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Abstract: Polyclad flatworms comprise a highly diverse and cosmopolitan group of marine
turbellarians. Although some species of the genera Planocera and Stylochoplana are known to be
tetrodotoxin (TTX)-bearing, there are few new reports. In this study, planocerid-like flatworm
specimens were found in the sea bottom off the waters around the Ryukyu Islands, Japan. The bodies
were translucent with brown reticulate mottle, contained two conical tentacles with eye spots clustered
at the base, and had a slightly frilled-body margin. Each specimen was subjected to TTX extraction
followed by liquid chromatography with tandem mass spectrometry analysis. Mass chromatograms
were found to be identical to those of the TTX standards. The TTX amounts in the two flatworm
specimens were calculated to be 468 and 3634 µg. Their external morphology was found to be
identical to that of Planocera heda. Phylogenetic analysis based on the sequences of the 28S rRNA
gene and cytochrome-c oxidase subunit I gene also showed that both specimens clustered with the
flatworms of the genus Planocera (Planocera multitentaculata and Planocera reticulata). This fact suggests
that there might be other Planocera species that also possess highly concentrated TTX, contributing to
the toxification of TTX-bearing organisms, including fish.
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1. Introduction

Tetrodotoxin (TTX, C11H17N3O8), also known as pufferfish toxin, is one of the most
potent neurotoxins. It specifically blocks voltage-gated sodium channels on excitable cell membranes of
muscle and nerve tissues [1,2]. TTX was long believed to occur exclusively in pufferfish. However, after
its molecular structure was found to be consistent with that of tarichatoxin from the California newt
Taricha torosa [3], TTX has been detected in various taxonomic organisms including toad Atelopus spp. [4];
toxic goby Yongeichthys criniger [5]; blue-ringed octopus Hapalochlaena maculosa [6]; xanthid crabs [7];
marine bivalves [8]; gastropods [9]; flatworms [10]; and ribbonworms [11]. Furthermore, TTX-producing
bacteria have been isolated from TTX-bearing organisms, as well as the environment [12,13]. In addition,
non-toxic pufferfish were produced when grown from hatching with a non-toxic diet, and these cultured
non-toxic pufferfish became toxic when TTX was administered orally [14–20]. Therefore, it is generally
thought that TTX is produced primarily by bacteria, and accumulates in the pufferfish body via the
food web [21,22]. Nevertheless, the source of TTX in pufferfish is actually unknown since the amount
of TTX produced by the bacteria is too little to account for that present in pufferfish.

Recently, our lab showed that the pufferfish Takifugu niphobles ingested the toxic eggs of another
pufferfish Takifugu pardalis, thereby efficiently increasing their own toxicity [23], suggesting that there
may be other such unknown avenues of TTX accumulation. TTX accumulation in pufferfish via the
ingestion of TTX-bearing organisms is also likely. Among the many TTX-bearing organisms listed
above, Planocera multitentaculata, widely distributed in the waters around the Japanese Archipelago,
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was the first to be reported as a TTX-bearing flatworm [10]. Subsequently, TTX was detected in a
closely related species, Planocera reticulata [24], and a conspecific [25]. Our lab recently found that the
pufferfish of the genus Takifugu (Takifugu rubripes and T. niphobles) became toxic after feeding on the
polyclad flatworm, P. multitentaculata, and a DNA fragment of the P. multitentaculata cytochrome-c
oxidase subunit I (COI) gene was detected in the intestinal contents of wild specimens of the pufferfish
T. niphobles (unpubl data). These results suggest that planocerid flatworms could contribute to the
toxification of pufferfish. A different polyclad flatworm, Stylochoplana sp., has been implicated in the
toxification of sea slugs, resulting in dog neurotoxicosis in New Zealand [26–28]. After a hiatus since
the 1940s [29], these findings have spurred renewed interest in understanding these flatworms, with a
spate of reports in the past decade [30–34].

Recently, our lab showed [35] that the classification of polyclads based on the 28S rRNA gene was
approximately consistent with the morphological classification reported thus far [29,36,37]. In another
recent study, we reported that the TTX content of the flatworm P. multitentaculata rose in association
with an increase in body weight [38]. Almost nothing is known about how this increase takes place
as there is little information on the diet or even the spatial (vertical or horizontal) distribution of the
genus Planocera in the waters around the Japanese Archipelago. Only five species of this genus have
been recorded from the area [29,36]. Of these, only two species, P. multitentaculata and P. reticulata,
have been frequently observed at the intertidal zone of the main islands [29,38].

In this paper, to clarify the processes for the toxification of TTX-bearing organisms, including fish,
we report the presence of planocerid-like flatworm specimens in the waters around the Ryukyu Islands,
Japan, classify them with the help of phylogenetic analysis using 28S rRNA and COI nucleotide
sequences, and measure the toxicity of the flatworm by means of liquid chromatography with tandem
mass spectrometry (LC-MS/MS) analysis. Finally, we discuss the distribution of planocerid flatworms
in Japan, and their contribution to the toxification of pufferfish.

2. Results

2.1. External Morphology

Two polyclad flatworms were collected from waters off the city of Nago, Okinawa main island,
Japan (Figure 1, Table 1), in August 2017. Specimen-1 (hereafter referred to as S1) weighed 1.88 g
and Specimen-2 (S2) weighed 2.69 g. Both appeared to be planocerids based on external morphology,
although some features were different from those of P. multitentaculata and P. reticulata, based on the
only report so far [29]. Their external morphology was characterized by a translucent body with
brown reticulate mottle (light in color for S1 and dark for S2; Figure 2A,B) with a large number of
grey/faint red spots, two conical tentacles with eye spots clustered at the base (Figure 2C), and a
slightly frilled-body margin (Figure 2A,B). Testes were observed in both specimens, while ovaries were
only found in S2 and were deeply reticulate and maculate (Figure 2D,E).
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Table 1. Toxicity of planocerid flatworms used in this study. COI, cytochrome-c oxidase subunit I.

Specimen Body Weight (g) TTX Concentration (µg/g) TTX Amount (µg)
Sequence

28S rRNA COI

Planocera sp. S1 1.88 249 469 LC341282 LC341285
Planocera sp. S2 2.69 1351 3635 LC341283 LC341286
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Figure 2. External morphology of polyclad flatworms. Upper and lower panels represent specimens
S1 and S2, respectively. Panel (A,B) dorsal views; Panel (C) anterior region indicated by the yellow
dotted line from the direction of the yellow arrow in panel (B); Panel (D,E) ventral views. a and p
represent anterior and posterior ends of the body, respectively. t, testis; o, ovary; T, tentacle; e, eye
spots; i, intestine.

2.2. Molecular Phylogenetic Inference and Taxonomy

The 28S rRNA (approximately 1100 bp) and COI (approximately 750 bp) gene fragments from both
specimens were sequenced and subjected to phylogenetic analysis along with orthologous sequences
from all the other Acotylean flatworms reported so far [35]. The resulting maximum likelihood trees
from both sequences showed that S1 and S2 clustered with the toxic flatworms, P. multitentaculata
and P. reticulata, separately from the non-toxic flatworms in the 28S rRNA tree, with high bootstrap
support (Figures 3 and 4). A COI tree including the sequence of Stylochoplana sp. [27] also showed an
apparent toxicity-based clustering of flatworms, with P. multitentaculata and P. reticulata co-occurring
with Stylochoplana sp. (Figure 4). The DNA sequences of the 28S rRNA and COI gene fragments from
this study have been submitted to the DDBJ/EMBL/GenBank databases under the accession numbers
LC341282–LC341284 and LC341285–LC341287, respectively.
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polyclad species in Acotylea inferred from the 28S rRNA gene sequence. The phylogenetic tree was
generated by maximum likelihood analysis. Numbers at branches denote the bootstrap percentages
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50% are presented. The scale refers to nucleotide substitutions per site.
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Figure 4. Phylogenetic relationship of the planocerid-like flatworms (Planocera sp.) and related polyclad
species in Acotylea inferred from the COI gene sequence. The phylogenetic tree was generated
by maximum likelihood analysis. Numbers at branches denote the bootstrap percentages from
1000 replicates. The accession numbers for the sequences are shown in parentheses. The accession
numbers LC341285–LC341287 refer to those deposited in the DDBJ/EMBL/GenBank databases in this
study. The sequence from Dugesia japonica was used as the outgroup. Only bootstrap values exceeding
50% are presented. The scale refers to nucleotide substitutions per site.
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2.3. Toxicity

The two flatworms were subjected to TTX extraction followed by LC-MS/MS analysis. Mass
chromatogram of the LC-MS/MS was obtained under the multiple-reaction monitoring (MRM) mode,
with detection in positive mode, and analysis of two product ions at m/z 162 for the quantification
of TTX and m/z 302 for confirmation of the compound from the precursor ion at m/z 320 (Figure S1),
and the MRM patterns of the flatworms were found to be identical to those of the TTX standards
(Figure 5). No effect on the actual yield was observed during the process of TTX extraction using
0.1% acetic acid (v/v) with mechanical filtration: no significant difference in the signal intensities
was observed for samples before and after filtration, and almost all the TTX added to the flatworm
tissues was recovered in the extraction process. A calibration curve generated using 1–100 ng/mL
TTX standards showed good linearity and precision (y = 119.609x − 34.773, R2 = 0.9897), where LOD
was 15.45 ng/mL. The TTX concentration in S1 and S2 was calculated measuring extracts with 1000-
and 10,000-fold dilution, respectively, to be 249 and 1351 µg/g (which corresponding to 1132 and
6141 MU/g, respectively), and therefore, the total amount of TTX in the body was calculated to be 468
and 3634 µg, corresponding to 2127 and 16,518 MU, respectively (Table 1).
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TTX standard (C). The MRM patterns were obtained from S1 and S2, with 1000- and 10,000-fold
dilution, respectively.

3. Discussion

TTX has previously been detected in several flatworms such as the genera Planocera [10,24,25]
and Stylochoplana [27,28]. Stylochoplana was shown to be involved in dog neurotoxicosis through
toxification of the sea slug Pleurobranchaea maculata with TTX on some New Zealand beaches [26–28].
Thus far, however, the mechanism of toxification of pufferfish has remained unclear. Although it is
generally accepted that pufferfish accumulates TTX in the body through the food web, other means
have also been suggested since in vivo cultured TTX-producing bacteria are unable to produce enough
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quantities of TTX to account for the amount of TTX in wild pufferfish [39–42]. In the past, flatworms
were raised as candidates for the source of toxification of the pufferfish T. rubripes, but the level of
toxification was low [43], and there has not been much investigation since. Among the TTX-bearing
flatworm species, P. multitentaculata is rather large, and the amount of TTX rises in association with
body size [38]. Additionally, P. reticulata, a closely related species of P. multitentaculata, also possesses
a large concentration of TTX [24], and their geographical distributions overlap [29]. In addition,
the geographical distributions of both flatworm species are consistent with those of TTX-bearing fishes
including toxic pufferfish from the genus Takifugu [44]. However, no report on the distribution of
planocerid flatworms is currently available for the waters around the Ryukyu Islands, which harbor
many TTX-bearing organisms, including fish, such as toxic pufferfish Chelonodon spp. [45], and toxic
goby Y. criniger [46].

The flatworm specimens in this study appear to clearly belong to the genus Planocera based
on external morphology and phylogenetic analysis. Five records are available as accepted species
in the genus Planocera including P. multitentaculata and P. reticulata from the waters around the
Japanese Archipelago [29,36]. Several external characteristics of the flatworms in this study were
consistent with those of Planocera heda, which was captured from the west coastal waters off the Izu
Peninsula (34◦58′28′′ N, 138◦46′21′′ E), Japan, using the dredge. P. heda was classified and described
by Kato [29], based on only one specimen. As in the case of P. heda, the flatworms in this study
were also collected from the sea bottom, at a depth of approximately 10 m off Nago, Okinawa,
Japan, which is more than 1400 km from the Izu Peninsula, Japan. Unfortunately, there is no way
at present to confirm whether our specimens are P. heda, because the type specimen was lost during
World War II. Nevertheless, it appears very likely that the flatworm specimens in this study are either
P. heda or closely related species.

Phylogenetic analysis based on the sequence of the COI gene fragment showed that Stylochoplana sp.,
the flatworm species that contains a large amount of TTX, clustered with those from the genus Planocera
and its close relatives. This result suggests that the common ancestor of the genus Planocera and its
related species acquired the ability to accumulate TTX in its body. However, further investigations on
this subject are clearly warranted.

In the present study, we showed that the concentration and amount of TTX of both our specimens
were comparable to those in the toxic flatworm P. multitentaculata. As with the seasonal changes in the
amount of TTX in P. multitentaculata [38], it is expected that the flatworms in this study also possess
a larger amount of TTX in the spawning season in association with the increased body size: indeed,
the concentration and amount of TTX were higher in the specimen with ovaries and testes than in that
with testes only, suggesting that the eggs and larvae contain highly concentrated TTX, as in the case
of P. multitentaculata [38]. Additionally, TTX content of the planocerid flatworms in this study might
rise in association with an increase in body weight, as in the case of P. multitentaculata [38]. These
flatworms are expected to be in an important supplier of TTX to TTX-bearing organisms, including
fish, in the waters around the Ryukyu Islands. It will be worthwhile to invest in the detailed study of
the available amount of TTX resource and ecology of the flatworms.

4. Materials and Methods

4.1. Flatworm Individuals

Planocerid-like flatworms were collected from underneath rocks on the inshore sandy bottom at a
depth of approximately 10 m off Nago, Okinawa, Japan (Figure 1), by SCUBA diving. Each specimen
was photographed and its external features recorded, after which a small portion of the body tissue
was excised for DNA sequencing. The rest of the specimen was stored at −20 ◦C until TTX extraction,
detection, and quantification.
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4.2. DNA Extraction and Polymerase Chain Reaction Amplification

Total genomic DNA was extracted from the excised tissue sample for each specimen using the method
of Tsunashima et al. [35] with some modifications. Briefly, proteinase K-treated samples were subjected to
phenol/chloroform extraction with MaXtract High Density (Qiagen, Germantown, MD, USA) following
the manufacturer’s protocol. Partial fragments of the 28S rRNA gene (approximately 1100 bp),
including the D1–D2 region, were amplified by PCR using the universal primers HRNT-F2 (5′-AGTTC
AAGAG TACGT GAAAC C-3′) and HRNT-R2 (5′-AACAC CTTTT GTGGT ATCTG ATGA-3′) [35].
Partial fragments of the mitochondrial gene (approximately 750 bp), COI, were amplified by PCR
using the universal primers HRpra2 (5′-AATAA GTATC ATGTA RACTD ATRTC T-3′) and HRprb2-2
(5′-GDGGV TTTGG DAATT GAYTA ATACC TT-3′) [35]. The reaction mixture for PCR amplification
contained genomic DNA as a template, 0.625 units of TaKaRa ExTaq DNA polymerase (Takara Bio,
Otsu, Shiga, Japan), 2 µL of 10× ExTaq DNA polymerase buffer (Takara Bio), 2.6 µL of 10 µM primers,
1.6 µL of 2.5 mM dNTP, and sterile water to bring the total volume up to 20 µL. PCR was done with an
initial denaturation at 95 ◦C for 1 min followed by 35 cycles of denaturation at 95 ◦C for 10 s, annealing
at 50 ◦C for 30 s, and extension at 72 ◦C for 2 min.

4.3. Sequencing and Phylogenetic Analysis

Both strands of the PCR products were directly sequenced with a 3130xl Genetic Analyzer
(Applied Biosystems, Foster, CA, USA) using a BigDye Terminator v3.1 Cycle Sequencing Kit
(Applied Biosystems). 28S rRNA gene sequences for the following species were obtained
from the DDBJ/EMBL/GenBank databases: Amemiyaia pacifica (LC100077), Callioplana marginata
(LC100082), Discoplana gigas (LC100080), Echinoplana celerrima (HQ659020), Hoploplana villosa (LC100076),
Idioplana australiensis (HQ659008), Leptostylochus gracillis (LC100078), Melloplana ferruginea (HQ659014),
Notocomplana humilis (LC100085), Notoplana australis (HQ659015), Notoplana delicata (LC100088),
P. multitentaculata (LC100081), Paraplanocera oligoglena (KC869849), Pseudostylochus elongatus (LC100083),
Pseudostylochus obscurus (LC100084), Stylochus ijimai (LC100079), Stylochus oculiferus (HQ659007), and
Stylochus zebra (AF342800). COI nucleotide sequences for the following species were also obtained
from the databases: D. gigas (LC190985), N. humilis (LC190978), Notocomplana japonica (LC190979),
Notocomplana koreana (LC190980), Notocomplana sp. (LC190981), N. delicata (LC190982), P. multitentaculata
(LC190986), Pseudostylochus intermedius (AB049114), P. obscurus (LC190983) and Stylochoplana sp.
(KP259873). Chromoplana sp. (28S rRNA: KC869847) and Dugesia japonica (COI: AB618487) were used as
the respective outgroup species for the 28S and COI trees.

The nucleotide sequences of the partial 28S rRNA and COI genes for all the flatworms were
aligned using Clustal Omega [47] with those in the DDBJ/EMBL/GenBank databases obtained using
a BLAST search [48]. The alignment was then subjected to phylogenetic inference by means of the
maximum likelihood method using MEGA ver. 6.0.6 [49].

4.4. LC-MS/MS Analysis

As described in an earlier paper from our lab [50], TTX was extracted from samples using 0.1%
acetic acid. The extract was then filtered through a membrane of pore size 0.45 µm (SupraPure
Syringe Filter, PTEE-Hydrophilic, Recenttec, Taipei, Taiwan) and subjected to analysis by LC-MS/MS.
Quantification of the TTX was performed using a Quattro Premier XE (Waters, Milford, MA, USA)
equipped with an electrospray ionization (ESI) source coupled to an Acquity UPLC system (Waters) [23].
Chromatographic separation was achieved using an Atlantis HILIC Silica column (2.1 mm × 150 mm,
5 µm; Waters), coupled to an Atlantis HILIC Silica pre-column (2.1 mm × 10 mm, 5 µm; Waters), with
gradient elution using formic acid/acetonitrile. The mass spectrometer was operated in MRM mode,
with detection in positive mode, and analysis of two product ions at m/z 162 for quantification of
TTX and m/z 302 for confirmation of the compound from the precursor ion at m/z 320. A calibration
curve was generated using 1 to 100 ng/mL of a TTX standard (Wako Pure Chemicals, Osaka, Japan),
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which showed good linearity and precision. Quantification of TTX was carried out using the data for
samples with >1000-fold dilution to remove any matrix effect, since it was recovered from the samples
with >1000-fold dilution. One mouse unit (MU) was defined as the amount of toxin required to kill
a 20 g male ddY strain mouse within 30 min after intraperitoneal administration, and equivalent to
0.22 µg of TTX, based on the specific toxicity of TTX [51].

5. Conclusions

In summary, planocerid-like flatworms were found in the sea bottom of the waters around the
Ryukyu Island, Japan. Their external morphology is similar to that of P. heda. Phylogenetic analysis
based on the nuclear and mitochondrial genome sequences also showed that the flatworms formed
a cluster with species from the genus Planocera. In addition, they possessed a large amount of TTX
in their body, suggesting that these planocerid-like flatworms could be suppliers of the toxin to the
TTX-bearing organisms such as pufferfish and toxic goby in the waters around the Ryukyu Islands.

Supplementary Materials: The following are available online at www.mdpi.com/1660-3397/16/1/37/s1,
Figure S1: LC-MS/MS patterns of the TTX from planocerid flatworms specimen S1 (A) and S2 (B), and 25 ng/mL
TTX standard (C).
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