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Abstract: Tactile sensing, particularly the detection of object slippage, is required for skillful object
handling by robotic grippers. The real-time measurement and identification of the dynamic shear
forces that result from slippage events are crucial for slip detection and effective object interaction.
In this study, a ferroelectric polymer-based printed soft sensor for object slippage detection was
developed and fabricated by screen printing. The proposed sensor demonstrated a sensitivity of
8.2 µC·cm−2 and was responsive to shear forces applied in both the parallel and perpendicular
directions. An amplifier circuit, based on a printed organic thin-film transistor, was applied and
achieved a high sensitivity of 0.1 cm2/V·s. Therefore, this study experimentally demonstrates the
effectiveness of the proposed printable high-sensitivity tactile sensor, which could serve as part of a
wearable robotic e-skin. The sensor could facilitate the production of a system to detect and prevent
the slippage of objects from robotic grippers.
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1. Introduction

Currently, industrial robots provide automated systems that can grasp and manipulate objects
and serve in fields such as electronic device manufacturing and food industries [1,2]. Robots with
soft sensors for tactile sensing have recently attracted considerable research attention. Functionalized
flexible sensors that enable sensing, such as touch, temperature, and vision [3–10] in robot systems,
have been applied to enhance automated systems [11–15]. Moreover, because robots with such sensors
can be applied to artificial intelligence and big data, their usefulness has been expanded [16,17].
In particular, the detection of object slippage from robotic grippers by using the fabricated soft sensor
is an important issue for robotic system control.

Piezoelectric polymer-based tactile slippage detection sensors can measure the shear force
generated by a slippage event. Recent studies have demonstrated the use of fabricated ferroelectric-
material-based sensors for robotic e-skin [18–20]. Soft sensors can be mounted on rigid- and soft-robot
for making a sensing system such a biomimetic tactile sensor. To date, however, no studies have
reported on the use of printed soft sensors to sense the shear forces experienced by robotic grippers.
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The arrangement and types of materials for the fabrication of these high-performance devices have
remained a challenging task [21]. Therefore, it is necessary to improve the sensitivity of ferroelectric
materials for shear force detection. Further, a printing process for device fabrication would be superior to
current sensor manufacturing systems because it would enable the use of highly efficient materials and
the production of low-cost devices. Recently, S. Pyo et al. reported a Carbon nanotube (CNT) -polymer
composite based tactile sensor. In this paper, they developed a flexible three-axis tactile sensor by
screen printing a system with a carbon nanotube-polymer materials composite. The CNT-based sensor
had an arrayed-pattern and can measure an applied stress by changing resistance [22]. In addition,
this sensor can be fabricated by screen printing, which has been widely used to fabricate various
micropatterns for its cost effectiveness. J. Hwang et al., fabricated a pressure sensor using piezoresistive
composites by multi-walled carbon nanotubes and polydimethylsiloxane as a polymer matrix. This can
detect an extremely small pressure range which is required for finger-sensing [23]. On the other hand,
the piezoelectric polymer-based sensor does not require an array-pattern. Moreover, it can detect a
shear force that is changing in minute time.

In this study, a ferroelectric polymer-based printed soft sensor was fabricated to sense and measure
the dynamic shear forces generated during a slippage event. The proposed sensor achieved a sensitivity
of 8.2 µC·cm−2, and a robotic gripper that included the sensor demonstrated the ability to detect
shear force. Moreover, an amplifier circuit using an organic thin-film transistor (OTFT), which was
also fabricated using a printing process, was applied and achieved a high sensitivity of 0.1 cm2/V·s.
The results demonstrate the feasibility of producing a robotic gripper that includes a high-sensitivity
electronic skin system for detecting slippage events.

2. Materials and Methods

2.1. Device Fabrication

A schematic overview of the fabricated soft shear sensor is shown in Figure 1a,b. The sensor was
fabricated on a 50 µm thick (Q65HA, DuPont) poly(ethylene naphthalate) (PEN) film substrate and
affixed to a glass carrier. A cross-linkable poly(4-vinyl-phenol) (PVP) (436224, Sigma-Aldrich) solution
consisting of a mixture of PVP and melamine resin (418560, Sigma-Aldrich) was spin-coated onto the
PEN film as the planarization layer using 1-methoxy-2-propyl acetate (01948-00, Kanto Chemicals) as
the solvent. An 800 nm thick lower electrode made from poly(3,4-ethylenedioxythiophene) polystyrene
sulfonate (PEDOT:PSS) (Clevios SV4 STAB, Heraeus) was screen printed onto the planarization
layer and annealed at 150 ◦C for 30 min [24]. Further, a 8000 nm thick layer of poly(vinylidene
fluoride-co-trifluoroethylene) (P(VDF-TrFE)) (FC-25, Piezotech, VDF:TrFE molar ratio of 75:25) dissolved
in trimethylphosphate (TMP) at a concentration of 12 wt.% was formed by blade printing and annealed
at 145 ◦C for 1 h. The upper sensor electrode consisted of screen printed PEDOT:PSS and was
annealed at 145 ◦C for 30 min. Finally, several passivation layers consisting of PEN, polyimide (PI),
and polyvinyl chloride (PVC) were placed onto the device. The total weight of our sensor was just
under 1.0 g. The chemical structures of the P(VDF-TrFE) and the components of the passivation layers
are shown in Figure 1c.
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Figure 1. Soft shear force sensor fabrication: (a) Illustration of the fabricated sensor; (b) Photo of the 
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polarization–electric field (P–E) loop of the sensor was estimated using the Sawyer–Tower method 
[25]. The sensor piezoelectricity was measured using an electric slider testing machine 
(EASM4NYD010AZAC, Oriental Motor). X-ray diffraction (XRD) (SmartLab, Rigaku) measurements 
of the P(VDF-TrFE) layer were performed to assess crystallinity and analyze the crystal structures. 
The surface and interface morphologies of the P(VDF-TrFE) layer were observed using an atomic 
force microscope (AFM) (5500, Agilent). Fourier transform infrared (FT-IR) measurements were 
performed at a spectral resolution of 2 cm using an FT-IR spectrometer (Nicolet iS5, Thermo 
Scientific). The dynamic friction coefficient of the devices was evaluated using a dynamic friction 
measuring instrument (μV 1000, Trinity Lab).  

2.3. Amplifier Circuit 

An amplifier circuit was developed using an OTFT to achieve high sensitivity. The device was 
fabricated using bottom-gate and bottom-contact techniques. The OTFT consisted of a flexible 
substrate (PEN), bottom electrode (deposited Al, 30 nm), insulator (polyparaxylene, 200 nm), source–
drain (S/D) electrodes (Ag nanoparticles, 500 nm), semiconductors, and passivation layers 
(polyparaxylene, 200 nm). The length and width of the OTFT channels were approximately 30 and 
800 μm, respectively. In this case, the thickness of PVDF-based ferroelectric layer used was 2000 nm. 

3. Results and Discussion 

Figure 2 shows the electrical and chemical characteristics of the sensor. Figure 2a shows the P–E 
loop providing the ferroelectric polarization of the sensor. The measured polarization, Pr (μC·cm−2), 
and coercive electric field, Ec (MV·m−1), were 8.2 μC·cm−2 and 50 MV·m−1, respectively, which are 

Figure 1. Soft shear force sensor fabrication: (a) Illustration of the fabricated sensor; (b) Photo of the
sensor, scale bar = 5 cm; (c) Chemical structures of the ferroelectric and passivation layer materials.
poly(vinylidene fluoride-co-trifluoroethylene): (P(VDF-TrFE)); poly(ethylene naphthalate): (PEN);
polyimide: (PI); polyvinyl chloride: (PVC).

2.2. Sensor Characterization

All the sensor characteristics were measured under atmospheric conditions using an oscilloscope
(MDO3000, Tektronix) and a waveform generator (AFG3101C, Tektronix). The polarization–electric field
(P–E) loop of the sensor was estimated using the Sawyer–Tower method [25]. The sensor piezoelectricity
was measured using an electric slider testing machine (EASM4NYD010AZAC, Oriental Motor). X-ray
diffraction (XRD) (SmartLab, Rigaku) measurements of the P(VDF-TrFE) layer were performed to
assess crystallinity and analyze the crystal structures. The surface and interface morphologies of the
P(VDF-TrFE) layer were observed using an atomic force microscope (AFM) (5500, Agilent). Fourier
transform infrared (FT-IR) measurements were performed at a spectral resolution of 2 cm using an
FT-IR spectrometer (Nicolet iS5, Thermo Scientific). The dynamic friction coefficient of the devices was
evaluated using a dynamic friction measuring instrument (µV 1000, Trinity Lab).

2.3. Amplifier Circuit

An amplifier circuit was developed using an OTFT to achieve high sensitivity. The device was
fabricated using bottom-gate and bottom-contact techniques. The OTFT consisted of a flexible substrate
(PEN), bottom electrode (deposited Al, 30 nm), insulator (polyparaxylene, 200 nm), source–drain
(S/D) electrodes (Ag nanoparticles, 500 nm), semiconductors, and passivation layers (polyparaxylene,
200 nm). The length and width of the OTFT channels were approximately 30 and 800 µm, respectively.
In this case, the thickness of PVDF-based ferroelectric layer used was 2000 nm.

3. Results and Discussion

Figure 2 shows the electrical and chemical characteristics of the sensor. Figure 2a shows the P–E
loop providing the ferroelectric polarization of the sensor. The measured polarization, Pr (µC·cm−2),
and coercive electric field, Ec (MV·m−1), were 8.2 µC·cm−2 and 50 MV·m−1, respectively, which are
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considered appropriate for a P(VDF-TrFE)-based printed ferroelectric layer [26]. Figure 2b shows a
surface AFM image of the printed P(VDF-TrFE) layer. The Root Mean Square (RMS) value calculated
from its surface morphology was 15.0 nm. Figure 2c shows the 2θpeak signal of the printed P(VDF-TrFE)
layer, which indicated a (110/200) crystal face, highlighted by the purple dashed box. This result clearly
demonstrated that the sensor had a β phase in this layer [27]. Figure 2d provides the FT-IR spectra of
the printed ferroelectric layers in powdery, the signal peaks at 1405 and 845 cm−1 represent the β phase
transformation of the P(VDF-TrFE) [28]. Figure 2e illustrates the dependence of the sensor polarization
on the annealing temperature; the average values for the three samples are shown. Annealing at 145 ◦C
provided the highest polarization value of 8.2 µC·cm−2 because the crystallization temperature of the
P(VDF-TrFE) was in the range of 130–150 ◦C [29].
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Figure 2. Electrical and chemical characteristics of the soft shear force sensor: (a) Measured P-E
curve (1 Hz sensor frequency); (b) Surface atomic force microscope (AFM) images of the P(VDF-TrFE)
layers annealed at 145 ◦C (scale bar = 100 nm); (c) Printed ferroelectric layer XRD spectra after
annealing; (d) Ferroelectric layers FT-IR spectra; (e) Ferroelectric layer polarization as a function of the
annealing temperature.

The dynamic coercive friction values of the passivation sensor layers were also measured, as shown
in Figure 3. The measurement setup of the dynamic friction measuring instrument consisted of a
load-cell, indenter (glass ball), stage, and the soft sensor samples, which were attached to the stage
(Figure 3a). The instrument employed in the dynamic friction measurements obtained the friction
values by the indenter scanning across the surface of the sample in the parallel direction (Figure 3b);
the perpendicular force of the indenter on the sample was 1 N. Figure 3c shows the measured friction
coefficients for the PEN, PI, and PVC layers as a function of the scanning distance; the coefficients were
determined to be 0.12, 0.18, and 0.24, respectively. The reported values were obtained by averaging
the results for several distances between 10 and 50 mm. The dependence of the obtained friction
coefficient values upon the indenter scanning speed was tested for speeds of 1–5 mm·s−1, and the
results are illustrated in Figure 3d,e. The raw data measured for the PEN-covered sensor are shown in
Figure 3d. Figure 3e provides the friction coefficient values as a function of the scanning speed for the
different passivation layer materials. From these results, the friction coefficient did not depend on
scanning speed.
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Figure 4 shows the experimental setup for determining the slip-sensing abilities of the sensor.
Figure 4a provides a photo image of the measurement setup with the artificial finger, which was
moved over the object surface by the electric slider; therefore, the force F acted in the parallel direction.
Figure 4b illustrates the friction model developed from the equation of motion. The model was
calculated by the formulae representing the frictional force [29].

The sensor generated voltage in response to the dynamic friction caused by the object slippage.
Because the sensor was composed of a piezo-material, the voltage generation phenomena are described
by [30]

V = ad33
dσ
dt

T (4), (1)

where a is a coefficient, d33 is the piezoelectric constant, σ is the applied strain, t is time, and T is the
thickness of the P(VDF-TrFE) layer. Figure 4c shows the sensor response upon the application of a
parallel force. In this test, the passivation layers were the PEN, PI, and PVC films. When the artificial
finger contacted and moved over the object surface, the sensor produced a piezoelectrical signal that
resulted in a voltage spike (the green and orange arrows in Figure 4c). In contrast, a periodic signal
was generated when a parallel (shear) force was applied (the purple arrow in Figure 4c). Figure 4d
shows the measurement setup with the robotic gripper. The friction model developed based on the
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equation of motion is shown in Figure 4e. This model was calculated based on the formula of friction
force as follows [29]:

F1 − F2 = 0; (2)

f1 + f2 = mg. (3)
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Figure 4. Object slippage detection by the soft sensor: (a) Measurement setup showing the artificial
finger and the electric slider; (b) Friction model based on the equation of motion; (c) Signals detected
by the sensors in each passivation layer (PEN, PI, and PVC); (d) Measurement setup with the robotic
gripper; (e) Friction model developed from the equation of motion; (f) Signals detected by the robotic
gripper sensors for each passivation layer (PEN, PI, and PVC); (g) Voltage response of the PEN film
during object slippage (magnification of (f)). The stick-slip (S-S) spectra are shown in red; (h) S-S
spectra of the piezoelectric voltage signals for different fractional layers over a range of frequencies.

The force mg acts in the perpendicular direction. Figure 4f shows the sensor response when the
object fell from the robotic gripper. For this test, the passivation layers of the sensor were also the PEN,
PI, and PVC films. As in the previous test, a voltage spike was generated when the gripper contacted
and scanned the object surface. Figure 4g magnifies the graph in Figure 4f for the PEN film passivation
layer to illustrate the response when the object slipped. Periodic stick-slip (S-S) signals were generated
during the slip phase due to the jerking motion between the two slipping objects (i.e., the soft sensor
and object) [30–32]. Moreover, the spectra repeated periodically if the object fell at a constant velocity.
Figure S1 shows the mechanical fatigue of our sensor as a generated voltage during long-term cycling.
Moreover, in Figure S2, we described the occurrence of shear force. The S-S spectra of the voltage
features exhibited time-dependent variations, as shown in Figure 4e. A glass bottle with a low frictional
coefficient produced S-S signals with a frequency of ~100 Hz. In this work, a quick-time response is
required in the soft shear sensor because the S-S phenomena occurred in minute time. Our sensor
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could measure the S-S slippage events in real-time monitoring. We demonstrated the detection of
objects slippage using our sensor which has high sensitivity and quick-time response. In addition,
through layer-by-layer production on the substrate via printing technology, the sensor was flexible
and lightweight. Thus, we could detect slip events by using our sensor mounted on the robot hands.
In particular, the characteristic of quick-time response of the sensor was useful for finding the S-S
phenomena between the object and robot hands.

An amplifier circuit was developed using an organic thin-film transistor (OTFT) to achieve high
sensitivity. Figure 5a provides a cross-sectional schematic of the fabricated OTFT device. In general,
slippage signals tend to be weak. Therefore, we composed the amplifier circuit with OTFT devices
which can produce flexible electronics. Moreover, we demonstrated a connection system with the
sensor and OTFT in Figure S3. Figure 5b shows the chemical structure of the molecule selected to
serve as the organic semiconductor. Figure 5c provides a diagram of the amplifier circuit and sensor.
In this circuit, when pressure was applied to the sensor, voltage was generated to the gate electrode,
and the difference in current between the S/D electrodes was measured. The transfer characteristics of
the OTFT—as an amplification circuit component—are displayed in Figure 5d. The applied gate and
drain voltages were −30 V. The field-effect mobility of the OTFTs was 0.1 cm2/V·s in the saturation
region. Figure 5e,f show the results of applying perpendicular pressure to the sensor at 1 kPa and
10 kPa, respectively; the current changes were then analyzed (shown by the green arrows in Figure 5e,f).
We succeeded in detecting the applied pressure by using our soft sensor and OTFT device. From the
results, the use of OTFTs as amplifier components for the soft sensors was demonstrated to be feasible.
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4. Conclusions

In this study, a soft sensor comprising a ferroelectric polymer and several passivation layers
was developed and fabricated to sense object slippage. P(VDF-TrFE) served as the ferroelectric layer,
and PEN, PI, and PVC films were the passivation layers. This ferroelectric-based sensor demonstrated
good ferroelectric characteristics, providing ferroelectricity of 8.2 µC·cm−2 after annealing at 140 ◦C.
The device was proven to be practical for detecting object slippage events, based on its reactions to
parallel and perpendicular forces. Moreover, the OTFT devices were demonstrated to be practical
amplifiers, by demonstrating stable electric performance and a field-effect mobility of 0.1 cm2/V·s.
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From the results, the use of OTFTs as amplifier components for the soft sensors was demonstrated to
be feasible. Moreover, we showed the potential application of OTFT as an amplifier circuit for sensor
devices. The work in this study could serve as a foundation for the development of effective slippage
detection sensors for application in robotic gripper devices. This study tested only one proposed
device and fabrication technique. Future work could provide comparative evaluations to ensure the
highest performance and greatest cost-effectiveness.

Supplementary Materials: The following are available online at http://www.mdpi.com/2072-666X/11/10/927/s1,
Figure S1: A mechanical fatigue of our sensor as a normalized voltage during long-term cycling for 3500 cycles.
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