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Abstract: This extensive review covers research published between 2010 and 2012 regarding new
compounds derived from marine sponges, including 62 species from 60 genera belonging to
33 families and 13 orders of the Demospongia class (Porifera). The emphasis is on the cytotoxic
activity that bioactive metabolites from sponges may have on cancer cell lines. At least 197 novel
chemical structures from 337 compounds isolated have been found to support this work. Details
on the source and taxonomy of the sponges, their geographical occurrence, and a range of chemical
structures are presented. The compounds discovered from the reviewed marine sponges fall into
mainly four chemical classes: terpenoids (41.9%), alkaloids (26.2%), macrolides (8.9%) and peptides
(6.3%) which, along with polyketides, sterols, and others show a range of biological activities. The key
sponge orders studied in the reviewed research were Dictyoceratida, Haplosclerida, Tetractinellida,
Poecilosclerida, and Agelasida. Petrosia, Haliclona (Haplosclerida), Rhabdastrella (Tetractinellida),
Coscinoderma and Hyppospongia (Dictyioceratida), were found to be the most promising genera
because of their capacity for producing new bioactive compounds. Several of the new compounds
and their synthetic analogues have shown in vitro cytotoxic and pro-apoptotic activities against
various tumor/cancer cell lines, and some of them will undergo further in vivo evaluation.

Keywords: porifera; marine sponges; pharmacology; bioactive molecules; cytotoxicity; cancer
cell lines

1. Introduction

Sponges (Porifera), the phylogenetically oldest metazoan phylum still in existence today, have
been established as being an exceptionally valuable source of new marine natural products. As a
consequence of their evolutionary development—mainly regarding their sessile mode of life, their
porous and multicelled colonial form—sponges produce a range of secondary metabolites, mostly
alkaloids as good toxicants, that play an important role as allomones and protect them against predators
and fouling organisms [1,2]. Therefore, it is clear that these apparently defenseless organisms were
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endowed by evolution with strong allelopathic factors and, by logical deduction, could be authentic
bio factories of new drugs of natural origin.

Besides elements of alkaloidal nature, sponges also biosynthesize other interesting classes of
natural products such as terpenoids, glycosides, phenols, phenazines, polyketides, fatty acids, peptides,
amino acid analogues, nucleosides, porphyrins, aliphatic cyclic peroxides and sterols [3–5], whose
chemical structures display highly complex frameworks and are factually relevant per se.

Once isolated in a laboratory, these substances can display strong and often highly
specific biological activities such as antibacterial, antiviral, antifungal, anti-prion, antimalarial,
anti-inflammatory and immune or neuro-suppressive qualities [6–9]. They exhibit, moreover,
pronounced cytotoxic activity towards certain types of malignant cell lines, which make them potential
drug targets for the treatment of multifactorial diseases such as cancer [10,11]. Additionally, when
exposed to a cytotoxic compound, healthy living cells can also be induced to undergo either necrosis
(accidental cell death) or apoptosis (programmed cell death).

DNA damage and consequent apoptosis are leading cytotoxic mechanisms of several anticancer
agents [12]; therefore, certain assays measure DNA damage and apoptosis. In fact, cell cytotoxicity
refers to the ability of certain chemicals or mediator cells to damage or destroy living cells which are
reproducing. Therefore, the measuring of cell cytotoxicity is quite indispensable for the development
of therapeutic anti-cancer drugs [13].

Cell cytotoxicity can be measured in a number of different ways. Assessing cell viability through
the use of vital dyes (formazan dyes), protease biomarkers or by measuring ATP content are some
of the most commonly used methods [14,15]. The colorimetric method, known as MTT in vitro cell
viability assay—developed by Mossman [16]—and its derivatives (MTS/PMS), are still the most
economic, versatile, and widespread assay types for evaluating preliminary anticancer activity in both
synthetic derivatives and natural products [17]. Therefore, endeavoring to understand the mechanisms
of action involved in cytotoxicity can certainly give researchers more in-depth knowledge into the
biological processes governing the growth, proliferation and death of cells [18].

By far, molecules from sponges with antineoplastic properties—inhibiting or preventing the
growth and spread of tumors—have great significance for chemistry, pharmacology and medicine, and
constitute still a big unknown to researchers [19]. The characterization of these bioactive compounds
may encourage synthetic proposal and other biotechnological procedures for the large-scale production
of these challenging structures [20–23], while these renewable approaches may also contribute to
preserve the wild stocks of sponges as natural repositories of these molecules.

Cancer is documented as a complex group of diseases caused by interactions of multiple factors
such as genetic susceptibility, environmental and lifestyle influences, infectious agents and ageing [24],
for which traditional chemotherapies and targeted anticancer treatments exert their effects by direct
cytotoxicity or tumor growth inhibition. Nevertheless, the curative effects of these chemotherapeutic
drugs are not always good enough and are often associated with numerous side-effects. Consequently,
the search for highly efficient anticancer therapies remains the biggest challenge in medicine [25].

Literature records reveal that many natural products isolated from marine sponges have
displayed a wide range of antineoplastic properties. Nowadays, more than five thousand compounds
have been isolated from these metazoans whereas over a hundred new molecules are reported
each year [8,11,26–30], and most interesting: a large part of them exhibit low micromolar cytotoxicity
towards a range of human cancer cell lines.

Therefore, the most conventional method for identifying possible chemotherapeutic agents
appears to be the mass screening of natural products for their cytotoxic activities allied with an
effective set of dereplication strategies in order to increase the efficiency of the lead compounds
discovery process [30]. In vivo and in vitro chemopreventive/anticancer research involves the
evaluation of antiproliferative, antiangiogenic and apoptosis induction potentials of the isolated
compounds [12,31–33].
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Cytotoxic assays represent a bottleneck for any potential bioactives before they undergo preclinical
and clinical trials, in particular those compounds tested against malignant cell lines. The use of
biological models systems to access indirect in vivo toxicity (e.g., Artemia nauplii and echinoderm
eggs/embryos assays) still constitutes a useful tool for preliminary assess to lethality produced by
marine natural products [34,35], while a more sophisticated approach (secondary screen) corresponds
to the access to in vitro cytotoxicity carried out on animals (e.g. murine tumor lines) or human cancer
cells lines [13,36]. However, and as general rule, it is important to remember that toxic components
denote pharmacological interest always at low-micromolar concentration, defined as an IC50 value of
≤10 µM (or 4–5 µg·mL−1) [37], below which they would appear as possible candidates for additional
mechanism-of-action studies.

Pancreatic cancer, for example, is considered one of the most malignant tumors mainly due to its
aggressive metastasis spreading and its high resistance to apoptosis. Moreover, Manzamine A (HB-071)
is a known β-carboline alkaloid biosynthesized by diverse marine sponges that has been tested on
Panc-1 ATCC® CRL-1469™ (Homo sapiens pancreas/duct epithelial) cancer cell lines. Thus, its potent
cytotoxic effect has been assayed in vitro against this disease, at low micromolar dosage (5 and 10 µM),
showing to be an effective antitumor lead compound once it has restored sensitivity to apoptosis [38].

Given the importance of their cytotoxic effects, numerous natural products isolated from
marine-sponges and their analogues and derivatives, have been synthesized to date [39–42]. These have
proven to be—these and other bioassays—an important tool for developing potentially useful
anticancer agents that are mainly naturally resistant to proapoptotic stimuli such as glioblastomas,
melanomas, non-small-cell-lung cancers and metastatic cancers [43,44]. Thus, and beyond the
significance of these chemical structures—and additionally, a number of synthetic studies have also
been included in this work.

1.1. Taxonomy of Marine Sponges

The phylogeny of marine sponges has been established exclusively with structural and
morphological characteristics whose results were withheld in Systema Porifera (SP), a reference guide
to the classification of sponges edited by Hooper and van Soest [45]. However, the implementation
of molecular techniques directed to the phylogenetic analyses of different genes has progressively
readjusted the topology of part of the Porifera tree.

Although the SP can be considered out of date, it has developed the systematics of the phylum
until recently, organizing the available knowledge regarding these multifaceted organisms and serving
as an important supporting tool to the spongologists and natural product researchers. Notwithstanding,
the World Porifera Database (WPD) [46], which is the web’s largest world database of all recent sponges
ever described, is complementary to the aforementioned SP and incorporates the latest and future
amendments of the sponge classification, including the recently proposed revision by Morrow and
Cárdenas [47].

Thus, in order to improve reading comprehension and provide easy access to the scientific
information, the structure of this article has been organized in alphabetical sequence, particularly,
based on the phylogenetic analysis of the sponges whose classification was revised by Morrow and
Cárdenas [47]. Nevertheless, this work should be understood first as an element of guidance, from
which the readers can deepen their knowledge with simply accessing a specific database, and looking
for a specific topic of their interest.

1.2. Research and Methodology

This review provides concise information about the chemical diversity found in the Demospongiae
class of sponges particularly about secondary metabolites, where a deep bibliographic search was
done across the SciFinder, ScienceDirect and PubMed databases, using the keywords “sponge” on the
one hand and “activity” on the other. Also, a supplementary bibliographic search was carried across
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the SciFinder, to seek out biological activities and synthetic proposals from metabolites described for
each genus of sponges that were named in the review.

During the review preparation, several searches were made to locate digital records of theses and
dissertations at various international institutions. In all assessments, a few restrictive terms were used:
“porifera” or “sponge” and “activity or activities”. After obtaining the results, we excluded duplicates
as well as references to other “sponges” (e.g., plant, surgical or metal), and records on paleontology
and sedimentology.

Publications on taxonomic descriptions were also used to establish the list of species, which was
organized in some measure according to the taxonomic structure adopted in Systema Porifera [45],
which was revised by Morrow and Cárdenas [47]; and finally contrasted with the information offered
in WPD, available online at http://www.marinespecies.org/porifera [46].

On the other hand, and for a better understanding of this work, it is assumed that all chemical
structures mentioned in the manuscript were characterized by detailed spectroscopic analysis, and
comparison of their spectroscopic data with those of related model compounds reported in the
literature, while the absolute stereochemistry of certain structures was defined by analysis of the
coupling constants and optical rotation, among other techniques.

The emphasis of this proposal rests on the pharmacological activities, especially regarding the
cytotoxic activity, where several of these metabolites were evaluated against a broad range of malignant
cell lines obtained in different cell banks across the world. Moreover, some molecular structures
were added to illustrate the manuscript and as a didactic form to improve the understanding of the
work, allowing the reader explore several facets of organic chemistry and biological aspects of these
intriguing organisms.

Accordingly, this manuscript was organized taking into consideration a hierarchical taxonomic
archetypal. The families were described within each order and the known genera with their
correspondingly species (identified or not) were described within each family, along their
described structural groups of natural products and cytotoxic properties recorded during the
triennium 2010–2012.

2. Porifera Involved in the Biosynthesis of Cytotoxic Metabolites

The phylum porifera is classified in three major classes, namely Calcareae (calcareous sponges),
Hexactinellidae (glass sponges) and Demospongiae (horny sponges). However, only species belonging
to the class Demospongia were considered in this review since this group of Porifera includes almost
all the records on natural products—chemical structures and their pharmacological properties—found
in the database search constrained to the records between 2010 and 2012.

2.1. Class: Demospongiae

The Demospongiae higher taxa classification has been recently revised based on the reevaluation
of their morphological characters along with the molecular data which were recompiled from the
scientific literature over the last decade [47]. As a result, the spongologists have proposed the use of
22 orders termed Agelasida, Axinellida, Biemnida, Bubarida, Chondrillida, Chondrosiida, Clionaida,
Dendroceratida, Desmacellida, Dictyoceratida, Haplosclerida, Merliida, Poecilosclerida, Polymastiida,
Scopalinida, Sphaerocladida, Spongillida, Suberitida, Tethyida, Tetractinellida, Trachycladida and
Verongiida, which belong to the known subclasses Heteroscleromorpha, Keratosa and Verongimorpha.

2.1.1. Order: Agelasida

The order Agelasida has been preserved from SP and involves two families: Agelasidae and
Astroscleridae [48,49]. However, during the time interval in which the review was conducted in the
database, it has not been detected natural products isolated from sponges belonging to the latter family,
the Astroscleridae.

http://www.marinespecies.org/porifera
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Family: Agelasidae

The family Agelasidae formerly was a monotypic family having the genus Agelas as its
unique representative [49]. However, the taxon was revised and it has received two new
genera, Acanthostylotella and Amphynomia, both initially assigned to the family Raspailiidae
(Poecilosclerida) [48]. As per the SciFinder database, this small group of sponges is known
to contain terpenoids (diterpenes and alkaloids based on terpenoid skeletons), free steroids,
alkaloids (bromopyrrole and N-methyladenine-containing alkaloids, fluorinated agelastatin analogues,
pyrrole carboxylic acids- and aminoimidazol- derivatives), C11N5 diketopiperazines, α-linked
galactosylceramides (cerebrosides), glycolipids, carotenoids, fatty acids, bisuracil analogs and other
types of chemical components. These metabolites display several biological activities including
cytotoxic, antitumor (anticancer), antiangiogenic, as an inhibitors of protein tyrosine phosphatase
1B (PTP1B), antimicrobial (antibacterial and antifungal), and antiprotozoal (antileishmanial and
trypanocidal) activities.

In the search for new bioactive compounds from the sea, Calcul et al. have collected an
unidentified specimen of marine sponge belonging to the genus Agelas, and they have isolated
four novel 9-N-methyladeninium diterpenoids named agelasine M, 2-oxo-agelasine B, gelasine A,
and gelasine B accompanied by the known agelasines B and F [49]. According to theses authors,
all pure compounds were evaluated for cytotoxicity against Jurkat T-leukemia cells (clone E6-1).
Nonetheless, strong cytotoxicity was only observed for agelasine F (I, Figure 1) with IC50 growth
inhibitory concentration value of 3.3 µg·mL−1 but not for the new derivative agelasine M. The search
for records revealed that a total synthesis of ent-agelasine F had already been achieved, starting from
commercially available (R)-pulegone [50].

The chemical investigation of the marine sponge Agelas citrina, that was collected at Little
San Salvador, Bahamas, yielded three new diterpene alkaloids, the hypotaurocyamines named
(−)-agelasidines E and F, and an adeninium salt [51]. According with this work, the known agelasine
N was also isolated along with six known natural products, agelasines B–E, 2-oxo-agelasine B, and
(−)-agelasidine C. (−)-Agelasidine C has exhibited weak cytotoxic activity against human chronic
lymphocytic leukemia (CLL) cell lines with IC50 value of 10−3 M. A total synthesis of agelasidine C
had been accomplished by Asao et al. [52].

Molecules 2017, 22, 208  5 of 33 

 

alkaloids based on terpenoid skeletons), free steroids, alkaloids (bromopyrrole and 
N-methyladenine-containing alkaloids, fluorinated agelastatin analogues, pyrrole carboxylic acids- 
and aminoimidazol- derivatives), C11N5 diketopiperazines, α-linked galactosylceramides 
(cerebrosides), glycolipids, carotenoids, fatty acids, bisuracil analogs and other types of chemical 
components. These metabolites display several biological activities including cytotoxic, antitumor 
(anticancer), antiangiogenic, as an inhibitors of protein tyrosine phosphatase 1B (PTP1B), 
antimicrobial (antibacterial and antifungal), and antiprotozoal (antileishmanial and trypanocidal) 
activities. 

In the search for new bioactive compounds from the sea, Calcul et al. have collected an 
unidentified specimen of marine sponge belonging to the genus Agelas, and they have isolated four 
novel 9-N-methyladeninium diterpenoids named agelasine M, 2-oxo-agelasine B, gelasine A, and 
gelasine B accompanied by the known agelasines B and F [49]. According to theses authors, all pure 
compounds were evaluated for cytotoxicity against Jurkat T-leukemia cells (clone E6-1). 
Nonetheless, strong cytotoxicity was only observed for agelasine F (I, Figure 1) with IC50 growth 
inhibitory concentration value of 3.3 µg·mL−1 but not for the new derivative agelasine M. The search 
for records revealed that a total synthesis of ent-agelasine F had already been achieved, starting from 
commercially available (R)-pulegone [50]. 

The chemical investigation of the marine sponge Agelas citrina, that was collected at Little San 
Salvador, Bahamas, yielded three new diterpene alkaloids, the hypotaurocyamines named 
(−)-agelasidines E and F, and an adeninium salt [51]. According with this work, the known agelasine 
N was also isolated along with six known natural products, agelasines B–E, 2-oxo-agelasine B, and 
(−)-agelasidine C. (−)-Agelasidine C has exhibited weak cytotoxic activity against human chronic 
lymphocytic leukemia (CLL) cell lines with IC50 value of 10−3 M. A total synthesis of agelasidine C 
had been accomplished by Asao et al. [52]. 

 

Figure 1. Agelasine F (I) and (−)-agelastatin A (II). 

On the other hand, the butanolic extract from Agelas dendromorpha led the isolation of three new 
pyrrole-2-aminoimidazole (P-2-AI) alkaloids, named agelastatins E and F and benzosceptrin C, 
together with 10 known metabolites, agelastatins A and D, sceptrin, manzacidin A, tauroacidin A, 
taurodispacamide A, nortopsentin D, thymine, longamide, and 4,5-dibromopyrrole-2-carboxamide. 
The pure compounds were screened for cytotoxic activity against the human nasopharyngeal 
epidermoid carcinoma (KB) cell lines and, except for (−)-agelastatin A (II, Figure 1) which has shown 
100% activity at 30.0 and 3.0 µM. All other compounds have shown no significant bioactivity at 30.0 
µM [53]. In a recent study, natural (−)-agelastatin A has exhibited potent in vitro activity against 
primary CLL cell lines, and it has disclosed the synthesis of several analogues that were equipotent 
or exceed the potency of the naturally occurring product [54]. 
  

Figure 1. Agelasine F (I) and (−)-agelastatin A (II).

On the other hand, the butanolic extract from Agelas dendromorpha led the isolation of three
new pyrrole-2-aminoimidazole (P-2-AI) alkaloids, named agelastatins E and F and benzosceptrin C,
together with 10 known metabolites, agelastatins A and D, sceptrin, manzacidin A, tauroacidin A,
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taurodispacamide A, nortopsentin D, thymine, longamide, and 4,5-dibromopyrrole-2-carboxamide.
The pure compounds were screened for cytotoxic activity against the human nasopharyngeal
epidermoid carcinoma (KB) cell lines and, except for (−)-agelastatin A (II, Figure 1) which has
shown 100% activity at 30.0 and 3.0 µM. All other compounds have shown no significant bioactivity at
30.0 µM [53]. In a recent study, natural (−)-agelastatin A has exhibited potent in vitro activity against
primary CLL cell lines, and it has disclosed the synthesis of several analogues that were equipotent or
exceed the potency of the naturally occurring product [54].

2.1.2. Order: Axinellida

The order Axinellida, not present in SP, has been recently resurrected and encompasses the
families Axinellidae, Heteroxyidae, Raspailiidae and Stelligeridae [47]. Some bioactive metabolites
from species belonging to three families of this order are detailed below.

Family: Axinellidae

The Axinellidae family covers the genera Axinella, Dragmacidon, Dragmaxia and Epipolasis [47].
Outlined in the SciFinder database, this family of sponges biosynthesizes a wide range of metabolites
such as terpenes (triterpenes, bicyclic sesquiterpenes, aromatic sesquiterpenes type alpha-curcumenes,
and azulene diterpenes), sterols, alkaloids (acylated taurine and pyridinium derivatives, β-carboline
and bromo pyrrole aminoimidazole alkaloids, as well as pyrrole carboxylic acid derivatives),
cyclopeptides (C11N5 diketopiperazines), macrolides of the spirastrellolides family, polyethers,
phospholipid fatty acids, glycosphingolipids (cerebrosides), sulfated compounds, nucleosides, and
other natural products. These biologically active metabolites show cytotoxic (antitumor), antimicrobial
(antibacterial and antifungal), anti-inflammatory and antiprotozoal (antileishmanial) properties.

Thus, spirastrellolides A and B have been isolated as free acids from an undescribed marine
sponge of the genus Epipolasis. These compounds had been isolated previously from Spirastrella coccinea
after conversion to the methyl esters. In this work, the cytotoxic activities of spirastrellolides A and
B against HeLa cells have shown that the activities of the free acids are comparable to those of the
corresponding methyl esters where they had shown citotoxicities, with IC50 values in the range of 20.0
to 70.0 nM [55]. Synthetic studies on spirastrellolides had been reported by Smith et al. [40].

On the other hand, one new isonitrile diterpene together with three known ones have been
isolated from Dragmacidon (Pseudoaxinella) flava, and were in vitro assayed in human cancer cell lines,
using an MTT colorimetric assay and quantitative video microscopy. Two isonitriles have displayed
activity for human PC3 prostate apoptosis-sensitive cancer cell lines. These results identify marine
diterpene isonitriles as potential lead compounds for anticancer drug discovery. All diterpenes have
displayed similar growth inhibitory activities for the human PC3 prostate cancer cell lines, with IC50

growth inhibitory values ranging from 1.0 to 7.0 µM for the isonitriles. The IC50 growth inhibitory
concentrations for two of these isonitriles were 25.0 and 10.0 µM for U373 glioblastoma, 50.0 and
4.0 µM for Hs683 oligodendroglioma, 42.0 and 16.0 µM in A549 NSCLC, 3.0 µM for both compounds
for LoVo colon cancer, and 6.0 and 32.0 µM for SKMEL-28 melanoma cell lines, respectively [56].

Family: Raspailiidae

Sponges belonging to the family Raspailiidae include species belonging to a wide range of genera
such as Acantheurypon (Poecilosclerida incertae sedis), Aulospongus, Axechina, Ceratopsion, Cyamon,
Didiscus, Endectyon, Ectyoplasia, Eurypon, Hymeraphia, Lithoplocamia, Pandaros, Ptilocaulis, Plocamione,
Raspaciona, Raspailia, Reniochalina, Rhabdeurypon, Sollasella, Tethyspira, Thrinacophora, Trachostylea,
Trikentrion and Waltherarndtia [47].

As described in the SciFinder database, this group of sponges is known to contain also a
wide variety of secondary metabolites such as phenolic sesquiterpenes, diterpenes, triterpenoids,
sulfated steroids, steroidal glycosides, acetylated glycolipids, linear and cyclic peptides, phorboxazoles,
indole-, guanidine-, and diterpene-alkaloids, acetylenic alcohols, as well as dihydrothiopyranones
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and diyne-enol-ethers of glycerols. Pharmacological investigation on these secondary metabolites has
revealed their bioactive properties: cytotoxic (antitumor), antimicrobial, antiviral (anti-hepatitis B and
anti-HIV-1), hemolytic, nematocidal and antiprotozoal (antimalarial) activities.

So, two cytotoxic peptides named yaku’amides A and B were isolated from an undescribed
sponge of the genus Ceratopsion. Yaku’amides A and B have exhibited potent cell-growth inhibitory
activity against P388 murine leukemia cells with IC50 values of 14.0 and 4.0 ng·mL−1, respectively. In
order to analyze the mode of action of yaku’amide A, it was examined its growth inhibitory profile
against a panel of 39 human cancer cell lines. Because yaku’amide A exhibits clearly a unique profile
as compared to any 38 anticancer drugs, it is suggested that yaku’amide A has a particular mode
of action in its growth-inhibitory activity [57]. A synthetic study of yaku’amides A and B has been
recently published [58].

2.1.3. Order: Bubarida

The order Bubarida has been erected and encompasses two families, Bubaridae and
Dictyonellidae [47]. However, records on natural products isolated from marine sponges belonging to
the former family were not detected during the current search on the databases.

Family: Dictyonellidae

Marine sponges belonging to the Dictyonellidae family include five valid genera as Acanthela,
Axinyssa, Cymbastela, Dictyonella, Lipastrotethya, Phakettia and Rhaphoxya [47]. As the SciFinder
database also lists, this group of sponges produces several metabolites such as sesquiterpenoid
esters, sesquiterpene quinones, polyhydroxi-sterols, polybrominated compounds, diketopiperazines,
oxy-polyhalogenated diphenyl ethers, polychlorinated tetra-peptides, polychlorinated pyrrolidinones
and other types of compounds. These secondary metabolites exhibit a variety of biological activities
such as anti-inflammatory, antiplasmodial, inhibition of the blood coagulation, antimicrobial,
antifungal, cytotoxic, antitumor and anti-HIV-I, among others activities.

Therefore, a novel family of functionalized peptide toxins, aculeines (ACUs), was isolated from
the marine sponge Axinyssa aculeata. The isolation, amino acid sequence, and biological activity of this
new group of cytotoxic sponge peptides were described. Also, aculeines A–C have shown moderate
cytotoxicity against cultured human cancer cell-lines (MDA-MB-231, A 549, and HT-29), with GI50

values of approximately 0.5 µM. No significant difference in potency was observed between the cell
lines tested [59].

Nine new triterpene galactosides and aglycons, along with three known compounds from the rare
pouoside class, were isolated from Lipastrotethya sp. The compounds have exhibited weak to no activity
against a K562 human erythroleukemia cell lines with IC50 values in the range of 12.5 to 100.0 µM; with
IC50 value of 13.6 µM for doxorubicin. With two exceptions, the aglycones were far more cytotoxic
than the triterpene galactosides [60]. On the other hand, five new nortriterpene glycosides, designated
as sarasinosides N–R, along with eight known related compounds, were isolated from another sample
of Lipastrotethya sp. Several of these new compounds have exhibited moderate to weak cytotoxicity
against A549 lung carcinoma and K562 leukemia cell lines [61].

2.1.4. Order: Dictyoceratida

The order Dictyoceratida encompasses four families of marine sponges named Dysideidae,
Irciniidae, Spongiidae and Thorectidae [62].

Family: Dysideidae

Marine sponges belonging to the Dysideidae family include five valid genera as Citronia, Dysidea,
Euryspongia, Lamellodysidea and Pleraplysilla [63]. Again, as per the SciFinder database, this group of
sponges is known to contain sesquiterpenoid esters, sesquiterpene quinones, polyhydroxi-sterols,
polybrominated compounds, diketopiperazines, oxy-polyhalogenated diphenyl ethers, tetrapeptides,
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polychlorinated peptides, polychlorinated pyrrolidinones and other compounds. These metabolites
exhibit a variety of biological activities such as cytotoxic (antitumor), anti-HIV-1, antimicrobial
(antifungal), anti-inflammatory and antiplasmodial, between other activities.

Thus, the active organic extract of Dysidea sp. was subjected to bioassay-guided fractionation
to give three new polyoxygenated steroids (dysideasterols F–H), together with two known related
compounds. All compounds have exhibited similar cytotoxic effect against human epidermoid
carcinoma A431 cells with IC50 values of 0.15 to 0.3 µM [64].

Dysidavarones A–D, four new sesquiterpene quinones possessing the unprecedented
dysidavarane carbon skeleton, were isolated from the South China Sea sponge Dysidea avara.
Dysidavarones A and D were evaluated for their cytotoxicity against four human cancer cell lines,
cervix (HeLa), lung (A549), breast (MDA231), and hepatoma (QGY7703), by an MTT method, using
camptothecin as a positive control. Dysidavarone A has shown a growth inhibitory effect against
HeLa cells with an IC50 value of 9.9 µM, while dysidavarone D has shown inhibitory effects against
the four cell lines with IC50 values of 28.8, 21.4, 11.6, and 28.1 µM, respectively [65]. Dysidavarone A
was synthesized by Schmalzbauer et al. and by Fukui et al., with 30% overall yield in a longest liner
sequence of 13 steps from commercial o-vanillin [66,67].

Family: Irciniidae

Marine sponges belonging to the family Irciniidae involves three valid genera: Ircinia, Psammocinia
and Sarcotragus [68], which contain a rare class of glycinyl lactam sesterterpenes with modulatory
properties against alpha-1 and alpha-3 GlyR isoforms [69]. Additionally, as compiled in the SciFinder
database, this family produces sterols, sesterterpenes (linear-furano-nor-sesterterpenoids), indole
alkaloids, halogenated peptides, polyketides, polyprenyl chromenes, hydroquinone-derivatives and
other compounds, which have cytotoxic and anticancer properties.

Chemical investigation of Sarcotragus spinosulus led the isolation of a new hydroxylated
nonaprenylhydroquinone, along with two known metabolites, hepta and octaprenylhydroquinones.
All metabolites were evaluated for their potential antileukemic effect towards the human chronic
myelogenous (CML) cell lines K562. It was observed that the hydroxylated nonaprenylhydroquinone
and octaprenylhydroquinone have inhibited cell metabolism and cell number with very similar
IC50 values, around of 10.0 µM. Octaprenylhydroquinone was less efficient that the two former
compounds with IC50 values of 193.0 and 191.0 µM, respectively. Furthermore, hydroxylated
nonaprenylhydroquinone and octaprenylhydroquinone were also found to induce annexin V
externalization in K562 cells; it is likely that the main mechanism by which both compounds inhibit
cell metabolism and increase the number of apoptotic tumor cells. These compounds exhibited a
good activity against K562 cells which will warrant further analysis at the molecular level and offer
promising opportunities for the development of new antitumor agents [70].

One novel terpenoidal natural product, ircinolin A, two new furanoterpene metabolites—
15-acetylirciformonin B and 10-acetylirciformonin B (III and IV, Figure 2), and two known
compounds—irciformonin B and irciformonin F, were isolated from an undescribed sponge of the
genus Ircinia. The cytotoxic activity of the five compounds was determined. 15-Acetylirciformonin
B, the most potent of compounds, has exhibited cytotoxicity against the K562, DLD-1, HepG2 and
Hep3B cancer cell lines with IC50 values of 5.4, 0.03, 0.5, and 1.1 µM, respectively. Furthermore,
irciformonin B, 10-acetylirciformonin B, and irciformonin F also were found to exhibit considerable
cytotoxicity toward some of the cell lines. It seems that the furan moiety present in these compounds
is critical for the cytotoxic activity of the C22 furanoterpenoids [71]. The authors have also reported
that 10-acetylirciformonin B decreased cell viability through the inhibition of cell growth as well as
the induction of DNA damage and apoptosis in a dose-dependent manner. Induction of apoptosis
was mediated with the increase in caspases 8, 9 and 3 activation as well as PARP cleavage, indicating
that 10-acetylirciformonin B treatment causes apoptosis in leukemia cells, probably, through a caspase
dependent regulatory pathway [71].
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Family: Spongiidae

Sponges belonging to the family Spongiidae include the genera Spongia, Hippospongia,
Coscinoderma, Hyatella, Leiosella and Rhopaloeides [72]. As published in the SciFinder database, this
group of sponges is known to contain sesquiterpene hydroquinones, diterpenes, furanic and scalarane
sesterterpenes, long-chain aliphatic and acetylenic compounds, hepta- and octaprenylhydroquinones,
bromotyrosine alkaloids, farnesyl quinols and suvanine analogs, which exhibit cytotoxic, antitumor,
antibacterial, antifungal, anti-plasmodial (antimalarial) and protein tyrosine phosphatase 1B (PTP1B)
inhibitory activities.

Therefore, eight new sesterterpenes, including structurally related pentaprenylhydroquinones,
and seven known ones of the same structural classes, were isolated from an unidentified sponge of the
genus Coscinoderma. Regarding cytotoxicity against the K562 cell lines, coscinoquinols 1 and 2—with
LC50 value of 8 µM for both compounds—have shown more potent inhibition than doxorubicin with
LC50 value of 13.0 µM, while the halisulfates with hydroquinone and furan moieties were inactive.
Regarding the suvanine salts, one was again far more active than other with LC50 values of 16.0
and 200.0 µM, respectively. The modified furan-bearing derivatives have shown moderate to weak
inhibition against K562 cells with LC50 values in a range of 15.0 to 59.0 µM [73].

Eight new acyclic manoalide-related sesterterpenes, hippolides A–H, together with two known
manoalide derivatives, (6E)-neomanoalide and (6Z)-neomanoalide, were isolated from Hippospongia
lachne. Hippolide A has exhibited cytotoxicity against A549, HeLa, and HCT-116 cell lines with IC50

values of 5.22× 10−2, 4.80× 10−2, and 9.78× 10−2 µM, respectively. Hippolide B has shown moderate
cytotoxicity against the HCT-116 cell lines with IC50 value of 35.13 µM [74].

Family: Thorectidae

Marine sponges belonging to the family Thorectidae include 23 genera grouped into two
subfamilies: Thorectinae—Aplysinopsis, Cacospongia, Collospongia, Dactylospongia, Fascaplysinopsis,
Fasciospongia, Fenestraspongia, Hyrtios, Luffariella, Narrabeena, Petrosaspongia, Scalarispongia,
Semitaspongia, Smenospongia, Taonura, Thorecta, Thorectandra and Thorectaxia—and Phyllospongiinae—
Candidaspongia, Carteriospongia, Lendenfeldia, Phyllospongia and Strepsichordaia [75]. As demonstrated
in the SciFinder database, this family of sponges enclose representatives that biosynthesize
sterols, brominated indole alkaloids, sesquiterpene hydroquinones, adenine-related compounds,
manoalide-related sesterterpenes and nitrogenous macrolides, with characteristic biological properties
including cytotoxic, antibacterial, anti-inflammatory and antidepressant, among other activities.

Thus, the extracts of an undescribed specimen of marine sponge belonging to the genus
Candidaspongia have shown selective cytotoxicity toward melanoma cells in the NCI-60 anticancer
drug cell line screen. Continued investigation of the Candidaspongia sp. extracts led to the isolation
of three new tedanolide analogs, precandidaspongiolides A and B, and candidaspongiolide B, as
well as candidaspongiolide A and tedanolide. Candidaspongiolides A and B were the most potent
constituents and have shown low nanomolar activity against several melanoma cell lines [76].

In a previous study, smenospongine, a sesquiterpene aminoquinone isolated from Dactylospongia
elegans had shown antiproliferative or cytotoxic activities on leukemia cells. In this study, it was found
that smenospongine has inhibited proliferation, migration and tube formation of human umbilical vein
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endothelial cells (HUVEC). Moreover, smenospongine inhibited the growth of 39 human solid cancer
cells in vitro, with a mean Log GI50 value of −5.55. Therefore, smenospongine exhibits antitumor
activity on solid tumors via two mechanisms, an antiangiogenic effect on endothelial cells and direct
inhibition of growth of tumor cells [77].

A new sesquiterpene benzoxazole, nakijinol B, its acetylated derivative, nakijinol B diacetate, and
two new sesquiterpene quinones, smenospongines B and C, were isolated from the methanol extract
of the marine sponge D. elegans. The isolated compounds were assessed for their cytotoxicity against a
panel of human tumor cell lines (SF-268, H460, MCF-7 and HT-29) and a normal mammalian cell line
(CHO-K1). All compounds were found to have activities with GI50 values in a range of 1.8 to 46.0 µM
and lacked selectivity for tumor versus normal cell lines [78]. Synthesis of benzoxazole was reported
by Thomas et al. [39].

Seven new nitrogenous macrolides, designated salarins D–J, closely related to salarins A–C, were
isolated from an unidentified marine sponge of the genus Fascaplysinopsis. All compounds were
evaluated for their cytotoxicity against K562 and UT-7 human leukemia cells. While salarins D, E, H,
and J displayed dose- and time-dependent inhibition of proliferation, salarins F and I were not active
in these assays [79].

Chemical investigation of Fasciospongia sp. returned the new meroterpene sulfate fascioquinol
A, together with the known geranylgeranyl 1,4-hydroquinone, which was identified as the dominant
cytotoxic principle in the extract of this sponge, with selective inhibitory activity against gastric
adenocarcinoma (AGS) cell lines with IC50 value of 8.0 µM, and neuroblastoma (SH-SY5Y) cell lines
with IC50 value of 4.0 µM [80].

A new 1-imidazoyl-3-carboxy-6-hydroxy-β-carboline alkaloid, named hyrtiocarboline, was
isolated from a Papua New Guinea marine sponge, Hyrtios reticulatus. This compound has shown
selective antiproliferative activity against H522-T1 non-small cell lung, MDA-MB-435 melanoma,
and U937 lymphoma cancer cell lines [81]. In addition, hyrtioreticulins A–E were isolated from
other specimen of H. reticulatus, along with a known alkaloid, hyrtioerectine B. Hyrtioreticulins A
and B (V and VI, Figure 3) have inhibited ubiquitin-activating enzyme (E1) with IC50 values of
0.75 and 11.0 µg·mL−1, respectively, measured by their inhibitory abilities against the formation of
an E1-ubiquitin intermediate. So far, only five E1 inhibitors, panapophenanthrine, himeic acid A,
largazole and hyrtioreticulins A and B, have been isolated from natural sources and, among them,
hyrtioreticulins A is the most potent E1 inhibitor [82].

(+)-Spongistatin 1, a macrocyclic lactone isolated in the 90’s from the marine sponge Hyrtios erecta,
is an extremely potent growth inhibitory agent having activity against a wide variety of cancer cell
lines, while exhibiting low cytotoxicity against quiescent human fibroblasts. (+)-Spongistatin 1 was
applied in an orthotopic in vivo model of human pancreatic cancer. This compound significantly
reduced tumor growth, which correlates with a strong apoptosis induction (DNA-fragmentation)
and long-term effects on clonogenic survival of pancreatic tumor cells (L3.6pl) in vitro. In addition,
the formation of metastasis was reduced in (+)-spongistatin 1 treated mice [83]. Consistent with a
microtubule-targeting mechanism of action, (+)-spongistatin 1 causes mitotic arrest in DU145 human
prostate cancer cells, and exhibits significant in vivo antitumor activity in the LOX-IMVI human
melanoma xenograft model. According the authors, (+)-spongistatin 1 is, thus, an important class of
microtubule targeting anticancer agent [84]. Stereocontrolled total synthesis of (+)-spongistatin 1 has
been reported by Smith et al. [85].

The extract of the marine sponge Petrosaspongia mycofijiensis yielded mycothiazole (VII, Figure 4),
a solid tumor selective compound with no known mechanism for its cell line-dependent cytotoxic
activity. Mycothiazole has inhibited hypoxic HIF-1 signaling in tumor cells with IC50 value of 1.0 nM,
which was correlated with the in vitro suppression of hypoxia-stimulated tumor angiogenesis [86].
A total synthesis of (±)-mycothiazole had been achieved, starting from 2,4-dibromothiazole [87].
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6′-Iodoaureol, an iodo-sesquiterpene hydroquinone, and 6′-aureoxyaureol, a bissesquiterpene
hydroquinone, as well as four brominated indole alkaloids were isolated from an unidentified marine
sponge of the genus Smenospongia (CRI 546) collected from Phi Phi Island, Krabi province, Thailand.
Additionally, were also isolated four known sesquiterpene hydroquinones (aureol, 6′-chloroaureol,
aureol acetate and ent-chromazonarol), ten known brominated indole alkaloids, ergosterol and
furospinosulin-1. The compound 5,6-dibromotryptamine has shown good cytotoxicity in MOLT-3
and HeLa cells with IC50 values of 5.4 and 9.4 µM, respectively, and has exhibited only moderate
activity in HepG2 and HuCCA-1 cells with IC50 values of 23.1 and 23.6 µM, respectively.
While the 5,6-dibromo-1H-indole-3-carboxylic acid methyl ester was moderately cytotoxic in HeLa
cells with the IC50 value of 13.0 µM. Aureol has shown moderate cytotoxicity in LH-60 cells
with IC50 value of 14.6 µM, and weak activity in A549 cells with IC50 value of 76.4 µM [88].
A concise synthesis of 5,6-dibromotryptamine has been accomplished, starting from the intermediate
5,6-dibromoindole-3-carbaldehyde [89]. First synthesis of the chiral paureol had been described before,
starting from (+)-arenarol [90], while other syntheses have been recently reported [91,92].

2.1.5. Order: Haplosclerida

Until recently, in SP, Haplosclerida order included the suborders Haplosclerina, Petrosina
(both marine) and Spongillina incertae sedis (freshwater sponges), which were abandoned. However,
because of the lack of combined morphological/molecular phylogenetic evidences in Haplosclerida
sensu stricto, the genera content of their families remains nowadays unchanged. Therefore, currently
this order encompasses three suborders: Haplosclerina with the families Callyspongiidae, Chalinidae
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and Niphatidae; Petrosina with families Calcifibrospongiidae, Petrosiidae and Phloeodictyidae;
and Spongillina with families Spongillidae, Malawispongiidae, Metaniidae, Metschnikowiidae,
Palaeospongillidae, Potamolepiidae and Lubomirskiidae. Haplosclerina and Petrosina appear closely
related morphologically and are controversial higher taxa [45,93], where natural products have been
deteted and isolated only to sponges belonging to three families, namely:

Family: Callyspongiidae

The family Callyspongiidae encompasses species belonging to the genera Arenosclera, Callyspongia,
Dactylia and Siphonocalina [94], which contain sterols, triterpenes, polyketides, polyacetylenes,
diketopiperazines and tetracyclic alkylpiperidine alkaloids (compiled from the SciFinder database.
These metabolites display a range of biological activities such as cytotoxic, antimicrobial, antifungal
and anti-chlamydia, as well as mutagenic and antimutagenic activities, between other effects.

Thus, a bioassay-guided fractionation of the ethyl acetate extract from a unidentified specimen
of sponge from the genus Callyspongia led the isolation of three polyacetylene metabolites, a new
polyacetylene diol named callyspongidiol along with two known compounds, siphonodiol and
14,15-dihydrosiphonodiol. Polyacetylenes have exhibited antiproliferative activity against HL-60
cancer cell lines with IC50 values of 6.5, 2.8, and 6.5 µg·mL−1, respectively. These metabolites have
also induced apoptosis in HL-60 cells [95]. A short synthesis of siphonodiol had been described by
Gung et al. [96].

On the other hand, the fractionation of the ethyl acetate extract of the marine sponge Callyspongia
aerizusa yielded seven new cytotoxic cyclic peptides named callyaerins A–F and H. Callyaerins A, B, D,
and F together with callyaerins C and E have shown biological activity in various cytotoxicity assays
employing different tumor cell-lines as L5178Y, HeLa, and PC12. Callyaerins E and H have exhibited
strong activity against the L5178Y cell lines with ED50 values of 0.39 and 0.48 µM, respectively [97].

Family: Niphatidae

Members of the family Niphatidae include different species belonging to the genera Amphimedon,
Cribrochalina, Dasychalina, Gelliodes, Haliclonissa, Hemigellius, Microxina, Niphates and Pachychalina [98].
The SciFinder database outlines that the metabolic profiling of this family includes sterols, fused
aromatics, hexaketides, various types of alkaloids (comprising diamines, polymeric pyridinium
compounds, precursors of manzamine, bis-pyridines, beta-carboline compounds, bicyclic amidines
and 3-alkylpiperidines), new purines, macrocyclic lactones/lactams and glycerol lipids, which
have cytotoxic, anticancer, antibacterial (antituberculosis), antifungal, antimalarial, nematocidal,
ichthyotoxic and insecticidal activities.

Thus, two new 3-alkylpyridine alkaloids, pyrinodemins E and F, were isolated from an
undescribed sponge of the genus Amphimedon. Pyrinodemins E and F are novel 3-alkylpyridine
alkaloids possessing a 4-(methoxyamino) piperidinone moiety and an indol-3-glyoxylamide moiety,
respectively. Pyrinodemin E has shown in vitro cytotoxicity against P388 and L1210 murine leukemia
cells with IC50 values of 5.7 and 8.8 µg·mL−1, respectively, while pyrinodemin F did not show such
activity [99].

Extracts obtained from Niphates digitalis have shown strong activity in a cell-based assay designed
to detect antagonists of the androgen receptor (AR) that could act as lead compounds for the
development of a new class of drugs to treat castration recurrent prostate cancer (CRPC). Assay-guided
fractionation has shown that niphatenones A and B, two new glycerol ether lipids, were the active
components of the extracts [100]. Pure niphatenone B has shown in vitro cytoxicity against LNCaP
prostate cancer cells with IC50 value of 7.0 µM, while niphatenone A has shown weaker activity that
was not statistically different from that of the negative control. The syntheses of niphatenones A and B
have been reported by these same authors.
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Family: Petrosiidae

Marine sponges belonging to the family Petrosiidae include four valid genera:
Acanthostrongylophora, Neopetrosia, Petrosia and Xestospongia [101]. As per the SciFinder database, the
family Petrosidae is known to contain hydroperoxyl sterols, merosesquiterpenes, sesquiterpenic
benzoquinones, polyacetylenic compounds, diverse alkaloids (dopamine, tetracyclic bis-piperidines,
carbolines, manzamines and pyrimidin-type alkaloids), galactosyl diacylglycerols, sphingolipids and
biscembranoids. These compounds encompass a range of activities such as cytotoxic, anticancer,
anti-infective, leishmanicidal, as well as inhibitory activities toward Forkhead box O3a (Foxo3a),
3-hydroxy-3-methylglutaryl CoA reductase gene fluorescent protein (HMGCR-GFP), and nuclear
factor kappa B (NF-κB) luciferase, among other bioactivities.

A new tetracyclic bis-piperidine alkaloid, neopetrosiamine A (VIII, Figure 5), was extracted from
Neopetrosia proxima collected in the Caribbean Sea. Upon screening in the NCI’s in vitro antitumor
assay consisting of 60 human tumor cell lines, neopetrosiamine A has exhibited strong inhibitory
activity against MALME-3M melanoma cancer, CCRF-CEM leukemia and MCF7 breast cancer with
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Moreover, new miyakosynes A–F were isolated from an unidentified marine sponge belonging to
the genus Petrosia. Miyakosynes A–D and a mixture of miyakosynes E and F have exhibited cytotoxic
activity against HeLa cells with IC50 values of 0.10, 0.13, 0.04, 0.15, and 0.30 µg·mL−1, respectively [103].
On the other hand, six linear acetylenes, (−)-duryne and (−)-durynes B–F, were isolated from other
undescribed specimen of the genus Petrosia. (−)-Duryne was found to be the enantiomer of (+)-duryne,
a previously reported sponge metabolite. Durynes B–F have shown strong cytotoxicity against HeLa
cells with IC50 values between 0.08 and 0.50 µM [104]. An efficient enantioselective synthesis of (+)
and (−)-duryne had been reported by Gung and Omollo [105].

Manzamine A is a β-carboline alkaloid isolated from Xestospongia ashmorica that was suspected
to have inhibitory activity against the mitogen-activated protein kinase (MAPK or MAP kinase).
As a result, the effects of Manzamine A were studied in pancreatic cancer cells. Manzamine A
decreased single cell formation, abrogated cell migration and restored the susceptibility of the cells
to TRAIL-induced apoptosis in AsPC-1 cells [38]. Total synthesis of manzamine A was described by
Jakubec et al. [106].

2.1.6. Order: Homosclerophorida

The order homosclerophorida formerly was a monotypic order, having the family Plakinidae as
its unique representative [107].
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Family: Plakinidae

The Plakinidae family consists of seven valid genera including Corticium, Oscarella, Placinolopha,
Plakina, Plakinastrella, Plakortis and Pseudocorticium [107]. As published in the SciFinder database,
this group of sponges biosynthesizes diverse structural classes of compounds such as glycosylated
sesterterpenes, bacteriohopanoids, steroidal alkaloids (stigmatellins and related compounds), cyclic
peroxides with a plakortolide skeleton and non-peroxide plakortin metabolites, polyketide derivatives
(polyketide endoperoxides and compounds belonging to spiculoic and to the zyggomphic acid
class), thiazine-4-alkylpyridinium and bis-oxygenated pyrroloacridine alkaloids, polypeptides,
lysophospholipids, bromopyrroles and bromoaromatic filiformins, amphiasterins, glycolipids, and
epidioxymanadic acids, which possess diverse biological activities such as citotoxicity (anticancer),
antiangiogenic, anti-HIV, antimicrobial (antifungal and antimycobacterial), DNA- and RNA-cleaving
properties, antiprotozoan (antimalarial), schistosomicidal and anti-inflammatory activities. Some of
these metabolites act as selective inhibitors of proliferation of HUVECs and activating sarcoplasmic
reticulum Ca2+–ATP enzymes, showing besides immunosuppressive effects.

Thus, a new cyclic peroxide plakortisinic acid, and a new ketone derivative, in addition to six
known compounds—an α,β-unsaturated ester, plakortide N, plakortide F and its free acid, plakortone
D, and a furan-containing molecule, were isolated from an undescribed Jamaican marine sponge of
the genus Plakortis. In general plakortide N and plakortide F acid were moderately cytotoxic against
the NCI-60 tumor cell lines. In addition, they were remarkably active against colon cancer (KM12 cell
lines) and melanoma (LOX-IMVI cell lines), with GI50 values in a range of 0.02 to 0.3 µM. Plakortisinic
acid was completely inactive against all tumor cell lines [108]. A total synthesis of plakortide E has
been reported by Sun et al. [109].

Two novel polyketides, simplextones A and B, were isolated from the marine sponge Plakortis
simplex. Simplextones A and B have exhibited moderate cytotoxicity against HCT-116 (colon cancer),
SGC7901 (gastric cancer), HeLa (cervical cancer), and SW480 (colon cancer) human cell lines using
the MTT assay. Simplextone A has exhibited IC50 values of 26.3, 57.4, 64.7, and 60.6 µM, respectively,
while simplextone B has shown IC50 values of 23.7, 45.8, 66.2, and 61.1 µM, respectively [110].

2.1.7. Order: Poecilosclerida

The revised Poecilosclerida remains the largest order, in term of species, and includes 25 families
distributed in four sub-orders, namely: sub-order Latrunculina (family Latrunculiidae), sub-order
Microcionina (families Acarnidae, Microcionidae, Raspailiidae and Rhabderemiidae), sub-order Mycalina
(families Cladorhizidae, Desmacellidae, Esperiopsidae, Guitarridae, Hamacanthidae, Isodictyidae,
Merliidae, Mycalidae and Podospongiidae), and sub-order Myxillina (families Chondropsidae,
Coelosphaeridae, Crambeidae, Crellidae, Dendoricellidae, Desmacididae, Hymedesmiidae, Iotrochotidae,
Myxillidae, Phellodermidae and Tedaniidae) [47]. Despite the large number of species of marine sponges
belonging to the order Poecilosclerida, the triennial database search has detected only new natural
citotoxics for representatives of the families Acarnidae, Coelosphaeridae, Hymedesmiidae, Latrunculiidae
and Podospongiidae, which can be seen hereafter.

Family: Acarnidae

Sponges belonging to the family Acarnidae include species of the genera Acanthorhabdus, Acarnus,
Acheliderma, Cornulella, Cornulum, Damiria, Dolichacantha, Iophon, Megaciella, Paracornulum, Tedaniphorbas,
Wigginsia and Zyzzya [47]. Despite the high number of species of this family, some genera are up
till now poorly explored. However, between the studied species, were isolated diverse ketosteroids,
alkaloids (bispyrroloiminoquinones and pyrroloquinoline alkaloids of the makaluvamine family), fatty
acids and cyclic peroxides and guanidines, which display a range of pharmacological properties such
as cytotoxic (anticancer), antiviral, antimicrobial (antibacterial), antimalarial and as well as antioxidant
activities (compiled from the SciFinder database).



Molecules 2017, 22, 208 15 of 34

A new bispyrroloiminoquinone alkaloid named tsitsikammamine C (IX, Figure 6) has displayed
selectivity indexes of >200-fold against HEK293 cells. Earlier reported compounds makaluvamines G,
J, K, L and damirones A and B were also isolated from an undescribed sponge of the genus Zyzzya.
Makaluvamines G, J, and L have displayed moderate cytotoxicity against HEK293 cells with IC50

values in the range of 1.0 to 4.0 µM [111]. The total synthesis of makaluvamines was previously
achieved [112].
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Family: Coelosphaeridae

Sponges belonging to the family Coelosphaeridae include the genera Celtodoryx, Chaetodoryx,
Coelosphaera, Forcepia, Histodermella, Inflatella, Lepidosphaera and Lissodendoryx [47]. The SciFinder
database lists this group of sponges as known to contain sterols, sulfated exopolysaccharides
with antiviral activity, lectins, polyketide-derived macrolides with cytotoxic activity, a pigment
biogenetically derivable from tryptamine and tyramine which also displays cytotoxicity to several
tumor cell lines, and it is a moderate inhibitor of topoisomerase-I, DNA, RNA and protein synthesis,
and finally, the well-known anticancer molecule halichondrin B.

In accordance with the above-mentioned methods, two new dimeric sterols named manadosterols
A and B were isolated from Lissodendryx fibrosa. Both sterols have inhibited the Ubc13-Uev1A
interaction at IC50 values of 0.09 and 0.13 µM, respectively, and were more potent than leucetamol
A—the first such inhibitor isolated from another marine sponge [113].

Family: Crambeidae

Marine sponges of the family Crambeidae include species of the genera Crambe, Discorhabdella,
Lithochela and Monanchora [47]. The SciFinder database shows this family of sponges as encompassing
sesterterpenoids (phorbaketals), bicycle [4.3.1] steroids, and acyclic and pentacyclic guanidine alkaloids,
which possess cytotoxic, antibacterial, antifungal, antiviral, and antiprotozoal (antiplasmodium)
activities. Some of these metabolites show besides interesting anti-inflammatory properties.

Thus, five guanidine alkaloids—mirabilin B, 8β-hydroxyptilocaulin, ptilocaulin, and a mixture
of the 8β- and 8α-epimers of 8-hydroxymirabilin—were isolated from Monanchora arbuscula colonies
collected off the Northeastern Brazilian coast. The cytotoxicity of the isolated compounds was
evaluated against four tumor HL-60, HCT-8, MDA-MB-435, and SF-295 cell lines—showing that
both epimers were inactive, while 8β-hydroxyptilocaulin and ptilocaulin presented IC50 values in
the range of 7.9 to 61.5 µM, and 5.8 to 40.0 µM, respectively. Further studies on the mechanism of
action of ptilocaulin—using HL-60 leukemia cells—have demonstrated that this guanidine compound
induces apoptosis of the treated cells [114]. The stereospecific total synthesis of (±)-ptilocaulin has
been achieved [115].
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On the other hand, monanchocidin, a new guanidine alkaloid with an unprecedented skeleton
system was isolated from Monanchora pulchra. Monanchocidin has shown cytotoxic activities on cancer
cell lines of various tissues including human leukemia THP-1 with IC50 value of 5.1 µM, human
cervix epithelioid carcinoma HeLa with IC50 value of 11.8 µM, and mouse epidermal JB6 Cl41 cell
lines with IC50 value of 12.3 µM. It also induces 66% of early apoptosis in THP-1 cells at 3.0 µM
concentration [116].

Also, new unusual polycyclic guanidine alkaloids monanchocidins B–E (XI-XIV, Figure 7), along
with the known monanchocidin A (X), were isolated from another exemplar of M. pulchra. All five
compounds have shown potent cytotoxic activities against HL-60 human leukemia cells with IC50

values of 0.54, 0.20, 0.11, 0.83, and 0.65 µM, respectively [117]. Monanchocidin A contains an unusual
highly oxidized morpholinone fragment. The synthesis of this heterocyclic scaffold has been recently
confirmed [118]. Monanchomycalins A and B have exhibited potent cytotoxic activities against HL-60
human leukemia cells with IC50 values of 0.12 and 0.14 µM, respectively [119]. Enantioselective
synthesis of the monanchocidin A is in progress [120].Molecules 2017, 22, 208  16 of 33 
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Family: Hymedesmiidae

Marine sponges belonging to the family Hymedesmiidae are possibly of polyphyletic nature
and include the genera Acanthancora, Hamigera, Hemimycale, Hymedesmia, Kirkpatrickia, Myxodoryx,
Phorbas, Plocamionida, Pseudohalichondria and Spanioplon [47]. As per the SciFinder database, this
family of sponges contain terpenes (hamigerans diterpenoids, gagunin diterpenoids, polyoxygenated
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diterpenes, tetracyclic diterpenes, diterpenoid pseudodimers and phorbaketals-type sesterterpenoids),
steroids (sulfated dimeric and N-imidazolyl steroids), alkaloids (pyridopyrrolopyrimidines,
chlorinated phenylpyrrolyloxazoles, benzylidene-2-aminoimidazolones and indole-carboxaldehydes),
phenylmethylene hydantoins, brominated benzocyclooctanes, macrolide glycosides, halogenated
phenols and aliphatic ketones. These natural products exhibit a range of activities such as cytotoxic
(antitumor), anti-invasive and antimetastatic activities. They also show antiviral (against herpes and
polio viruses) and antifungal properties, some of them functioning as cyclin-dependent kinase and
isocitrate lyase inhibitors, as well as active pharmacological agents against osteoporosis and obesity.

The chemical investigation of an unidentified marine sponge of the genus Phorbas yielded
unprecedented sesterterpenoids—phorone A and isophorbasone A (XV and XVI, Figure 8)—along
with ansellone B and phorbasone A acetate. Both compounds have exhibited potent inhibitory activity
on nitric oxide production in RAW264.7 lipopolysaccharide-activated mouse macrophage cells with
IC50 values of 4.5 and 2.8 µM, respectively [121].Molecules 2017, 22, 208  17 of 33 
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On the other hand, gukulenins A and B (XVII and XVIII, Figure 8) were isolated from the Korean
marine sponge Phorbas gukulensis. Gukulenins A and B have exhibited potent activities against human
pharynx cancer FaDu (IC50 value of 57.0 nM and 0.63 µM), colon cancer HCT-116 (IC50 value of 62.0 nM
and 0.55 µM), renal cancer SN12C (IC50 value of 92.0 nM and 0.61 µM), and stomach cancer MKN45
(IC50 value of 0.13 µM and 0.72 µM) cell lines [122].
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Family: Latrunculiidae

Chemical investigation on marine sponges belonging to the family Latrunculiidae, which
include species of the genera Cyclacanthia, Latrunculia, Sceptrella, Strongylodesma and Tsitsikamma [47]
afforded decalactones, new terpenes (norsesterterpene peroxides), alkaloids (makaluvic acids,
dihydrodiscorhabdin B, discorhabdin, and pyrroloiminoquinone alkaloids of the discorhabdin
class), 2-thiazolidinone-containing macrolides and callipeltin-related acyclic peptides (compiled from
SciFinder database). This group of sponges presents selective antimicrobial, antifungal, antiprotozoal
(antimalarial) activities along with cytotoxic, antitumor and anti-HCV properties. Moreover, they
displayed topoisomerase inhibition, cancer chemopreventive potential and inhibitory activity against
sortase A, among other properties.

Then, it was isolated from a Sceptrella species, two new pyrroloiminoquinone alkaloids of the
discorhabdin class, (−)-3-dihydrodiscorhabdin D and (−)-discorhabdin Z, along with 12 known
compounds including one previously described synthetic derivatives of the same and related
skeletal classes. These compounds have exhibited moderate to strong cytotoxicity against the K562
erythroleukemia cell line, comparable to doxorubicin [123].

Family: Podospongiidae

Sponges belonging to the family Podospongiidae include species of the genera Diacarnus,
Diplopodospongia, Negombata, Neopodospongia, Podospongia, Sceptrintus and Sigmosceptrella [47].
According with the current search database for bioactives (SciFinder), the aforementionated genera of
sponges produce a wide range of terpenoids (chlorinated polyfunctional diterpenoids, norditerpene
peroxides, norsesterterpene peroxides), latrunculeic acid and latrunculol derivatives, macrolides
containing a thiazolidinone moiety, ceramides, diglyceride esters, sphingolipids, poliketides and
pyrroloiminoquinones. These compounds have shown cytotoxic, antitumor (anticancer), antineoplastic,
anti-inflammatory, antiviral, antimicrobial, antimalarial, antitrypanosomal and antiepileptic activities.

Six norterpenes including negombatoperoxides A and B, the inseparable epimers
negombatoperoxides C and D, negombatodiol, and negombatolactone, in combination with three
known compounds, (+)-nuapapuin B, (+)-nuapapuin B methyl ester, and (+)-aikupikoxide C, were
isolated from Negombata corticata. The data have revealed that (+)-nuapapuin B was cytotoxic toward
MDAMB-231, MCF-7, HepG2, Hep3B, and A-549 cancer cell lines with IC50 values of 0.3, 5.9, 0.9,
41.3 and 0.6 µM, respectively, while its methyl ester has shown activity against the above cancer cell
lines with IC50 values of 3.5, 38.5, 2.9, 23.7 and 5.38 µM, respectively. However, (+)-aikupikoxide C
has shown weaker cytotoxicity toward three of the above cancer cell lines with IC50 values ranging
from 11.9 to 36.7 µM. The others tested compounds were not cytotoxic (IC50 > 50.0 µM) or inactive
(negombatodiol and negombatolactone) toward the mentioned five cancer cell lines [124].

2.1.8. Order: Scopalinida

The order Scopalinida is a monotypic order, having the family Scopalinidae as its unique
representative [47].

Family: Scopalinidae

Sponges of the novel family Scopalinidae include species belonging to the genera Scopalina,
Svenzea and Stylissa—a former halichondrid [47]. As listed in the SciFinder database, this group
of sponges contain a variety of interesting secondary metabolites such as brominated fatty acids,
sterols (type polyhydroxylated and 5(6→7) abeo-sterols), nitrogenous terpenoids, diterpenes of
the isoneoamphilectane class, alkaloids, bromopyrroles, peptides (proline-rich cyclic octapeptides
and others) and sphingoglycolipids. These bioactive compounds act as cytotoxic, antimicrobial,
antibacterial, antifungal, antitumor (anticancer), anti-inflammatory, and antiplasmodial agents,
presenting besides antiproliferative and protein kinase inhibitory activities.
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Thus, the chemical investigation of an undescribed marine sponge of the genus Stylissa
afforded four new brominated alkaloids, including 12-N-methyl stevensine (XIX, Figure 9),
12-N-methyl-2-debromostevensine, 3-debromolatonduine B methyl ester, and 3-debromolatonduine A
together with eight known alkaloids identified as (Z)-hymenialdisine, (Z)-debromohymenialdisine,
stevensine, 2-debromostevensine, 3-bromoaldizine, 3,4-dibromopyrrole-2-carbamide, latonduine A,
and latonduine B methyl ester, respectively. The results indicated that only 12-N-methyl stevensine,
(Z)-hymenialdisine, (Z)-debromohymenialdisine, and latonduine have shown high in vitro cytotoxicity
against mouse lymphoma L5187Y cell lines with EC50 values of 3.5, 1.8, 2.1 and 9.0 µg·mL−1,
respectively [125]. The synthesis of hymenialdisine has been described by Saleem and Tepe [126].Molecules 2017, 22, 208  19 of 33 
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2.1.9. Order: Suberitida

The order Suberitida has the families Halichondriidae, Stylocordylidae and Suberitidae as its
representatives [47].

Family: Halichondriidae

The family Halichondriidae is considered not monophyletic and encompasses 11 genera named
Amorphinopsis, Ciocalapata, Ciocalypta, Cryptax, Halichondria, Hymeniacidon, Johannesia, Laminospongia,
Sarcomella, Spongosorites and Topsentia, being the latter genus considered as Suberitida incertae sedis [47].
Furthermore, this group of sponges is known to contain a wide range of bioactive metabolites such as
steroids (cholesterol sulfate, new sulfated sterols and isopropylated peroxides), polyacetylenic alcohols,
isonitrile diterpenes (amphilectanes), macrocyclic polyethers, nitrogenous sesquiterpenes, dimeric
sesquiterpenoids, fatty acids (oxylipins and brominated fatty acids), biindole pigments, alkaloids
[discorhabdin class, alkylpyridines, tetracyclic bipiperidines, mono- and bisindole compounds (of the
topsentin and hamacanthin classes) and imidazolediylbis-indoles], polyketide phosphodiesters,
trisoxazole-containing macrolides, and guanidinic compounds among others (SciFinder database).

These compounds are useful as potential therapeutics, particularly, due their antioxidant, cytotoxic
(anticancer), anti-inflammatory, antimicrobial (antibacterial and antifungal), antiviral (HIV- and
herpes-inhibitory), and antiparasitic (anti-plasmodium and antimalarial) activities. Some of these
bioactives functioning as immunostimulants, reduce cholesterol uptake and, also, act in the basolateral
secretion and ACAT-2 mRNA expression and increase the expression of ABCA1 mRNA in Caco-2 cells.

Thus, novel sesquiterpene alkaloids, halichonines A–C, were identified from the marine sponge
Halichondria okadai. All three halichonine congeners have shown moderate growth-inhibitory activities
against mammalian cancer cells lines (L1210 and PC13) using the MTT assay. Halichonine B was
then subjected to the trypan blue dye exclusion using HL-60 human leukemia cells, and has shown
cytotoxicity at IC50 value of 0.6 µg·mL−1. DNA ladder analysis revealed that halichonine B has induced
DNA fragmentation in HL-60 cells [127].
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2.1.10. Order: Tetractinellida

The re-classification based on molecular results of Demospongiae class suggested by Morrow
and Cárdenas [47], between other modifications, propose to resurrect or upgrade six orders
from SP including the Tetractinellida order that involves, among others, 11 former lithistid
families namely: Ancorinidae, Azoricidae, Calthropellidae, Corallistidae, Geodiidae, Isoraphiniidae,
Macandrewiidae, Neopeltidae, Pachastrellidae, Phymaraphiniidae, Phymatellidae, Pleromidae,
Samidae, Scleritodermidae, Siphonidiidae, Spirasigmidae, Tetillidae, Theonellidae, Theneidae,
Thoosidae, Thrombidae and Vulcanellidae. Bioactive metabolites isolated from sponges belonging to
certain Tetractinellid families are detailed below:

Family: Ancorinidae

Marine sponges belonging to the Ancorinidae family include 15 valid genera (of 37 nominal ones)
namely Ancorina, Asteropus, Chelotropella, Cryptosyringa, Dercitus, Disyringa, Ecionemia, Holoxea, Jaspis,
Psammastra, Stelletta, Stellettinopsis, Stryphnus, Tethyopsis and Tribrachium [47,128].

Despite the high number of species of this family, some genera are up till now little
explored. However, of the studied species, were isolated diverse monocyclic diterpene-benzenoids,
triterpenes (isomalabaricane-type triterpenoids and triterpenoid oligoglycosides), sterol derivatives,
alkaloids (bromotyrosine derivatives, acridine and pentacyclic pyridoacridine compounds,
indolizidine and bisguanidinium compounds, and indolo-[3,2-a]carbazoles), swinholide polyketides,
cyclodepsipeptides, diketopiperazines, monoacylglycerols, glycerol ethers, acetylenic acids, very
long-chain methoxylated ∆5,9 fatty acids, lysophosphatidylcholines, sphingolipid hybrid molecules,
apocarotenoids, macrolide lactams and amino acid derivatives (SciFinder database). These bioactives
have shown interesting pharmacological properties such as cytotoxic (anticancer and antitumoral),
antiviral (HIV-Inhibitory), antimicrobial (antibacterial and antifungal), antileishmanial and
anthelmintic activities, they also are inhibitors of mitotic spindle formation, inhibitors of protein
kinase activity and inhibitors of topoisomerases.

Chemical studies of the Australian marine sponge Ecionemia geodides resulted in the isolation
of two new pyridoacridine alkaloids, named ecionines A and B, along with the previously isolated
compounds, biemnadin and meridine. Both novel ecionines contain an imine moiety, which is very
rarely found in the pyridoacridine class. All compounds were tested against a panel of human bladder
cancer cell lines—the increasingly metastatic TSU-Pr1 series (TSU-Pr1, TSU-Pr1-B1, and TSU-Pr1-B2),
and the superficial bladder cancer (5637) cell lines. Ecionine A (XX, Figure 10) has displayed potent
cytotoxicity against all cell lines, with IC50 values ranging from 3.0 to 7.0 µM [129].
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From an unidentified marine sponge of the genus Stelletta, collected from the west side of
Jamieson Reef, Bonaparte Archipelago, North West Western Australia, a new diketopiperazine (DKP)
named cyclo-(4-S-hydroxy-R-proline-R-isoleucine) was isolated together with the known bengamides
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A, F, N, Y, and bengazoles Z, C4, and C6. The novel DKP was proposed to be the product of an
enzymatically controlled condensation reaction between D-isoleucine and 4-S-hydroxy-D-proline and
was not cytotoxic against the cell lines MCF-7, H460, HT-29, SF-268 or CHO-K1 [130].

Family: Calthropellidae

Marine sponges of the family Calthropellidae include species of the genera Calthropella,
Corticellopsis, Pachataxa and Pachastrissa [131]. Although the metabolic profile of this wide group of
metazoans is still little understood, some trisoxazole macrolides, anhydrophytosphingosines, lactones,
bengamides and bengazole derivatives were isolated (compiled from SciFinder database). Among
other properties, these compounds have shown cytotoxic and antiplasmodial activities.

Thus, in the search for new compounds, three trisoxazole macrolides possessing a 30-α,β-enone
moiety, including the known kabiramide G and the new kabiramides J and K (XXI and XXII, Figure 11)
were isolated from the sponge Pachastrissa nux, along with the previously reported kabiramides B,
C, and D. All the isolated compounds were assayed for cytotoxic activities against MCF-7 breast
adenocarcinoma and normal human fibroblast. The compounds have shown strong activities in both
models with IC50 values in a range of 0.02 to 0.45 µM and 0.05 to 2.37 µM, respectively, except for
kabiramide G which has shown only strong cytotoxicity against both cancer cells with IC50 values in a
range of 0.47 to 7.59 µM, and against normal cell lines at sub- and micromolar concentrations [132].
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Family: Geodiidae

Sponges belonging to the family Geodiidae include diverse species from the genera Caminella,
Caminus, Erylus, Geodia, Melophlus, Pachymatisma, Penares and Rhabdastrella [133,134] whose systematic
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has been recently revised based on the reevaluation of their morphological characters and molecular
analysis [135]. Although the metabolic profiling of some genera of this group of metazoans is
still poorly understood, and their potential biological activities are currently under scrutiny, some
classes of biologically active metabolites such as nor-sesquiterpene carboxylic acids, saringosterol,
steroidal glycosides, triterpenes (lanostanes, nor-lanostane saponins and isomalabaricanes), longer
chain penasterol oligosaccharides, alkaloids (penarolide sulfates), brominated cyclodipeptides and
depsipeptides, trisoxazole macrolides, tetramic acid glycosides, glycolipids and unusual amino-acids
and fatty acids, were isolated (SciFinder database).

These bioactives have shown a range of biological activities such as cytotoxic and antitumor
(anticancer), antimicrobial (antibacterial and antifungal), and antiplasmodial properties; showing
in vitro inhibition of human platelet aggregation and producing hemolysis of human erythrocytes.
Some aforementioned compounds act as part of the IKK complex in the conventional pathway of
NF-kappa-B activation and phosphorylate inhibitors of nuclear factor kappa-B kinase subunit beta
(IKK-β) kinase. Also, show 26S proteasome proteolytic activity and the ability to promote stabilization
of the DNA-polymerase beta covalent binary complex, functioning as inhibitors of histamine release
(α-glucosidase inhibitors) (SciFinder database).

Thus, geoditin A (XXIII, Figure 12), an isomalabaricane triterpenoid found in many genera of
marine sponges has received special pharmacological attention because it inhibited cyclin-dependent
kinase activity and subsequently suppressed tumor cell proliferation [136]. This naturally occurring
compound was isolated from the marine sponge Geodia japonica collected from the South China
Sea [137]. According to Cheung et al., after treatment with geoditin A for 24 h, it was observed
fragmentation of Golgi structure, suppression of transferrin receptor expression, production of oxidants,
and DNA fragmentation in human colon cancer HT29 cells [138], and was also demonstrated to induce
apoptosis in leukemia HL-60 cells with IC50 value of 3.0 µg·mL−1 [136]. Further, it was observed that
the cytotoxic effect of geoditin A is likely mediated by a NAC-inhibitable oxidative stress [139].
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On the other hand, geoditin A at sublethal doses (≤5.0 µg·mL−1) decreased melanogenesis
and glycosylation of tyrosinase (TYR) in murine B16F10 melanoma cells (CRL6475, ATCC) in a
dose-dependent manner, but ROS- and MITF- in an independent one. Therefore, there is potential for
the application and development of this marine compound as a skin-lightening agent [139].

Two new unusual bromine-containing alkaloids were isolated from an unidentified marine
sponge belonging to the genus Penares, which was collected from Vietnam waters, the South China
Sea. Cytotoxic activities of the isolated compounds against tumor cell lines HL-60 and HeLa
were determined using MTS reduction into its formazan product. The first compound named
3,11-dibromo-13H-indolo[3,2-k]phenanthridine was inactive, while the second compound named
7-bromo-1-(6-bromo-1H-indol-3-yl)-9H-carbazole has demonstrated moderate inhibition of both cell
lines with IC50 values of 16.1 and 33.2 µM, respectively [140]. Progress towards the total synthesis of
the natural alkaloid 3,11-dibromo-13H-indolo[3,2-k]phenanthridine is being still carried out [141].

Thus, from the marine sponge Rhabdastrella globostellata, which was collected from Hainan
Island in the South China Sea, were isolated nine new isomalabaricane-type triterpenoids namely
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globostelletins J–R together with jaspolide F, rhabdastrellic acid A, (−)-stellettin E, and stellettins C and
D. The authors demonstrated that all the compounds have induced inhibitory activities in human lung
adenocarcinoma (A549), human gastric gland carcinoma (BGC-823), human intestinal adenocarcinoma
(HCT-8) and human hepatocellular carcinoma (Bel-7402) cells. Besides, HL-60 cells treated for 24 h
with 5.0 µM of rhabdastrellic acid A have induced the externalization of phosphatidylserine, which is
characteristic of apoptotic cell death [142,143].

On the other hand, seven new isomalabaricane derivatives, rhabdastins A–G and a new
monocyclic triterpene glycoside, named rhabdastoside A, were isolated from the methanolic extract of
the same species of marine sponge, R. globostellata, collected at Amami-Oshima, Japan. Three of them
were isolated as their corresponding methyl esters. The isolated compounds possessing a cyclopentane
side chain have exhibited weak activity against leukemia HL-60 cells, while compounds with a
2-substituted-propanoate side chain were inactive at growth inhibitory concentration of 100.0 µM [144].

2.1.11. Order: Verongida

The revised classification of Demospongiae class proposed by Morrow and Cárdenas [47] has
retained seven orders from 13 ones originally present in the SP, including the order Verongida [145].
Therefore, Verongida order involves four families namely Aplysinellidae, Aplysinidae, Ianthellidae,
and Pseudoceratinidae.

As outlined in the SciFinder database, Verongid sponges are characterized by a unique
biochemistry as the lack terpenes and a great percentage of sterols—generally with the aplystane
skeleton—and, especially, elaborate a series of brominated metabolites derived from tyrosine that are
considered to be peculiar to species belonging to this order [146]. Some bioactive metabolites from
species belonging to three families of this order are detailed below:

Family: Aplysinellidae

Members of the family Aplysinellidae encompass three different genera: Aplysinella, Porphyria
and Suberea [147], which contain punpehenone-related and bromotyrosine-derived metabolites with
varied biological activities as cytotoxic, antiviral, antifungal and inmunomodulatory affects.

From an undescribed marine sponge of the genus Suberea were isolated two new brominated
compounds, subereaphenol K and 2-(3,5-dibromo-1-ethoxy-4-oxocyclohexa-2,5-dien-1-yl) acetamide,
together with subereaphenol B (methyl 2-(2,4-dibromo-3,6-dihydroxyphenyl) acetate) with a revised
structure, and five dibromotyrosine-derived metabolites. Some of the compounds as the subereaphenol
B and the dibromotyrosine derivatives, aeroplysinin-1 and -2, have exhibited various weak or moderate
cytotoxic activities against NIH-3T3, HepG2 and HT-29 cell lines [148]. The synthesis of aeroplysinin-1
had been previously accomplished [149].

Family: Ianthellidae

Sponges belonging to the family Ianthellidae include species from the genera Anomoianthella,
Hexadella and Ianthella [150], which are known to contain sterols (as petrosterol), sulfated carotenoids,
cyclic peptides (bastadins), trimeric hemibastadin congeners, brominated tyrosine derivatives,
iantherans, benzofuranic compounds, octopamine derivatives, indole-aldehydes, phenylacetic
acids, thymidines, deoxycytidines, araplysillin-I N20-sulfamate and brominated macro-dilactams.
These metabolites possess interesting biological activities such as cytotoxic (anticancer), antibacterial
and antitrypanosomal, along with inhibitory activity against H+/K+–ATPase.

Therefore, the focus of the study performed by Calcul et al. was on the bastadin class of
bromotyrosine derivatives, isolated from the marine sponge Ianthella reticulate as the first report on
this category of secondary metabolites. Additionally, two new bastadins were isolated, (E,Z)-bastadin
19—a diastereoisomer of the known (E,E)-bastadin 19, and an unusual dibenzo-1,3-dioxepine.
The known bastadin 4 has shown strong cytotoxic activity against HCT-116 colon cancer cells
with IC50 value of 1.28 µM [151]. Total synthesis of dioxepine bastadin 3 has been performed by
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Pérez-Rodríguez et al. [42] while the synthesis of bastadins in heterogeneous phase, starting from
dopamine, has been reported by Decamps et al. [152].

Family: Pseudoceratinidae

Marine sponges belonging to the family Pseudoceratinidae include four nominal genera,
however, only the genus Pseudoceratina is considered valid [153]. This family affords a range
of metabolites such as halogenated derivatives (brominated phenols and bromotyramine),
alkaloids (spermidine derivatives), cyanoformamide, glycolipid analogs and other compounds.
These metabolites have shown cytotoxic, anticancer, antibiotic (antibacterial), antifungal and
antimalarial activities.

Thus, a bioassay-directed fractionation of Pseudoceratina arabica, using the wound-healing
protocol, resulted into the isolation of three known alkaloids, subereamolline A, aerothionin and
homoaerothionin. Subereamolline A potently has inhibited the migration and invasion of the highly
metastatic human breast cancer cells MDAMB-231 at nanomolar doses [154]. The first total synthesis
of (+)- and (−)-subereamollines A and B was reported, and the enantiomeric forms of these natural
products were obtained by preparative chiral HPLC separation of the corresponding racemates [41].

2.2. Miscellaneous

In support of this review, some remaining families/species of marine sponges were summarized
in Table 1, as well as their cytotoxic properties.

Table 1. Marine sponge families less explored about for new chemical features and their cytotoxic
effects on different cancer cell lines.

Species (Order, Family) Compounds Cancer Cell Line
(In Vitro Cytotoxicity) Reference

Biemna sp.
(Biemnida, Biemnidae)

Two pyridoacridines and the
known isocystodamine **

K562 (ED50 = 5 nM for
each compound) [155]

Cinachyrella enigmatica
(Tetractinellida, Tetillidae) Enigmazole-A * NCL–H60 (mean GI50 of 1.7 µM) [156]

Clathria sp.
(Poecilosclerida, Microcionidae)

Mirabilins H–J and three
known mirabilins

ECACC, AGS, HT29 and int-407
(LD50 values > 30 µM) [157]

Haliclona sp.
(Haplosclerida, Chalinidae)

Eight cyclic
bis-1,3-dialkylpyridiniums and
two known cyclostellettamines

A549 (LC50 = 14.7–28.9 µM) [158]

Hyatella sp.
(Dictyoceratida, Spongiidae)

Five new scalarane sesterterpenes
and six known compounds

K562 (LC50 = 14.8–39.5 µM); one
compound with LC50 > 100 µM [159]

Myrmekioderma dendyi
(Axinellida, Heteroxyidae)

Myrmekioside E, and
peracetylated myrmekioside E

(myrmekioside E-2)

NSCLC-N6 (IC50 = 7.3 µM);
A549 (IC50 = 9.7 µM) [160]

Spirastrella abata
(Clionaida, Spirastrellidae)

Three phingosine 4-sulfates,
and lysophosphatidylglycerol K562 (LC50 = 4–8 µM) [161]

Theonella swinhoei
(Tetractinellida, Theonellidae)

Swinholide J, and the known
swinholide A KB (IC50 = 6.0 nM) [162]

* Compound has been synthesized, according to Skepper et al. [163]; ** Isocystodamine has been synthesized,
according to Yoshiyasu et al. [164].

3. Final Considerations

Discovery of new bioactive natural products isolated from marine sponges is a complex and
multidisciplinary endeavor, where no traditional empirical knowledge and ethnopharmacology
research exists to support this zoochemical exploration. Therefore, it is essential construct a solid
database to fill this gap in the scientific literature on natural products discovery.
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The present review describes the research on marine sponge derived cytotoxic compounds carried
out between 2010 and 2012. This overview resulted in more than 73 articles closely correlated, attesting
for instance, the great chemodiversity of these organisms as source of natural products. During this
triennial database search, 337 secondary metabolites were isolated of which more than 197 ones were
reported as novel chemical structures. Several of these new compounds, and their synthetic analogs,
have shown confirmed in vitro cytotoxic and pro-apoptotic activities against various tumor/cancer
cell lines bioassays. Moreover, some of them are of current interest for further in vivo evaluation.

The major structural classes of these new natural products were limited, in particular, to the
terpenoids (41.9%), alkaloids (26.2%), macrolides (8.9%) and peptides (6.3%), which represented the
four main chemical classes of compounds discovered from sponges in this period, which together with
other chemical classes as polyketides, sterols, and others (16.7%) showed a range of biological activities.

Dictyoceratida, Haplosclerida, Tetractinellida, Poecilosclerida, and Agelasida were the key orders
of sponges studied during this period. The examination of the contribution from an individual species
revealed that regardless of the order, each species contributed, on average, 2–5 new compounds.
The high number of new compounds was the result of the high diversity of species from these
particular orders. These results were similar to those compiled by Mehbub et al. [8], covering new
bioactive compounds derived from marine sponges prospected between 2001 and 2010. The order
Dictyoceratida was found to be the most prolific producer of new compounds among all the sponge
orders studied. Petrosia and Haliclona (Haplosclerida), Rhabdastrella (Tetractinellida), and Coscinoderma
and Hyppospongia (Dictyioceratida), were found to be the most promising genera because of their
capacity for producing new bioactive compounds.

Cytotoxicity assays are mandatory to access the cytotoxic level of a new compound. In this review,
cytotoxicity assays of the active compounds isolated from marine sponges were established through
those most common anticancer drug screen panels which consisted in either in human [(CCRF-CEM,
LH-60 promyelocytic; K-562 chronic myelogenous; CLL lymphocytic; UT-7; and THP-1 monocytic)
leukemia; A-549 and H-460 lung, HeLa cervix; HCT-8 ileum; HCT-116 and SW-480 colon and HT-29
colorectal; SF-268 central nervous system, MALME-3, MDA-MB-231, and (LOX-IMVI amelanotic)
melanoma; SN12C renal, PC-3 and DU-145 prostate; MCF-7 breast; KB nasopharyngeal epidermal and
FaDu pharynx; BGC-823, SGC, and MKN-45 gastric; TSU-Pr1 series and 5637 superficial bladder, A-431
epidermoid, A-549 alveolar basal epithelial, QGY-77003 hepatoma, for example)] or murine (P388 and
L1210 lymphocytic leukemias; B16 melanoma, JB6 Cl41 epidermal, and L5187Y lymphoma) cultured
tumor cell-lines. However, in a few reports cytotoxic studies were very extensive and have included
the NCI-60 [165] or JFCR-39 [166] human cancer cell line panels for in vitro anticancer drug screen.
Both screening systems—against different cancer cell lines—are well-known platforms and powerful
tools for identifying the relationship between anticancer drugs and cell lines (=cytotoxicity), for the
discovery of molecular-targeted anticancer agents, and facilitate the selection of many compounds for
active development as anticancer drug candidates.

Despite the fact that the distribution of cytotoxic activities versus taxonomic sources for these
compounds has not been plotted graphically, a quantitative analysis presumes a reputable screening
of novel natural products. However, this review has not resulted in a corresponding increase in the
number of new drug candidates, once that nearly 2/3 of the observed bioactives (65%) were shown to
be effective only at moderate or high micromolar concentrations (≥10 µM), which resulted in little
interest by the researchers as potential active drugs. Then, to the best of our knowledge, potent leading
compounds were not so expressive and, indeed; reconfirm the traditional bottleneck existent through
the development cycle of these potential drugs.

Although it was not the aim of this revision to address preclinical and clinical aspects of
the bioactives isolated, it is evident the existing gap in relation to the natural availability of this
pharmacologically important bioactives to perform assays of this nature since they require increasing
amounts of these substances. In this sense, the synthetic chemical purpose represents an important
route of choice for manufacture preclinical drug candidates. Chemical synthesis shows, moreover,
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potential to confirm or revise chemical structures obtained from discovered natural products, as well
as to provide novel analogues.

Sponge aquaculture and recombinant microorganisms engineered are becoming very attractive
to support bioactives. An efficient production of sponge derived products is a promising strategy
that deserves further attention in future investigations in order to address the limitations regarding
sustainable supply of marine drugs. Surely, the establishment of a matrix renewable and diverse of
production of bioactives will compensate the extremely scarcity of natural supply of cytotoxic agents,
contributing for a sustainable production of these drugs.

Finally, to conclude, it is expected that this review can highlight the general importance of the
cytotoxic factors involved in the accurate and selective process used to discovery and development of
new functional anticancer drugs.
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