
a static phase even at 1017 µmol/s/m2. The Stern–Volmer type NPQ in July was higher
than those of August, October, May, September and June, the latter two of which were
significantly smaller and overall slower than those of other months (Figure 7b). Y(NO) of B.
buchananii in September was remarkedly greater than those of July, October, May and June,
and significant differences were measured between July, October, May and June, except
that between August and September (Figure 7c). We did not observe the stationary phase
during all six months, even though all the NPQ values were lower than 0.25. The NPQs in
June and July were higher than those of August, September, October and May, the latter
two of which were significantly smaller and overall slower than those of other months
(Figure 7d). Y(NO) of T. glaucinoides in October was significantly greater than those of
September, May, June, August and July, and significant differences were observed between
the other five months (Figure 7e). In October, the fast component obtained a stationary
phase when actinic light was at 77 µmol/s/m2. The highest NPQ was in July, which was
significantly higher than those of August, June, May, September and October, which was
significantly smaller and overall slower due to the smaller amplitude of the fast component
(12.9% of August) (Figure 7f).

Y(NO) of A. julaceum in May was significantly better than those of June, July, October,
August and September, and significant differences were not found between July, October,
August, similar to those of October, August and September (Figure 7g). In all six observing
months, we found no stationary phase. The NPQ in August was higher than that of
September, October, July, June and May (51.8% of August), which was significantly smaller
and overall slower than that of other months (Figure 7h). We detected the highest Y(NO)
of P. crassicaulis in September, which was significantly greater than those of May, June,
August, October and July, and no significant differences were detected between June,
August and October, similar to those of August, October and July (Figure 7i). In all six
observing months, the fast component did not reach a static phase even at 1323 µmol/s/m2.
The NPQ in July was greater than those of October, August, September, June and May
(77.0% of July), which was significantly smaller and overall slower (Figure 7j). The highest
Y(NO) of P. angustata was found in October, which was significantly bigger than those
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of September, May, June, August and July (Figure 7k). In October, a stationary phase
gained at 69 µmol/s/m2. The highest NPQ was in August, which was significantly greater
than those of July, June, May, September and October. The latter five were significantly
smaller and overall slower due to the smaller amplitude of the fast component (only 2.1%
of August) (Figure 7l).
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Figure 7. Seasonal changes of Y(NO) (a) and NPQ (b) of Hypnum plumaeforme; Y(NO) (c) and NPQ (d)
of Brachythecium buchananii; Y(NO) (e) and NPQ (f) of Thuidium glaucinoides; Y(NO) (g) and NPQ (h)
of Anomobryum julaceum; Y(NO) (i) and NPQ (j) of Pterobryopsis crassicaulis; Y(NO) (k) and NPQ (l) of
Pseudosymblepharis angustata from 900 m during 6 observing months. 0: the initial quantum yield of
non-regulated heat dissipation of PS II (defined as control). Values marked by different letters are
significantly different (p < 0.05). Error bars indicate 95% confidence interval (n = 3).

Similar to the responses of their corresponding Y(II), the two species showed the
different trends of Y(NO). Y(NO) of P. neesii in October was significantly higher than
those of August, June, May, September and July (Figure 8a). In all observing months, no
stationary phase was observed at 958 µmol/s/m2. The highest NPQ was in September,
which was significantly higher than those of May, July, June, August and October, which
was notably smaller and overall slower than the other observing months (Figure 8b).
The Y(NO) of L. scabrum in October was significantly higher than those of September,
June, May, August and July (Figure 8c). A stationary phase achieved 1084 µmol/s/m2

in October. The NPQ in July reached the highest component than those of August, June,
May, September and October, which was remarkably smaller and overall slower due to the
smaller amplitude of the fast component (31.2% of July) (Figure 8d).
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The highest Y(NO) of P. pohliaecarpum was detected in October, which was signifi-
cantly better than those of May, July, September, August and June (Figure 10a). In all ob-
serving months, the stationary phase was not achieved even at 988 μmol/s/m2. The NPQ 

Figure 8. Seasonal changes of Y(NO) (a) and NPQ (b) of Pogonatum neesii and Y(NO) (c) and NPQ
(d) of Leucobryum scabrum from 700 m during 6 observing months. 0: the initial quantum yield of
non-regulated heat dissipation of PS II (defined as control). Values marked by different letters are
significantly different (p < 0.05). Error bars indicate 95% confidence interval (n = 3).

We observed the highest Y(NO) of S. subhumile in August, which was significantly
greater than those of September, July, October, May and June, and significant differ-
ences were not measured between May and June (Figure 9a), except those of the other
4 months. In August, a relatively stationary phase was obtained when measuring light
was 1088 µmol/s/m2. The NPQ in June reached the highest component compared to. May,
July, October, September and August (Figure 9b). Y(NO) of L. boninense in October was
significantly bigger than those of September, August, June and May, and no significant
differences were detected between those of October and July, September and August,
similarly to that of August and June (Figure 9c). In all observing months except August, no
stationary phase was observed even when actinic light was 1323 µmol/s/m2. The NPQ
in September obtained the highest component compared to October, June, July, May and
August, which was markedly smaller and overall slower than those of the other months
observed (Figure 9d).
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Figure 9. Seasonal changes of Y(NO) (a) and NPQ (b) of Sematophyllum subhumile, and Y(NO) (c) and
NPQ (d) of Leucobryum boninense from 500 m during 6 observing months. 0: the initial quantum yield
of non-regulated heat dissipation of PS II (defined as control). Values marked by different letters are
significantly different (p < 0.05). Error bars indicate 95% confidence interval (n = 3).

The highest Y(NO) of P. pohliaecarpum was detected in October, which was significantly
better than those of May, July, September, August and June (Figure 10a). In all observing
months, the stationary phase was not achieved even at 988 µmol/s/m2. The NPQ in
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August yielded a greater component than those of May, September, July, June and October,
which was notably smaller and overall slower than those of the other months observed
(Figure 10b).
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The results of multi-way ANOVAs showed a strong seasonality during observing 

periods with significant differences. A hump-shaped pattern was found in air tempera-
ture, dew point and rainfall, but relative humidity showed a decreasing trend from May 
to October in the growing season. The highest air temperature, dew point and rainfall 
occurred in July, which presented great constraints on the photosynthetic physiology of 
poikilohydric terrestrial mosses [8]. Even though the highest air temperature in the pre-
sent study was highly beyond the optimal temperature of previous research, these 12 
moss species were more tuned to the mean air temperature as supported by previous re-
search [30,31]. Multi-way ANOVAs revealed that seasonality, mainly the changes of rain-
fall and relative humidity pattern, had a significant impact on the photosynthetic perfor-
mances of all 12 moss species. As bryophytes commonly develop the ability to lose most 
of the cell water without dying and resume normal functions during periods when exter-
nal water is available, gaining positive carbon balance over wet–dry cycles, which is called 

Figure 10. Seasonal changes of Y(NO) (a) and NPQ (b) of Pseudotaxiphyllum pohliaecarpum from 300 m
during 6 observing months. 0: the initial quantum yield of non-regulated heat dissipation of PS II
(defined as control). Values marked by different letters are significantly different (p < 0.05). Error
bars indicate 95% confidence interval (n = 3).

The Y(NO) of P. inflexum in October was significantly higher than the other five
months (Figure 11a). In all observing months, no stationary phase was observed even at
1040 µmol/s/m2. The NPQ in July, May and June gained a higher component than those
of August, October and September (Figure 11b), but inducible NPQ in September was
remarkably smaller and overall slower than the other months observed.
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Figure 11. Seasonal changes of Y(NO) (a) and NPQ (b) of Pogonatum inflexum from 100 m during
6 observing months. 0: the initial quantum yield of non-regulated heat dissipation of PS II (defined
as control). Values marked by different letters are significantly different (p < 0.05). Error bars indicate
95% confidence interval (n = 3).

3. Discussion

The results of multi-way ANOVAs showed a strong seasonality during observing
periods with significant differences. A hump-shaped pattern was found in air temperature,
dew point and rainfall, but relative humidity showed a decreasing trend from May to
October in the growing season. The highest air temperature, dew point and rainfall
occurred in July, which presented great constraints on the photosynthetic physiology
of poikilohydric terrestrial mosses [8]. Even though the highest air temperature in the
present study was highly beyond the optimal temperature of previous research, these
12 moss species were more tuned to the mean air temperature as supported by previous
research [30,31]. Multi-way ANOVAs revealed that seasonality, mainly the changes of
rainfall and relative humidity pattern, had a significant impact on the photosynthetic
performances of all 12 moss species. As bryophytes commonly develop the ability to lose
most of the cell water without dying and resume normal functions during periods when
external water is available, gaining positive carbon balance over wet–dry cycles, which is
called desiccation tolerance, varied greatly between species [32,33]. Twelve moss species
responded to the seasonal changes of cycles of drying and rehydrating and temperature in
three different ways (Figure 12).
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H. plumaeforme, P. crassicaulis from 900 m and P. inflexum from 100 m were desiccation
tolerant, and they well adapted to their habitat temperature and water patterns, which can
be characterized by their water-conducting systems (endohydric: relying mostly on internal
water transport and evolved vascular tissues; or mixohydric: employing both the ectohy-
dric and endohydric water-conducting pathways in varying ratios) [32,33]. They gained
the best photochemical quantum yield in the months of most rainfall or relative humidity
and reached more than 75%, even 90% for H. plumaeforme and P. inflexum of the maximal
photosynthesis rate even under the driest and lowest rainfall of October, despite a lower
photosynthetic efficiency. The results of Y(NO) showed the reversed responses, having the
non-regulated heat dissipation lowest and highest in the wet and dry months, respectively,
and NPQ always had high and fast components of non-photochemical quenching values to
dissipate the excess energy to protect the photosynthesis apparatus [20,21,34,35]. H. plumae-
forme from 900 m showed high Stern-Volmer NPQ, which indicated the sufficient capacity
of photoprotective reaction [36]. However, P. crassicaulis and P. inflexum exhibited a lower
Stern-Volmer NPQ in contrast to H. plumaeforme. The different responses might reflect
the differences of their ability to regulate the strong light [37]. Life forms of these three
moss species might also contribute to their efficient acclimation to the changing abiotic
environments. In the case of mat and weft, the capillary retention of water predominates
with respect to physiological activity, especially photosynthesis, which enables species of
these life forms, such as P. crassicaulis (mat) and H. plumaeforme (weft) in the present study,
to extend their duration of being fully active beyond the time of rainfall [38]. In addition,
H. plumaeforme had more than 50 mm thick of moss layers with the dead plant bodies
underneath, which stored enough water for it to spend even during the drier days with
less rainfall. The life form of P. inflexum is tall turf, growing in damp habitats, which had
strong and fully-developed rhizoids on shoots deeply growing in the substrates [25]. For
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P. inflexum growing in warmer and drier lowlands, we did not find it at high elevations,
which can be explained by habitat fragmentation and degradation [39].

The other nine species were sensitive to seasonality, especially to the months of lower
rainfall and relative humidity when moss species were physiologically desiccated and
inactive. They were ectohydric (relying mainly on water transport along the external
surface of the plant by capillarity) or mixohydric to some extent and regulated their
photochemical performances in two other ways. T. glaucinoides, P. angustata and L. scabrum
were desiccation avoiders, who were well-tuned with seasonal changes of climatic factors,
adjusting their photochemical efficiency accordingly. They obtained the highest Y(II) under
the highest relative humidity and rainfall of July and lowest Y(II) (less 50% of values)
under the driest and lowest rainfall of October, showing lower acclimation capability
to dry conditions. This might reflect that water supply as opposed to temperature is a
key factor affecting the physiological activity of moss species [40]. These three species
had high Stern–Volmer type NPQ except in October, reaching a stationary phase with a
statistically smaller and overall slower amplitude of the fast component, and instead, the
quantum yield of those non-regulated were high, which strongly suggested the fraction of
absorbed light energy neither drove photochemistry (Y(II)) nor thermally dissipated by
rapid regulated Stern–Volmer type NPQ processes [35].

The other six species were susceptible to the seasonal changes of temperature and
water patterns, which only reached less than 70% of maximal photochemical quantum yield
of PS II even under the wettest and warmest environmental conditions. B. buchananii was
especially sensitive to temperature and water pattern changes, which yielded only 33.6%
of the maximal photosynthesis rate even under optimum months with the highest non-
regulated losses of excitation energy Y(NO) and received the lowest and slowest component
of the Stern–Volmer type NPQ. A high value of Y(NO) and low NPQ value also suggested
insufficient capacity of photoprotective reactions, which would lead to photodamage when
plants were exposed to high irradiance [40]. A. julaceum, P. neesii, S. subhumile and P.
pohliaecarpum showed remarkably greater Y(NO) and lower Stern–Volmer NPQ than the
other species. As we mentioned above, a much higher value of Y(NO) indicated that
excess excitation energy reached the reaction centers, resulting in a strong reduction in PS
II acceptors and photodamage [36,40], which partly contributed to the lower Y(II) values
of the corresponding moss species. However, L. boninense presented higher non-regulated
losses of excitation energy Y(NO) and higher and faster components of Stern–Volmer
NPQ. L. boninense exhibited increased NPQ at an actinic irradiance of 1323 µmol/s/m2.
This implied that L. boninense developed the ability to maintain photoprotection through
regulated non-photochemical quenching [36,37].

4. Materials and Methods
4.1. Study Area

Tai Mo Shan is the highest peak in Hong Kong, 130 km south of the Tropic of Cancer
(22◦9′–22◦33′ N, 113◦50′–114◦26′ E), with an elevation of 957 m, which features a humid
subtropical climate with distinct hot humid and cool, dry seasons. It has an area of
1440 hectares and is situated in the Tai Mo Shan Country Park in the center of the New
Territories, Hong Kong. Due to the height of the mountain, Tai Mo Shan is claimed to be
Hong Kong’s most misty area, as it is often covered in clouds. It is not uncommon for
temperatures to drop below the freezing point during the winter [41].

The vegetation types on our study sites along the elevation gradient change greatly
from lowland to the peak. Dense broad-leaved lowland woodlands are mainly distributed
in hilly areas below 400 m, with the dominant species Glochidion hongkongense and Syzgium
levinei at 100 and 300 m, respectively. Dense broad-leaved low-hill forests are mostly located
on uplands between 400 and 550 m. The species Cinnamomum porrectum is dominant at
500 m. Grasslands are widely found at upper slopes above 550 m to the peak. At 700 m,
small montane shrub patches are distributed in the dense grasslands with the grass species
Miscanthus sinensis being dominant. At 900 m and near the peak, montane shrub patches
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or montane forest patches exist, with M. sinensis again the commonest species. The area
has become one of the major forest plantations with mainly native species selected in
Hong Kong, starting from 2013 [42]. Trees planted here are mostly native species, such as
Ficus microcarpa, Endospermum chinense, Syzgium levinei, Antidesma bunius, Psychotria asiatica
and Aquilaria sinensis, with other non-natives, such as Pinus massoniana, Acacia confusa,
Lophostemon confertus and Melaleuca quinquenervia. Forests are limited to a maximum
altitude of 550 m, while the upper slopes are dominated by shrubs and grasses [43].

4.2. Study Species

Field studies were carried out during the growing season (from May to October)
of 2019. Five elevations were selected from the northern aspect of Tai Mo Shan, with
altitudinal intervals of 200 m from 100 ± 20 m to 900 ± 20 m. Twelve most common
and dominant moss species at the five study elevations were selected as study materials
(Table 1). Figure 13 shows the 5 study sites.
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Table 1. Study moss species at 5 study elevations in the experiment (listed in descending order of their relative field
abundance).

Altitude (m) Species Family Life Form

900

Hypnum plumaeforme Hypnaceae Weft

Brachythecium buchananii Brachytheciaceae Mat

Thuidium glaucinoides Thuidiaceae Weft

Anomobryum julaceum Bryaceae Cushion

Pterobryopsis crassicaulis Pterobryaceae Mat

Pseudosymblepharis angustata Pottiaceae Turf

700
Pogonatum neesii Polytrichaceae Turf

Leucobryum scabrum Leucobryaceae Cushion

500
Sematophyllum subhumile Sematophyllaceae Mat

Leucobryum boninense Leucobryaceae Cushion

300 Pseudotaxiphyllum
pohliaecarpum Hypnaceae Mat

100 Pogonatum inflexum Polytrichaceae Turf

4.3. Chlorophyll Fluorescence Measurements

At the end of each month, rapid light curve (RLC) was measured using a Photosyn-
thesis Yield Analyzer MINI-PAM-II in situ (MINI-PAM II Series Chlorophyll Fluorescence
System, Heinz-Walz Instruments, Effeltrich, Germany) according to the manufacturer’s
instructions. The light curve program exposed the sample to stepwise increasing inten-
sities of actinic illumination [44]. In RLC, the time interval of each light step was short
(down to 10 s), even though full equilibration of photosynthetic reactions was not reached
within an illumination interval. However, the time interval of RLC is short enough so that
RLC data provide information on the present acclimation state of photosynthesis in the
natural environment. After field measurements, we collected and transferred the 12 moss
species samples to the laboratory for induction curve and recovery measurements for
control and dark-acclimatized for at least half an hour, which were remoistened if neces-
sary. For induction curve measurements, a dark leaf clip was connected with a Leaf-Clip
Holder 2030-B. Parameters were automatically calculated by the independently operated
MINI-PAM-II or by software WinControl-3. They included complementary PS II yields,
Fv/Fm (maximal photochemical yield of PS II), Y(II) (effective photochemical yield of PS
II), Y(NPQ) (regulated energy losses of excitation energy by heat dissipation involving
∆pH- and zeaxanthin-dependent mechanisms), Y(NO) (non-regulated losses of excitation
energy including heat dissipation and fluorescence emission) and Stern–Volmer type NPQ
(parameters of non-photochemical quenching).

Complementary PS II quantum yields were used to analyze the partitioning of ab-
sorbed light energy in photosynthetic organisms [45]. For instance, a much higher value
of Y(NO) than Y(NPQ) denotes that excess excitation energy reached the reaction centers,
resulting in a strong reduction in PS II acceptors and photodamage, e.g., via formation of
reactive oxygen species [36,40]. In contrast, high Y(NPQ) indicates that excess excitation
energy is dissipated via regulated mechanisms at the antenna level and that photosynthetic
energy fluxes are well-regulated. The most frequently used non-photochemical quenching
parameter, the Stern–Volmer type quenching coefficient, NPQ, is sensitive to both regulated
and constitutive thermal energy dissipation, reflecting the magnitude of the regulated
component of non-photochemical quenching [46–48].
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Fv
Fm

=
(Fm− F0)

Fm
(1)

Y(II) =
Fm′ − F

Fm′ (2)

Y(NPQ) =
F

Fm′ −
F

Fm
(3)

Y(NO) =
F

Fm
(4)

NPQ =
Fm− Fm′

Fm′ (5)

1 = Y(II) + Y(NO) + Y(NPQ) (6)

4.4. Environmental and Climatic Factors

Environmental and climate data (including air temperature, relative humidity, rainfall,
dew point) at each site were obtained from the local weather station if possible. For two
elevations (500 and 700 m) from the northern aspect, of which weather data were not
available, climate parameters were measured at the self-deployed weather stations. Three
mini weather stations were set up at each elevation to collect air temperature, dew point,
relative humidity and rainfall.

4.5. Statistical Analysis

All environmental variables were averaged for each elevation. All statistical tests
were performed using SPSS (version 26.0; IBM, Armonk, NY, USA). Data were checked
for deviations from normality and homogeneity of variance before statistical analysis.
ANOVAs with Tukey’s post hoc tests were performed to assess significant differences
among different observation times. Differences in the Y(II), Y(NO), NPQ and environmental
factors among different elevations and sampling months were analyzed using multi-way
ANOVAs.

5. Conclusions

These 12 moss species developed different strategies actively or passively to adapt
to the challenges of the cycle of drying and rehydrating and hot environments. We found
that only H. plumaeforme, P. crassicaulis and P. inflexum were well acclimatized to their
habitat, even though they still experienced a lower photochemical efficiency. Their life
forms were also optimized to adapt to the habitats. However, the other nine species were
mostly sensitive to seasonality, and A. julaceum, P. neesii, S. subhumile, P. pohliaecarpum and
L. boninense, especially B. buchananii were ideal as bioindicators for climate change. Even
though they responded differently, all these moss species developed suitable regulated and
non-regulated strategies to avoid the detrimental effect of abiotic stresses. However, all
species have limitations to their adaptive ability of response to changing environments,
and the limits are unlikely to improve for species already experiencing the abiotic stresses
close to their tolerance ceiling. As tropics are expected to become hotter and drier, many
moss species might be negatively affected or even at the risk of extinction, which makes
tropical regions hotspots to explore the potential influences of global climate change on the
non-vascular plants and even other biomes.
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Appendix A

Table A1. Multi-way ANOVAs for environmental factors at 5 elevations during observing months.

Altitude (m) Measure df F p

900

Air temperature 5 252.944 <0.001

Dew point 5 460.868 <0.001

Relative
humidity 5 122.333 <0.001

Rainfall 5 5919.829 <0.001

700

Air temperature 5 158.187 <0.001

Dew point 5 147.530 <0.001

Relative
humidity 5 254.240 <0.001

Rainfall 5 3020.540 <0.001

500

Air temperature 5 150.962 <0.001

Dew point 5 310.839 <0.001

Relative
humidity 5 71.350 <0.001

Rainfall 5 3661.869 <0.001

300

Air temperature 5 219.498 <0.001

Dew point 5 670.124 <0.001

Relative
humidity 5 75.954 <0.001

Rainfall 5 6.106 <0.01

100

Air temperature 5 220.179 <0.001

Dew point 5 930.688 <0.001

Relative
humidity 5 100.763 <0.001

Rainfall 5 4624.528 <0.001
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Appendix B

Table A2. Multi-way ANOVAs for Y(II) of 12 selected moss species from 5 elevations during
observing months.

Altitude (m) Species Name df F p

900

Hypnum plumaeforme 6 54.765 <0.001

Brachythecium buchananii 6 4476.718 <0.001

Thuidium glaucinoides 6 1585.716 <0.001

Anomobryum julaceum 6 1345.491 <0.001

Pterobryopsis crassicaulis 6 312.981 <0.001

Pseudosymblepharis angustata 6 6982.168 <0.001

700
Pogonatum neesii 6 1035.626 <0.001

Leucobryum scabrum 6 2610.740 <0.001

500
Sematophyllum subhumile 6 2165.445 <0.001

Leucobryum boninense 6 3889.871 <0.001

300 Pseudotaxiphyllum
pohliaecarpum 6 1463.714 <0.001

100 Pogonatum inflexum 6 23.889 <0.001

Appendix C

Table A3. Multi-way ANOVAs for Y(NO) and NPQ of 12 selected moss species from 5 elevations
during observing months.

Altitude (m) Species Name df F p

900

Hypnum plumaeforme

Y(NO) 6 54.765 <0.001

NPQ 5 683.014 <0.001

Brachythecium buchananii

Y(NO) 6 4476.718 <0.001

NPQ 5 101.123 <0.001

Thuidium glaucinoides

Y(NO) 6 1585.716 <0.001

NPQ 5 22,168.897 <0.001

Anomobryum julaceum

Y(NO) 6 1345.491 <0.001

NPQ 5 8337.127 <0.001

Pterobryopsis crassicaulis

Y(NO) 6 299.129 <0.001

NPQ 5 370.082 <0.001

Pseudosymblepharis angustata

Y(NO) 6 6982.168 <0.001

NPQ 5 47,520.709 <0.001
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Table A3. Cont.

Altitude (m) Species Name df F p

700

Pogonatum neesii

Y(NO) 6 1035.626 <0.001

NPQ 5 2354.901 <0.001

Leucobryum scabrum

Y(NO) 6 2610.740 <0.001

NPQ 5 1870.289 <0.001

500

Sematophyllum subhumile

Y(NO) 6 2165.445 <0.001

NPQ 5 2333.928 <0.001

Leucobryum boninense

Y(NO) 6 4288.060 <0.001

NPQ 5 15,013.965 <0.001

300

Pseudotaxiphyllum
pohliaecarpum

Y(NO) 6 1463.714 <0.001

NPQ 5 212.636 <0.001

100

Pogonatum inflexum

Y(NO) 6 23.889 <0.001

NPQ 5 446.211 <0.001
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