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Abstract: Natural products (NPs) have historically played a primary role in the discovery of small-
molecule drugs. However, due to the advent of other methodologies and the drawbacks of NPs, the
pharmaceutical industry has largely declined in interest regarding the screening of new drugs from
NPs since 2000. There are many technical bottlenecks to quickly obtaining new bioactive NPs on a
large scale, which has made NP-based drug discovery very time-consuming, and the first thorny
problem faced by researchers is how to dereplicate NPs from crude extracts. Remarkably, with the
rapid development of omics, analytical instrumentation, and artificial intelligence technology, in 2012,
an efficient approach, known as tandem mass spectrometry (MS/MS)-based molecular networking
(MN) analysis, was developed to avoid the rediscovery of known compounds from the complex
natural mixtures. Then, in the past decade, based on the classical MN (CLMN), feature-based MN
(FBMN), ion identity MN (IIMN), building blocks-based molecular network (BBMN), substructure-
based MN (MS2LDA), and bioactivity-based MN (BMN) methods have been presented. In this
paper, we review the basic principles, general workflow, and application examples of the methods
mentioned above, to further the research and applications of these methods.

Keywords: MS/MS-based molecular networking; natural products dereplication; classical MN
(CLMN); feature-based molecular networking (FBMN); ion identity molecular networking (IIMN);
building blocks-based molecular network (BBMN); substructure-based MN (MS2LDA); bioactivity-
based molecular networking (BMN)

1. Introduction

As the result of millions of years of evolutionary optimization, natural products (NPs)
have been endowed with privileged pharmacological functions, and historically became
the most important source for drug discovery [1–3]. Among the 1394 small-molecule drugs
approved by the United States Food and Drugs Administration (FDA) from 1981 to 2019,
31.6% were botanical drugs, unaltered NPs, and NP derivatives, and 30.4% were synthetic
drugs with NP pharmacophores or the mimicry of NPs [4], which means that close to 2/3
of the small-molecule medicines of this period were associated with NPs. Meanwhile, in
the top 200 pharmaceuticals by retail sales in 2021, NP-derived medicines were successful
in the areas of antibiotics and antifungal, anticancer, cholesterol-lowering, immunosup-
pression, and antihypertensive properties [5,6]. Despite such tremendous success, it is
noticeable that many pharmaceutical companies have terminated their programs to screen
new chemical entities from NPs since 2000 [7–9]. The reasons given were the rapid advances
of biopharmaceuticals [10], kinase-based drugs [11], antibody-drug conjugates (ADC) [12],
proteolysis-targeting chimeras (PROTAC) [13], and other methodologies [14,15]. However,
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no fundamental breakthroughs to overcome the drawbacks of NPs have been made for
some time [5,7–9], especially in terms of rapidly screening new and bioactive NPs from
complex extracts; economically obtaining sufficient quantities of pure target compounds
was the less widely advertised reason [8,9,16].

Indeed, with the large and increasing number of NPs (estimated at 600,000), redis-
covery was commonplace in natural product research [16–19], and consequently, the
problem of how to rapidly identify new NPs from complex mixtures has become a thorny
challenge that needs to be resolved [18,19]. To circumvent this issue, a number of early
prioritization strategies were achieved by manually comparing characteristics such as the
ultraviolet-visible spectra (UV/Vis spectra), nuclear magnetic resonance (NMR), or mass
spectra (MS) with various databases [20–22], or by tracking biological activity and other
methods [23–25]. In practice, these methods were also accompanied by laborious, time-
consuming procedures and high rediscovery rates [16]. With the recent rapid advances
in analytical instrumentation and artificial intelligence technology, proteomics [26–28],
genomics [29], metabolomics [30], and transcriptomics [31,32] have enabled tremendous
achievements that greatly promoted and influenced the development of life sciences. In
the past decade, the research method and technology of metabolomics and proteomics
were also borrowed to prioritize the targeted isolates of NPs [33–35]. Since a major
bottleneck in the omics pipeline is the annotation and identification of the spectral data,
many spectral interpretation methods, such as MS- and/or NMR-based approaches,
were developed [36–39]. Among them, tandem mass spectrometry (MS/MS)-based
molecular networking (MN) has become an increasingly popular and attractive NPs
research tool that integrated the advantages of sensitiveness, high throughput, and the
robustness of MS/MS with the ability of MN to organize and visualize large MS/MS
datasets [37,38].

The classical MS/MS-based MN (CLMN) was first reported by Dorrestein’s group
in 2012 to investigate the metabolic profiles of living microbial colonies [40]. In 2013,
the Global Natural Product Social Molecular Networking (GNPS, http://gnps.ucsd.edu)
group, a sharing and community-based web platform used to store, analyze, share, and
compare MS/MS data, as well as perform the generation of MN [41,42], further pro-
moted the development of MN in different research groups. Currently, this technique is
widely used, such as in the study of forensics [43], food chemistry [44], environmental
science [45], plant science [46], and others [47,48]. In natural product research, on the basis
of CLMN, the feature-based MN (FBMN) [42], ion-identifying MN (IIMN) [49], building
blocks-based molecular network (BBMN) [50], substructure-based MN (MS2LDA) [51], and
bioactive MN (BMN) [52] were presented in the form of different interpreting methods of
the obtained data. In this paper, we review the basic principles, general workflow, and
application examples of the above-mentioned methods, aiming to promote further research
and applications.

2. Classical Molecular Networking (CLMN)

The theoretical rationale of CLMN is that molecules with similar structures will exhibit
considerable similarities in their MS/MS spectra, and vice versa. Thus, similar molecules
in complex mixtures can be clustered to form “molecular families” by the mass spectral
similarities of molecules. The spectral similarities can be calculated with a vector-based
modified “cosine score” (ranging from 0 to 1; the higher the score is, the more similar the
result will be), which takes into account the number of matching fragment ions, the relative
intensities of the peaks, and the parent mass accuracy [53]. As shown in Figure 1, the
obtained tandem MS spectra (Figure 1a) are first processed to give a consensus spectrum
(Figure 1c) by merging identical spectra (Figure 1b), using the MS-Cluster algorithm to
avoid identical spectra appearing more than once [25,53]. Then, a modified algorithm
is used to calculate the spectral similarity score (Figure 1d). Peaks from one consensus
spectrum are compared with peaks from the other, either at identical m/z values or with
their ∆m/z, considering that a ∆m/z change to the precursor ion may lead to shifting a
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subset of fragment peaks by ∆m/z [36,53]. Finally, a molecular network is constructed
on the basis of the calculated spectral similarity score (Figure 1e). In the network, the
“molecular families” and the “molecular only similar with itself” variables are represented
by “cluster” and “self-loop node”, respectively. In the cluster, similar molecules (“node”)
are connected by lines (”edge”), and the thickness of the edges showcases the level of their
similarity [53].
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Figure 1. Schematic representation of the principle of CLMN. (a) The obtained tandem MS data.
(b) The merging of identical spectra. (c) The consensus spectrum. (d) Spectral alignment. (e) The
classic molecular network.

A schematic workflow for a CLMN dereplication pipeline is presented in Figure 2. There
are four main steps: (Figure 2a) obtaining the tandem MS spectra; (Figure 2b) constructing
and visualizing the molecular networks; (Figure 2c) assessing and analyzing the molecular
networks; (Figure 2d) targeted isolation (Figure 2) [25]. As the tandem mass spectrometry ex-
periments for data acquisition represent one of the most important factors affecting molecular
networks, all samples should be prepared and analyzed in the same way [24]. After uploading
the obtained tandem MS spectra to the GNPS platform, the completed job can be visualized
either in the platform [41] or in Cytoscape [54]. A detailed protocol from the tandem mass
spectrometry experiments, via a publishable and reproducible molecular network in the GNPS
platform, has been provided by Dorrestein et al. in Nature Protocols [53], and we can refer to
this protocol here. Another tool to generate and visualize molecular networks is the MetGem
software (https://metgem.github.io, accessed on 7 November 2022) [55], which was devel-
oped based on the t-distributed stochastic neighbor embedding (t-SNE) algorithm in 2018, a
well-known visualization technique used for high-dimensional data [56]. The t-SNE-based
MetGem allows clustering spectra, relying on local details within the entire data space rather
than individual links between spectra, and can thereby avoid having too many “self-loop
nodes” or fusing “molecular families” in the molecular networking when a similarity cutoff is
set [36]. However, the t-SNE-based method could not offer information about the relationships
between “nodes”, and it is complementary to the cosine similarity-based classic GNPS-style
MN [36]. More recently, deep learning mass spectral similarity scoring methods have also been
developed, such as Spec2Vec and MS2DeepScore, which derive abstract spectral embeddings
to assess spectral similarity by learning the fragment relationships among large amounts of
spectral data [57,58]. Of course, mismatches between the calculated mass spectral similarity
scores and the true structural similarities are very common, and the comprehensive use of
multiple methods can reduce those mismatches.

https://metgem.github.io
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As CLMN can visualize and map the chemical space in the extracts of organisms,
it is widely used to determine the preferred species [59,60], the culture conditions of mi-
croorganisms [60], isolation workflow [61], etc. For example, in searching for siderophores
from Actinomadura sp. RB99, activity assays and MS/MS-based CLMN were used as the
dereplication strategies [59]. First, after co-culturing with Pseudoxylaria sp. X802, the ex-
tracts obtained from the colony of RB99 and the interaction zone of inhibition, as well as
RB99 cultures grown on different media, were analyzed by an high-resolution electrospray
ionization tandem mass spectrometry (ESI-HRMS2)-based MN. The obtained GNPS net-
work suggested chemical diversity and dereplicated clusters of phosphoethanolamines,
phosphocholines, oligosaccharides, pseudoxylallemycins, and cytochalasins, together with
an interesting small GNPS cluster. Further analysis of the proposed molecular formulas of
the interesting small cluster indicated structural changes of -O and -CH2 and a peptidic
backbone, with a putative N,O-ratio characteristic for siderophores. Then, based on these
findings and the optimized cultivation conditions, the up-scaled refermentation of RB99 led
to the isolation of five new madurastatin derivatives (1–5), including a siderophore-metal
complex (5) (Figure 3).
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3. Feature-Based Molecular Networking (FBMN)

Although CLMN is very convenient for the rapid processing of large-scale MS/MS
datasets, it cannot differentiate positional isomers or stereoisomers, or provide accurate rela-
tive quantitative information, due to the limitations of the MS-Cluster algorithm. To address
this issue, Dorrestein’s group developed FBMN by integrating comparative metabolomics
with MN in 2017 [42]. In this method, not only the fragmentation data but also the iso-
tope patterns, the retention times, and the ion mobility spectrometry can be compared.
Compared with CLMN, there are two main different steps in the workflow of FBMN
(Figure 4). First, the obtained tandem MS spectra (Figure 4a) should be pre-processed using
MZmine [62], OpenMS [63], or other feature detection and alignment tools [42] to detect,
group, and align those features (Figure 4b). Second, the exported feature lists ((.cvs, feature
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quantification table) and (.mgf, MS2 spectral summary file)) are uploaded to perform the
dedicated feature networking workflow on the GNPS platform, to generate a feature-based
network (Figure 4c) [42].
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Limited by the chromatographic feature-finding tools and different experimental
conditions, FBMN is especially suitable for one or a few samples and has become the
second most commonly used tool in GNPS [42]. In revisiting the bromopyrrole alkaloids of
the extensively investigated marine sponge, Agelas dispar, FBMN was used by Berlinck’s
team as the dereplication strategy [64]. After separation by extraction and C8 RP column
chromatography, the defatted EtOH/MeOH extract of A. dispar was divided into five
fractions. Then, three fractions with brominated compounds were subjected to Sephadex
LH-20 to yield 63 fractions, which were further analyzed by quadrupole time of flight
(QToF)-MS/MS to generate a feature-based molecular network. Finally, after dereplication
with the in-house and in silico database (ISDB), clusters of undescribed compounds were
selected for study; this resulted in the isolation of disparamides A–C (6–8, with a novel
carbon skeleton) and seven other new compounds (9–15) (Figure 5).
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4. Ion Identity Molecular Networking (IIMN)

In 2021, Dorrestein’s group further employed IIMN to overcome the disconnected
sub-networks of “molecular families”, which was caused by limitations inherent to the
different fragmentation behavior of the multiple ion species of a given compound [49]. For
example, the two ion species of the same molecule, [M + H]+ and [M + Na]+, typically stay
unconnected in a molecular network. As all ions from the same molecule can be connected,
based on the known mass differences of ion species, an additional MS1 ion identity net-
working layer was fused to FBMN to create IIMN networks (Figure 6). Compared with
FBMN, in the progress of detecting and aligning features with MZmine, one more feature
list (a .csv file of ion identity networking (Figure 6c)) should also be exported. Although
those three feature files are also uploaded to the FBMN, the resulting data of the IIMN
are different from those of the FBMN; two .graphml networking files containing three
networks (FBMN networks, IIMN networks, and collapsed IIMN networks (Figure 6d))
will be generated. Recently, this method, combined with activity profiling, was used for
the prioritization of compounds inhibiting AK strain-transforming kinase (AKT) in human
melanoma cells [65].
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5. Building Blocks-Based Molecular Network (BBMN)

Natural products are usually formed by biosynthetic pathways from specific building
blocks. In 2021, Ye’s group first presented a BBMN to facilitate the efficient discovery
of novel securinega alkaloids from Flueggea suffruticosa [50]. This method combined the
neutral loss/product ion-scanning strategy [66] and MN, which can selectively identify
biogenetically relevant secondary metabolites and optimize the bulky MS2 data by further
filtering the features files in the pre-processing of the MS dataset (Figure 7). In this research,
the EtOH extract from the twigs and leaves of F. suffruticosa was acidified with 10% HCl, ex-
tracted using CH2Cl2, basified using NH4OH, and re-extracted with CH2Cl2 to yield a total
alkaloid. The acquired and deconvoluted ultra high performance liquid chromatography
(UHPLC)-MS2 data (7a) of the total alkaloid comprised features extracted with MZmine
(Figure 7b). Then, m/z at 84.08 and 134.03 Da were selected as the product ion and the
neutral loss, to detect the building blocks of securinega alkaloids from the obtained features
(Figure 7c), and were then filtered using a Python script, respectively. Subsequently, the
BBMNs were constructed by GNPS and MetGem (Figure 7d) and annotated by an in-house
library. Then, three unknown and unclustered nodes with m/z values over 400 were selected
as the target compounds. Finally, LC-MS-guided isolation led to the isolation of three novel
securinega alkaloids (16–18) (Figure 8).
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6. Substructure-Based Molecular Networking (MS2LDA)

Apart from the efficient use of MS2 datasets, the spectral annotation of molecular
networks is another algorithmic bottleneck. It has been noted that many strategies, such as
the In Silico MS/MS DataBase (ISDB) [67], network annotation propagation (NAP) [68],
Sirius [69], MetWork [70], and MS2LDA [51,71] have been proposed. In 2016, inspired by
the text-mining algorithm for latent Dirichlet allocation (LDA) [72], Hooft and colleagues
presented an MS2LDA that can find and match co-occurring molecular fragments and
neutral spectra (“Mass2Motifs”) from fragmentation spectra (Figure 9a) in an unsupervised
manner [36,51] (Figure 9). In turn, the obtained Mass2Motifs provide information on
the functional groups, building blocks, or even scaffolds of a compound (Figure 9c) that
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can be used for the de novo annotation of unknown molecules without reference spectra.
Other substructure discovery-based tools, including the metabolite substructure auto-
recommender (MESSAR) [73], and CSI (compound structure identification):FingerID [74]
were also developed. Among them, MESSAR is a complementary approach to MS2LDA
that can provide an automated structural annotation of Mass2Motifs.

Molecules 2023, 28, x FOR PEER REVIEW 7 of 13 
 

 

NO H

H

O

N

H
O

16, suffranidine A

N

O

O

O

H

N

O

O
H

O

17, suffranidine B

N

O

O

H

OH

H

N

O O

O

18, suffranidine C

H

H

 
Figure 8. Structures of the novel securinega alkaloids. 

6. Substructure-Based Molecular Networking (MS2LDA) 
Apart from the efficient use of MS2 datasets, the spectral annotation of molecular 

networks is another algorithmic bottleneck. It has been noted that many strategies, such 
as the In Silico MS/MS DataBase (ISDB) [67], network annotation propagation (NAP) 
[68], Sirius [69], MetWork [70], and MS2LDA [51,71] have been proposed. In 2016, 
inspired by the text-mining algorithm for latent Dirichlet allocation (LDA) [72], Hooft 
and colleagues presented an MS2LDA that can find and match co-occurring molecular 
fragments and neutral spectra (“Mass2Motifs”) from fragmentation spectra (Figure 9a) 
in an unsupervised manner [36,51] (Figure 9). In turn, the obtained Mass2Motifs provide 
information on the functional groups, building blocks, or even scaffolds of a compound 
(Figure 9c) that can be used for the de novo annotation of unknown molecules without 
reference spectra. Other substructure discovery-based tools, including the metabolite 
substructure auto-recommender (MESSAR) [73], and CSI (compound structure 
identification):FingerID [74] were also developed. Among them, MESSAR is a 
complementary approach to MS2LDA that can provide an automated structural 
annotation of Mass2Motifs. 

 
Figure 9. Schematic representation of the principles of MS2LDA. (a) The obtained tandem MS 
data. (b) Feature-finding. (c) The annotated structural features. 

For example, in the search for monoterpene indole alkaloids (MIAs) from the roots 
of Callichilia inaequalis Stapf (Apocynaceae), MS2LDA was employed to fine-tune the 
isolation workflow [75]. The obtained MS2 data of the seven alkaloid fractions were 
processed by FBMN. After MIADB [76] spectral library annotation, some clusters of the 
molecular network remained unannotated; thus, MS2LDA was utilized to further 
unearth more information from these clusters. As a result, molecular family A, a 
nine-parent mass shared cluster, exhibited an intriguing mass loss of 162.075 Da that did 
not match any MotifDB. A further literature survey indicated that this Mass2Motif may 
be a hexose unit, but this annotation was inconsistent with both the molecular formulas 
and the elemental composition. Hence, molecular family A was selected for targeted 
isolation, then liquid chromatography (LC)-diode array detector (DAD)-MS-evaporative 
light scattering detector (ELSD)-guided isolation led to the discovery of two novel 
hybrid alkylated phenylpropane MIAs (19–20) (Figure 10). 

Figure 9. Schematic representation of the principles of MS2LDA. (a) The obtained tandem MS data.
(b) Feature-finding. (c) The annotated structural features.

For example, in the search for monoterpene indole alkaloids (MIAs) from the roots of
Callichilia inaequalis Stapf (Apocynaceae), MS2LDA was employed to fine-tune the isolation
workflow [75]. The obtained MS2 data of the seven alkaloid fractions were processed
by FBMN. After MIADB [76] spectral library annotation, some clusters of the molecular
network remained unannotated; thus, MS2LDA was utilized to further unearth more
information from these clusters. As a result, molecular family A, a nine-parent mass
shared cluster, exhibited an intriguing mass loss of 162.075 Da that did not match any
MotifDB. A further literature survey indicated that this Mass2Motif may be a hexose unit,
but this annotation was inconsistent with both the molecular formulas and the elemental
composition. Hence, molecular family A was selected for targeted isolation, then liquid
chromatography (LC)-diode array detector (DAD)-MS-evaporative light scattering detector
(ELSD)-guided isolation led to the discovery of two novel hybrid alkylated phenylpropane
MIAs (19–20) (Figure 10).
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7. Bioactivity-Based Molecular Networking (BMN)

In addition, other NP prioritization strategies were also developed, based on the
combination of other layers of information, such as biochemometrics [77], genomics [78],
and taxonomy [79]. In the search for bioactive compounds against the chikungunya virus
(CHIKV) from Euphorbia dendroides, Dorrestein’s group presented BMN by combining
chemometrics with MN in 2018 [52]. Chemometrics can distinguish the active and inactive
compounds in mixtures but cannot provide structural information regarding them [80]. In
this study, after chromatographic separation, the obtained 18 fractions of the E. dendroides
latex extract were detected to obtain their LC-MS/MS data (Figure 11a) and anti-CHIKV
activities (Figure 11I). The MS2 data were pre-processed by Optimus [81] to generate the
spectral features files (Figure 11b) (the .mgf file and the .cvs file, which were used to generate
CLMN and bioactivity scores, respectively) (see Figure 11). The bioactivity scores for each
ion were calculated using a Pearson correlation that correlated the relative abundance of an
ion and the selectivity index of fractions (Figure 11II). Finally, combined with the predicted
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bioactivity scores, the bioactive molecular network was generated using GNPS (Figure 11c),
in which a large node size indicated high activity, and relative abundance in a certain
fraction was shown by a pie chart. A detailed analysis of the molecular networks indicated
that the compounds in molecular network 2 were most likely to be promising bioactive
candidates. Then, four new 4β-deoxyphorbol esters (21–24) (Figure 12) with anti-CHIKV
activities were obtained by HPLC-guided isolation.
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8. Conclusions 
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It is worth noting that MS-based analysis is a biased detection method, depending 
on how well the compounds fragment, and some NPs do not ionize as well as others. 
NMR-based approaches can make up for this shortcoming, and dedicated 
2D-NMR-based prioritization strategies have been developed rapidly [83–85]. As the 
two techniques can complement each other, new hybrid MS/NMR approaches are 
emerging for NPs prioritization [39]. On the other hand, although many annotation 
methods have been developed, the exploitation of molecular networks still requires 
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the MS and NMR spectra, and advancements in big data approaches will improve the 
efficiency of NPs dereplication. 
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8. Conclusions

Needless to say, NPs have played an important role in the discovery of small-molecule
drugs in the past. According to Linington’s analysis [18], the future for NPs is very bright,
and the chemical space is large. The launch of ADC [12] and the industrialization of
Eribulin (HalavenTM) [82] showed us the infinite possibilities for new drugs from NPs.
Nevertheless, aggressive innovation is needed to tackle bottlenecks such as the rapid
discovery and large-scale availability of NPs. In the past decade, the advent of MS/MS-
based MN has greatly promoted the development of NP dereplication methods. In this
review, we introduced CLMN, FBMN, IIMN, BBMN, MS2LDA, and BMN, along with
their basic principles, general workflow, and application examples, hoping to further the
research and applications of these methods. Although there are numerous studies of MN,
such as those on datasets, algorithms, data pre-processing, annotation, and the different
types of mass spectrometers or hybrids with other methods, this review covers the key
concepts and steps in the molecular network construction pipeline, which is helpful for
beginners hoping to learn this methodology.

It is worth noting that MS-based analysis is a biased detection method, depending
on how well the compounds fragment, and some NPs do not ionize as well as others.
NMR-based approaches can make up for this shortcoming, and dedicated 2D-NMR-based
prioritization strategies have been developed rapidly [83–85]. As the two techniques
can complement each other, new hybrid MS/NMR approaches are emerging for NPs
prioritization [39]. On the other hand, although many annotation methods have been
developed, the exploitation of molecular networks still requires manual intervention and
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expertise. We believe that open access to data, including both the MS and NMR spectra,
and advancements in big data approaches will improve the efficiency of NPs dereplication.
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