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Abstract: Although there is increasing evidence that oxidative stress and inflammation induced by
COVID-19 may contribute to increased risk and severity of thromboses, the underlying mechanism(s)
remain to be understood. The purpose of this review is to highlight the role of blood lipids in
association with thrombosis events observed in COVID-19 patients. Among different types of phos-
pholipases A2 that target cell membrane phospholipids, there is increasing focus on the inflammatory
secretory phospholipase A2 IIA (sPLA2-IIA), which is associated with the severity of COVID-19.
Analysis indicates increased sPLA2-IIA levels together with eicosanoids in the sera of COVID patients.
sPLA2 could metabolise phospholipids in platelets, erythrocytes, and endothelial cells to produce
arachidonic acid (ARA) and lysophospholipids. Arachidonic acid in platelets is metabolised to
prostaglandin H2 and thromboxane A2, known for their pro-coagulation and vasoconstrictive proper-
ties. Lysophospholipids, such as lysophosphatidylcholine, could be metabolised by autotaxin (ATX)
and further converted to lysophosphatidic acid (LPA). Increased ATX has been found in the serum of
patients with COVID-19, and LPA has recently been found to induce NETosis, a clotting mechanism
triggered by the release of extracellular fibres from neutrophils and a key feature of the COVID-19
hypercoagulable state. PLA2 could also catalyse the formation of platelet activating factor (PAF)
from membrane ether phospholipids. Many of the above lipid mediators are increased in the blood
of patients with COVID-19. Together, findings from analyses of blood lipids in COVID-19 patients
suggest an important role for metabolites of sPLA2-IIA in COVID-19-associated coagulopathy (CAC).

Keywords: COVID-19; secretory phospholipase A2; sPLA2-IIA; PLA2G2A; lysophospholipase D;
autotaxin; lysophosphatidic acid; LPA; platelets; neutrophil extracellular traps; NETs; thrombosis;
microthrombi; macrothrombi; COVID-19-associated-coagulopathy; CAC; NETs; pneumocytes; brain
endothelial cells; stroke; C16:0 ceramide

1. Introduction

COVID-19 originated in 2019 and has spread around the world [1]. The SARS-CoV-2
virus, which is the cause of COVID-19, shares highly homologous sequences with the
severe acute respiratory syndrome coronavirus (SARS-CoV-1), and causes acute and highly
lethal pneumonia with clinical symptoms similar to those produced by SARS-CoV-1 or
MERS-CoV infection [2]. It is a single-stranded coronavirus with a positive-sense RNA
(+ssRNA) genome of approximately 26–32 kb and is currently the largest known genome
size for an RNA virus [3]. SARS-CoV-2 is characterised by the presence of spike proteins
that project from its surface [4]. The common symptoms of COVID-19 are fever, cough, sore
throat, breathlessness, and fatigue. Other symptoms include sputum production, myalgia
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or arthralgia, chills, vomiting, and nasal congestion. There is a substantial increase of acute
phase reactants in the blood, suggesting a dysregulation of the inflammatory host response.
The latter may cause an imbalance between pro- and anti-inflammatory mediators, leading
to the recruitment and accumulation of leukocytes in tissues including the lungs and
producing acute respiratory distress syndrome (ARDS) [5]. SARS-CoV-2 infection of cells
occurs through the binding of angiotensin-converting enzyme 2 (ACE2). Virus binding to
ACE2 induces conformational changes in the S1 subunit of its spike protein and exposes
the S2′ cleavage site in the S2 subunit. The S2′ site is then cleaved by a protease to expose
a peptide within the spike protein that is able to attach to and induce fusion of the viral
envelope with the host cell membrane, thus facilitating infection of the cell. For a recent
review, see [6].

2. SARS-CoV-2 and Induction of Cytokine Storm

SARS-CoV-2 infection promotes the overproduction of inflammatory cytokines with a
wide range of biological activity. These cytokines drive positive feedback on immune cells
and recruit them to the sites of inflammation. This ‘cytokine storm’ is a life-threatening
systemic inflammatory syndrome involving elevated levels of circulating cytokines and
immune cell hyperactivation. These processes can lead to COVID-19-associated coagu-
lopathy or thrombosis [7]. Activation of Toll-like receptors (TLRs) by SARS-CoV-2 triggers
a biochemical cascade beginning with the generation of pro-IL-1 cleaved by caspase-1,
followed by inflammasome activation [8,9]. The NOD-like receptor (or nucleotide-binding
domain and leucine-rich repeat containing receptor; NLR) family pyrin domain containing
3 (NLRP3) inflammasomes are large multimolecular complexes that control the activa-
tion of caspase-1, which in turn regulates the maturation of IL-1β and IL-18. IL-1β is a
pro-inflammatory cytokine that induces local and systemic inflammation and a febrile
reaction in response to infection [10,11]. Major cytokines that are overexpressed during
SARS-CoV-2 infection include tumour necrosis factor-α (TNF-α), interleukins (IL-1β, IL-6),
interferon-γ (IFN-γ), colony stimulating factors (CSF), the chemokine family (CXCL10,
CXCL8, CXCL9, CCL2, CCL3, and CCL5), growth factors, and others. These mediators
can be divided into pro-inflammatory mediators (such as IL-1β, IL-6, IL-12, TNF-α, and
IFN-γ) and anti-inflammatory mediators (such as IL-4, IL-10, IL-13, and TGF-β). The exact
mechanism of ARDS in COVID-19 patients is not fully understood, although excessive
production of pro-inflammatory cytokines is probably a major contributing factor [4,12,13].
Cytokines and chemokines attract macrophages, neutrophils, and T cells in the lungs [14],
and microglia in the brain [15]. The cytokine storm in severe COVID-19 could cause
widespread dysregulation of the host immune defence, endothelial dysfunction, damage
to the vascular barrier, and diffuse alveolar damage, leading to multi-organ failure and
ultimately death [16]. Cytokine storms could also result in hypercoagulation of the blood
and thromboses [17]. These effects suggest that targeting the cytokine storm with anti-
inflammatory drugs during the management of COVID-19 patients may improve survival
rates for severe COVID-19 patients and reduce mortality.

3. COVID-19-Associated Coagulopathy (CAC)

Patients with COVID-19 have a higher frequency and severity of clotting events as
compared with diseases caused by other common respiratory viral infections. These can
manifest as microthrombi and macrothrombi and result in damage to multiple organs,
such as the lungs, heart, kidney, and brain (reviewed in [18]). Coagulopathy is associated
in most cases with elevated plasma levels of D-dimer, C-reactive protein, P-selectin, and
fibrinogen [19,20]. D-dimer is generated by plasmin cleavage of cross-linked fibrin and is
therefore a marker of both coagulation events and fibrinolysis. Elevated D-dimer levels
in patients with COVID-19 are accompanied by only occasional prolongation of the pro-
thrombin and activated partial thromboplastin times [4]. These haematological changes
are not consistent with classical disseminated intravascular coagulation [21], but rather
suggest a different aetiology for CAC that could include disturbances in fibrinolysis [22].
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Abnormal coagulation parameters are often associated with poor prognosis in patients [23].
Variants of COVID-19 differ in their effects on clotting. Although clotting parameters
associated with the omicron variant of SARS-CoV-2 are significantly raised over those of
healthy matched controls, their levels are significantly lower than those seen with more
severe variants such as beta and delta [24]. Since the omicron variant appears to be far
more transmissible but less virulent than the beta or delta variants, the less extensive clot
formation appears to correlate with the reduced virulence of this variant [24]. These results
support the notion that the ability to induce micro- and macrothrombi plays an important
role in the virulence of COVID-19.

Hypofibrinolytic state and high thrombin generation play major roles in SARS-CoV-
2-associated thrombosis [25]. One of the prominent features of COVID-19-associated
coagulation is changes in the plasma levels of plasminogen, plasmin, and D-dimer. Plas-
minogen is the precursor of plasmin, which lyses fibrin clots to form fibrin degradation
products and D-dimer. The conversion to active protease is mediated by tissue-type (tPA)
and urokinase-type (uPA) plasminogen activators. Several studies have reported increases
in plasminogen activator inhibitor (PAI-1) in patients with COVID-19. This could lead
to reduced plasminogen activation, decreased formation of plasmin, and a lower rate of
dissolution of blood clots [26,27]. PAI-1 and its cofactor, vitronectin, are significantly ele-
vated in patients with COVID-19 as compared with those with a non-COVID-19 respiratory
infection or healthy control groups. Moreover, PAI-1 and tissue plasminogen activator
(tPA) are found in patients with more severe COVID-19 disease [26]. It is also reported that
the fibrin produced in COVID-19-associated coagulopathy has features of amyloid [28],
which is more resistant to fibrinolysis, and associated with anti-plasmin [27,28]. Mass
spectrometry showed that when spike protein S1 is added to healthy platelet-poor plasma,
it results in structural changes to fibrin(ogen), complement 3, and prothrombin, and these
become substantially more resistant to trypsinization [29].

Factors within the bloodstream, as well as those in the vessel walls or around the
vessel walls, likely play important roles in COVID-19 associated coagulopathy. Contribut-
ing factors within the bloodstream could include the formation of neutrophil extracellular
traps (NETs). In response to injury, neutrophils generate threads of chromatin covered
with granule-derived peptides and proteolytic enzymes, or NETs [30]. The latter has a
large net-like structure in which pathogens may be trapped [31]. NETs, however, are also
involved in pathophysiological mechanisms ranging from inflammation to thrombosis [32].
Neutrophils were found in autopsy specimens from the lungs of a patient who succumbed
to COVID-19. Extensive neutrophil infiltration was found in pulmonary capillaries, with
acute capillarities with fibrin deposition and extravasation into the alveolar space [33]. The
sera of patients with COVID-19 have elevated levels of cell-free DNA, myeloperoxidase-
DNA (MPO-DNA), and citrullinated histone H3 (Cit-H3); the latter two are specific markers
of NETs [34]. MPO-DNA is associated with both cell-free DNA and the absolute neutrophil
count, while Cit-H3 is correlated with platelet levels [34]. Myeloperoxidase (MPO), pro-
duced by neutrophils, catalyses the formation of reactive oxygen intermediates, including
hypochlorous acid (HOCl). The latter plays an important role in microbial killing but could
also be a mediator of tissue damage [35], especially in the tunica intima of blood vessels ad-
jacent to the bloodstream. Another NET by-product implicated in COVID-19 pathogenesis
is elastase. The latter can accelerate virus entry and induce hypertension, thrombosis, and
vasculitis [36], and might also damage elastic lamellae in the tunica media of blood vessels,
as well as elastic fibres in the interalveolar septa of the lungs. This could lead to reduced
elastic recoil of blood vessels and lungs. In addition to neutrophils, platelets have been
shown to induce NET formation, and, in turn, NET’s components regulate neutrophil and
platelet function [37]. Blood lipids that participate in platelet activation include platelet
activating factor (PAF). The latter is an ether phospholipid and a potent chemical mediator
of inflammation [38]. PAF is produced by cells involved in host defense, and its biological
actions bear similarities with COVID-19 disease manifestations [39]. Increased levels of
PAF have been found in the blood of moderate COVID-19 patients [40]. In addition to PAF,
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lysophosphatidic acid has been found to promote thrombus stability by inducing the rapid
formation of NETs [41].

Factors within the vessel walls, or around the vessels could also be a source of in-
creased coagulation in COVID-19. Dysfunction of the vascular endothelium is thought to
be a major contributor to the pathogenesis of COVID-19 vasculopathy [42–44]. Injury to
endothelial cells could lead to increased expression of pro-coagulation factors including
von Willebrand factor, thromboxane A2, thromoplastin, Factor V, PAF, and plasminogen
activator inhibitor [45]. In addition, loss or damage to endothelial cells might result in expo-
sure of tissue factor (TF), leading to activation of plasma factor VII/VIIa (FVII/FVIIa) [45].
Injury to cells around the blood vessels might also affect endothelial cells and result in
coagulopathy. Closely adherent to endothelial cells in the lungs and separated only by
a basement membrane are lung epithelial cells, including flattened Type I pneumocytes
and Type II pneumocytes, which secrete surfactant and normally express ACE2 [46,47].
After SARS-CoV-2 infection, there is induction of ACE2 expression in the lungs [46]. In-
duction of ACE2 enzyme is normally part of an anti-inflammatory response through the
ACE2/Angiotensin-(1-7)/Mas receptor signalling axis [48], but in the case of COVID-19,
could facilitate further SARS-CoV-2 infection of pneumocytes [46]. The SARS-CoV-2 spike
protein S1 subunit induces pro-inflammatory responses via Toll-like receptor 4 signalling
in murine and human macrophages [49] and could induce inflammation and injury to
lung epithelial cells. In turn, this could lead to damage to the adjacent endothelial cells,
loss of endothelial barrier function, oedema, and reduced gaseous exchange across the
alveolar-capillary membrane (blood–gas barrier). Endothelial injury could also lead to
increased microthrombi formation in capillary beds around the alveoli [50]. This could
exacerbate the difficulty in gaseous exchange and compromise the supply of nutrients to
pneumocytes and endothelial cells.

Increased immune reaction in and around the blood vessel walls could lead to upreg-
ulation of lipolytic enzymes, including intracellular cytosolic phospholipase A2 (cPLA2)
and secretory phospholipase A2 (sPLA2) [51,52]. Secreted sPLA2 could leak into the blood-
stream from the affected region, and affect other vascular beds and tissues in more distant
locations.

4. COVID-19 and Changes in Phospholipases A2

Proinflammatory cytokines, such as IL-1β and TNF-α may induce the de novo synthe-
sis of cPLA2 [53], which catalyses the breakdown of membrane phospholipids to produce
a free fatty acid (arachidonic acid, ARA), and a lysophospholipid. In turn, ARA can be
metabolised by cyclooxygenases (COX) to produce inflammatory lipid mediators such
as prostaglandins [54]. In addition to the calcium-dependent cPLA2, other isoforms of
PLA2 such as the calcium-independent iPLA2 and secretory sPLA2 (sPLA2) are involved in
inflammatory events [55]. These PLA2s have different molecular structures and cellular
localizations and produce lipid mediators with diverse functions. In a study on an animal
model in which ischemic stroke was induced by occlusion of the middle cerebral artery, an
increase in sPLA2-IIA mRNA was found in the peri-infarct area [56]. Other studies have
well-demonstrated the involvement of both cPLA2 and sPLA2 in models of stroke [54].

Increased sPLA2-IIA was recently shown to parallel several indices of disease severity
in patients with COVID-19. A decision tree generated by machine learning has identified
sPLA2-IIA level as a central node in the stratification of patients who died from COVID-
19 [57]. Increases in D-dimer, a protein fragment produced during dissolution of blood
clots, together with the pro-inflammatory marker, C-reactive protein (CRP), ferritin, TNF-α,
IL-1β, IL-6, and IL-13, as well as sPLA2-IIA activity, were also found in patients with
COVID-19 compared to normal persons [58]. These results indicate a link between cytokine
storm and sPLA2-IIA activity in patients with COVID-19 [58].

sPLA2 level is also correlated with the severity of COVID-19 and acute multisystem
inflammatory syndrome (MIS-C) in children [59]. In addition, comprehensive analyses
of the plasma proteome of more than 1400 proteins in children with COVID-19 showed
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significant overlap in protein signatures between severe COVID-19 and MIS-C, as well as
the inflammatory syndromes, macrophage activation syndrome, and thrombotic microan-
giopathy [60]. Interestingly, sPLA2-IIA was found to be an important marker of MIS-C that
associates with thrombotic microangiopathy [60]. These findings indicate a close relation-
ship between plasma sPLA2-IIA levels and thromboses in patients with severe COVID-19
or MIS-C.

sPLA2-IIA in human atherosclerotic lesions has been implicated in the initiation, pro-
gression, and maturation of atherosclerosis, which is a risk factor for thrombosis, including
stroke [61]. Patients with metabolic syndrome showed strikingly higher levels of endothe-
lial activation molecules that were correlated with increased serum sPLA2-IIA protein
levels and activity [62]. Lung microvascular endothelial cells are highly sensitive targets for
the direct action of extracellular sPLA2, and a specific pERK inhibitor, U0126, was found to
prevent sPLA2-induced chemokine upregulation [63]. Another study showed the ability of
a sPLA2 inhibitor, indoxam, to suppress low-density lipoprotein (LDL) modification and
associated inflammatory responses in TNFα-stimulated human endothelial cells [64].

Substrates for serum sPLA2 could include phospholipids that are derived from the
cellular membranes of platelets, erythrocytes, endothelial cells, and possibly gut bacteria
that have entered the bloodstream. Platelets are capable of releasing mitochondria into the
bloodstream either as vesicle-enclosed microparticles or as free organelles [65]. The released
mitochondrial membranes could serve as substrates for circulating sPLA2-IIA. Another
possible source of substrate for circulating sPLA2-IIA could be the plasma membrane of
erythrocytes. Although normal erythrocytes are apparently not affected by sPLA2-IIA, at
high levels, such as those observed under inflammatory conditions, phosphatidylserine-
exposing erythrocytes could undergo haemolysis and generate LPA [66].

In addition to sPLA2-IIA, sPLA2-IID has been found to contribute to age-related
susceptibility to SARS-CoV-1 infection in mice [67] and plays a key role in coronavirus-
specific antibody production in middle-aged mice [68]. sPLA2-IID has also been shown
to be necessary for the virulence of SARS-CoV-2 [69]. COVID-19 disease severity was
significantly reduced in aged mice that lacked sPLA2-IID or the prostaglandin D2 receptor
DP1; treatment with a DP1 antagonist, asapiprant, protected these mice from lethal COVID-
19 infection [69].

An increase in another sPLA2 isoform encoded by the PLA2G7 gene, lipoprotein-
associated phospholipase A2 (Lp-PLA2), has also been detected in the sera of patients with
COVID-19 [70]. This enzyme is associated with low-density lipoprotein and is involved in
the pathogenesis of cardiovascular disease [70].

A compound, 2-oxoamide GK241, has recently been developed that is a dual inhibitor
of sPLA2-IIA and the SARS-CoV-2 main protease, and could be a promising candidate for
combating COVID-19 [71].

Phospholipid metabolites that are produced due to PLA2 activity and increased in
COVID-19 are summarised in Figure 1.
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5. COVID-19-Associated Changes in Arachidonic Acid (ARA) and Docosahexaenoic
Acid (DHA)

Increased levels of sPLA2 could contribute to greater levels of arachidonic acid (ARA)
in the serum of patients with COVID-19. Dysregulation of lipid metabolism together
with pathological inflammation has been detected in patients with COVID-19 [72]. In
addition, alterations of lipids and metabolites were correlated with the course of dis-
ease in COVID-19 patients [73]. Large-scale plasma analyses of patients with COVID-19
showed changes in phosphatidylcholine and phosphatidylethanolamine, as well as ARA
and oleic acid, which correlate with disease severity [74]. Semi-targeted lipidomic analyses
of 126 COVID-19-positive patients identified ARA, lysophosphatidylethanolamine, acyl-
carnitine, and oxylipins as the most altered lipid species in COVID-19 patients compared
to healthy volunteers [75]. Likewise, targeted metabolomic analyses showed ARA, sphin-
golipid, tryptophan, tyrosine, glutamine, and arginine metabolism to be the most affected
pathways in hospitalised patients with COVID-19 [76]. SARS-CoV-2 infection increased
plasma and tracheal aspirate levels of ARA, 5-hydroxy-6E,8Z,11Z,14Z-eicosatetraenoic
acid,11-hydroxy-5Z,8Z,12E,14Z-eicosatetraenoic acid, and acetylcholine [77]. High plasma
levels of non-esterified polyunsaturated fatty acids have been regarded as a specific feature
of patients with severe COVID-19 pneumonia. Among hospitalised patients with severe
pneumonia, COVID-19 is associated with higher concentrations of non-esterified fatty
acids, especially ARA and linoleic acid [78]. One study, however, reported lower levels
of ARA and linoleic acid in children with COVID-19 and associated MIS-C, which might
be attributed to increased metabolism of these fatty acids [79]. Lower levels of ARA but
higher levels of oxylipins derived from non-enzymatic peroxidation of polyunsaturated
fatty acids have also been reported in the plasma of COVID-19 patients in an intensive
care unit [80]. Taken together, the above findings indicate perturbations of ARA and/or its
metabolites in severe COVID-19 cases (Figure 1).

Arachidonic acid (ARA) and docosahexaenoic acid (DHA) are important polyunsatu-
rated fatty acids released from phospholipases A2 [81]. A Yin-Yang mechanism regulates
the metabolism of these two fatty acids in the central nervous system, resulting in in-
flammatory vs. protective responses [82]. In contrast to ARA, which is mostly associated
with pro-inflammatory mediators, the omega-3 fatty acid DHA is metabolised to resolvins,
protectins, and maresins, which have anti-inflammatory and pro-resolving properties [83].
Observations support the notion that DHA may alleviate the severity of symptoms of
COVID-19 [84].

Higher amounts of pro-inflammatory and pro-thrombotic lipid mediators are present
in the plasma of COVID-19 patients, as compared with healthy subjects [85]. Conversely,
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reduced concentrations of specialised pro-resolving mediators have been detected in the
sera of severe COVID-19 patients [86]. These results suggest an imbalance that favours
the pro-inflammatory over the anti-inflammatory pathways in COVID-19. Supplementa-
tion of COVID-19 patients with moderate dosages of omega-3 fatty acids has resulted in
improvement of inflammation-related clinical symptoms in a randomised clinical trial [87].

6. COVID-19-Associated Changes in Serum Glycerophospholipids and
Proinflammatory Lipid Mediators
6.1. Changes in Glycerophospholipids and Sphingolipids/Ceramide

Changes in glycerophospholipids have been a consistent finding in the serum lipids
of patients with COVID-19. A recent study showed significant increases in the levels of
serum phospholipids, including sphingomyelins and phosphatidylcholines, in the serum
of COVID-19-positive patients as compared with COVID-19-recovered individuals [88].
Likewise, fatty acid and glycerophospholipid levels were higher in severe COVID-19 pa-
tients than in recovered patients [89]. Analyses of plasma from COVID-19 patients showed
changes in 54 lipids belonging to 12 lipid classes. Of these, glycerophospholipids, sphin-
golipids, and ether lipids were the most significantly perturbed [90]. Plasma metabolite
profiles of COVID-19 survivors with abnormal pulmonary function were different from
healthy subjects with normal pulmonary function. These alterations were associated with
disease severity and involved mainly glycerophospholipid and amino acid metabolic path-
ways [91]. Consistently, metabolomic pathway analyses to identify potential molecular sig-
natures to discriminate between severe and non-severe COVID-19 revealed that COVID-19
significantly affected glycerophospholipids and metabolic pathways involving linoleic
acid [92]. Abnormally high levels of ketone bodies (acetoacetic acid, 3-hydroxybutyric
acid, and acetone) and 2-hydroxybutyric acid, a marker of oxidative stress, have also been
detected in the sera of hospitalised patients with COVID-19 [93]. COVID-19 patients in the
intensive care unit showed elevated levels of oxylipins derived from polyunsaturated fatty
acids by non-enzymatic peroxidation or soluble epoxide hydrolase [80].

A study involving 215 serum samples from COVID-19 subjects showed increased
lysophosphatidylinositol and C16:0 ceramide levels but decreased phosphatidylinositol,
C18:1 ceramide, dihydrosphingosine, lysophosphatidylglycerol, and phosphatidylglycerol
levels, compared to patients with infectious diseases other than COVID-19 [94]. The
increase in C16:0 but decrease in C18:1 ceramide is interesting, as it implies increased
expression of the serine palmitoyltransferase long chain 3 subunit (SPTLC3) [95,96], but
decreased expression of the SPTLC2 subunit, of the ceramide biosynthetic enzyme serine
palmitoyltransferase (SPT). An imbalance between the levels of C16 and C18 ceramides
could lead to changes in membrane fluidity [97] and function.

6.2. Thrombxane A2 (TxA2)

ARA that is released by the action of PLA2 may be metabolized by cyclooxygenases
(COXs) to PGG2 and PGH2, and subsequently by thromboxane synthase to produce TxA2.
The latter has blood coagulative and vasoconstrictive properties [98]. In COVID-19 pneu-
monia, there is a massive increase in ARA and associated lipid mediators resulting from
cyclooxygenase metabolites—notably TxB2 � PGE2 > PGD2 in the lungs and 11-dehydro-
TxB2 in the systemic circulation [99]. Increased thromboxane levels in the systemic cir-
culation could lead to the formation of platelet-neutrophil aggregates and a faster rate
of platelet aggregation in COVID-19 patients [99]. TxA2 that is released from platelets is
capable of stimulating platelet activation and aggregation. Moreover, TxA2 is a known
vasoconstrictor [98], and can stimulate the thromboxane prostanoid receptor (TP) that is
induced by the cytokine IL-1 [100].

Preliminary evidence indicates that a dual blocker of TP and the PGD2 receptor,
ramatroban, can produce rapid relief from dyspnoea and hypoxemia in patients with
COVID-19 [101,102]. In another study, treatment of four COVID-19 outpatients with
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ramatroban resulted in rapid relief of dyspnoea and hypoxaemia within 12–36 h and
complete resolution over 5 days [103] (Figures 1 and 2).
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6.3. Leukotriene A4 (LTA4) and Lipoxin A4

LTA4 is an enzymatic product of 5-lipoxygenase (ALOX5), expressed during inflam-
mation in smooth muscle cells, platelets, and the vascular endothelium [104]. Moderate and
severe COVID-19 patients were reported to have altered abundances of immune regulatory
and proinflammatory lipid mediators, including increased levels of products of ALOX5
and cytochrome p450 but decreased levels of products of ALOX12 and COX-2 [105]. Mon-
telukast, a leukotriene receptor antagonist, has recently been found to reduce platelet activa-
tion in plasma from COVID-19 patients. This compound could have potential as an auxiliary
treatment for the COVID-19-associated hyperinflammatory/thrombotic state [106].

The actions of the different lipoxygenase enzymes on the production of pro-inflammatory
vs. anti-inflammatory lipid mediators are complex. Arachidonic acid can also be metabolised
by 5-, 12-, and 15-lipoxygenases to lipoxin A4, which has anti-inflammatory and anti-
oxidative stress properties [107].

6.4. Prostaglandin E2 (PGE2)

PGE2 levels in the blood were markedly elevated and correlated positively with disease
severity in patients with COVID-19 [108]. SARS-CoV-2 could induce PGE2 and secretion in
infected lung epithelial cells by upregulating COX-2 and downregulating the prostaglandin-
degrading enzyme 15-hydroxyprostaglandin-dehydrogenase [108]. Increased levels of
PGE2, galectin-1, and galactin-3 have been detected in patients with COVID-19 compared
with healthy controls [109].

6.5. Prostacyclin (PGI2)

In addition to pro-inflammatory mediators, ARA can be metabolised to PGH2 and
thereafter to PGI2, which has anti-coagulation and vasorelaxant properties. Iloprost, an
analogue of PGI2, was used for the treatment of foot ischemia after surgical thromboem-
bolectomy in a COVID-19 patient. Unexpectedly, this also resulted in an improvement in
respiratory symptoms, and high-resolution computed tomography of the lung showed
significant regression of diffuse pulmonary ground-glass opacity. Results suggest that
iloprost could have potential for treating COVID-19 [110].

A pilot study of 80 severe COVID-19 patients who received a 72-h infusion of
1 ng/kg/min PGI2 showed a trend towards a beneficial effect, although outcomes such
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as “days alive without mechanical ventilation” were not significantly different from
placebo [111]. Prostacyclin infusion to COVID-19 patients resulted in decreased endothelial
glycocalyx shedding (syndecan-1) at 24 h compared to placebo-treated controls, suggesting
a protective effect on endothelial cells [112].

7. COVID-19-Associated Changes in Lysophospholipids

The other product of PLA2 action on phospholipids apart from ARA is lysophos-
pholids. Analyses of the plasma of COVID-19 patients using metabolomic and pro-
teomic approaches showed that 30 out of 33 metabolites analysed differed significantly
between patients and healthy controls [113]. LysoPC and LysoPE levels were significantly
higher in COVID-19 patients at high risk for thromboses than in patients at low risk
(D-dimer ≤ 900 U/mL) [113]. The above findings provide additional support for a close
relationship between PLA2 activity and thromboses in patients with COVID-19.

These above findings provide additional support for a close relationship between
PLA2 activity and thromboses in patients with COVID-19.

Another class of lysophospholipids is PAF, which is synthesised in a two-step “re-
modelling pathway” during acute or chronic inflammation. The action of PLA2 on an
ether analogue of phosphatidylcholine, 1-O-alkyl,2-acyl-phosphatidylcholine, results in the
release of ARA and 1-O-alkyl-sn-glycerol-3-phosphocholine (lyso-PAF). The latter is then
acetylated through the action of acetyl-CoA:lyso-PAF acetyltransferases to produce PAF.
Both lyso-PAF and PAF species were found in the plasma of COVID-19 patients [40]. Levels
of PAF are higher in mild/moderate COVID-19 patients compared to healthy controls, but
levels decrease in individuals with severe/critical disease [40] (Figures 1 and 2).

8. COVID-19-Associated Changes in Autotaxin

Lysophospholipids produced by the action of PLA2 could be metabolised by lysophos-
pholipase D/autotaxin (ATX) and converted to LPA [114,115]. The latter has recently
been found to induce the formation of neutrophil extracellular traps (NETS), which pro-
mote thrombus formation [41]. Serum ATX levels were correlated with levels of IL-6 and
endothelial damage biomarkers, suggesting a relation between the ATX/LPA axis and
hyperinflammation and associated vascular dysfunction in patients with COVID-19 [116].
Increased ATX levels in the plasma are also correlated with markers of vascular dysfunction
and increased mortality in patients with severe sepsis [117]. Dexamethasone treatment
of mechanically ventilated patients result in reduced ATX level, and this might be one of
the mechanisms for the therapeutic benefit of the corticosteroid in patients with severe
COVID-19 [116].

In addition to serum ATX, endothelial ATX could play a role in local LPA production
and atherosclerotic plaque formation in apoE knockout, hypercholesterolaemic mice [118].
Inhibition of ATX by pipedimic acid was shown to decrease bovine endothelial mono-
layer permeability after anoxia-reoxygenation treatment and reduce the permeability of
perfused rat mesenteric post-capillary venules after ischemia reperfusion injury [119]
(Figures 1 and 2).

9. Lysophosphatidic Acid (LPA) and Platelets in NETs—Contribution to Thrombosis

Evidence supports immunothrombosis, including coagulopathy, thrombopathy, and
endotheliopathy, as a mechanism for COVID-19-associated coagulopathy [120]. A hyper-
coagulable state could result from endothelial damage, complement activation, platelet
hyperactivity, release of NETs, activation of the coagulation system, and a hypofibrinolytic
state [121,122]. Platelet activation is a major driver of inflammation/thrombogenesis, and
von Willebrand factor (vWF) and Platelet Factor 4 (PF4) are deeply involved in the patho-
genesis of COVID-19-associated coagulopathy [123,124]. Consequently, platelet hyper-
reactivity has been linked to a worse clinical outcome in patients with COVID-19 [125]. It is
suggested that PLA1 in activated platelets could generate a pool of sn-2 lysophospholipids,
which undergo acyl migration to yield sn-1 lysophospholipids. The latter could then be
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cleaved by ATX to generate sn-1 LPA species containing 18:2 and 20:4 fatty acids [126]. In
addition to platelets, erythrocytes could be a source of LPA. This might involve the action of
sPLA2 on phosphatidic acid (PA) that is exposed on the outer leaflet of the cell membrane
via the action of scramblase [127]. LPA produced by activated platelets could interact with
the scramblase TMEM16F in erythrocytes, thus mediating a pro-thrombotic effect [128].

A recent finding that could be particularly relevant to our understanding of COVID-
19-associated thrombotic events is the ability for LPA to promote thrombus stability by
inducing the rapid formation of NETs [41] (Figure 1). LPA-induced NETs formation could
provide a scaffold for plasma protein binding and generate a tissue plasminogen activator
(tPA)-resistant blood clot. In turn, LPA-induced NETs could activate platelets to further
release LPA [41]. The above could produce a vicious cycle and amplify an immunothrom-
bogenic environment, which is characterised by platelet/NET interactions [129].

Patients with acute pulmonary embolism showed elevated levels of neutrophils, NETs
(dsDNA, MPO-DNA, citrullinated histone H3, and nucleosomes), LPA18:1 and LPA20:4,
and ATX [124]. ATX and LPA have been found to contribute to increased blood-brain
barrier disruption and tissue damage in mouse models of ischemic stroke [130] and might
also play a role in COVID-19-related vessel damage.

10. COVID-19 and Inflammation in Blood Vessel Walls

In addition to the production of lipid mediators that facilitate the clotting process,
it is possible that circulating sPLA2-IIA might induce inflammatory changes in blood
vessels, and the resultant vasculitis could contribute to thrombus formation. A unique
neurologic complication of COVID-19 has been reported in a patient who had extensive
cerebral small-vessel ischemic lesions resembling cerebral vasculitis with a combined
imaging pattern of ischemia, haemorrhage, and punctuate post-contrast enhancement [131].
Another study showed that among 69 COVID-19 patients, 11 (16%) presented with arterial
vessel wall thickening with homogeneous and concentric enhancement, compatible with
cerebral vasculitis [132]. Perivascular and intraluminal lymphohistiocytic inflammatory
infiltrates consistent with vasculitis have also been reported in post-mortem brain tissue of
a previously healthy child with COVID-19 [133].

11. Nonenzymatic Effects of sPLA2s on the Coagulation Pathway

Other than their functions as enzymes, sPLA2s also act as ligands for a wide variety of
structurally diverse sPLA2 binding proteins. The result of binding could be an increase or a
decrease in phospholipolytic activity or effects that are independent of sPLA2 enzymatic
activity (for a recent review, see [134]). For example, snake venom group IIA-secreted
phospholipase A2 (SVPLA2) has been shown to inhibit blood coagulation through direct
binding to human blood coagulation factor Xa (FXa) via a non-catalytic phospholipid-
independent mechanism [135]. Little is known about the effects of binding to other types
of proteins on blood coagulation. It would be interesting to determine if sPLA2-IID (see
Section 4 above), which in addition to being induced in inflammatory tissues and capable
of producing ARA similar to sPLA2-IIA is also a heparin-binding protein [136,137], could
have an effect on blood coagulation.

12. COVID-19 and Risk of Thrombosis, e.g., Stroke

Modifiable risk factors for stroke include hypertension, diabetes, heart disease, hy-
percholesterolemia (atherosclerosis), atrial fibrillation, high alcohol consumption, cigarette
smoke, and use of oral contraceptives, whereas non-modifiable risk factors are age, family
history of cerebrovascular diseases, gender, and race [138]. Recent studies have indi-
cated that SARS-CoV-2 infection may increase the risk of both ischemic and haemorrhagic
stroke [139–141] (Figure 3).
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SARS-CoV-2 infection may produce a hypercoagulation state and contribute to throm-
botic complications, including stroke [139,142,143]. At the molecular level, SARS-CoV-2
infection promotes thrombosis and stroke via modulating the renin-angiotensin system
and increasing phospholipid and sphingolipid metabolism through activation of PLA2 and
sphingolipid degrading enzymes [57,141,144]. To evaluate whether COVID-19 contributes
to a higher risk of ischemic or haemorrhagic stroke than just viral respiratory infections,
studies have compared the risk of acute ischemic stroke in patients with COVID-19 versus
patients with influenza, which is a known risk factor for ischemic stroke [145]. Patients
with COVID-19 were found to have a greater risk of ischemic stroke than patients with
influenza [146]. Analyses of data from multicentre studies and published cohorts indicate
an association between the severity of COVID-19 and an increased risk of acute stroke [147].
Likewise, meta-analysis shows an association between severe COVID-19 and an increased
risk of acute ischemic stroke [148]. Patients admitted to the intensive care unit for severe
COVID-19 had an increased risk of venous thromboembolic events [149,150]. The frequency
of detected stroke in hospitalised COVID-19 patients was 1.1% and was associated with
older age and the presence of other stroke risk factors [151]. The most common form of
COVID-19-associated stroke was acute ischemic stroke (87.4%), followed by intracerebral
haemorrhage (11.6%) [152]. Patients with COVID-19 who developed an acute stroke were
older and more likely to have hypertension, diabetes mellitus, coronary artery disease,
or severe infection [152]. In addition, many of these patients had elevated levels of D-
dimer [153,154]. Antiphospholipid antibodies were also detected in a significant number of
cases [154]. The latter could trigger a hypercoagulable state such as that of antiphospholipid
syndrome (APS) [155]. Deranged clinical parameters, including altered coagulation profiles,
liver function tests, and full blood counts, have been detected in COVID-19 patients who
developed stroke as a complication [156].

13. Conclusions

The above account suggests a relation between the severity of COVID-19, the extent of
phospholipid changes, and thrombosis risks such as stroke. A major focus appears to be
the increase in sPLA2-IIA and its effect on releasing ARA and lysophospholipids. ARA can
interact with COX-2 and LOX to produce lipid mediators such as PGs and TxA2 and lead
to a cytokine storm. Stimulation of the LPA receptor could lead to activation of neutrophils
and subsequently NET formation, which leads to blood coagulation. The above effects
involve inflammation and lipid mediators and point towards increased thrombosis risk. A
limitation of some of the above studies is that association does not mean causation, and it is
unclear whether blood lipid changes are a cause or a consequence of COVID-19 pathophys-
iology. Further work is necessary to determine whether efforts to reduce inflammation,
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inhibition of sPLA2-IIA, and/or control of lipid mediators could reduce coagulopathy,
vasculitis, and the risk of thrombotic events in patients with COVID-19.
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