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Abstract: Intermediate-salinity environments are distributed around the world. Here, we present
a snapshot characterization of two Peruvian thalassohaline environments at high altitude, Maras and
Acos, which provide an excellent opportunity to increase our understanding of these ecosystems.
The main goal of this study was to assess the structure and functional diversity of the communities
of microorganisms in an intermediate-salinity environment, and we used a metagenomic shotgun
approach for this analysis. These Andean hypersaline systems exhibited high bacterial diversity and
abundance of the phyla Proteobacteria, Bacteroidetes, Balneolaeota, and Actinobacteria; in contrast, Archaea
from the phyla Euryarchaeota, Thaumarchaeota, and Crenarchaeota were identified in low abundance.
Acos harbored a more diverse prokaryotic community and a higher number of unique species
compared with Maras. In addition, we obtained the draft genomes of two bacteria, Halomonas
elongata and Idiomarina loihiensis, as well as the viral genomes of Enterobacteria lambda-like phage
and Halomonas elongata-like phage and 27 partial novel viral halophilic genomes. The functional
metagenome annotation showed a high abundance of sequences associated with detoxification, DNA
repair, cell wall and capsule formation, and nucleotide metabolism; sequences for these functions
were overexpressed mainly in bacteria and also in some archaea and viruses. Thus, their metabolic
profiles afford a decrease in oxidative stress as well as the assimilation of nitrogen, a critical energy
source for survival. Our work represents the first microbial characterization of a community structure
in samples collected from Peruvian hypersaline systems.
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1. Introduction

Millions of years ago (80–110 million years), the ocean covered the central region of Peru; during
the formation of the Andes mountains, these marine waters remained inland and, by evaporation,
formed deposits of salt in ponds. Different hypersaline water systems are distributed throughout Peru,
such as the salterns of the Acos system and the brines from Maras, two thalassohaline environments
located in the Andes mountains in southeast Peru. These two systems have not received much study.
Acos is located in the district of Acomayo (southeast Peru) at an altitude of 2852 m above sea level, while
Maras is located in the district of Urubamba at an altitude of 3380 m and is composed of 3000 small
shallow ponds that form terraces on the slope of the mountain Qaqawiñay (a Quechua word meaning
eternal rock) [1,2].

The hypersaline ecosystems are characterized by alkalinity and low oxygen concentrations [3–6].
Hypersaline aquatic environments are classified into two main categories: (1) thalassohaline
environments, which result from the evaporation of seawater and contain a high concentration
of NaCl, neutral or slightly alkaline pH, and a salinity exceeding that of seawater by a factor of
5–10; and (2) athalassohaline environments, which are not derived from seawater and contain high
concentrations of ions such as Mg2+ or Ca2+ and a slightly acidic pH [3–6].

Aquatic hypersaline systems represent excellent models for the study of the ecology and
diversity of microorganisms. Most saline systems are composed of ponds with different salinity
gradients [7]. Microorganisms identified in hypersaline environments have been classified according
to the concentration of salts in the environments they inhabit: weak halophiles (1–3% NaCl), moderate
halophiles (3–15% NaCl), and extreme halophiles (more than 15% NaCl) [8]. In contrast, there is no
generalized classification for saline environments, but they can be divided into low salinity (less than
10% NaCl), intermediate salinity (10–20% NaCl) [9], and high salinity (higher than 20% NaCl) [10].

Regarding microbial communities that live in these ecosystems, a great diversity of microorganisms
has been reported, in particular of the Halobacteriaceae family within the Archaea domain. For bacteria,
the Halorhodospira, Salinibacter, Halomonas, Chromohalobacter, and Salicola genera are abundant; and
eukaryotic organisms such as Artemia salina, Colpodella edax, and Dunaliella salina have been identified
in low proportions [5,11–13]. In addition, a high diversity of haloviruses has been identified,
at concentrations of ≥1 × 107 per mL in seawater, among which a few are cultivable [12].

In this work, the diversity of halophilic microorganisms and functional diversity were determined
in two thalassohaline environments, Acos and Maras, that have physicochemical differences in salinity
and pH. We expected that these intermediate-salinity environments would contain a greater microbial
diversity than high-salinity environments and with a particular microbial community structure given
the high altitude. Thus, we consider that this analysis opens diverse opportunities to describe the
microbial diversity and functional profile within the Peruvian hypersaline systems and will contribute
to knowledge in these environments. This is the first characterization of a microbial community
structure of intermediate salinity in samples collected from Peruvian high-altitude salterns.

2. Materials and Methods

2.1. Sampling, DNA Extraction, and Sequencing

Water (20 liters) was collected during the rainy season (January 2018) from two points where the
water emerges in the mountain in two hypersaline systems located in Cusco, Peru. The first is in Maras
(13◦57′59.3” S, 71◦05′65” W), and the second is in Acos (11◦16′25” S, 72◦9′15” W). The samples were
obtained with sterilized tools and containers, and salinity and pH were measured in situ using a hand
refractometer (Spectronic Instruments Inc., Rochester, NY, USA) and pH potentiometer (HANNA
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Instruments, Portugal), respectively. All samples were transported to the laboratory under refrigerated
conditions, where liters of water were filtered through 0.22-µm Millipore filters. The DNA was purified
from the filters by using ZymoBIOMICS DNA kits (MoBio, West Carlsbad, CA, USA). The DNA
concentration was determined using a NanoDrop 1000 spectrophotometer (Thermo Scientific), and
fluorometry was measured using a Qubit 4 fluorometer (Invitrogen). The DNA was sequenced using
the Illumina NextSeq 500 platform with the Nextera V2.0 kit (150 bp, 2 × 75 bases) at the Instituto de
Biotecnología of Universidad Nacional Autónoma de México.

2.2. Quality Control and Assembly

The quality control of sequences was performed by FASTQC v0.11.4 software [14], and duplicated
sequences were removed using CD-HIT-DUP v4.7 [15] with a maximum mismatch number of 0.03.
Reads were assembled in contigs using MEGAHIT v1.1.2 [16] under default parameters in paired-end
mode, and contigs of a minimum length of 1000 bp were considered for further analysis.

2.3. Microbial Community Taxonomic Assignments

Taxonomic assignments were performed with software Kaiju v16.0. In addition, we used
MetaGenome Rapid Annotation Subsystems Technology (MG-RAST v4.03) [17], which compares the
assembly sequences with a comprehensive non-redundant database sourced from the National Center
for Biotechnology Information (NCBI) databases, and SEED, which categorizes gene function into five
levels of resolution. An expected value (E) cutoff of 10−5 was employed for taxonomic classifications.
Raw data of Metagenomes have been deposited in MG-RAST with accession numbers: mgm4810306.3,
mgm4808260.3, and mgm4810472.3.

For virus classification, the viral contigs were achieved with VirSorter v2 [18], and these contigs
were classified with MEGAN v5.10.6. For fungi classification, the sequences were compared against
a constructed database comprised of 35,296 complete and draft fungi genomes from NCBI. For both
viruses and fungi, the best-scoring BLAST results with an E-value of 10−6 were parsed, and the
taxonomic assignment was determined using MEGAN software [19]. The lowest common ancestor
(LCA) method in MEGAN was used for taxonomic assignment, with the following parameters:
minimum support of 2; minimum score of 50; top percent of 10.

2.4. Diversity Index

The taxonomic profiles at the species level were used to calculate the diversity indices from all data,
and different alpha diversity descriptors were obtained using the Phyloseq function in R v3.3.3 [20].
The beta diversity was determined by Bray-Curtis dissimilarity, and the sampling effort was evaluated
through the rarefaction curves using a Vegan library implemented in R [21].

2.5. Genome Reconstruction

The reconstruction of the bacterial genome was directed to those species that had the highest
abundance according to the taxonomic classification. The genomes were retrieved using the strategy
fragment recruitments within Bowtie2 v2.2.6 [22]. The coverage was evaluated using BBmap v38.25 [23],
and the consensus sequence was inferred using UGENE v1.31.1 [24]. For the reconstructed genome,
the presence of contamination was evaluated using One Codex [25] and Genome Peek. Briefly,
One Codex assigns an unknown nucleotide sequence for the identification of k-mers of fixed size k-31
in comparison with its own database. Genome Peek extracts the 16S gene and radA/recA, rpoB, and
groEL, the principal molecular markers, from a genome for taxonomic identification. The annotation
was achieved using Prokka v1.12 [26] and visualized with Genome Atlas.

For viral sequences, identification was achieved by VirSorter [18] and was based on viral hallmark
genes annotated as “major capsid protein,” “portal,” “terminase large subunit,” “spike,” “tail,” “virion
formation”, and “coat,” among others. The entire contig was considered viral if more than 80% of
predicted genes on a contig had a viral signal. This software finds new viruses at different confidence



Genes 2019, 10, 891 4 of 24

levels, with scores of categories 1 to 4, with 4 being the highest confidence level. Viral sequences
identified within category 1 by VirSorter were visualized with the easyfig v2.2.2 tool and also assessed
with the PHAge search tool (PHAST) [27].

Finally, contigs with lengths of ≥10 kbp within category 2 (“quite sure”) in VirSorter were
translated into protein sequences and classified taxonomically using the vConTACT v2 software [28]
with default parameters (https://bitbucket.org/MAVERICLab/vcontact), with the aim of classifying
these possible new viruses.

2.6. Binning for Putative Genomes

Assembled contigs were clustered into bins or metagenome-assembled genomes (MAGs), using
MaxBin v2.2.4 [29]. Briefly, MaxBin performs genome reconstruction from metagenomes based on two
genomic characteristics, tetranucleotide frequencies and the level of bin coverage, using single-copy
marker genes. The two metagenomes from Acos were used to recover the MAGs, which were later
annotated with Prokka [26].

From the annotation of MAGs, the ribosomal sequences were extracted in single copy (L2, L3, L4,
L5, L6, L14, L15, L16, L18, L22, L24, S3, S8, S10, S17, and S19), and then these sequences were aligned
with those reported by Hung et al. [30] by using MAFFT v7.005 for taxonomic identification [31].
The phylogenetic analysis was performed using FastTree v2.1.7 [32], which considers an approximate
maximum likelihood with 100 bootstrap replicates. Finally, the phylogenetic tree was displayed using
ITOL [33].

2.7. Functional Analysis and Biogeochemical Cycles

Prodigal v2.6.3 [34] was used for predicting protein-coding genes in the assembled contigs by
using the metagenomic mode, and the functional assignment was achieved using SUPERFOCUS [35],
which contains the SEED database with an E-value of 10−5. From functional abundance tables,
a heatmap using the ggplot2 library [36] and RColorBrewer library in R (www.ColorBrewer.org) was
generated. Finally, microbial metabolic pathways involved in the biogeochemical cycles for carbon,
sulfur, nitrogen, hydrogen, iron, and oxygen were identified using the Multigenomic Entropy-Based
Score pipeline (MEBS v1) with a false-discovery rate of 0.0001 [37].

3. Results and Discussion

3.1. Site Characterization and Field Sampling

The water samples were collected from two locations in the district of Cusco, Peru. The first
sample was collected from Maras; its pH was 7 and its salinity concentration was 23% NaCl (Figure 1).
This concentration was slightly lower than previously reported (25% NaCl) in emergent water, whereas
in the crystallizer ponds the concentration was higher (30% NaCl) [1].

The second and third samples were collected from Acos, with a pH of 7.9 and 19% salinity (Table 1).
The salinities of the thalossohaline water samples from Maras and Acos [1,2] were similar to levels in
other solar salterns with intermediate salinity, such as Marine Saltern in Santa Pola, Spain (13–19%
NaCl) [7,38] and Saltern in Isla Cristina, Spain (21% NaCl) [38,39]. In this regard, salterns exhibiting an
intermediate salinity have been found to contain a greater diversity of microorganisms than salterns
with higher salt concentration [38]; the concentration of NaCl defines the diversity and structure of the
microbiome in these environments [40].

https://bitbucket.org/MAVERICLab/vcontact
www.ColorBrewer.org
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Table 1. Sequence features of hypersaline metagenomes from Cusco, Peru.

Data
Set Salinity pH

Number of
Paired-End

Reads

Number
of Contigs
Assembled

Sequences Taxonomical Classification

Classified Unclassified Bacteria Archaea Eukarya Viruses
Acos 1 19% 7.9 63,387,998 257,314 71% 29% 57% 14% 2% 0.2%
Acos 2 19% 7.9 79,304,621 256,430 71% 29% 57% 16% 2% 0.2%
Maras 23% 7.0 56,086,809 2650 70% 30% 56% 11% 1% 1.32%

3.2. Community Structures of Intermediate Hypersaline Systems

In order to analyze the diversity, abundance, and genes involved in metabolic profiles of samples
from Maras and Acos, shotgun metagenomic sequencing was performed. Maras and Acos salterns can
be considered environments at high altitude with intermediate salinity (according to the determined
percentage of salt) (Table 1). However, salinity is not the only parameter that modifies the abundance
and diversity of microorganisms present in these ecosystems; biogeographic patterns that may also
have a role include altitude, remoteness of these environments, oxygen availability, alkalinity, altitude,
and UV irradiation [41–43].

With the metagenomes obtained from the two locations, the general structure of the microbiome
was determined. To this end, the sequences were classified with Kaiju (Table 1), and the results showed
a high abundance of bacterial organisms (~57% of the sequences), followed by Archaea (~16%). These
results contrast with the abundance reported in crystallizer ponds in Maras, where the salinity of
>30% NaCl showed a microbiota dominated by Archaea (80–86% of total counts) with much lower
percentages of Bacteria (10–13%) [1].

The enrichment analysis of species and diversity in these sites, evaluated with Chao, Shannon, and
Simpson indexes, revealed that Acos samples had a greater richness than Maras samples (Supplementary
Table S1). These results correlated with the rarefaction curves, i.e., in Acos samples, the asymptotic
distribution was reached, which indicates a greater diversity showing correlation to the other diversity
indexes, whereas in the Maras sample the asymptote was not reached, since most of the contigs
were assigned to Cutibacterium acnes, which is highly unlikely to reside in this environment and was
considered a contaminant and was therefore eliminated from diversity curves and subsequent analyses.
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However, the remaining organisms present in this sample are halophilic, but as shown in the diversity
curve it is necessary to perform new sampling to know the diversity in Maras (Supplementary Figure
S1). In addition, the Bray-Curtis dissimilarity index was performed to evaluate the beta diversity,
showing an index equal to 1, which indicates a different species composition between Maras and Acos.
In contrast, the index value between the two samples from Acos was close to zero, suggesting that
these samples contained the same species (Supplementary Figure S2).

These results correlate with findings reported for other saltern ponds with intermediate salinity,
such as those in Santa Pola, Spain, with 13–19% NaCl, where high abundance levels of bacteria (~73 and
~54%) and archaeal organisms (~27% and ~46%, respectively) were found [38,44]. The same was found
when the Chao index was compared for these metagenomes [45]. In contrast, in the saltern pond
located in Isla Cristina, Spain (21% NaCl), Archaea were predominant (~84%), followed by Bacteria
(~16%) [38]; although the structure at the phylum level is equivalent, important differences at the genus
level are attributed to particular local ecological conditions [38].

These results suggest that in environments with higher salt concentrations there is less diversity
and species richness, probably because there is lower availability of nutrients and oxygen, in contrast
to intermediate-salinity environments, where there is a greater availability of nutrients and oxygen.
Therefore, salt concentration is an important factor that shapes the structure of the microbial community
in hypersaline environments and determines its diversity and abundance.

3.3. Bacterial and Archaeal Community Composition

Previous studies have shown that the halophilic world is highly diverse, but this diversity is
reduced with increasing salt concentrations [46]. In the case of intermediate-salinity environments,
several moderately halophilic bacteria have been reported, including Halomonas, Salinivibrio, Halobacillus,
Thalassobacillus, Bacillus, Salinicoccus, Idiomarina, Chromohalobacter, and Salinicoccus [7,38,47–49]. In the
metagenomic samples from Maras, bacteria from the phylum Proteobacteria (38%) were the most
abundant, followed by Actinobacteria (11.58%), Firmicutes (2.68%), Cyanobacteria (0.40%), Bacteroidetes
(0.40%), Deinococcus-Thermus (0.26%), and Verrucomicrobia (0.26%) (Figure 2).

At the species level in Maras salterns, it was interesting that the most abundant bacterium
was Thiohalorhabdus denitrificans (11.51%), which is an extremely halophilic species [50], followed by
Thiohalospira halophila (0.87%) [51]. Both of these species are chemolithoautotrophic sulfur-oxidizing
bacteria which use thiosulfate as the electron donor [50,51], and neither has been reported previously
in intermediate-salinity settings.

Other halophilic bacteria, such as Pseudomonas (2.15%) and Halomonas (0.94%), were identified in
lower proportions than previously reported [1,44,47]. Even the main bacteria described in hypersaline
systems, such as Salinibacter ruber [52,53] and Rhodovibrio salinarum [1], were found in low abundance
(~0.07%, each species) in our study, probably because the altitudes of these sites affect bacterial
structures, as we have shown.

In addition, predominant non-halophilic bacteria found included Lawsonella clevelandensis (7.06%),
Escherichia coli (2.08%), Clostridium difficile (1%), Cutibacterium acnes (0.9%), and Ralstonia solanacearum
(0.8%). The presence of non-halophilic bacteria in hypersaline environments has been previously
described in the Santa Pola saltern (19% NaCl), and some of these organisms have developed adaptation
mechanisms, such as a strong GC bias, as has been identified in halophilic organisms as a strategy to
avoid UV-induced thymidine dimer formation [44,45,54,55].

The two samples from Acos exhibited similar compositions of microorganisms: Proteobacteria
corresponded to ~59% of identified sequences, followed by Bacteroidetes (11%), Balneolaeota (6%),
Firmicutes (5%), and Actinobacteria (2%). Both Acos metagenomes had the same composition as
environments of intermediate salinity previously reported, showing a high diversity and abundance
of bacteria [7,38]. Interestingly, in Acos salterns members of the Balneolaeota phylum were identified,
including moderate halophiles (5–10% NaCl) abundant in sediments, saline soils, and marine
habitats [55,56] (Figure 2b,c).
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Figure 2. Taxonomic profile in hypersaline metagenomes from Cusco, Perú. (a) Maras; (b) Acos 1;
(c) Acos 2. On the x-axis are the taxonomic levels: D, domain; P, phylum; C, class; O, order; F, family; G,
genus; S, species. Numbers correspond to the assigned contigs.

At the level of genus, Halomonas was the most abundant (8.4%), with more than 70 different species
identified in Acos; Halomonas elongata (2.8%) was the most abundant, followed by Halomonas utehensis
(1.6%). In this regard, organisms of the Halomonas genus are aerobic heterotrophic, halo-alkaliphilic,
and sulfur-oxidizing bacteria and are commonly found in intermediate-salinity, high-altitude
environments [57,58]; they are also a source for the production of bioplastic polyhydroxyalkanoates [59].

In contrast, at the species level, the most abundant bacteria were Aliifodinibius roseus (~5%) within
the phylum Balneolaeota; this species is considered moderately halophilic (6–10% NaCl for optimal
growth). Also abundant were two species, Halomonas elongata (2.93%) and Arhodomonas aquaeolei
(2.84%), an obligately halophilic bacterium with optimal growth at 15% NaCl; both of these species
have been shown to degrade phenol [60]. To our knowledge, only a few reports have described these
bacteria in a metagenome from an intermediate-salinity environment. Marinimicrobium agarilyticum,
Rhodovibrio salinarum (1.50%), Salinibacter ruber (0.80%), and Idiomarina sp. (0.64%) were in low
abundance. Idiomarina loihiensis is a bacterium identified in environments a wide range of temperatures
(from 4 ◦C to 46 ◦C) and salinities (from 5% to 21%) that presents polyextremophile behavior [61].

In both the Maras and Acos sites, the low abundance of S. ruber is understandable, since this
bacterium prefers environments with higher salinity.
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Therefore, different species of moderately halophilic bacteria were found in Acos, with Proteobacteria
the most abundant. These results correlate with findings from another high-altitude saltern located
in Atacama, Chile, at 2,700 m above sea level, where halophilic bacteria able to grow at intermediate
salinity were isolated [62]. In general, the moderately halophilic bacteria are aerobic or facultative
anaerobic microorganisms that belong to different genera, as part of a physiologically heterogeneous
group of bacteria [47].

In intermediate-salinity salterns, such as the Peruvian hypersaline systems, the abundance
of archaeal organisms is low, as found in the Maras samples, where Euryarchaeota organisms
were found to be highly abundant, followed by “Candidatus Nanohaloarchaeota,” and “Candidatus
Woesearchaeota.” In both samples from Acos, Euryarchaeota organisms were the most abundant,
followed by Thaumarchaeota, Crenarchaeota, and “Candidatus Bathyarchaeota.” Within the Euryarchaeota
phylum, the Halobacterium family was found to be predominant, similar to findings from other salterns
and salty lakes [6,45,63,64].

In Maras, Halodesulfurarchaeum formicicum was the most abundant species. Halodesulfurarchaeum is
a novel anaerobic genus that was discovered in a deep-sea salt-saturated anoxic environment and in
sediments from hypersaline lakes [65].

In Acos, the most abundant archaeon was Halohasta litchfieldiae (~3.5%), a chemoorganotrophic aerobic
that can grow in salt concentrations around 12–28%, presenting adaptation to low temperatures [66–68]
as occurs in the area of the Peruvian Andes where minimum temperatures reach between −7 ◦C and
−4.4 ◦C.

The taxonomic assignment analysis was also carried out with MG-RAST; the abundance of archaea
was low, in accordance with the results of Kaiju. From the class Halobacteria, 14 different genera were
identified, with Haloarcula genus the most predominant in the three samples (Figure 3). The presence
of this genus is interesting because it has been reported to be involved in recombination processes.
This process could be occurring between bacteria and archaea, among their sharing genes, for example,
rhodopsin family genes which are common and have different functions such ion pumps, channels,
enzymes, photosensory receptors that could favor the adaptation [69,70].Genes 2019, 10, x FOR PEER REVIEW 9 of 25 
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3.4. Composition of the Viral Community

Although viruses are sources of genetic variation, as they can modify a genome’s plasticity and
alter the structure of populations and also biogeochemical cycles, few reports have described the
structure of virus communities in hypersaline environments [71–74]. In this work, the taxonomic
assignment performed with Kaiju revealed that 0.2% to 1.32% of the reads were associated with viruses
(Table 1). This was probably because we did not perform a viral enrichment with our samples; however,
it was possible to find viruses, because they would be included within the host cells or in the form of
proviruses [75].

Because of the low percentage of detected viruses in the samples, we used Virsorter, which detects
the viral signal in metagenomic datasets [18]. From the assembly of reads, we identified the viral
contigs according to VirSorter, and they were subsequently classified taxonomically with MEGAN (See
Materials and Methods).

The results identified the order Caudovirales, specifically, the Siphoviridae, Podoviridae, and Myoviridae
families, in the samples; indeed, these families seem to be ubiquitous in marine environments [76].

Interestingly, in Maras eukaryotic viruses such as Adenovirus and Herpesvirus were identified,
probably as a consequence of the composition of eukaryotic organisms in the samples, as also reported
for Red Sea brines [77]. Additional double-stranded DNA (dsDNA) viruses associated with eukaryotes
were also found in the Acos samples, mainly viruses from the Phycodnaviridae, Poxviridae, Mimiviridae,
and Pandoravidae families (Figure 4); all of these are Megavirales, which are nucleocytoplasmic large
DNA virus (NCLDVs). NCLDVs infect animals and unicellular eukaryotes [78] found in other
hypersaline environments, such as the Salton Sea in the United States and Organic Lake in the
Antarctic [79].

Another important group of viruses found in Acos was an unclassified archaeal dsDNA virus
(Figure 4); this virus has been reported in high abundance in hypersaline environments, with
spindle-shaped morphologies of Haloarchaea viruses, but this happens when salt concentration reaches
saturation, where in general Archaea are predominant [12,72,80].
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In summary, we identified six virus families associated with eukaryotic cells and five families
that infect Bacteria and Archaea. This last group was the most abundant, according to the microbial
composition in this environment.

3.5. Composition of Fungal Communities

The diversity of microorganisms in intermediate-salinity systems is not restricted to prokaryotes.
Approximately 2% of the reads corresponded to eukaryotes. According to the Megan classification
system, two phyla of fungi were found, Ascomycota (with 85%) and Basidiomycota (with 10%), as has
been reported for other hypersaline environments [81]. At the family level, the most abundant were
Arpergillacea, followed by Sordariaceae, Sporidiobolaceae, and Chaetomiaceae (Figure 5). Aspergillus has
been reported to be dominant in salterns of Slovenia, along with Cladosporium and Penicillium [82].
These filamentous fungi are ubiquitous and have been isolated with high frequency in hypersaline
environments [83]. Some species in the Sordariaceae family have also been isolated from hypersaline
environments. The Sporidiobolaceae family is within the Basidiomycota phylum, which has been
recovered from sea water, glacier ice, and extremophile environments. Rhodotorula was recovered from
hypersaline ponds in Israel [84]. The Chaetomiaceae family was recovered together with 19 inhabiting
hyphomycetes fungi in soils from the hypersaline Urmia Lake [85]. Thus, a high diversity of fungi has
been found in hypersaline environments, where the most abundant are melanized Aspergillus, which is
a ubiquitous genus used in biotechnology applications for its production of citric acid and enzymes, and
non-melanized Rhodotorula, which comprises several species that can be used in bioremediation [86].
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In summary, the results show an important diversity of fungi within the hypersaline environments;
however, their functions are still unclear.
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3.6. Genome Reconstruction

3.6.1. Bacterial Genome Reconstruction in A Hypersaline Environment

One of the aims in this work was the reconstruction of complete genomes that could provide
information about the main metabolic pathway associated with hypersaline metabolism. To this end,
the genomes were retrieved using a fragment recruitment strategy with the reads aligned against the
available reference genome [87], and their integrity was assessed with Genome Peek [88] and One
codex [25] (see Materials and Methods).

According to the abundance levels found with our taxonomic assignments, the most abundant
genomes were Halomonas elongate-like and Idiomarina loihiensis-like and these were retrieved from the
metagenome. The complete reference genomes reported in NCBI for these bacteria were used for
fragment recruitment.

First, the Halomonas elongate-like genome was reconstructed, comparing the sequences against the
reference genome MAJD01000001.1. Both samples of Acos showed 93% breadth coverage and a deep
coverage of 8.3x The circular chromosome of ~3.7 Mb is graphically represented in Figure 6; it has
a GC content of 64%, similar to Halomonas elongata isolated from Huanoquite at Peru. The average
nucleotide identities (ANIs) between the reference genome (MAJD01000001.1) and the genomes from
Acos 1 and Acos 2 were 98.04% and 98.02%, respectively (Table 2).Genes 2019, 10, x FOR PEER REVIEW 12 of 25 
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Table 2. Features of Halomonas elongata and Idiomarina loihiens is genomes with number of transfer RNA
(tRNA), transfer-messenger RNA (tmRNA) and ribosomal RNA (rRNA).

Features Halomonas elongata
(Acos 1)

Halomonas elongata
(Acos 2)

Idiomarina loihiensis
(Acos 1)

Idiomarina loihiensis
(Acos 2)

Length size (bp) 3,768,127 3,763,770 2,111,175 2,227,077

% GC 64 64 47.2 47.3

CDS 4564 4678 4060 3871

tRNAs 65 69 55 56

tmRNA 1 1 1 1

rRNAs 12 12 12 13
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A comparison between Halomonas elongata strain HEK1 (MAJD01000001.1), H. elongata strain
MH25661 (QJUB00000000.1), and the two genomes recovered from this work revealed that all strains
share a core of 2,984 genes. Indeed, both genomes recovered from Acos share 916 genes, a significant
number of genes in comparison to the other genomes. In addition, Idiomarina loihiensis-like, reported as
a predominant genome in a saline environment, was also assembled. The coverage was 74–78% with
a reference genome (I. loihiensis L2TR GCA_000008465.1), and the deep coverage was 5-6x for Acos 1
and Acos 2. Both strains share 93.0% of identity according to their ANIs. Finally, the two genomes
share 2151 common genes (Supplementary Figure S3).

Interestingly, the reconstructed genomes of Halomonas elongata and Idiomarina loihiensis show
different strategies for maintaining osmotic equilibrium, according to the annotation; de novo synthesis
of the ectoine pathway is complete in H. elongata. Ectoine is a compatible solute of low molecular
weight of aspartate metabolism, which is produced when there are increased K+-glutamate levels [89].
In contrast, in Idiomarina loihiensis, de novo synthesis of ectoine was absent; however, we identified
genes encoding ABC transporters such as the ATP-dependent Na+ exporter natAB, in addition to other
iron transporters, which promote detoxification in hypersaline environments. These findings show
different adaptation strategies of bacteria in hypersaline environments.

The annotation of the genes exclusively shared between two Halomonas genomes from Acos
revealed that most of them were related to nitrogen metabolism, chemical reactions, and pathways
involving organic acids. Regarding the genes related to the metabolism of nitrogen, genes encoding
a nitrate/nitrite sensor protein, nitrate reductase, and ammonia monooxygenase were found. This is
interesting since Halomonas use nitrogen as the last acceptor of electrons even in conditions of low
oxygen, as is the case in hypersaline environments [90].

In general, these Proteobacteria play an important role in the nitrogen cycle, through recycling
of nitrogen by assimilation of gaseous nitrogen from the atmosphere and decomposition of organic
matter, causing nitrogen to be constantly available [90].

3.6.2. Reconstruction of Viral Genomes

Traditional techniques limited us in obtaining viral genomes, but through metagenomics it was
possible to reconstruct these genomes, allowing us to expand knowledge about the influence of viruses
in this particular environment. In this regard, the viral contigs identified correspond to bacteriophages,
as expected, since bacteria were more abundant in our metagenomes. In the Maras sample, a genome
with 97% similarity with the lambda phage of Enterobacteria (Siphoviridae family) was found. This
phage infects Escherichia coli, a non-halophilic bacterium that was abundant in this sample (Figure 7a).

In Acos samples, around 100 different contigs with viral signals were identified; because many
of these could be fragments of viral sequences, different criteria were used, such as the presence of
inverted terminal repeats in the case of circular genomes and similarities in size lengths with a reference
genome (no more than 10% of size length) [18].

In the Acos samples, two phages of Halomonas elongata were recovered. This finding was somewhat
expected, since H. elongata is abundant in these intermediate-salinity environments, but this is the first
time that bacteriophages have been reported in this bacterium. The two recovered phages have a size
length of approximately 28 Kbp, and a comparative analysis with two ΦHAP-1 reference genomes
revealed that they have the same pattern of synteny and a protein identity greater than 65%. (Figure 7b).

The phage used for comparison was Halomonas phage ΦHAP-1. This is a Hapunavirus belonging
to the family Myoviridae and was isolated from Halomonas aquamarina. The GC content in ΦHAP-1 is
59%, which is slightly lower than other phages such as ΦHAP-1, found in Acos with a 64% GC content,
and similar to the GC content of the host genome (H. elongata) [91].

The ΦHAP-1-type phages from Acos have 40 putative open reading frames (ORFs) with 6 genes
fewer than the reference genome. Genes coding for proteins such as the RepA replication protein,
the prophage repressor, the prophage antirepressor, and the protelomerase were not identified; the
latter is necessary for the maintenance of the linear state of the prophage within the host genome [92].
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In addition, inverted repeats were found at positions 28,428–28,452 to 28,455–28,479 with a length size
of 25 bp and an identity of 100%, suggesting that the genome is in a circular form, because this kind of
inverted repeated sequence is usually found in regions processed by protelomerases and originates
from the release of phage with covalently closed ends. All of these findings suggest that the phage
could be in their free form.
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(b) Halomonas phage-like (phiHAP-1) from Acos.

The rest of the viral sequences obtained in the metagenomes through BLAST analysis had very
poor identity with sequences in the NCBI database, and they were used for taxonomic or functional
allocation. Thus, the contigs of >10 kb was clustered using the Viral RefSeq database and vConTACT2;
this tool allows classification of viral sequences with protein comparisons. In Figure 8, two examples of
viral assignation taxonomy are presented. In Figure 8 a viral sequence with ~27 Kpbs shares identity
with proteins from Cellulophaga phage, which infects algae typically found in marine environments.
In Figure 8 are four viruses with size lengths of about ~11 to 30 Kpbs that shared identities with different
enterophages, showing a mosaicism as a reflection of horizontal gene transfer. In total, 27 sequences
could have a taxonomic assignment as new viruses with this strategy (Supplementary Figure S4).
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Figure 8. Protein-sharing network of genome of Cellulophaga phage. Yellow lines indicate strong
similitarity, and blue lines indicate weak similarity. Thus, the virus of length 27,358 bp could be
a novel virus.

3.6.3. MAGs

Another strategy to retrieve new genomes from metagenomic sequences with little or no identity
with sequences already reported is by binning, in which genomes are assembled without a reference
sequence. The binning method has the aim to classify contig sequences in a specific taxon, called
metagenome-assembled genomes (MAGs). The binning methods can also describe novel species in
these environments. The binning of metagenomic sequences was performed only for Acos, because at
least two samples with the same origin are necessary to enrich the data. From this, a total of 42 bins
were assembled in annotated draft genomes, and their ribosomal genes were extracted. However,
some of this process resulted in a low degree of completeness. Therefore, we performed a phylogenetic
analysis that revealed that 31 MAGs were classified within a specific domain and seven of them were
closely related to the Halobacteria class (Bin 5, Bin 14, Bin 15, Bin 31, Bin 30, Bin 34, and Bin 41) (Figure 9)
within the Euryarchaeota phylum, which is predominant in hypersaline environments.
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Four MAGs were closely related with Alphaproteobacteria unclassified (Bin 10, Bin 12, Bin 16,
Bin 17), and 14 MAGs were closely related to Gammaproteobacteria. Indeed, most of the found bacteria
corresponded to Proteobacteria, in accordance with the bacteria found in our metagenomes (Bin 1, Bin 3,
Bin 8, Bin 9, Bin 11, Bin 19, Bin 23, Bin 24, Bin 25, Bin 26, Bin 28, Bin 29, Bin32, Bin 42). Therefore, in this
analysis the Proteobacteria phylum prevails over the Euryarchaeota phylum in Acos samples, indicating
that salinity plays an important role in the structure of the community of microorganisms that inhabits
this ecosystem.

The strategies for the reconstruction of genomes, such as fragment recruitment and MaxBin,
offered different results, since the first strategy is a targeted search and for the second strategy the
search starts from scratch in obtaining draft genomes. Another important difference is that the latter
assemblies, coming from more than one metagenome, could build chimeric genomes. However, with
the two strategies, genomes of Gammaproteobacteria similar to Halomonas could be reconstructed.

3.7. Functional Community Composition

The strategies that halophilic organisms use to survive in hypersaline environments are diverse and
include thickening of the cell wall, increase in pigmentation, production of compatible solutes, solute
transport mechanisms, and production of antibiotic proteins to limit the growth of other populations [93].
Therefore, we analyzed the functional composition of microorganisms in intermediate-salinity
environments in order to determine how these mechanisms are potentially used by microorganisms in
these environments.

Thus, the contigs from hypersaline metagenomes were annotated using SEED subsystems, and
these results revealed that 11–13% of coding sequences from Acos and 14% of those from Maras were
related to metabolism of carbohydrates (central carbohydrate metabolism, synthesis of monosaccharides
and polysaccharides) (Figure 10).

The genes classified into the category of amino acids and derivatives functions were present in
~8% to 12% in Acos and ~11% in Maras. Overall, in the three metagenomes the synthesis of lysine,
threonine, methionine, and cysteine were the more abundant categories. This correlated with the fact
that in some halophilic bacteria there is a preferential use of codons to encode these amino acids [94].
In this regard, most of these amino acids are hydrophobic, found on the inside of proteins, especially
in hypersaline environments, which strengthen the hydrophobic interactions [92].

Other categories overrepresented, with ~6.7% to ~9.77% abundance in samples, were respiration,
functions related to donating/accepting electrons, and ATP synthases. All of these participate in the
transfer of electrons to obtain energy.

Interestingly, the category related to pigment functions was found in 8% to 10% Acos sequences
and 7% of Maras sequences. The class Halobacteriaceae is mainly responsible for α-bacterioruberin
pigment, a pink-red product in hypersaline environments. In addition, Salinibacter ruber is responsible
for producing salinixanthin carotenoid, a C-40 acyl glycoside carotenoid that also contributes to the
coloration of salterns. This bacteria and these pigments are important in hypersaline environments
as they reduce the UV irradiation that damages DNA, which tends to be high in these saline
environments [9].

The category of membrane transport was present in ~3% to ~5% abundance; in particular, the
membrane proteins in Gram-negative bacteria were more abundant than in Gram-positive bacteria,
including the YrbG Na+/Ca2+ cation antiporter, a very important protein in this kind of saline
environment. This system has been reported in Haloarchaea, which have a wide variety of ion
transporters, to have a role in regulating fluctuating salinity levels and avoiding osmotic shock [95].
In other salterns with intermediate salinity, such as Santa Pola (13% NaCl), genes related to this function
have been reported to be overrepresented [45].

The function of resistance to antibiotics and toxic compounds was also found to be abundant in
these metagenomes, including pathways involved in sulfur heavy metal cycling, cobalt–zinc–cadmium
resistance, and also copper homeostasis and resistance to arsenic. Since heavy metals such as arsenic
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do not have biological roles, low concentrations are toxic to the cell, and therefore microorganisms
have mechanisms for reduction. Many Archaea have different heavy metal transporters [96].
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In addition, the stress category was more abundant in Maras (~14%) than in Acos (~6%).
This category includes predominant functions such as oxidative stress, osmotic stress, heat stress,
detoxification, cold shock, and periplasmic stress. These types of functions were prevalent in Maras,
and although the concentration of salt was higher in Maras than in Acos, a greater presence of
non-halophilic organisms was identified in Maras. It is well known that organisms growing in high
concentrations of salt accumulate stress molecules, such as reactive oxygen species, and the organisms
must therefore have mechanisms for their detoxification [97].

In the same way, samples from Acos presented abundant oxidative stress functions. Reactive
oxygen species in hypersaline environments are common, thus organisms in these environments
have detoxification mechanisms. In particular, in microaerophilic and anaerobic metagenomes,
oxygen-detoxifying enzymes have been identified, such as superoxide dismutases, catalases,
peroxidases, and glutathione peroxidase [98]. In the Acos metagenome, we identified enzymes
involved in the response to oxidative stress, such as 5-oxoprolinase, and enzymes responsible for
maintaining the reducing environment, such as glutathione reductase, glutathione hydrolase (involved
in reduction of glutathione disulfide), and hydroperoxide resistance (responsible for detoxification of
organic hydroperoxides).

Since the microorganisms are under oxidative stress, it is common to identify redundant enzymes
responsible for DNA repair [99]. However, reactive oxygen species are not the only compounds that
modify the genetic material; other agents that produce data in the genetic material include UV light
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exposure and desiccation, and so, as expected, the functions of DNA synthesis and DNA repair are the
most represented in proteins found in the Acos samples.

According to our analysis with MG-RAST, detoxification enzymes were identified in Archaea,
within the classification “housecleaning nucleoside triphosphate pyrophosphatases”; all of these
belonged to class Nudix hydrolases, including nucleoside 5-triphosphatase and 5-nucleotidase SurE.
In Bacteria, these enzymes were found in high abundance, as was the dimeric dUTPase enzyme.
Interestingly, viruses also possess detoxification enzymes of this category, in particular the enzyme
deoxyuridine 5′-triphosphate nucleotidohydrolase, that decreases the intracellular concentration of
dUTP so that uracil cannot be incorporated into viral progeny DNA.

All of the above enzymes are responsible for the elimination of damaged nucleotides caused by
reactive oxygen species. For viruses, the incorporation of damaged nucleotides in nucleic acids is
detrimental to replication of viral progeny. In this way, the virus could contribute to the adaptation of
the host to its environment.

Regarding DNA repair, we found bacterial systems that contribute to this function, among which
were base excision repair (BER), repair of DNA double-strand breaks (DSBs) (RecBCD pathway and
RecFOR pathway), nucleotide excision repair (NER), and DNA mismatch repair (MutL-MutS system).
However, the mechanisms of nucleotide excision repair (NER) and DNA mismatch repair (MutL-MutS
system) were more abundant in Bacteria. The function related to nucleotide excision repair has also
been reported to be overrepresented in hypersaline environments [100].

In addition, we identified eight proteins related to DNA DSB repair in the annotations for viral
sequences; this is one of the most common damaging events [101]. However, bacteriophages and
some NCLDV possess homologous proteins, such as Rad50/SbcC, which is probably involved in
the processing of dsDNA ends for processing during recombination [102]. These proteins were also
identified in circular genomes of bacteriophages, such as Vibrio parahaemolyticus bacteriophage [103],
which could indicate that these proteins are also propagated in this type of virus and could have
implications in the repair of genetic material in stress environments. Other genes for methyltransferase
enzymes, which are ubiquitous in the prokaryotic world and are associated with host protection of
DNA damage, were also identified in our viral sequences.

Other functionally important genes found in viral sequences were auxiliary metabolic genes
(AMGs) originally from the genome host. The AMGs found were ribonucleotide reductases and phoH,
among others. The ribonucleotide reductases are associated with lytic rather than temperate viruses,
and the phoH gene plays a role in the transport of phosphate in conditions of starvation. Synechococcus
and Prochlorococcus (cyanophages) carry AMGs; however, in this study we found these families were in
low abundance, as they are predominantly found in marine environments, so it correlates with the
abundance of these families reported above [104].

3.8. Metabolic Pathway Involved in Biogeochemical Cycles

In order to evaluate the contribution of different metabolic pathways in the biogeochemical
cycles associated the metagenomes, MEBS software was used to analyze the three samples. From
this analysis, only two complete pathways of the carbon cycle were identified (Figure 11), while the
nitrogen and sulfur cycles in the samples were more highly represented (Figure 11). In the case of
nitrogen, the pathways of denitrification and the reduction of nitrate by assimilation were found to be
more prevalent, since that nitrite is generally produced under anoxic conditions such as in hypersaline
environments [6]. On the other hand, the reduction of dissimilatory nitrate (nitrite-ammonia) involving
the proteins encoded by the genes nirB, nirD, nrfA, and nrfH is generally more highly expressed in
Proteobacteria, Bacteroidetes, Euryarchaeota, and Verrucomicrobia [90]. Those were found as complete in
our metagenomes, which correlates with the great abundance of Proteobacteria in the metagenomes.
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Because oxygen is limited, denitrification (nitrate-nitrite) is another pathway that contributes to
the nitrogen cycle. In addition, species in the environment use nitrogen as a source of growth [105,106].
These pathways were also found as complete in the metagenomes of Acos, which indicates the
importance of nitrogen in hypersaline environments. In this pathway, the proteins encoded by the
genes narGHIJ, napAB, nirKS, norBC, and nosZ are included; these genes are expressed by Bacteroidetes,
Euryarchaeota, and Proteobacteria. In addition, the narL gene in the virus compensates for the metabolic
pathways of the microorganisms for nitrogen metabolism [90,107]. Finally, in the Maras sample,
partially complete denitrification pathways were found (a 40-60% of representation), indicating that
microorganisms can contribute to the reduction of nitrate and nitrite for the production of N2.

Some organisms, such as Proteobacteria and Thaumarchaeota, are responsible for producing nitrate
by nitrification at high salt concentrations [93,108], as well as the route of nitrogen fixation; however,
they were partially complete, despite nitrite being an important energy source (Figure 11). In this regard,
nitrite is not the only source of energy in this environment, since many Archaea and some bacteria use
sulfur compounds as donors or electron acceptors for energy production [109]. In this case, the pathways
related to sulfite oxidation, oxidation of sulfur DMS, and oxidation of dimethylsulfoniopropionate
(DMSP) were found to be complete. Mainly, DMSP has been reported in abundance, which indicates
that DMSP is an important source of carbon and energy [110]. Therefore, Bacteria and Archaea
contribute to the oxidation of DMSP as an energy source, at different proportions.

4. Conclusions

In this study, we present a snapshot of microbial and functional diversity of two intermediate
hypersaline environments in the Peruvian Andes, based on a metagenomics shotgun approach.
The intermediate salinity environments show a great diversity and abundance of bacteria, more so
than the archaea in the samples. At the level of phylum, Proteobacteria are the most abundant and
predominated over other bacteria and archaea. However, the Balneolaeota phylum was found only in
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Acos in great abundance, but was not diverse. In addition, we reconstructed the draft genomes of H.
elongata and I. loihiensis, which have different mechanisms of adaptation to hypersaline environments,
via de novo synthesis of ectoine and natAB transporters, respectively. Also, we obtained whole genomes
from bacteriophages. Functional analysis indicated that microorganism in hypersaline environments
contribute to the biogeochemical cycles involving carbon and nitrogen as the source of energy. We also
found genes related to oxidative stress and DNA repair. Interestingly, viruses also had such repair
protein genes, which are otherwise exclusive to eukaryotes and bacteria. This study contributes to the
current knowledge of intermediate-salinity environments at high altitudes.
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