

Mycosphere 8(7): 878–885 (2017) www.mycosphere.org ISSN 2077 7019 Article Doi 10.5943/mycosphere/8/7/4 Copyright © Guizhou Academy of Agricultural Sciences

A new species of Antrodia (Basidiomycota, Polypores) from China

Chen YY, Wu F*

Institute of Microbiology, Beijing Forestry University, Beijing 100083, China

Chen YY, Wu F 2017 – A new species of *Antrodia* (Basidiomycota, Polypores) from China. Mycosphere 8(7), 878–885, Doi 10.5943/mycosphere/8/7/4

Abstract

A new species, *Antrodia monomitica* sp. nov., is described and illustrated from China based on morphological characters and molecular evidence. It is characterized by producing annual, fragile and nodulose basidiomata, a monomitic hyphal system with clamp connections on generative hyphae, hyaline, thin-walled and fusiform to mango-shaped basidiospores ($6-7.5 \times 2.3-3 \mu m$), and causing a typical brown rot. In phylogenetic analysis inferred from ITS and nLSU rDNA sequences, the new species forms a distinct lineage in the Antrodia s. 1., and has a close relationship with *A. oleracea*.

Key words - Fomitopsidaceae - phylogenetic analysis - taxonomy - wood-decaying fungi

Introduction

Antrodia P. Karst., typified with Polyporus serpens Fr. (=Antrodia albida (Fr.) Donk (Donk 1960, Ryvarden 1991), is characterized by a resupinate to effused-reflexed growth habit, white or pale colour of the context, a dimitic hyphal system with clamp connections on generative hyphae, hyaline, thin-walled, cylindrical to very narrow ellipsoid basidiospores which are negative in Melzer's reagent and Cotton Blue, and causing a brown rot (Ryvarden & Melo 2014).

Antrodia is a highly heterogeneous genus which is closely related to Fomitopsis P. Karst., Daedalea Pers. and Oligoporus Bref (Bernicchia et al. 2012, Kim et al. 2003, Rajchenberg et al. 2011, Spirin et al. 2012, Yu et al. 2010). Recently studies have divided Antrodia sensu lato into three genera: Antrodia sensu stricto, Fibroporia Parmasto and Amyloporia Bondartsev & Singer (Bernicchia et al. 2012, Chen et al. 2015b, Chen & Cui 2016, Cui 2013, Cui & Dai 2013, Rajchenberg et al. 2011, Spirin et al. 2013, Yu et al. 2010), but there are still several unrelated lineages spread among other brown rot polypores (Han et al. 2016, Ortiz-Santana et al. 2013, Spirin et al. 2013, 2015, 2016).

A recent investigation of *Antrodia* has been carried out in China, two specimens are identified belonging to *Antrodia* s. l., but they are distinguished from any known species. Phylogenetic analysis was performed using the internal transcribed spacer (ITS) regions and nuclear large subunit (nLSU) ribosomal RNA gene regions. Combined with the morphological characters, a new species is described in this study.

Materials & Methods

Morphological studies

The studied specimens are deposited at the herbarium of the Institute of Microbiology, Beijing Forestry University (BJFC). The microscopic procedure follows Li et al. (2014) and Han et al. (2016). Color terms followed Petersen (1996). Spores were measured from sections cut from the tubes. 5% of measurements were excluded from each end of the range, and were given in parentheses. The following abbreviations were used: KOH = 5% potassium hydroxide; IKI = Melzer's reagent; IKI– = neither amyloid nor dextrinoid; CB = Cotton Blue; CB– = acyanophilous; L = mean spore length (arithmetic average of all spores); W = mean spore width (arithmetic average of all spores); Q = the ratios of L/W; n (a/b) = number of spores (a) measured from given number (b) of specimens.

Molecular study

A CTAB rapid plant genome extraction kit (Demeter Biotech Co., Ltd., Beijing, China) was used to obtain PCR products from dried specimens, according to the manufacturer's instructions with some modifications (Chen et al. 2015a, 2016a). ITS4 and ITS5 were used as primers for ITS. LR0R and LR7 were used as primers for nLSU. The PCR procedure for ITS was as follows: initial denaturation at 95 °C for 5 min, followed by 35 cycles at 94 °C for 40 s, 54 °C for 45 s and 72 °C for 1 min, and a final extension of 72 °C for 10 min. The PCR procedure for nLSU was as follows: initial denaturation at 94 °C for 5 min, followed by 35 cycles at 94 °C for 30 s, 50 °C for 1 min and 72 °C for 1.5 min, and a final extension of 72 °C for 10 min. The PCR products were purified and sequenced in Beijing Genomics Institute, China, with the same primers.

Phylogenetic analysis

To explore the phylogenetic position of the two newly sequenced specimens, their ITS + nLSU sequences were compiled to part of the ITS + nLSU dataset from Ortiz-Santana et al. (2013). In addition, sequences from Chen & Cui (2016) are also used in the current analysis. *Fibroporia albicans* B.K. Cui & Yuan Y. Chen and *F. vaillantii* (DC.) Parmasto were selected as outgroups.

The dataset was aligned by BioEdit (Hall 1999) and then manually adjusted with ClustalX (Thompson et al. 1997). Sequence alignments were deposited at TreeBase (http://www.treebase.org; submission ID 20524). Phylogenetic analysis was done as in Zhao et al. (2013, 2015) and Chen et al. (2016b). Maximum parsimony (MP) analysis was applied to the ITS + nLSU dataset. The tree construction procedure was performed in PAUP* version 4.0b10 (Swofford 2002). All characters were equally weighted and gaps were treated as missing data. Trees were inferred using the heuristic search option with TBR branch swapping and 1,000 random sequence additions. Maxtrees were set to 5,000, branches of zero length were collapsed and all parsimonious trees were saved. Clade robustness was assessed using a bootstrap (BT) analysis with 1,000 replicates (Felsenstein 1985). Descriptive tree statistics tree length (TL), consistency index (CI), retention index (RI), rescaled consistency index (RC), and homoplasy index (HI) were calculated for each Maximum Parsimonious Tree (MPT) generated.

RAxML v.7.2.8 was used to construct maximum likelihood (ML) trees with GTR+G+I model of site substitution including estimation of Gamma-distributed rate heterogeneity and a proportion of invariant sites (Stamatakis 2006). The branch support was evaluated with bootstrapping method of 1000 replicates (Hillis & Bull 1993).

MrModeltest 2.3 (Posada & Crandall 1998, Nylander 2004) was used to determine the best-fit evolution model for the dataset for Bayesian inference (BI). BI was calculated with MrBayes3.1.2 (Ronquist & Huelsenbeck 2003) with a general time reversible (GTR) model of DNA substitution and an invgamma distribution rate variation across sites. Four Markov chains were run for 2000,000 generations until the split deviation frequency value < 0.01, and sampled every 100th generations. The burn-in was set to discard the first 25 % of the trees. A majority rule consensus tree of all remaining trees was calculated.

Phylogenetic trees were visualized using Treeview (Page 1996). Branches that received bootstrap support for maximum likelihood (BS), maximum parsimony (MP) and Bayesian posterior

probabilities (BPP) greater than or equal to 75 % (BS and MP) and 0.95 (BPP) were considered as significantly supported, respectively.

Table 1 A list of species,	specimens and	l GenBank	accession	number	of	sequences	used in	n this
study.								

Species		T 194-1	GenBank no.		
	Specimen/Strain No.	Locality	ITS	LSU	
Amyloporia carbonica	DAOM-F-8281-T	Canada	KC585239	KC585061	
Amyloporia carbonica	FP-105585-Sp	USA	KC585240	KC585062	
Antrodia favescens	Vlasák 0412/4J	USA	KC543129	KC543129	
Antrodia heteromorpha	Niemelä 2621	Canada	KC543149	KC543149	
Antrodia heteromorpha	Dai 12755	USA	KP715306	KP715322	
Antrodia hyalina	Spirin 2772	Russia	JQ700283	JQ700283	
Antrodia infirma	Niemelä 7637	Finland	KC595894	KC595894	
Antrodia infirma	Niemelä 7644	Finland	KC595895	KC595895	
Antrodia juniperina	SRM-403-T	USA	KC585285	KC585109	
Antrodia juniperina	FP-105489-Sp	USA	KC585282	KC585105	
Antrodia leucaena	Pennanen 927	Finland	JQ700278	JQ700278	
Antrodia leucaena	Dai 11398	China	KX958179		
Antrodia macra	Eriksson 1967	Unknown	KR605810	KR605749	
Antrodia macra	Hottola 2729	Finland	KC543135	KC543135	
Antrodia malicola	Miettinen 10595.1	China	KC595896	KC595896	
Antrodia malicola	Cui 7754	China	KX958180	KX958184	
Antrodia mappa	Niemelä 2669	Canada	KC543130	KC543130	
Antrodia mappa	Penttila 11756	Finland	KC543113	KC543113	
Antrodia mellita	Spirin 3315	Russia	KC543140	KC543140	
Antrodia minuta	Miettinen X1317	Russia	KC595900	KC595900	
Antrodia minuta	Spirin 2680	Russia	KC595898	KC595898	
Antrodia monomitica	Dai 10630	China	KY421732 ^a	KY421734 ^a	
Antrodia monomitica	Dai 16894	China	KY421733 ^a	KY421735 ^a	
Antrodia oleracea	HHB-5988-Sp	USA	KC585293	KC585117	
Antrodia oleracea	Mad-4907	USA	KC585295	KC585119	
Antrodia primaeva	Miettinen 177	Russia	JQ700272	JQ700272	
Antrodia pulvinascens	Miettinen 7488	Finland	JQ700274	JQ700274	
Antrodia ramentacea	Marstad 274-09	Norway	KC543138		
Antrodia ramentacea	Dai 6118	China	KC951178		
Antrodia serialiformis	Miettinen 14816	USA	JQ700290		
Antrodia serialiformis	JK-2009a	USA	FJ788412		
Antrodia serialis	Miettinen 12401	Finland	JQ700271	JQ700271	
Antrodia serialis	Dai 7626	China	KR605812	KR605751	
Antrodia serpens	Dai 7465	Luxemburg	KR605813	KR605752	
Antrodia serpens	Miettinen X1370	Slovakia	KC543143	KC543143	
Antrodia subserpens	Cui 8310	China	KP715310	KP715326	
Antrodia subserpens	Dai 13233	China	KP715309	KP715325	
Antrodia tanakae	Dai 11770	China	KR605815	KR605754	
Antrodia tanakae	Yuan 1106	China	KP715313	KP715329	
Antrodia tropica	Cui 6471	China	JQ837939		
Antrodia tropica	Dai 13434	China	KX958181	KX958185	
Antrodia variiformis	Spirin 8406_2	USA	KT995137	KT995159	
Daedalea dickinsii	Yuan 2685				

Daedalea dickinsii	Yuan 2707	China	KP171202	KP171224
Daedalea quercina	Dai 12152	Czech	KP171207	KP171229
Daedalea quercina	Dai 12659	Finland	KP171208	KP171230
Fibroporia albican	Cui 9464	China	KC456250	KR605758
Fibroporia vaillantii	FP-90877-R	USA	KC585345	KC585170
Fomitopsis pinicola	Cui 10312	China	KR605781	KR605720
Fomitopsis subtropica	Cui 10578	China	KR605787	KR605726
Postia fragilis	Vlasák 0610_8	Czech	JF950573	
Postia fragilis	Cui 10088	China	KF699120	KJ684977
Postia lacteus	Miettinen X1378	Finland	KC595938	KC595938
Postia lacteus	Miettinen X1391	Finland	KC595939	KC595939
Postia placenta	Niemelä 7609 (GB)	Finland	JX109846	JX109846
Postia placenta	Miettinen X1351	Finland	KC595950	KC595950

a Sequences newly generated in this study.

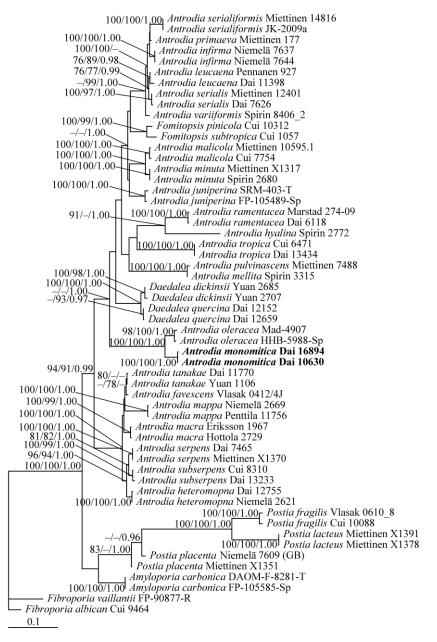


Fig. 1 – Phylogeny of Antrodia inferred from ITS + nLSU dataset.

Results

Phylogenetic analyses

Two ITS and two nLSU sequences were newly generated for this study and their accession numbers are available in GenBank (Table 1).

The ITS + nLSU dataset included 48 specimens resulted in an alignment of 1613 characters, of which, 1127 characters are constant, 72 are variable and parsimony-uninformative, and 414 are parsimony informative characters. Maximum parsimony analysis yielded only one tree (TL = 1299, CI = 0.580, RI = 0.819, RC = 0.475, HI = 0.420). "GTR+ I + G" was the best-fit evolutionary model in the Bayesian analysis. The ML search stopped after 1000 BS replicates. All chains in BI converged after 2 million generations. ML and BI analyses yielded similar tree topologies with an average standard deviation of split frequencies = 0.008918, and only the ML tree was provided. Both bootstrap values (\geq 75%) and BPPs (\geq 0.95) were showed at the nodes (Fig 1).

The phylogeny inferred from the ITS + nLSU dataset shows that the two newly sequenced specimens formed a terminal lineage within *Antrodia* s. l. with full statistical supports (100% BS, 1 BPP) and clustered with *A. oleracea* (R.W. Davidson & Lombard) Ryvarden.

Taxonomy

Antrodia monomitica Yuan Y. Chen, sp. nov.

MycoBank number: MB 819955; Facesoffungi number: FoF 03384

Etymology – Monomitica (Lat.): referring to the monomitic hyphal structure of the species.

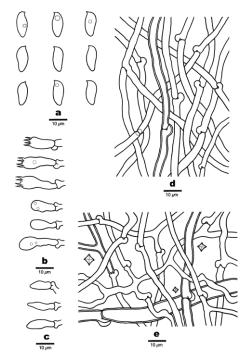
Known distribution –A rare species spread in subtropical and temperate regions of China.

Material examined – CHINA, Heilongjiang Prov., Harbin, the Campus of Harbin University of Science and Technology, on rotten wood of *Morus*, 6 Aug 2016, Y.C. Dai, Dai 16894 (BJFC 22529, holotype).

Fruiting body – Basidiomata annual, resupinate, nodulose without real cap, up to 10 cm long, 6 cm wide and 3 cm thick at centre; fleshy when fresh, chalky and fragile upon drying. Pore surface white to cream when fresh, cream, buff or cinnamon buff upon drying; sterile margin white, very narrow to almost lacking; pores round to angular, 3–4 per mm; dissepiments thin, entire to slightly lacerate. Subiculum white, fleshy when fresh, chalky to fragile upon drying, up to 2 cm thick. Tubes concolorous with the pore surface, chalky, up to 1 cm long.

Hyphal structure – Hyphal system monomitic; generative hyphae bearing clamp connections, IKI–, CB–; tissues unchanged in KOH.

Fig. 2 – Basidiomata of *Antrodia monomitica* (BJFC 22529). – Bars = 10 mm.


Figs 2-3

Subiculum – Generative hyphae hyaline, thin- to slightly thick-walled, frequently branched some bearing fine crystals, flexuous, interwoven, $3-8 \ \mu m$ in diam, some inflated up to 11 μm in diam.

Tubes – Generative hyphae hyaline, thin- to slightly thick-walled, occasionally branched, interwoven, 2–6 μ m in diam. Cystidia absent; cystidioles present, fusoid, thin-walled, 12–15 × 3.5–4 μ m. Basidia clavate, with four sterigmata and a basal clamp connection, 14–20 × 5–6.5 μ m; basidioles in shape similar to basidia, but slightly smaller.

Spores – Basidiospores fusiform to mango-shaped, hyaline, thin-walled, smooth, sometimes with one guttule, IKI–, CB–, 6–7.5(–8) \times 2.3–3 µm, L = 6.62 µm, W = 2.68 µm, Q = 2.44–2.51 (n = 60/2).

Additional specimen examined – CHINA, Jiangxi Prov., Nanchang, Forest Park of Jiangxi Academy of Forestry, on rotten angiosperm wood, 24 Sept 2008, Y.C. Dai, Dai 10630 (BJFC 004879, paratype).

Fig. 3 – Microscopic structures of *Antrodia monomitica* (draw from the holotype). a: Basidiospores; b: Basidia and basidioles; c: Cystidioles; d: Hyphae from trama; e: Hyphae from subiculum. – Bars = $10 \ \mu m$.

Discussion

Antrodia monomitica is characterized by annual, resupinate to nodulose basidiomata which becoming fragile upon drying, a monomitic hyphal structure with clamp connections on generative hyphae, hyaline, thin-walled and fusiform to mango-shaped basidiospores (6–7.5 × 2.3–3 μ m), and causing a typical brown rot.

Morphologically, *Antrodia monomitica* is similar to species of *Postia* Fr. because of its annual fruiting bodies, a monomitic hyphal system with clamp connections on generative hyphae and causing a brown rot. However, *Postia* species have allantoid to cylindrical basidiospores, and they belong to different lineages in the phylogenetic analysis (Shen & Cui 2014, Shen et al. 2014, 2015).

Phylogenetic analysis based on ITS and nLSU regions indicated *Antrodia monomitica* belongs to *Antrodia* s. l. with full statistical supports and has a closer relationship with *A. oleracea*. However, *A. oleracea* is different in having much thinner basidiomata, a dimitic hyphal system and cylindrical to oblong ellipsoid basidiospores (Ryvarden & Johansen 1980).

Amyloporia carbonica (Overh.) Vampola & Pouzar and Antrodia leucaena Y.C. Dai & Niemelä have white basidiomata and similar pore size, and they somehow resemble Antrodia

monomitica in morphology, but *Amyloporia carbonica* has distinctly amyloid skeletal hyphae and wider cylindrical basidiospores (6–7.5 × 2.8–4 μ m) and growing on dead conifer wood (Henrici & Ryvarden 1997, Ryvarden & Melo 2014); *Antrodia leucaena* is distinguished from *Antrodia monomitica* in having thinner basidiomata, a dimitic hyphal system and narrowly ellipsoid to subcylindrical basidiospores (Dai & Niemelä 2002, Ryvarden & Melo 2014). Besides, these three species clustered in different lineages in the phylogenetic analysis.

Acknowledgements

We express our gratitude to Prof. Yu-Cheng Dai (BJFC, China) allowed us to study his specimens and Dr. Bao-Kai Cui (BJFC, China) for improving the manuscript. The research was financed by the Fundamental Research Funds for the Central Universities (Project No. 2016ZCQ04) and the National Science and Technology Foundation Project of China (Project No. 2014FY210400).

References

- Bernicchia A, Gorjón SP, Vampola P, Ryvarden L, Prodi A. 2012 A phylogenetic analysis of *Antrodia* s. l. based on nrDNA ITS sequences, with emphasis on rhizomorphic European species. Mycological Progress 11, 93–100.
- Chen JJ, Cui BK, Zhou LW, Korhonen K, Dai YC. 2015a Phylogeny, divergence time estimation, and biogeography of the genus *Heterobasidion* (Basidiomycota, Russulales). Fungal Diversity 71, 185–200.
- Chen YY, Li HJ, Cui BK. 2015b Molecular phylogeny and taxonomy of *Fibroporia* in China. Phytotaxa 203, 47–54.
- Chen JJ, Cui BK, Dai YC. 2016a Global diversity and molecular systematics of *Wrightoporia* s. l. (Russulales, Basidiomycota). Persoonia 37, 21–36.
- Chen JJ, Cui BK, He SH, Cooper JA, Barrett MD, Chen JL, Dai YC. 2016b Molecular phylogeny and global diversity of the remarkable genus *Bondarzewia* (Basidiomycota, Russulales). Mycologia 108, 697–708.
- Chen YY, Cui BK. 2016 Phylogenetic analysis and taxonomy of the *Antrodia heteromorpha* complex in China. Mycoscience 57, 1–10.
- Cui BK. 2013 Antrodia tropica sp. nov. from southern China inferred from morphological characters and molecular data. Mycological Progress 12, 223–230.
- Cui BK, Dai YC. 2013 Molecular phylogeny and morphology reveal a new species of *Amyloporia* (Basidiomycota) from China. Antonie Van Leeuwenhoek 104, 817–827.
- Dai YC, Niemelä T. 2002 Changbai wood-rotting fungi 13. Antrodia sensu lato. Annales Botanici Fennici 39, 257–265.
- Donk MA. 1960 The generic names proposed for Polyporaceae. Persoonia 1, 173–302.
- Felsenstein J. 1985 Confidence intervals on phylogenies: an approach using the bootstrap. Evolution 39, 783–791.
- Han ML, Chen YY, Shen LL, Song J, Vlasák J, Dai YC, Cui BK. 2016 Taxonomy and phylogeny of the brown-rot fungi: *Fomitopsis* and its related genera. Fungal Diversity 80, 343–373.
- Hall TA. 1999 BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symposium Series 41, 95–98.
- Henrici A, Ryvarden L. 1997 Antrodia pseudosinuosa sp. nov. Mycologist 11, 152–153.
- Hillis DM, Bull JJ. 1993 An empirical test of bootstrapping as a method for assessing confidence in phylogenetic analysis. Systematic Biology 42, 182–192.
- Kim SY, Park SY, Ko KS, Jung HS. 2003 Phylogenetic analysis of *Antrodia* and related taxa based on partial mitochondrial SSU rDNA sequences. Antonie van Leeuwenhoek 83, 81–88.
- Li HJ, Cui BK, Dai YC. 2014 Taxonomy and multi-gene phylogeny of *Datronia* (Polyporales, Basidiomycota). Persoonia 32, 170–182.

- Nylander JAA. 2004 MrModeltest v2. Program distributed by the author. Evolutionary Biology Centre, Uppsala University.
- Ortiz-Santana B, Lindner DL, Miettinen O, Justo A, Hibbett DS. 2013 A phylogenetic overview of the antrodia clade (Basidiomycota, Polyporales). Mycologia 105, 1391–1411.
- Page RMD. 1996 Treeview: an application to display phylogenetic trees on personal computers. Computer Applications in the Biosciences Cabios 12, 357–358.
- Petersen JH. 1996 The Danish Mycological Society's colour-chart. Foreningen til Svampekundskabens Fremme, Greve.
- Posada D, Crandall KA. 1998 Modeltest: testing the model of DNA substitution. Bioinformatics 14, 817–818.
- Rajchenberg M, Gorjón SP, Pildain MB. 2011 The phylogenetic disposition of Antrodia s. l. (Polyporales, Basidiomycota) from Patagonia Argentina. Australian Systematic Botany 24, 111–120.
- Ronquist F, Huelsenbeck JP. 2003 MRBAYES 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19, 1572–1574.
- Ryvarden L, Johansen I. 1980 A preliminary polypore flora of East Africa. Fungiflora, Oslo. pp. 1–636.
- Ryvarden L. 1991 Genera of polypores. Nomenclature and taxonomy. Synopsis Fungorum 5, 1– 363.
- Ryvarden L, Melo I. 2014 Poroid fungi of Europe. Synopsis Fungorum 31, 1–455.
- Shen LL, Cui BK. 2014 Morphological and molecular evidence for a new species of *Postia* (Basidiomycota) from China. Cryptogamie Mycologie 35, 199–207.
- Shen LL, Cui BK, Dai YC. 2014 A new species of *Postia* (Polyporales, Basidiomycota) from China based on morphological and molecular evidence. Phytotaxa 162, 147–156.
- Shen LL, Liu HX, Cui BK. 2015 Morphological characters and molecular data reveal two new species of *Postia* (Basidiomycota) from China. Mycological Progress 14, 7.
- Spirin V, Miettinen O, Pennanen J, Kotiranta H, Niemela T. 2012 *Antrodia hyalina*, a new polypore from Russia, and *A. leucaena*, new to Europe. Mycological Progress 12, 53–61.
- Spirin V, Vlasák J, Niemelä T, Miettinen O. 2013 What is *Antrodia* sensu stricto? Mycologia 105, 1555–1576.
- Spirin V, Runnel K, Vlasák J, Miettinen O, Põldmaa K. 2015 Species diversity in the *Antrodia* crassa group (Polyporales, Basidiomycota). Fungal Biology 119, 1291–1310.
- Spirin V, Vlasák J, Niemelä T, Miettinen O. 2016 Hidden diversity in the *Antrodia malicola* group (Polyporales, Basidiomycota). Mycological Progress 15, 1–12.
- Stamatakis A. 2006 RAxML-VI-HPC: maximum likelihood-based phylogenetic analysis with thousands of taxa and mixed models. Bioinformatics 22, 2688–2690.
- Swofford DL. 2002 PAUP*: phylogenetic analysis using parsimony (*and other methods). version 4.0b10. Sinauer Associates, Sunderland.
- Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG. 1997 The Clustal_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Research 25, 4876–4882.
- Yu ZH, Wu SH, Wang DM, Chen CT. 2010 Phylogenetic relationships of Antrodia species and related taxa based on analyses of nuclear large subunit ribosomal DNA sequences. Botanic Studies 51, 53–60.
- Zhao CL, Cui BK, Dai YC. 2013 New species and phylogeny of *Perenniporia* based on morphological and molecular characters. Fungal Diversity 58, 47–60.
- Zhao CL, Cui BK, Song J, Dai YC. 2015 Fragiliporiaceae, a new family of Polyporales (Basidiomycota). Fungal Diversity 70, 115–126.