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Simple Summary: Brain metastases (BM) are the most common brain tumors in adults and are the
main cause of cancer-associated death. Omics analysis of BM will allow for a better understanding of
metastatic progression, prognosis and therapeutic targeting. In this study, BM samples underwent
comprehensive molecular profiling with genomics and transcriptomics. Mutational signatures
suggested that most mutations were gained prior to metastasis. A novel copy number event centered
around the MCL1 gene was found in 75% of all samples. Transcriptomics revealed that melanoma BM
formed a distinct cluster in comparison to other subtypes. Poor survival correlated to self-identified
black race and absence of radiation treatment but not molecular profiles. These data identify potential
new drivers of brain metastatic progression, implicate that melanoma BM are distinctive and likely
responsive to unique therapies, and further investigation of sociodemographic and clinical features
are needed in BM cohorts.

Abstract: Brain metastases (BM) are the most common brain tumors in adults occurring in up to 40%
of all cancer patients. Multi-omics approaches allow for understanding molecular mechanisms and
identification of markers with prognostic significance. In this study, we profile 130 BM using genomics
and transcriptomics and correlate molecular characteristics to clinical parameters. The most common
tumor origins for BM were lung (40%) followed by melanoma (21%) and breast (15%). Melanoma
and lung BMs contained more deleterious mutations than other subtypes (p < 0.001). Mutational
signatures suggested that the bulk of the mutations were gained before metastasis. A novel copy
number event centered around the MCL1 gene was found in 75% of all samples, suggesting a broader
role in promoting metastasis. Unsupervised hierarchical cluster analysis of transcriptional signatures
available in 65 samples based on the hallmarks of cancer revealed four distinct clusters. Melanoma
samples formed a distinctive cluster in comparison to other BM subtypes. Characteristics of molecular
profiles did not correlate with survival. However, patients with self-identified black race or those who
did not receive radiation correlated with poor survival. These data identify potential new drivers of
brain metastatic progression. Our data also suggest further investigation of sociodemographic and
clinical features is needed in BM cohorts.
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1. Introduction

Brain metastases (BM) are the most common brain tumors in adults and occur in up to
40% of all cancer patients. Patients with BM have a poor prognosis with a median survival
of 3 to 27 months after diagnosis [1,2]. The primary tumors with the highest incidence
of brain metastases include lung (40–50%), breast (15–25%), and melanoma (5–20%) [3].
Treatment of BM entails a combination of radiation with or without surgery and more
recently targeted agents, and/or immunotherapy [4–6]. Prediction of which patients will
respond to selective therapy is limited. The application of omics data to better understand
clinical features of BM is in its infancy and typically involves a single omics approach [7–11].
Multi-omics approaches in cancer allow for understanding molecular mechanisms and
identification of markers of diagnostic/prognostic significance [9,12].

Genomic characterization of brain metastases and matched primary tumors identified
that in 53% of samples, clinically informative and potentially actionable alterations were
present in BM [13]. Epigenetic profiling with DNA methylomes and gene expression pro-
files of BM can identify tissue of origin as well as therapeutically relevant subtypes [14,15].
These data support the utility of multi-omics profiling of BM in order to analyze molecular
profiles, stratify patients, and develop precision medicine approaches [12,16–18].

A main limitation to studying BM is that not all lesions qualify for surgical resec-
tion, limiting the ability to perform robust molecular characterization [19–22]. Patients
typically present with more than one BM (up to 80%) or more than three BM (up to 50%).
Surgery, and thus tissue procurement, has limited efficacy in most patients with multiple
BM [23–27]. Despite this limitation, at our institution we prospectively perform next gener-
ation sequencing which includes a DNA cancer gene panel and bulk RNA transcriptome
on all surgically resected brain tumors [28]. In this study we profile 130 BM (68 from our
institution) from surgically resected samples and correlate molecular characteristics to
clinical parameters.

2. Materials and Methods
2.1. Patient and Sample Selection

We retrospectively reviewed our prospectively acquired next generation sequencing
brain tumor biobank after obtaining approval from our Institutional Review Board (IRB
#249928 and 239292). We identified patients from 19–82 (years) who had a brain metastasis
that was surgically resected, underwent sequencing analysis, and had clinical parameters
available (Table S1). Matched samples from primary tumors were not available for the
UAMS cohort. We also analyzed BM data from dbGaP which consisted of 62 BM samples.

2.2. Sample Preparation and Sequencing

Paired normal and formalin fixed paraffin embedded tumor samples were processed
and sequenced by Tempus to produce Tempus xT targeted panel data (Chicago, IL, USA).
A full list of the genes covered is given in Table S2. Tumor DNA was extracted from tumor
tissue sections with tumor cellularity higher than 20% and proteinase K digestion was
performed. Total nucleic acid extraction was performed with a Chemagic360 instrument
using a source-specific magnetic bead protocol. Total nucleic acid was utilized for DNA
library construction, while RNA was further purified by DNaseI digestion and magnetic
bead purification. The nucleic acid was quantified by a Quant-iT picogreen dsDNA reagent
Kit or Quant-iT Ribogreen RNA Kit (Life Technologies, Carlsband, CA, USA), and quality
confirmed using a LabChip GX Touch HT Genomic DNA Reagent Kit or LabChip RNA
High HT Pico Sensitivity Reagent Kit (PerkinElmer, Akron, OH, USA).

For DNA library construction, 100 ng of DNA for each tumor and normal sample was
mechanically sheared to an average size of 200 base pairs using a Covaris ultrasonicator.
The libraries were prepared using the KAPA Hyper Prep Kit. Briefly, DNA underwent
enzymatic end-repair and A-tailing, followed by adapter ligation, bead-based size selection,
and PCR. After library preparation, each sample was hybridized to a custom designed
probe set. Recovery and washing of captured targets were performed using the SeqCap
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hybridization and wash kit. The captured DNA targets were amplified using the KAPA
HiFi HotStart ReadyMix. The amplified target-captured libraries were sequenced on an
Illumina HiSeq 4000 System.

For RNA library construction, 100 ng of RNA per tumor sample was fragmented with
heat in the presence of magnesium to an average size of 200 base pairs. The RNA then
underwent first strand cDNA synthesis using random primers, followed by combined
second strand synthesis and A-tailing, adapter ligation, bead-based cleanup, and library
amplification. After library preparation, samples were hybridized with the IDT xGEN
Exome Research Panel. Target recovery was performed using Streptavidin-coated beads,
followed by amplification using the KAPA HiFi Library Amplification Kit. The RNA
libraries were sequenced to obtain approximately 65 million reads on an Illumina HiSeq
4000 System.

DNA samples were sequenced to a median depth of 1873 (range 1088–3241). There
was no significant difference between the depths of different BM subtypes. The comparison
data set was acquired from dbGaP under accession number phs000730.v1.p1. A total of
62 samples were selected representing paired normal and tumor whole exome sequencing
data from metastatic brain tumors of different subtypes. A subset of 58 of these had an
additional sample from the primary tumor.

2.3. Somatic Mutation Analysis

Reads were aligned to the reference genome GRCh37 using BWA-MEM [29] and
variants called using Strelka2 [30]. Variants were filtered using FiNGS [31] and annotated
using VEP [32]. Significantly mutated genes were determined using dNdSCV [33]. Analysis
was performed using the UAMS data, comparison data and combined data sets, with
a significance threshold of q < 0.1. Mutational signatures were determined using the
R package NMF.

2.4. Copy Number Variation Analysis

Using aligned normal and tumor bam files as input, CNVKIT [34] was used to segment
the data and GISTIC2 [35] was used to determine both broad and focal regions of copy
number variation. Analysis was performed using the UAMS data, comparison data and
combined data sets. A significance threshold of q < 0.1 was used and copy number events
were only reported if significant in all three. Additional focal events from the validation data
set were reported if in regions not covered by the Tempus xT panel and with q < 1 × 10−4.

2.5. RNA Analysis

Reads were aligned to the reference genome GRCh37 using BWA-MEM [29] and
Stringtie [36] was used to generate transcript abundances.

Gene expression estimates were input into the cloud-based Almac proprietary anal-
ysis pipeline used for downstream calculation of signature scores and visual reporting
for claraT V3.0.0 content (Almac Diagnostic Services, https://www.almacgroup.com/
diagnostics/claratreport/, accessed on 15 March 2021). claraT is a unique software-driven
solution, classifying biologically relevant gene expression signatures into a comprehensive
easy-to-interpret report. Version 3.0.0 claraT Total mRNA Report, reports on 10 key cancer
biologies (Immuno-Oncology (IO), Epithelial to Mesenchymal Transition (EMT), Angiogen-
esis, Proliferation, Cell Death, Genome Instability, Energetics, Inflammation, Immortality
and Evading Growth) representing the hallmarks of cancer [37] by providing expression of
92 unique gene expression signatures, 100 single gene drug targets and 7337 single genes.
These signatures are a mixture of publicly available expression signatures mined from the
literature and proprietary signatures developed by Almac Diagnostics, and higher scores
represent higher abundances of transcripts in these signatures. The method is similar to
geneset enrichment analysis (GSEA). Values were scaled to between 0 and 1 and unsuper-
vised hierarchical clustering using Ward’s method was performed using Euclidean distance
as the distance metric to cluster samples.

https://www.almacgroup.com/diagnostics/claratreport/
https://www.almacgroup.com/diagnostics/claratreport/
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2.6. Survival Analysis

Univariate and multivariate modelling was performed using survival data for the
UAMS patients. Significant variables in the univariate model were used to build a multi-
variate Cox proportional hazards model.

3. Results
3.1. Patient Cohort

Basic demographics of our cohort are outlined in Table 1. Briefly, from 2018 to 2020,
68 BM from 68 patients were resected and underwent next generation sequencing at our
institution (University of Arkansas for Medical Sciences, UAMS) as is routine within our
brain tumor protocol [28]. The study was approved by the UAMS Institutional Review
Board. The most common tumor origins for BM in our cohort were lung (40%) followed
by melanoma (21%) and breast (15%). The remainder were from a diverse range of sites
including renal, gynecologic and esophageal cancers. A full list of tumor origins is provided
in Table S1. The median age was 58 years and composed of 50% males. We also integrated
public data downloaded from dbGaP which was composed of 62 BM patients [13].

Table 1. Patient characteristics. The UAMS and dbGaP data sets were of similar sizes and compositions.

Feature (%) All Patients (n = 130) UAMS Patients (n = 68) dbGaP Data Set (n = 62)

Sex:
Female 76 (58%) 34 (50%) 42 (68%)
Male 54 (42%) 34 (50%) 20 (32%)

Age (mean, standard
deviation, range) 57, 11.5, 19–82 58, 12.3, 19–82 56, 10.6, 35–80

Smoking 82 (63%) 41 (60%) 41 (66%)

Prior radiation 23 (18%) 13 (19%) 10 (16%)

Disease origin
Breast 27 (21%) 10 (15%) 17 (27%)
Lung 57 (44%) 27 (40%) 30 (48%)
Melanoma 16 (12%) 14 (21%) 2 (3%)
Other 30 (23%) 17 (25%) 13 (21%)

Median survival NA 372 days, 95% CI 299–555 NA

3.2. Somatic Mutations and Significantly Mutated Genes

In the UAMS set of 68 patients we detected a median of 69 SNVs (range 13–1062)
and 17 indels (range 2–187). In absolute terms, the comparison data set of 62 patients
contained more mutations, with a median of 434 SNVs (range 79–3057) and 19 indels
(range 2–1521). When considered together, the UAMS data had a higher mutation rate
per megabase of genomic DNA compared to the comparison set (median 24.8 SNVs/Mb
versus 11.3 SNVs/Mb). However, when subtype was matched these differences were
not significant. Melanoma had a high mutational burden and represented a much higher
proportion of UAMS samples (14/68 compared to 2/62). We also found a linear correlation
between the total number of mutations and the number of deleterious mutations in both the
UAMS and comparison data sets, regardless of subtype origin (Pearson’s rho 0.94 and 0.95,
p < 2.2 × 10−16). These data suggest that the UAMS and dbGaP data sets are comparable
and that combining them and performing further analysis is a reasonable strategy.

Melanoma and lung BMs contained more deleterious mutations than other subtypes
(p < 0.001) (Figure 1), but not significantly more than one another, likely attributable to
the highly mutagenic effects of ultraviolet radiation and tobacco use, respectively. These
differences were driven by SNVs, as the number of indels was significantly lower in
melanoma BMs compared to non-lung and breast samples (p = 0.005).
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mutations detected in each gene, respectively. The stacked barplot at the bottom shows the contributions of each of the 6 
mutation classes in each sample. 

Seventeen genes were found to be significantly mutated (Figure 1), and the frequency 
of gene mutations were not significantly different between the UAMS and comparison 
data set. Significant genes included known pan-cancer tumor suppressors and oncogenes 
as well as more disease-specific genes, mostly restricted to the expected disease subtypes. 
These expectations were driven by mining public cancer genomics resources including 
the cancer genoma atlas (TCGA), catalogue of somatic mutations in cancer (COSMIC) and 
the Broad Institute’s TumorPortal, as well as the literature available in PubMed. For ex-
ample, 9/11 BRAF V600E mutations were in melanoma samples, 9/10 KEAP1 mutations 
were in lung samples and 5/5 VHL mutations were in clear cell renal cancer samples. 
There was a significant correlation (Pearson’s rho 0.44, p = 1.33 × 10−7) between KEAP1 and 
STK11 mutations, with four samples containing both mutations. 

The most commonly mutated gene was TP53, found in 58% of samples. In 89% of the 
samples, a mutation in at least one of the significantly mutated genes (median 2, range 0–
7) was found. We found that 80% of all samples had at least one mutation or CNV affecting 
TP53, with 47% of all samples suffering from biallelic loss of TP53. 

Figure 1. Oncoplot of frequently mutated genes in BM. The 17 significantly mutated genes were selected, and ordered
by their overall frequency. Each column represents a single sample and each row a gene, with samples grouped by
subtype. The barplot above and to the right represent the total number of deleterious mutations in each sample and the
type of mutations detected in each gene, respectively. The stacked barplot at the bottom shows the contributions of each
of the 6 mutation classes in each sample.

Seventeen genes were found to be significantly mutated (Figure 1), and the frequency
of gene mutations were not significantly different between the UAMS and comparison
data set. Significant genes included known pan-cancer tumor suppressors and oncogenes
as well as more disease-specific genes, mostly restricted to the expected disease subtypes.
These expectations were driven by mining public cancer genomics resources including the
cancer genoma atlas (TCGA), catalogue of somatic mutations in cancer (COSMIC) and the
Broad Institute’s TumorPortal, as well as the literature available in PubMed. For example,
9/11 BRAF V600E mutations were in melanoma samples, 9/10 KEAP1 mutations were in
lung samples and 5/5 VHL mutations were in clear cell renal cancer samples. There was
a significant correlation (Pearson’s rho 0.44, p = 1.33 × 10−7) between KEAP1 and STK11
mutations, with four samples containing both mutations.

The most commonly mutated gene was TP53, found in 58% of samples. In 89% of the
samples, a mutation in at least one of the significantly mutated genes (median 2, range 0–7)
was found. We found that 80% of all samples had at least one mutation or CNV affecting
TP53, with 47% of all samples suffering from biallelic loss of TP53.

3.3. Mutational Signatures

Different mutational processes act upon DNA, and each of these leaves a unique
combination of mutation types. These mutational signatures can be used to determine the
origin and timing of somatic mutations. Mutational signatures have been actively investi-
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gated for nearly a decade, but the central premise remains the same and now comprises
some 60 single base substitution (SBS) signatures, 11 doublet-based signatures and 18 indel
signatures [38,39]. Nonnegative matrix factorization (NMF) was used to determine muta-
tional signatures and cosine similarity (CS) was used as measure of similarity to previously
elucidated COSMIC signatures. CS is conceptually similar to Pearson correlation, with
values closer to 1 denoting high similarity. We identified three SBS signatures with high
similarity to those identified in COSMIC V3.2 (https://cancer.sanger.ac.uk/signatures/,
accessed on 15 March 2021): SBS signature 5 (a broad-spectrum signature, possibly related
to aging, CS 0.71), SBS signature 7a (ultraviolet light damage, CS 0.80), and SBS signature 4
(tobacco smoking, CS 0.88). The inferred etiology of these signatures is based on previous
biochemistry studies in the literature. Hierarchical clustering of the contribution of these
signatures to the mutational load of the BM samples resulted in clusters dominated by
BMs from specific tissues (Figure 2), suggesting that the bulk of the mutations were gained
before metastasis. This can be inferred because neither UV radiation nor tobacco smoke can
directly cause mutations once cancer has metastasized from the skin or lungs to the brain.
If additional mutational processes became active after metastasis, they did not produce
enough mutations to be detected.
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Figure 2. Mutational signatures detected in BM samples. Hierarchical clustering of the contribution of the three signatures
suggests that most mutations were acquired before metastasis occurred, as they reflect the etiology of the primary disease (UV
exposure for melanoma and tobacco exposure for lung cancers), with the remainder dominated by an age-related signature.

3.4. Copy Number Variation

We identified features at broad (chromosomal arm) and focal (megabases or less)
scales (Figure 3A). At the broad scale, we found significant gain of chromosomes 1q (55%)
and loss of chromosomes 9p (67%), 9q (53%), 10q (51%), 17p (58%), 19q (38%) and 22q
(57%) (Table 2).

We identified 17 focal CNVs. The most common focal feature was a novel 2 Mb gain
at 1q21.3 present in 75% of samples, regardless of disease origin. This region is centered
upon MCL1, the only gene in the region covered by the targeted DNA panel. All other
focal events occurring at >60% frequency were known tumor suppressors or oncogenes;
gain8q24.21 (MYC), del9p21.3 (CDKN2A), and del10q26.2 (MGMT) in 68%, 67% and 60%
of samples, respectively. There were no significant differences in frequency between the
UAMS and dbGaP data sets. Of the dbGaP metastasis samples, 41/45 with gain1q21.3 had a
matched primary sample, and 35/41 (85%) of these contained this lesion prior to metastasis.
A data set consisting of cancer patients that did not develop brain metastases prior to death

https://cancer.sanger.ac.uk/signatures/
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was not available, and brain metastases follow-up information is not available in public
data repositories such as TCGA.
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Figure 3. (A): Copy number events detected in BM. Red denotes gain and blue loss, with broad events coloring the entire
arm and focal events represented using colored bars at the site of the events. Only affected chromosomes are shown.
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Detailed tabulation is shown in Tables 2 and 3. (B): Correlation plot of copy number events. Positive correlations with
significant p-values after Bonferroni multiple testing correction (p < 1.7 × 10−4) were found for multiple pairs of features
and were not restricted to specific subtypes. Pearson correlation is labelled with a color scheme from negative (red) to
positive (blue) and larger colored squares represent smaller p-values.

Table 2. Broad focal copy number events in BM.

Description q-Value
(Combined)

q-Value
(UAMS)

q-Value
(dbGaP)

Total
Frequency
(n = 130)

Frequency
UAMS (n = 68)

Frequency
dbGaP (n = 62)

Gain1q 1.69 × 10−7 4.13 × 10−4 3.84 × 10−2 55% 56% 53%
Del9p 3.66 × 10−7 1.03 × 10−5 3.35 × 10−2 67% 72% 58%
Del9q 6.15 × 10−4 5.14 × 10−2 1.98 × 10−3 53% 49% 60%

Del10q 4.12 × 10−3 5.14 × 10−2 1.20 × 10−2 51% 49% 61%
Del17p 7.16 × 10−4 4.22 × 10−2 1.98 × 10−3 58% 51% 73%
Del19q 2.78 × 10−4 5.14 × 10−2 3.35 × 10−2 38% 31% 50%
Del22q 1.11 × 10−7 5.14 × 10−2 5.05 × 10−5 57% 38% 74%

In general, we did not observe substantial variation in focal event frequency relative
to the origin of disease, with three exceptions. Seventy percent (70%) of lung samples con-
tained gain7p11.2 (EGFR) events (p = 0.004), 67% of breast samples contained gain11q13.3
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(CCND1) events (p = 0.004) and 61% of lung samples contained gain14q13.2 (NFKBIA)
events (p = 7 × 10−5).

We also identified five significant focal events in the comparison data set which we
could not confirm in the UAMS data due to the genes not being covered. These included
deletions of VRK1 and PSMG1 and gain of MECOM (Table 3).

Table 3. Significant focal copy number events in BM, in order of overall frequency. Five features listed at the bottom of the
table were only detectable in the comparison data set due to the coverage of the DNA capture used.

Description
Genomic

Coordinates
(hg19)

Size
(Megabases)

RefSeq
Genes in
Window

Candidate
Gene

q-Value
(Combined)

q-Value
(UAMS)

q-Value
(Validation)

Total Fre-
quency

(n = 130)

Frequency
UAMS
(n = 68)

Frequency
in dbGaP

Data
(n = 62)

Gain1q21.3 chr1:149459146–
151435225 2.0 Many MCL1 1.78 × 10−7 1.83 × 10−4 3.25 × 10−3 75% 78% 73%

Gain8q24.21 chr8:128600697–
128904379 0.3 3 MYC 2.17 × 10−3 4.50 × 10−5 NA 68% 69% 68%

Del9p21.3 chr9:21853980–
22169008 0.3 2 CDKN2A 3.76 × 10−14 2.73 × 10−3 6.30 × 10−11 67% 72% 61%

Del10q26.2 chr10:129878108–
131344459 1.5 2 MGMT 2.33 × 10−6 7.26 × 10−4 NA 60% 65% 55%

Gain7q31.2 chr7:116187728–
116418819 0.2 2 MET 3.62 × 10−3 3.89 × 10−4 NA 56% 57% 55%

Gain7p11.2 chr7:55220368–
55419259 0.2 2 EGFR 7.99 × 10−3 6.91 × 10−4 NA 55% 60% 50%

Del11p15.4 chr11:3677960–
3833468 0.2 4 NUP98 3.80 × 10−4 7.82 × 10−2 3.10 × 10−3 48% 50% 47%

Del4q35.2 chr4:187489123–
187657360 0.2 1 FAT1 5.42 × 10−7 1.00 × 10−2 4.67 × 10−4 48% 60% 35%

Gain17q12 chr17:37856575–
38035342 0.2 4 ERBB2 9.90 × 10−15 1.88 × 10−9 3.84 × 10−7 46% 54% 37%

Gain19q12 chr19:30313521–
30466344 0.2 2 CCNE1 4.20 × 10−2 4.77 × 10−4 NA 42% 53% 31%

Gain14q13.2 chr14:35873861–
36509568 0.6 4 NFKBIA 1.09 × 10−5 3.96 × 10−3 1.34 × 10−2 42% 47% 35%

Gain11q13.3 chr11:68944739–
69588069 0.6 4 CCND1 4.19 × 10−7 1.79 × 10−4 NA 41% 43% 39%

Gain3q26.2 chr3:168496014–
169105035 0.6 2 MECOM * 1.78 × 10−7 NA 5.62 × 10−6 79%

Del22q13.33 chr22:47340083–
51304566 4.0 Many Unknown * 7.93 × 10−4 NA 9.82 × 10−4 79%

Del19p13.3 chr19:1595678–
2171104 0.6 Many Unknown * 3.06 × 10−4 NA 1.80 × 10−4 73%

Del21q22.2 chr21:40162170–
40831414 0.7 5 PSMG1 * 1.25 × 10−6 NA 7.37 × 10−7 63%

Del14q32.13 chr14:96158774–
99640737 3.5 Many VRK1 * 1.85 × 10−14 NA 2.52 × 10−13 45%

We identified significant correlations between CNVs (Figure 3B). The majority were
on the same chromosomes, but we also found a negative correlation between del4q35.2
(FAT1) and del19q (Pearson’s rho −0.33, p = 1.56 × 10−4) and a positive correlation between
del19q and del22q (Pearson’s rho 0.33, p = 1.15 × 10−4).

3.5. RNA Sequencing

Expression signatures based on the hallmarks of cancer were calculated for 65 of the
UAMS samples using RNA sequencing data. Hierarchical clustering of these signatures
produced four clusters (Figure 4A). Two of them appeared to be based on BM subtype. RNA
cluster C was wholly composed of melanoma samples (11/14 total melanoma samples)
and RNA cluster D was enriched for lung samples (p = 0.01), with 10/14 cluster members
from this subtype. RNA cluster B was the largest cluster containing 31/65 samples and
was composed of an assortment of subtypes. RNA cluster A was distinct from all others
and scored highly across a range of cancer expression signatures, an inversion of the results
in the other clusters. Other than disease origin for clusters C and D, we did not observe
any significant correlation between any cluster and other molecular or clinical features.

Principal component analysis showed clustering based on the melanoma and breast
subtypes but did not reproduce the patterns observed using the expression signatures,
suggesting that the clusters formed by the expression signatures are neither batch effects
nor driven solely by disease subtype (Figure 4B).
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BM samples. Scores are scaled between 0 (blue) and 1 (red), with higher values representing higher transcript abundances.
Four clusters were formed. Notably, clusters C and D are predominantly melanoma and lung BM samples, respectively, and
cluster A has a very transcriptionally active phenotype. (B): Principal component analysis of RNA sequencing data from
65 UAMS samples. Letters denote the RNA cluster from Figure 4A and colors denote the origin of disease. Melanoma BMs
(orange letters) form a distinct cluster in both analyses, but the hallmark clusters are not replicated in the PCA, suggesting
a genuine biological origin and not a batch effect or simple reflection of the origin of metastases. Signature names and
references are detailed in order in Table S3.

3.6. Survival Analysis

Overall survival analysis was performed using the UAMS patients. Genomic features
(i.e., presence of certain mutations, SNVs, CNVs) and transcriptomic features (i.e., associa-
tion with one of four distinct phenotypic clusters) did not correlate with overall survival
(File S1). Four clinical features were significant in a univariate analysis (Figure 5A–D),
with only the presence of systemic metastases not remaining significant in a multivariate
analysis (Figure 5E). Clinical variables significant in the multivariate analysis were the
self-reported race of the patients (HR = 1.7, CI 1.0–2.7, p = 0.034), pre-surgery radiation
therapy (HR = 6.4, CI 2.4–16.9, p < 0.001) and post-surgery radiation therapy (HR = 7.2,
CI 3.3–15.7, p < 0.001).
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4. Discussion

Cancer therapy continues to evolve and overall survival has been significantly ex-
tended for many cancer types in high income countries [40]. However, BM remains a main
cause of cancer-related mortality and the incidence is projected to increase over time [41].
The brain remains a sanctuary site for cancer as due to the brain–tumor barrier, few treat-
ments are efficacious in the brain, limiting therapeutic options and prevention [42–44].
Many clinical trials for targeted and immune therapy excluded patients who had BM,
but now these therapeutic strategies are recognized as possible treatments for certain
patients [5,45–49]. Genomic characterization of BM has been useful in identification of
potential driver and targetable mutations [13,50]. However, the recent results of the Na-
tional Cancer Institute’s Molecular Analysis for Therapy Choice, a precision medicine trial
based on DNA sequencing, demonstrated in a cohort of 4687 patients that only 17.8% of
patients qualified to be assigned to therapy [51]. In a cohort of 500 cancer patients, genomic
DNA profiling was able to identify potential targets for 29.6% of patients. This percentage
increased to 43.4% with the integration of RNA sequencing and immune biomarkers [52].
In addition to the identification of potential therapeutic targets, multi-omics approaches
for BM can be used to risk stratify patients and understand metastatic progression [53,54].
Therefore, in this study, we combined DNA and RNA sequencing to further characterize BM.

The internal and external data sets used in our study showed good concordance and
similarity in regard to the genomic landscape. Through combining the data sets we were
able to analyze 130 total BM samples. Overall, the TP53 gene had the most aberrations,
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which is consistent with previous literature identifying TP53 as the most common mutation in
cancer [55–57]. At least one mutation was found in 58% of samples, and 58% had a deletion of
17p; in total, 47% of samples had complete biallelic inactivation of TP53. After TP53, the most
commonly mutated genes included KRAS, ARID1A, and BRAF. BRAF was almost exclusively
present in melanoma samples (Figure 1). All the significantly mutated genes have been
previously identified as important in a variety of cancer types, with two exceptions. PBRM1
mutations have been associated with clear cell renal carcinoma [58], but in our BM data
this mutation appeared in a broad spectrum of cases and infrequently with VHL mutations,
suggesting it may have a broader role in promoting metastasis. Similarly, C8orf34 appeared in
a variety of metastases and has been identified as a fusion gene partner of MET [59]. Although
its function is unknown, it is a potential pan-cancer promoter of metastasis.

DNA mutation calling provided strong evidence that most mutations occurred prior
to metastasis, as the NMF signatures clustered according to tissue origin, dominated
by mutational processes such as tobacco or ultraviolet light damage (Figure 2). Further
evidence of subtype-specific disease was found in the distribution of the genes mutated.
Some genes were mostly restricted to certain subtypes; for example, BRAF mutations
occurred mostly in melanoma, VHL mutations in kidney clear cell samples, and KEAP1
mutations were found in lung samples. Four samples contained both KEAP1 and STK11
mutations, which have been shown to indicate lung cancer patients [60].

Potentially the most interesting features were found in the copy number analysis.
Our comparative external cohort had not been previously characterized for copy number
analysis [13]. Copy number events tended not to be subtype-specific, with the exceptions
of significant enrichments of lung samples containing gain7p11.2 (EGFR) and gain14q13.2
(NFKBIA) events and breast samples containing gain11q13.3 (CCND1) events (Figure 3A).
Gain1q21.3, a novel copy number event centered around the MCL1 gene, was found in 75%
of all samples. Interestingly, 85% of the dbGaP samples with gain1q21.3 also contained
this lesion in a matched primary sample. Without a cohort of primary tumor samples in
patients who were confirmed to not have developed brain metastases to compare against it
is impossible to make definitive statements, but this suggests that gain of MCL1 could be
an early driver of metastasis. MCL1 has been implicated in both the metastasis of clear cell
renal carcinoma [61] and recurrence of breast cancer [62]. A combined 55% of samples had
FAT1 lesions, predominantly as del4q35.2 (48%), with a minority of samples (14%) with
mutations. This is interesting given that loss of function of FAT1 (by deletion or mutation)
has been linked to promoting metastasis [63] and is a relatively uncommon cancer gene.
We also found a significant negative correlation between del4q32.2 and del19q, suggesting
that these regions are performing similar roles.

Transcriptome data were available for 65 BM samples, and we performed unsuper-
vised hierarchical clustering analysis of transcriptional signatures based on the hallmarks
of cancer which revealed four distinct clusters (Figure 4A). Two of these could be attributed
to the tissue of origin, with clusters C and D dominated by melanoma and lung samples,
respectively. Principal component analysis demonstrated that melanoma samples were
the most similar to each other and formed a distinctive cluster in comparison to other BM
subtypes (Figure 4B). From our gene expression clustering based on cancer hallmark signa-
tures, clusters A and B were composed of various BM subtypes. Cluster A comprised nine
patients and demonstrated increased expression in almost all gene expression pathways of
the hallmarks of cancer (Figure 4A). We did not find any strong evidence related to other
molecular or clinical features, and hypothesize that cluster A may be driven by epigenetic
factors such as global DNA methylation changes, as this has been demonstrated to be a
significant feature in BM, especially melanoma [14,64,65].

Lastly, we performed survival analysis on our cohort. A previous multi-omics anal-
ysis of BM patients demonstrated two molecular subtypes that correlated with survival
and the development of distal brain metastases. With the utilization of proteomics and
metabolomics, signaling pathways involved in the immune microenvironment as well as
proliferation and migration were suggestive of the observed survival differences between
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groups [54]. We utilized both clinical, demographic, genomic and transcriptomic data
in univariate and multivariate survival analysis. Interestingly, the presence of certain
mutations, copy number events or belonging to specific gene expression cluster groups did
not correlate with survival (File S1). Features that were statistically significant correlative
to survival included presence of systemic metastases, self-identified race, and presence
of pre-operative or post-operative radiation on univariate analysis (Figure 5A). On multi-
variate analysis, patients with self-identified black race and who did not receive radiation
correlated with poor survival (Figure 5B). Race is a social construct but also is related to
genetic ancestry [66]. Cancer disparities amongst racial/ethnic groups may be related to
both social determinants of care and potential genetic and/or epigenetic etiologies [67,68].
Radiation therapy (RT) has been well established as an integral part of BM management
and therefore it is not surprising that the absence of RT in the patient’s clinical course
would lead to worse survival [19,69]. A limitation of our study is the cohort size, and an
increase in the patient population in the future may allow us to define both clinical and
genomic prognostic biomarkers further. We also only studied patients who underwent
surgical resection and did not have matched primary tumors for a large proportion of the
cohort studied. This limits us from understanding potential mechanisms of metastatic
progression; nonetheless, our cohort remains one of the largest BM cohorts studied to date.

5. Conclusions

In our combined cohort of 130 patient BM samples, we identify features that are both
disease-specific and novel ones that may be linked to metastasis, including a novel mutated
gene (C8orf34), a novel gain of the gene MCL1 at 1q21.3 and a group of samples with an
unusual transcriptional profile. Our comprehensive analysis allows for identification of
prognostic biomarkers and potential therapeutic targets. Our analysis also demonstrates
the need to integrate sociodemographic parameters in future studies as well.
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.3390/cancers13225598/s1. Table S1: Sample characteristics. Table S2: Genes covered by the Tempus
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in dbGaP under accession number phs002639.v1.p1.
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