
Utilizing sponge spicules in taxonomic,
ecological and environmental
reconstructions: a review
Magdalena Łukowiak
Department of Environmental Paleobiology, Institute of Paleobiology, Polish Academy
of Sciences, Warsaw, Poland

ABSTRACT
Most sponges produce skeletons formed by spicules, structural elements that
develop in a wide variety of sizes and tridimensional shapes. The morphologies of
spicules are often unique to clade- or even species-level taxa which makes them
particularly useful in taxonomic assignments. When dead sponge bodies disintegrate,
spicules become incorporated into sediments and sometimes accumulate into
enormous agglomerations called spicule mats or beds, or fossilize to form special type
of rocks called the spiculites. The record of fossil and subfossil sponge spicules is
extraordinarily rich and often serves as a basis for far-reaching reconstructions of
sponge communities, though spicules are also bearers of significant ecological and
environmental information. Specific requirements and preferences of sponges
can be used to interpret the environment in which they lived, and reconstruct
oscillations in water depths, pH, temperatures, and other parameters, providing
snapshots of past climate conditions. In turn, the silicon isotope compositions in
spicules (δ30Si) are being increasingly often used to estimate the level of silicic
acid in the marine settings throughout the geological history, which enables to
reconstruct the past silica cycle and ocean circulation. This contribution provides a
review of the use of sponge spicules in reconstructions of sponge communities,
their ecology, and environments, and aims to detect the pertinent gaps in their
utilization. Even though spicules are well known for their significance as bearers of
taxonomic, ecological, and environmental data, their potential remains to be fully
exploited.
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INTRODUCTION
Sponges (Porifera) are a species-rich clade of the earliest-diverging metazoans (Wörheide
et al., 2012), with a global distribution (van Soest et al., 2012), diverse ecologies and
functions (Wulff, 1984, 2006; Bell, 2008; Maldonado, Ribes & Van Duyl, 2012; De Goeij
et al., 2013; Goeij, Lesser & Pawlik, 2017), and a record spanning at least the entire
Phanerozoic (Reitner & Wörheide, 2002). Among the four sub-clades of Porifera,
three (Demospongiae, Hexactinellida, and Homoscleromorpha) produce skeletons of
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amorphous silica (Hooper & Van Soest, 2002) and one (Calcarea) of magnesium-calcite
(Rossi et al., 2014). These skeletons are composed of elements called spicules (Uriz et al.,
2003; Sethmann & Wörheide, 2008).

Spicules provide structural support for maintaining the vertical body position, minimize
the metabolic cost of water exchange (Riisgard & Larsen, 1995; Uriz et al., 2003), and
may even deter predators (Uriz et al., 2003 and the literature cited therein). They often
develop in different sizes (Hooper & Van Soest, 2002) and a wide variety of tridimensional
shapes, with many being unique to clade- or even species-level taxa. Demosponges are
characterized by spicules of monaxonic or tetraxonic symmetry (Hooper & Van Soest,
2002). Hexactinellids produce spicules of hexactinic or triaxonic (cubic) symmetry or
shapes that are clearly derived from such morpohologies (Leys, Mackie & Reiswig, 2007).
The spicules of homoscleromorphs represent peculiar tetractines (calthrops) and their
derivatives that originate through reduction or ramification of the clads (Muricy &
Díaz, 2002). Spicules of Calcarea are produced in three basic forms: diactines, triactines
and tetractines (Manuel et al., 2002).

The mineral composition of sponge spicules makes these structures the most
resistant parts of the sponge bodies (Uriz, 2006) and ensures the ability of spicules
to withstand various taphonomic processes (Rützler & Macintyre, 1978; Łukowiak,
Pisera & O’Dea, 2013), resulting in that they often constitute the only evidence of
the presence of some sponges in an ecosystem (Łukowiak, 2016b). Even though sponges
are often known from rich assemblages of bodily-preserved specimens (Volkmer-
Ribeiro & Reitner, 1991; Olszewska-Nejbert & Świerczewska-Gładysz, 2013; Łukowiak &
Pisera, 2016), a significant part of their fossil and subfossil record is also represented
by their spicules. Having that in mind, spicules can be of crucial importance for
reconstructions of extinct or cryptic (hiding in cervices and caves) sponge communities;
and, indeed, they have been investigated especially with respect to their taxonomic
significance (Díaz & Rützler, 2001; Hooper & Van Soest, 2002). The morphologies of
spicules and their arrangement, together with other important sponge features, such as
the shape, consistency, and color, are essential when identifying sponges (Collin et al.,
2005).

In contrast to whole-bodied sponge fossils, spicules are common in many depositional
environments (Pisera, 2006). Their significance, however, is often underestimated,
which is mostly due to the difficulties in assigning disassociated spicules to sponge taxa
or due to the scarcity of the material.

Despite that numerous studies reviewed the current knowledge of various
neontological (Manconi & Pronzato, 2015) and paleontological (Pisera, 1999) aspects of
sponges, including their importance for evolutionary, ecological, and environmental
reconstructions (Harrison, 1988b; Pisera, 2004, 2006; Sim-Smith, Ellwood & Kelly, 2017;
De Freitas Oliveira, Da Costa & Benedito, 2020), spicules alone—though discussed to
some degree in all these studies—were given considerably less attention (Cohen, 2003;
Pronzato, Pisera & Manconi, 2017). For instance, Harrison (1988a) and Frost (2001)
discussed the utilization of freshwater sponge spicules in paleolimnological studies.
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Other than that, however, sponge spicules have never been the subject of a detailed review
that would summarize their utility in paleontological and neontological studies.

The purpose of the present contribution is to review the use of loose sponge spicules
(that is, those disassociated with sponge bodies), a widespread component in fossil,
subfossil, and recent marine and freshwater settings, in reconstructions of extinct and
modern sponge communities, their ecologies, and environments.

SURVEY METHODOLOGY
So far there were no comprehensive reviews concerning the use of freshwater and
marine sponge spicules. To provide an overview of the most relevant articles dealing
with the application of sponge skeletal elements in taxonomic, ecological, and
environmental studies I went through the records of Google Scholar and PubMed. I used
the search terms “sponge spicules”, “glass ramp”, “spiculite”, and “spongillite”
(see Table 1 for the numbers of obtained records). Note that the term “sponge spicules”
returns a very high number of records in Google Scholar. The results were examined one-
by-one and the vast majority of the records turned out to be irrelevant for the present
paper. Therefore, additional search was conducted, this time limited only to works
containing the searched term in the title. The online search was performed in August
2020. Expectedly, the records from both databases overlapped. Each record was further
explored in detail and additional references were obtained from the literature cited in
these works. The literature that was not available online—mostly printed-only
manuscripts from the first half of the 20th century and old, 19th century classic
paleontological works—were obtained through the Library of the Institute of
Paleobiology, Polish Academy of Sciences, Warsaw, Poland. Following the survey, I
compiled a database (Supplemental Information 1) comprising a list of the most relevant
articles (including the year of publication, authorship, language of the publication, type
of environment [marine/freshwater], type of studies (e.g., related to sponge taxonomy,
water properties, climate etc.), geographic area of investigation, and the age of the
investigated material). In the sections below, I discuss the papers that appear to be of
special relevance for the present contribution. In these papers, the disassociated
sponge spicules had to be (i) the only, (ii) the main, or (iii) a noteworthy component
used for the taxonomic, ecological, and environmental studies. Despite that efforts
were made to provide an exhaustive list of studies, it cannot be rules out that some
relevant papers were unintentionally omitted, for example due to their absence in the
explored search engines.

Table 1 The number of records obtained through Google Scholar and PubMed using the search terms “sponge spicules”, “glass ramp”,
“spiculite” and “spongillite”.

Term Sponge spicules Glass ramp Spiculite Spongillite

Records Relevant Records Relevant Records Relevant Records Relevant

Google Scholar 18,500 (184: in title) 28 150 12 1130 35 47 15

PubMed 367 6 58 0 1 0 0 0
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From formation to deposition: the ‘life cycle’ of spicules
The formation of spicules is controlled genetically (Krasko et al., 2000). In most cases,
the first growth phase is intracellular; it starts in sclerocytes (amoeboid cells responsible
for spicule formation) in mesohyl (Custódio, Hadju & Muricy, 2002; Müller et al.,
2005) and is mediated by silicatein, a special enzyme that initiates formation of the axial
filament (harbored by the axial canal) which provides the vertical axis of the spicule
(Shimizu et al., 1998; Fig. 1AI). The axial canal is filled with organic proteinaceous material
which usually extends to the tip of the newly-formed spicule (Simpson, Langenbruch &
Scalera-Liaci, 1985). The cross-section of the axial canal differs across major sponge
clades that produce siliceous spicules (it is triangular in demosponges (Uriz, Turon &
Becerro, 2000), irregular in homoscleromorphs (Uriz et al., 2003) and quadrangular in
hexactinellids (Uriz, 2006)). In calcareans (producing calcareous spicules) the axial
canal is not developed (Uriz, 2006). The geometry and the length of the axial filament
determines the shape of the spicule (Pisera, 2003). In desmoid spicules of ‘lithistids’
(an informal group of demosponges with articulated skeletons), however, the axial filament
is shorter than the spicule arms and it is possible that only organic molecules are involved
in the spicule-forming process (Pisera, 2003).

During formation of the siliceous spicules (Calcarea displays different mechanisms
of spicule biomineralization), sponges obtain silicon in the form of soluble silicic acid
and deposit it around the axial filament (see Uriz, Turon & Becerro, 2000; Uriz et al.,
2003), within a special membrane called silicalemma (Simpson, 1984, 1989). Silica is first
laid out as small 2 µm granules (Uriz, Turon & Becerro, 2000; Pisera, 2003) that are fused
to bigger spheres (or fused together within process of biosintering in Hexactinellida;
Müller et al., 2009). After some time, amorphous silica is added, forming evenly-deposited
concentric layers (Uriz et al., 2003; Fig. 1AII), separated from each other by ultrathin
organic interlayers (Werner et al., 2015). At this stage, immature spicules are secreted
from the sclerocyte and covered by pseudopodia of one to several cells (Fig. 1AIII); the
process of silica deposition and spicule growth continues (Uriz, Turon & Becerro, 2000).

After completing the deposition of silica (or during this phase), the spicule is transported
to the right place in the sponge body by crawling mesohyl cells, where spongocytes secrete
spongin fibrils around them and connect them with adjacent spicules (Uriz et al., 2003;
Fig. 1AIV). In some hexactinellids, that are characterized by rigid skeleton, the fusion of
spicules appears to occur parallel to spicule secretion (Reiswig, 2002).

When sponges are alive, their spicules provide a structural “framework”. Following their
death (Fig. 1B), the body and the skeleton structure, especially that of demosponges
in which the spicules are connected to each other only by perishable collagen fibers
(Fig. 1C), rapidly disintegrate leaving the spicules “free” (Fig. 1D); thus, sponges are rarely
wholly preserved in the fossil record. Their spicules, however, are incorporated into
sediments, often becoming one of the main components of sedimentary rocks (Rützler &
Macintyre, 1978; Harrison & Warner, 1986). Sometimes spicules accumulate into
enormous agglomerations called spicule mats or beds (Gutt, Böhmer & Dimmler, 2013).
These accumulations are characteristic for polar waters (Koltun, 1968; Gutt, 2007). Spicules
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can fossilize to form special type of rocks called the spiculites (spongillites for freshwater
sponge spicules); these types of rocks are known globally (Cayeux, 1929; Cavaroc &
Ferm, 1968; Gammon, 1978; Reid et al., 2008; Schindler, Wuttke & Poschmann, 2008), and
have been formed through the whole Phanerozoic (Gammon, 1978). Biosiliceous
sedimentation occasionally results in the formation of spiculitic cherts (in so called glass
ramps) which are recorded from the Permian to Eocene of many parts of the world (Gates,
James & Beauchamp, 2004; Ritterbush, 2019).

Figure 1 Spicule “life cycle”. (A) Spicule development in the mesohyl; (AI) Formation of spicule axial
filament (AF); (AII) Spicule (SP) growth within the sclerocyte; (AIII) Spicule growth with two sclerocytes
(SC) on spicule tips; (AIV) Transport of mature spicule within the sponge body; (B) Sponge death and
body decay; (C) Detached sponge fragment with spicules; (D) Disassociated spicules. (C and D) Photo
credit: Magdalena Łukowiak. Full-size DOI: 10.7717/peerj.10601/fig-1
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Assigning loose spicules to taxa
The use of sponge spicules in taxonomic, ecological, and environmental studies relies on
the proper understanding of spicule morphologies and their distribution among sponge
taxa. Owing to the great variety of spicule morphotypes, spicules are conventionally
divided based on their size into micro- and megascleres. The microscleres typically cover
spicules that are up to 150 µm long. The megascleres, in turn, comprise larger spicules and
their usual size is up to a few millimeters; though in some extreme cases, as in the
basal spicule of the hexactinellid Monorhaphis chuni, that is the largest known biosilica
structure, they reach 3 m in length (Lévi, 1973, 1989; Wang et al., 2007). The division into
micro- and megascleres, however, is not strict and the boundary between these two
categories can be somewhat blurry. Some microscleres, such as the sterrasters of Geodia
spp. or sigmas of Mycale spp. (Figs. 2A and 2B, respectively), can reach the size or
even become larger than an average megasclere. In turn, some megascleres, such as the
oxeas of Haliclona (Haliclona) epiphytica are small and do not exceed 100 µm (Fig. 2C;
Uriz et al., 2003). The spicules in some homoscleromorph sponges, such as some plakinids
(e.g., Plakina cf. atka; Uriz et al., 2003), are of ‘intermediate’ size (see Fig. 2D). The same
applies for ‘mesoscleres’, the spicules that develop in hexactinellids (Reiswig, 2002).

Despite that there is only just over 12 basic types of megascleres and 25 types of
microscleres recognized in demosponges, and 20 basic types of megascleres and 24 types
of microscleres in hexactinellids (Boury-Esnault & Rützler, 1997; Tabachnick & Reiswig,
2002), one type of spicules in homoscleromorphs (Muricy & Díaz, 2002), and three
basic types in calcareans (Manuel et al., 2002), actual variation of spicule morphologies
makes the real number of different morphotypes counted in hundreds (e.g., Figs. 3A–3L
and 4A–4L; e.g., Łukowiak, 2015).

However, despite the high variation, assignments of particular spicule morphotypes to
taxa remain complicated as the relation between the types of spicules and sponge taxa is

Figure 2 Sizes of different spicule types of marine sponges. (A) Microsclere (sterraster) of Geodia spp.;
(B) Microsclere (sigma) ofMycale (Mycale) quadripartita; (C) Megasclere (oxea) ofHaliclona (Haliclona)
epiphytica; (D) Spicule tetralophose calthrop of homoscleromorph Plakina cf. atka. (A) Photo credit:
Magdalena Łukowiak; (B and C) Photo credit: Rob van Soest; (D) Photo credit: Andrzej Pisera.

Full-size DOI: 10.7717/peerj.10601/fig-2
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rarely straightforward. Even though some spicule types are unique to species—e.g., the
diactines of Alectona wallichii (Figs. 3A and 3B), the subtylostyles of Cliona mucronata
(Figs. 3C and 3D), the short acanthotriaenes of Thrombus spp. (Figs. 3E and 3F), the
desmas of Vetulina spp. (Figs. 3G–3I), and the amphitriaenes of Samus anonymus (Figs.
3J–3L)—other spicules (e.g., oxeas) are widespread and develop in numerous sponge
clades in which many of them originated independently (Cárdenas et al., 2011).

Figure 3 Morphological diversity of selected marine sponge spicules. (A and B) Tuberculate diactines
of Alectona wallichii; (C and D) Subtylostyles of Cliona mucronata; (E and F) Shortshafted triaenes of
Thrombus abyssi; (G–I) Desmas of Vetulina sp.; (J–L) Amphitriaenes of Samus anonymus. (A–F and J–L)
Photo credit: Magdalena Łukowiak; (G–I) Photo credit: Andrzej Pisera. Not to scale.

Full-size DOI: 10.7717/peerj.10601/fig-3
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Even though the formation of spicules is controlled genetically, silica saturation also
plays a role in spicule development. In some unfavorable conditions (undersaturated
water), some types of microscleres are not produced (Uriz &Maldonado, 1995;Maldonado
et al., 1999) which results in a reduced set of spicules. Variation in spicule distribution can
be further observed at the individual scale. Many sponge species produce skeletons that
comprise a single spicule morphotype, such as Chondrilla caribensis and Amphimedon
compressa. However, while the spherasters of Ch. caribensis are easily recognizable
(Figs. 5A–5D), the oxeas of A. compressa cannot be unambiguously referred to the
taxon (Figs. 5E–5H). Other sponge taxa, in turn, comprise several spicule morphotypes
(e.g., Placospongia melobesioides; Figs. 5I–5M). The morphotypes of spicules and their
quantity can vary greatly within species as well (Hartman, 1981).

Review of the utility of loose spicules in neontological and
paleontological disciplines
Inoue (1984, 1985), Bertolino et al. (2012, 2017a, 2017b, 2019) and Łukowiak, Pisera &
O’Dea (2013) investigated the relation between living sponges and spicule assemblages.
The studies concerned marine sediment spicules, their preservation potential and how

Figure 4 Morphology of gemmuloscleres and spicules of freshwater sponges of the order Spongillida. (A) Gemmuloscleres of Anheteromeyenia
argyrosperma; (B) Tubelliform gemmulosclere of Acalle recurvata; (C) Birotules of Ephydatia; (D) Aster-like microscleres of Dosilia plumosa;
(E) Pseudomicrobirotules of Corvospongilla burmanica; (F) Strongyloxeas of Baikalospongia bacillifera; (G–J) Birotules (gemmuloscleres) of
Ephydatia cf. facunda; (K) Strongyle of Potamolepis marshalli; (L) Microxea of Drulia browni. (A–L) Photo credit: Andrzej Pisera; Not to scale.

Full-size DOI: 10.7717/peerj.10601/fig-4
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faithfully they reflect the living sponge communities. Both, surface sediment spicules
(Łukowiak, Pisera & O’Dea, 2013) and spicules from assemblages of coralligenous
conglomerates (Bertolino et al., 2014, 2017a, 2017b, 2019) were shown to reflect the living
sponge communities to a good degree of accuracy and can be used, with some cautions,
for reconstructing former sponge communities. In turn, Matteuzzo et al. (2015)
investigated the factors that influence the formation of spicules in freshwater sponges.
They showed that the sequential production of a complex set of spicules (alpha
megascleres followed by microscleres, gemmuloscleres and beta megascleres) in the
neotropical freshwater sponge Metania spinata depends on the water level, temperature,
and silicon concentration. They proved that the environmental reconstructions based
on the presence or absence of alpha megascleres and gemmuloscleres of freshwater
sponges in sediments can estimate the values of these environmental factors.

Sponge spicules in taxonomic studies
Reconstructing sponge communities

Numerous studies have used assemblages of disassociated spicules for reconstructions of
former sponge associations. The first attempts to reconstruct sponge communities based

Figure 5 Diversity of spicule morphology and sets of selected sponge species. (A) Sponge species with one type of highly diagnostic spicules:
Chondrilla caribensis (forma caribensis); (B–D) Spherasters; (E) Sponge species with one type of morphologically simple, non-diagnostic spicules:
Amphimedon compressa; (F–H) Oxeas; (I) Sponge species with a set of diagnostic spicule types: Placospongia melobesioides; (J) Selenaster;
(K) Spheraster; (L) Spherules; (M) Tylostyles of two size categories. (A–I) Photo credit: Magdalena Łukowiak; (J–M). Becking (2013) (published
under the license CC BY 3.0). Not to scale. Full-size DOI: 10.7717/peerj.10601/fig-5
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on loose spicules at a larger scale were published at the turn of the 19th and 20th century
for example in the works of Carter (1871) and Dunikowski (1882). In turn, the studies of
Hinde and Holmes (Hinde & Holmes, 1892; Hinde, 1910) focused on rich spicule
assemblages of the Southern Hemisphere and revealed an apparent richness of the
Eocene sponge fauna of New Zealand and Western Australia, respectively. Ever since
these pivotal attempts to comprehend the complexity of sponge spicule associations,
fossil, sub-fossil, and recent spicules have become the subject of numerous locality- or
region-specific studies that focused on assessing the sponge community compositions
(Schrammen, 1924; Reif, 1967; Moczydłowska & Paruch-Kulczycka, 1978; Mostler, 1976,
1990; Hartman, Wendt & Wiedenmayer, 1980; Gruber & Reitner, 1991; Kaesler, 2004 and
the literature cited therein). Wiedenmayer (1994) summarized the knowledge on the
post-Paleozoic sponge spicule record from different stratigraphic units and compared
the spicules derived from the fossil record with their possible counterparts present in
modern sponge taxa. The results of these investigations led him to provide discussion
of the origins and history of some sponge groups, including their ecological dependencies
and paleobiogeography. The studies of sponge spicules further intensified in subsequent
years (Brasier, Green & Shields, 1997; Castellani et al., 2012; Carrera & Maletz, 2014;
Łukowiak, Pisera & Stefanska, 2019). For instance, Łukowiak (2015) supplemented the
work of Hinde (1910) and revealed the richness of the sponge community of southern
coasts of the Australian continent. The reconstructed community was later compared
with that of New Zealand (Łukowiak, 2016a) that was initially described by Hinde &
Holmes (1892). Beresi (2003) reviewed the studies on Cambrian sponge spicules (and
chancelloriid sclerites) from the Argentine Precordillera, while Frisone et al. (2014)
described isolated spicules form the Eocene of Italy. Interestingly, despite that there are
many complications associated with studies of fossil loose sponge spicules, analyses of the
spicular record from modern surficial sediments may be helpful in traditional faunistic
studies. They can detect the presence of extant sponges that can be easily overlooked due to
their small size, or cryptic or excavating nature. For instance, Łukowiak (2016b) focused on
the sponge spicules from the lagoon reef of Bocas del Toro, Panama, and noticed the
presence of highly diagnostic spicules belonging to cryptic and excavating sponges that had
not been noted from that area before. Similar studies can be performed in freshwater
habitats to consider the history the sponge communities (Wilkins et al., 1991) or of
individual sponge taxa (Hall & Herrmann, 1980).

Assessing sponge community dynamics in time
The information obtained from loose spicules has been also applied to investigate
the changes in the record of spicule assemblages through time. Such studies require
spicule-rich sediment portions (Volkmer-Ribeiro, De Ezcurra & Parolin, 2007) and the best
results are obtained when an uninterrupted spicule record is available. It seems that
absolutely-dated sediment cores are the best way to obtain continuous record of the
changes in spicule assemblages (Bertolino et al., 2014, 2017a, 2017b, 2019; Gaino et al.,
2012; Łukowiak et al., 2018; Rasbold et al., 2019a).
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The spicules obtained from different time intervals can be further processed by means of
quantitative (Volkmer-Ribeiro et al., 2006; Bertolino et al., 2014; Łukowiak et al., 2018;
Rasbold et al., 2019a), semiquantitative (Karabanov et al., 2000), and qualitative (Yang,
Duthie & Delorme, 1993; Bertolino et al., 2014) methods. Such approaches allow to
explore the stability (Bertolino et al., 2014) and dynamics (Bertolino et al., 2017b; Łukowiak
et al., 2018) of the sponge associations in a given place over the millennial time span.
They also allow to compare the recent and ancient sponge communities (Łukowiak, 2016a;
Łukowiak et al., 2018; Bertolino et al., 2014, 2017a, 2017b, 2019). Bertolino et al. (2017b)
investigated fluctuations in the sponge community structure from the coralligenous
biogenic build-ups from the Liguarian Sea (Western Mediterranean). They compared
sponge faunas from the last 3,500 years (and from 40 YBP in particular) with the modern
sponge community of this place, showing turning points in sponge diversity and
abundance. They inferred a considerable reduction of species richness that occurred
during a time interval of about 40 years (1973–2014) and that affected mainly the massive/
erect sponges; particularly those of the clade Keratosa and, to a lesser degree, encrusting
and cavity dwelling sponges (Bertolino et al., 2017b).

In turn, Łukowiak et al. (2018) confronted the modern sponge community of Bocas
del Toro, Caribbean Panama, with the spicule record from the same area covering the
last 900 years of sponge community dynamics. In their study, Łukowiak et al. (2018)
recognized changes in the structure of the sponge community (expressed through the
decrease in the number of spherical and ovoid spicules belonging mostly to some
chondrillids, Placospongia spp. and Geodia spp., and the increase in the numbers of
monaxonic spicules, mostly of haplosclerids and axinellids) and investigated the
correlation between their data with records of contemporaneous reef inhabitants. As main
sponge predators in this area are turtles and fishes (parrot- and anglerfishes), and the
turtles feed mostly on sponges with spherical spicules, they concluded that the increase
in the numbers of spherical spicules in the sediment relative to monaxons could be
connected with the overfishing of the hawksbill turtle Eretmochelys imbricata that became
gradually less abundant at that time.

Sponge spicules as proxies for reconstructions of ecological
dependencies, environmental conditions, and paleoclimate
Ecological and environmental reconstructions
Recognition of the characteristics of former sponge communities can initiate larger-scale
reconstructions of the environmental conditions in the studied area. Once the loose
spicules are assigned to their respective taxa, the next crucial step is to become familiar
with their ecology (Volkmer-Ribeiro & Machado, 2007); that is, habitat requirements and
environmental preferences of particular sponge species or larger clades (see Supplemental
Information 2). For example, Koltun (1960) already pointed out the existence of
sponge taxa of specific environmental requirements which make them potential
indicators of water salinity, temperature, or depth. Recognized sponge communities can
provide information about the water regime, flow, and velocity (lentic vs. lotic
conditions; for example, Parolin, Volkmer-Ribeiro & Stevaux, 2007, 2008;
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Machado, Volkmer-Ribeiro & Iannuzzi, 2012; Kuerten et al., 2013), pH (Harrison &
Warner, 1986; Pisera & Saez, 2003), light intensity (e.g., Harrison, 1974; Supplemental
Information 2), temperature (e.g., Gammon, James & Pisera, 2000; Gaino et al., 2012),
currents (e.g., Molina-Cruz, 1991), salinity (e.g., Cumming, Wilson & Smol, 1993), and
depth (e.g., Hinde & Holmes, 1892; Pisera, Cachao & Da Silva, 2006; Łukowiak, Pisera &
Schlögl, 2014; Łukowiak, 2016a; see Fig. 6). Also, less obvious parameters can be
reconstructed through the investigations that use sediment spicules, such as dissolved silica
concentrations (Kratz et al., 1991). In their work, Kratz et al. (1991)measured the width of
megascleres obtained from lake deposits to estimate the silica concentration in the last
12,000 years in the area of Wisconsin (USA). They concluded that the concentrations of
dissolved silica were gradually decreasing over that time. However, Kratz et al. (1991)
did not provide precise assignment of the spicules to any of the three possible species
(Spongilla lacustris, Corvomeyania everetti, and Eunapius fragilis) rising concerns that the
size shift may have actually resulted from species replacement. A possible differential
dissolution of spicules as a function of depth could also influence their size. It is essential to
note, however, that the authors were aware of these problems.

Sponge spicules are also common components of soils (Kaczorek et al., 2018 and the
literature cited therein) and can provide information about soil origins (Jones & Beavers,
1963; Wilding & Drees, 1968; Harrison, 1988b; Schwandes & Collins, 1994). In most
cases, the spicules found in soils belong to freshwater sponges (Harrison, 1988b)
and are indicative of the fluvial origin of the deposits (Chauvel, Walker & Lucas, 1996).
The distribution, type and degree of fracturing of spicules in soil can help to reveal whether
the sediments are autochthonous or allochthonous, and, if the latter, where they originated
(Wilding & Drees, 1968; Schwandes & Collins, 1994). Schwandes & Collins (1994)
showed that in well-drained soils the number of spicules is smaller than in those that are
poorly-drained and noticed that in the dry pounds the number of spicules increased
towards the pond center, thus clarifying the precise location of these ancient waterbodies.

Sponge spicules are also found in other types of wet terrestrial environments; in
waterlogged soils, hydric soils (Schwandes & Collins, 1994), and marshland (Volkmer-
Ribeiro, 1992). Apart from providing information on the origins of soils, spicules can reveal
the occurrence, duration, and intensity of floods (Golyeva, 2008) or the presence of eolian
transport (Wilding & Drees, 1968).

Through the use of demosponge spicules and by applying the facies analysis it is
possible to reconstruct sedimentary environment of spicule-rich deposits (Mehl &
Lehnert, 1997; Frisone et al., 2014). The recognition of sponge taxa with very narrow and
specific environmental preferences can facilitate the reconstructions of water depth
(Fig. 6), temperature, and climate (Parolin, Volkmer-Ribeiro & Stevaux, 2008; Pisera,
Siver & Wolfe, 2016), though it is necessary to bear in mind that some sponges (notably
hexactinellids and lithistids) that are generally thought to be deep-water indicators, are
also reported form shallow waters (2 m; Leys et al., 2004; Perez et al., 2004). Therefore,
bathymetric reconstructions should not be based on a single taxon.

However, such actualistic approach needs to be applied with caution. Under certain
favorable conditions (e.g., calm hydrodynamic setting and high water dissolved silica (DSi)
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Figure 6 Bathymetrical range of selected sponge species. Demosponge Samus anonymus (up to 50 m),
hexactinellid Scleroplegma lanterna (~100–600 m), hexactinellid Aulocalyx irregularis (~550–915 m),
lithistid demosponge Neoaulaxinia persicum (~500–1,700 m).

Full-size DOI: 10.7717/peerj.10601/fig-6
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concentrations (Alvarez et al., 2017)), modern sponges that are interpreted as indicators of
cold deep waters may have inhabited warm and shallow settings in the past (Gammon,
James & Pisera, 2000).

Sponge distribution is closely associated with water nutrient level, including water
DSi concentrations (for more details see Alvarez et al., 2017). Sponge assemblages were
studied to estimate the distributions of sponges along a DSi gradient and to assess the
validity of fossil sponges as a paleoecological tool for inferring DSi concentrations in the
past oceans (Alvarez et al., 2017). The study showed a correlation between the presence
of hexactinellid sponges in an environment and high DSi levels; for the other sponge
groups the linkage was not so straightforward and depth could have been another factor
that could have some impact on the spatial distribution of sponge assemblages (Alvarez
et al., 2017).

The reconstructions of geographical ranges of sponge taxa, in turn, lead to new
paleobiogeographical and ecological inferences. A southern Australian shallow water
sponge community reconstructed by Łukowiak (2016a) broadened the geographical ranges
of some sponge taxa (e.g., Dotona pulchella and Mycale (Rhaphidotheca) loricata) in the
late Eocene. Their bathymetrical range changed too as today they occupy deep water
niches and are considered to be Tethyan relicts. The broader geographical occurrences in
the geological past further explain the disconnected distribution of some sponge groups in
modern times and possibly elucidate their migration pathways. When compared the fossil
sponge community of southern Australia with the recent one, the taxonomic composition
of the sponge fauna in this region appears to be relatively stable since the Eocene
(Łukowiak, 2016a).

Of special interest and importance are sponges inhabiting freshwater environments
because they represent accurate environmental indicators (Harrison, 1988a, 1988b;
Volkmer-Ribeiro & Turcq, 1996; Frost, 2001; Volkmer-Ribeiro, De Ezcurra & Parolin, 2007;
Parolin, Volkmer-Ribeiro & Stevaux, 2008). Their spicules, together with gemmuloscleres
(the spicules of sponge resting bodies) (Manconi & Pronzato, 2002), are widely used as
a proxy for reconstructions of the parameters associated with the water quality (Yang,
Duthie & Delorme, 1993).

Some characteristics of sponge spicules can change depending on environmental
parameters, such as the silica concentrations of the habitat (Turner, 1985;Matteuzzo et al.,
2015), which may provide a paleolimnological measure of long-term silica dynamics or
past water-chemistry conditions (Kratz et al., 1991). Such inferences became possible
mainly owing to the studies of the environmental preferences of modern freshwater
sponges (Harrison, 1974, 1977, 1979; Harrison & Harrison, 1977, 1979; Harrison,
Gleason & Stone, 1979; Poirrier, 1969, 1974; Volkmer-Ribeiro, 1981; Evans & Montagnes,
2019). The development in our understanding of the base-line ecological parameters of
many extant freshwater sponge species was gathered and summarized byHarrison (1988b)
and the literature cited therein who provided a comprehensive and useful key to
environmental preferences of North American freshwater sponge species that could be
applied in paleolimnological studies (see Supplemental Information 2; for example, Racek,
1966, 1970, 1974; Harrison, 1990).
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Importantly, the spicular data can be used for quantitative studies irrespective of the
species assignment. The abundance of sponge spicules in combination with the data
obtained from other organisms (e.g., diatoms, chrysophyte cysts, plant phytoliths, and
scales) is an indicator of suitable habitat conditions and the decrease in the numbers of
spicules can be interpreted to be due to the deterioration of water quality (Yang, Duthie &
Delorme, 1993) or changes of past salinity conditions (Cumming, Wilson & Smol, 1993).
Gaiser et al. (2004) reconstructed a complex 5,500-year-long hydrological history of a
temporary pond in the Savannah River Site, South Carolina (USA). They reconstructed a
transformation from a vegetated marsh to an open, permanently flooded water body
about 3,750–4,630 YBP. The return to a wetland community took place ~3,750 YBP
(Gaiser et al., 2004). Even though the authors recognized the presence of three
sponge species in their assemblage, they did not explore whether their occurrence is
indicative of an important environmental information (water pH, conductivity).
The most comprehensive assessment of the use of freshwater sponge spicules for
paleoenvironmental reconstructions was conducted in riverine and lentic systems in
Caatinga (Santos et al., 2016) and Pantanal wetlands ecosystems (McGlue et al., 2012;
Kuerten et al., 2013; Rasbold et al., 2019b) in Brazil. Parolin, Volkmer-Ribeiro & Stevaux
(2007, 2008), Guerreiro et al. (2013) and Zviejkovski et al. (2017) focused mostly on
reconstructing the history of lake sediments on colluvial-alluvial terraces in the Upper
Paraná River, while Rasbold et al. (2019a) investigated the history of island deposits.
Rasbold et al. (2019a) reconstructed the evolution and origin of two closely located riverine
islands (Bandeirantes and Grande) during the late Pleistocene to Holocene in the
northern Brazil (Upper Paraná River). The spicules of freshwater sponges were used to
reconstruct the assemblage composition, the relationship between species richness and
frequency, and spicule preservation, as well as to complement the facies analysis. Rasbold
et al. (2019a) revealed the differences in formation of these two islands. For example, in
one of them the lacustrine environments were predominant since the mid-Holocene
(the lentic environment is inferred from the presence of spicules of Tubella variabilis
and Radiospongilla amazonensis), whereas the second island was cut off from the river
floodplain by channel avulsion and influenced by the river flow (as indicated by the
presence of spicules of riverine species, including Uruguaya corallioides, Oncosclera
schubarti, O. navicela and Corvospongilla seckti). In the coastal area of Rio Grande
do Sul (S Brazil), in turn, the numbers and the morphotypes of sponge spicules
(and gemmuloscleres) of several freshwater bodies provided evidence for a regular
succession of seasonally drier periods (Volkmer-Ribeiro et al., 2006). Further, the study
showed that the analysis of sediment spicules could also predict the evolution of this limnic
area (Volkmer-Ribeiro et al., 2006). In the northern part of Brazil sponge spicules were
used to investigate the origins of deposits of karstic lake (Machado, Volkmer-Ribeiro &
Iannuzzi, 2016), while in central-west Brazil the evolution of the limnic system was
reconstructed (Machado, Volkmer-Ribeiro & Iannuzzi, 2014). Machado, Volkmer-
Ribeiro & Iannuzzi (2014) investigated sediments from about 52,000 to 27,500 YBP and
recognized three stages of the development of the lake: the installation, establishment, and
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development stage. Following the recognition of environmental preferences of the
identified sponge species, they estimated the weather patterns. For instance, the presence
of spicules belonging to Corvoheteromeyenia australis indicated polar incursions.
The presence of spicules of Corvomeyenia thumi, in turn, suggested that drier and
hotter weather conditions might have been predominant for short time periods (between
~48,333 and 34,700 YBP). The history of the paleolake ended with complete filling of
the basin and disappearance of the sponge spicules and can be correlated with the Last
Glacial Maximum, which occurred between 25,000 and 11,000 YBP (Machado,
Volkmer-Ribeiro & Iannuzzi, 2014).

Isotopes in sponge spicules as a geochemical proxy

The structural and chemical properties of siliceous shells of seawater diatoms were found
to be archives of silicon isotope composition (δ30Si) and a proxy for past silicic acid
utilization, thus providing insights into silicon cycling in ancient oceans (De La Rocha,
Brzezinski & De Niro, 1997; De La Rocha et al., 1998; Racki & Cordey, 2000; Egan et al.,
2012). These studies initiated the investigations of the use of silicon isotope composition
in other marine organisms producing siliceous skeleton, including sponges (Douthitt,
1982; De La Rocha, 2003). Sponges, as bottom dwellers, provide information about
deep-water dissolved silica (DSi) concentrations. The studies ofHendry & Robinson (2012)
were conducted on materials picked from core-top sediments that were obtained from
several different ocean basins. The spicules were evaluated with respect to whether the
Si isotopic fractionation depends on the geographic distribution, salinity, and water
temperature. It was discovered that the relationship between Si(OH)4 and δ30Si in sponge
spicules is the same in different oceans and does not depend on water temperature and
salinity. Thus, global ocean silicon cycling can be inferred through quantification of the
changes in deep water dissolved silicon concentrations (Fontorbe et al., 2017;Hendry et al.,
2019). The silicon isotopic fractionation appears to be biologically controlled due to
preferential uptake of the light isotope (Wille et al. 2010) and is a function of silicic
acid concentration (Hendry & Robinson, 2012). Also, Hendry et al. (2010a) showed that
there are no significant post-depositional effects or early diagenetic overprints on Si
fractionation in deep sea sponge spicules. It was further showed that the relationship
between δ29Si and δ30Si in sponges is consistent with kinetic fractionation during
biomineralization and that fossil spicules preserve the primary δ30Si signal recorded in
living sponges (Hendry et al., 2010a). However, Cassarino et al. (2018) revealed the
differences in silicification mechanism between the two major clades, demosponges and
hexactinellids. The fused dictyonal frameworks of hexactinellids, characterized by
secondary silicification, exhibit extremely light δ30Si signatures. This is probably due to the
enzymes that mediate silica deposition. The differences in spicule structure, that is, the
level of fusion of the skeleton and hence, the presence of the secondary silica deposition as
well as the presence of considerable amounts of organic molecules, may also play an
important role in silica fractionation (Cassarino et al., 2018). Thus, sponges with the
dictyonal framework do not fit the asymptotic relationship with DSi. Also, specific groups
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of sponges (carnivorous or those with hypersilicified or giant spicules) give anomalous
geochemical signatures (Hendry et al., 2019). Hendry et al. (2019) further revealed
differences in isotopic fractionation between mixed-species and monospecific sponge
assemblages, showing a smaller variability among monospecific aggregations (Hendry
et al., 2019). Thus, the reconstructions of past water silica should be made on sponges with
certain spicule types; that is, using the spicules of demosponges and hexactinellids, except
those whose skeletons show the dictyonal framework and those with abnormal
morphologies (Hendry et al., 2019).

Nevertheless, sponge spicules seem to be among the most promising sources for
the reconstruction of deep water silicic acid concentration over the geological time.
Deep sea sponge spicules and diatoms from sediment cores obtained in the Scotia Sea
(Southern Ocean) have shown that water Si(OH)4 concentrations can be reconstructed for
sediments deposited within the last tens of thousands of years (Hendry et al., 2010b);
though, the reconstructions of water dissolved silicon level have been also inferred from
spicules originating from the Eocene (De La Rocha, 2003; Fontorbe et al., 2016, 2017).
Fontorbe et al. (2017) used the silicon isotopic composition of sponge spicules and
radiolarian tests in 50–23 Ma timespan (Eocene and Oligocene) in order to reconstruct
deep-water silica levels and to examine upper ocean δ30Si. The decrease of δ30Si and
hence the higher dissolved Si concentrations in sponge spicules was interpreted as being
related to the shift towards a solely Southern Ocean source of deep-water in the Pacific
during the Paleogene (Fontorbe et al., 2017). Although the studies aiming to recreate the
whole-ocean silica cycling have not been conducted on materials older than Eocene (De La
Rocha, 2003; Fontorbe et al., 2017), they do not seem to be limited by time; rather, they
depend on the quality of the spicular record.

Other studies applied germanium to silicon ratios (Ge/Si) from the siliceous sponge
spicules to trace the Si sources and cycling (indicators, among others, of continental
weathering and hydrothermal activity). Sutton (2011) showed that the reconstruction of
Si concentrations in ancient water is more accurate when comparing two geochemical
proxies for Si utilization, Ge/Si and Si isotope composition of siliceous organisms. She also
suggested that the reconstruction of deep-water Si level from sponge spicules is more
helpful in investigations of whole ocean changes than from the surface water provided
by the Ge/Si or Si isotope composition of diatoms (Sutton, 2011). Ellwood et al. (2006)
investigated the reconstructions of paleo-Ge and -Si concentrations using two models that
depend on two scenarios of Ge incorporation into sponge silica. They explored which of
them works best for reconstructions of paleo-Ge and which for paleo-Si concentrations
(Ellwood et al., 2006).

Jochum et al. (2017) used the slowly-growing basal spicule (basalium) of the modern
deep-sea sponge Monorhaphis chuni to reconstruct silica and Ge/Si ratios during the
last deglacial period. The basalium ofM. chuniwas also used for the assessment of seawater
paleotemperatures of East China Sea throughout the last 11,000 years (±3,000 years) by
measuring isotopic composition and Mg/Ca ratios taken according to spicule growth,
incrementally from the center of the spicule to its surface (Jochum et al., 2012).
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Pertinent gaps and new research directions
Despite that disassociated sponge spicules have already proven to be of great importance
for taxonomic, paleoecological, and paleoenvironmental studies, a significant amount of
work remains to be done to make a full use of their potential. The first concerns are
associated with the “spicular analysis” (Harrison, Gleason & Stone, 1979), the assessment
of loose sponge spicules and their assignment to sponge taxa. The method is still
somewhat vaguely defined, largely “qualitative”, and relies on one’s expertise (the
knowledge of spicule morphologies, distribution, and variation within and among
sponge taxa); though larger-scale “spicular analyses” occasionally involve quantitative
methods (Bertolino et al., 2014). In the case of morphologically characteristic spicules that
appear in a limited number of taxa or are unique to a single species, the taxonomic
assignment may be easy and the newly-obtained information unambiguous (Łukowiak,
2016b). In most cases, however, spicule assessments are challenging and the “spicular
analysis” leads to several possible explanations for the observed spicule composition,
especially when dealing with environments that show evidence for selective preservation
(or removal of some components) or bear traces of transport over some distance.
The processes acting on dead sponge bodies and their parts, involving the spicule
transport, removal, and/or dissolution (especially of microsclere spicules; see Land, 1976;
Rützler & Macintyre, 1978; Maldonado et al., 2005), are in general understudied. Still,
the most significant gaps are associated with the investigation of the processes that
take place when sponge body (or its part) decays. There are currently no data concerning
the decomposition rate, nor the factors that can have an impact on this rate. Therefore,
the understanding of the step-by-step disintegration of sponge individuals and the
response of particular spicule morphotypes (such as microscleres) to removal pressures
would significantly enhance the utility of spicule assemblages in paleoecological and
paleoenvironmental investigations. Finally, due to lack of quantitative studies of ratios
of particular spicule types in sponge bodies, the loose, disassociated skeletal elements
(often comprising common spicule types that are present in numerous sponge taxa) in
surface sediment usually represent an unknown number of sponge species of an unknown
biomass. A quantitative model that would facilitate spicule assessments and sponge
identification could be applied to provide a more precise reconstruction of the
sedimentary environments without the need to “manually” assign each spicule type to
sponge taxa. Even though spicular data have occasionally been assessed through
quantitative methods (Bertolino et al., 2014; Rasbold et al., 2019a), such approach to
the study of sponge spicules is still rarely used, despite that the usually high numbers
of spicules, their widespread distribution, and differences in their morphologies
appear to offer an excellent opportunity to conduct various multivariate and occurrence
analyses.

The studies of isotopes in sponge spicules are of great importance and potential, either,
as they provided an entirely new tool for reconstructions of silicic acid concentrations
in the geological history (De La Rocha, 2003; Fontorbe et al., 2016). Nevertheless,

Łukowiak (2020), PeerJ, DOI 10.7717/peerj.10601 18/30

http://dx.doi.org/10.7717/peerj.10601
https://peerj.com/


substantial gaps still persist with respect to the knowledge of isotope fractionation
processes. Aside from anomalous geochemical signatures in spicules of carnivorous
sponges and those with hypersilicified skeletons or in giant spicules (Hendry et al., 2019),
and in mixed sponge aggregations (Hendry et al., 2019), it remains to explore whether
the silicon isotopic fractionation is dependent on the taxonomic position of the sponge
and if it is constant during the spicule growth. The reliability of the results obtained
from fossil spicules, however, is tightly coupled with the quality of the material (e.g., the
degree and type of diagenetic alteration and dissolution processes).

Even though sponge spicules are well known for their significance as bearers of
taxonomic, ecological, and environmental data, and have been investigated with that
respect in numerous studies, their potential has yet to be fully exploited.
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