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Abstract: Each metabolite, regardless of its molecular simplicity or complexity, has a mission or
function in the organism biosynthesizing it. In this review, the biological, allelochemical, and
chemical properties of acetophenone, as a metabolite involved in multiple interactions with various
(mi-cro)organisms, are discussed. Further, the details of its biogenesis and chemical synthesis are
provided, and the possibility of its application in different areas of life sciences, i.e., the status quo of
acetophenone and its simple substituted analogs, is examined. In particular, natural and synthetic
simple acetophenone derivatives are analyzed as promising agrochemicals and useful scaffolds for
drug research and development.

Keywords: acetophenones; secondary metabolites; biological properties; allelochemical interactions;
toxicity

1. Introduction

In a broad context, nature provides us with various “typical” life components, such as
air, water, and food, enhancing our well-being and generously giving us the essentials for
our survival. Reducing the focus to a scientific level, nature teaches us, sparks creativity,
and improves problem-solving skills. One of the most valuable gifts from nature, i.e.,
from all living (micro)organisms, is diverse natural products with complex molecular
architectures, sophisticated mechanisms of action, and extraordinary biopotentiality that
can be converted into innovative leads or drugs [1,2]. However, each complex or simple
molecule generated in nature acts as a metabolite for survival and reproduction, functioning
as a small screw in the machinery of the biological systems of living organisms.

While primary metabolites have essential metabolic roles in nutrition and reproduc-
tion, secondary metabolites are nonessential to life but contribute to the suitability of the
species for survival. Low-molecular-weight compounds, called small molecules, are often
involved in defense mechanisms [3,4], i.e., the protection of vegetable or animal organisms
against biotic or abiotic stresses, and are used as special chemicals, such as drugs, flavors,
fragrances, insecticides, and dyes, by humans owing to their great economic value. In this
minireview, one specific small molecule will be discussed—acetophenone (1) (Figure 1).
Acetophenone has earned this honor due to its importance in chemical, ecological, biolog-
ical, and medicinal areas of science owing to its extraordinary and irreplicable chemical,
biological, pharmacological, and allelochemical properties.

The principal aim of this review is to briefly and conclusively answer the following
questions: Why are we interested in this simple ketone? What is so special about ace-
tophenone? Another objective related to these questions is to discuss acetophenone as a
natural secondary metabolite or a semiochemical and a synthetic reagent/product to reveal
its potential and prospects in core life sciences. The “destiny” of this small molecule is
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analyzed in this review, paying attention to young readers conducting biological, chemical,
or medicinal studies on the single molecule and showing that even though acetophenone is
simple and well known, it can lead to new and unexpected discoveries.
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“Its odor is tenacious and very persistent, recalling at the same time oil of bitter almond 
and cherry laurel water” [10]. This is unlike the monotonous substance description used 
in modern times. 

  

Figure 1. Structures and opposite bioeffects of acetophenone (1) and its derivatives 2 and 3 on insect
vectors of dangerous tropical infectious diseases, including malaria, sleeping sickness, chikungunya,
dengue, and Zika virus, transmitted by mosquitoes, flies, or ticks.

2. Historical Background

Acetophenone (CAS registry number 98-86-2), also known as methyl phenyl ketone,
acetylbenzene, or hypnone, is the simplest of the ketones containing aromatic (phenyl)
and aliphatic (methyl) groups. It is a colorless and flammable liquid (Bp. 201–202 ◦C)
with a sweet, pungent odor. It is used as a fragrance ingredient in soaps, detergents, and
perfumes and as an industrial solvent and valuable intermediate in the pharmaceutical
and resin industries [5,6]. This aromatic ketone was found in the heavy-oil fraction of coal
tar boiling at 160–190 ◦C. The first synthesis of acetophenone was conducted in 1857 by
the French chemist Charles, who prepared the compound by treating benzoyl chloride
with methyl zinc or by distilling a mixture of calcium benzoate and calcium acetate [7,8].
However, the first industrial synthesis of acetophenone, based on the reaction of benzene
and acetic anhydride in an experiment conducted through the Friedel–Crafts reaction, was
only realized in 1925 [6], 26 years after Friedel’s death. The physiological properties of
acetophenone were investigated by Popof and Nencki; however, Beaumetz was the first to
use it as a sleep-inducing agent, and hence, it was given the strange name hypnone [9,10].
Here, it is appropriate to cite the description of the odor of hypnone dated 1886: “Its
odor is tenacious and very persistent, recalling at the same time oil of bitter almond and
cherry laurel water” [10]. This is unlike the monotonous substance description used in
modern times.

3. Acetophenone Is One of the Most Interesting Players in Skin Microbiota
Manipulation by Vector-Borne Parasites Found in Animal-Feeding Insects

In July 2022, Cheng et al. reported that acetophenone released from the skin micro-
biota of flavivirus-infected hosts (mice and patients with dengue fever) acts as a potent
attractant for Aedes mosquitoes, which are vectors for dengue (DENV2), chikungunya
(CHIKV), and Zika (ZIKV) virus transmission, thereby increasing flavivirus transmission
to aggravate dengue, chikungunya, and Zika diseases [11]. Aedes mosquitoes prefer to feed
on mice infected by dengue and Zika viruses due to the released acetophenone compared
to uninfected mice in control groups, in which acetophenone is absent. Female Aedes aegypti
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(Ae. aegypti) and Aedes albopictus (Ae. albopictus) mosquitoes were tested in these experi-
ments, which showed that flaviviruses can stimulate the proliferation of acetophenone-
producing skin commensal bacteria (especially the Bacillus genus) by suppressing the
expression of the essential antimicrobial resistin-like molecule-α (RELMα) protein that pro-
tects against pathogenic bacterial skin infections, thereby killing the microbes. In particular,
viruses can change host odors to attract mosquitoes.

It is worth noting that the use of isotretinoin, a naturally occurring retinoic acid and
a vitamin A derivative, reduces attractiveness to mosquitoes through the activation of
the expression of the RELMα protein in the skin of flavivirus-infected animals [11]. This
interesting and important finding caught the attention of scientists who made brief but
substantial and picturesque comments on Cheng’s work in prestigious journals such as
Science [12], Nature Reviews Microbiology [13], and Cell [14]. Regardless, we wanted to
examine this simple ketone from the perspective of synthetic and applied organic chemistry
and chemical ecology fields.

It should be noted that the connection between the skin microbial population and
attractiveness to mosquitoes and other blood-sucking insects has been studied, for example,
in the African malaria mosquito Anopheles gambiae (An. gambiae) (infected with Plasmodium
falciparum sporozoites), which plays an important role in malaria transmission [15–18], and
the triatomine bug Rhodnius prolixus, which is the main vector transmitting the parasite
Trypanosoma cruzi, the causative agent of Chagas disease [19,20]. Their host-seeking behav-
ior is influenced by host scents, i.e., appropriate concentrations of volatile odors (a mixture
of molecules, so-called molecular stimuli, such as ammonia, isobutylamine, acetone, lactic
acid, isobutyric acid, and CO2) [19] present in human (or animal) skin microflora that can
activate, attract, and even repel these blood-sucking insects.

Blood-sucking insects have excellent sensory abilities for detecting and following the
physical and chemical signals (semiochemicals) emitted by their hosts; Aedes mosquitoes
are not an exception. Cheng’s work [11] showed that the volatile acetophenone in the host
skin microbiota produced a considerable electrophysiological response detectable by the
antenna of Ae. aegypti, and thus, high levels of acetophenone attracted more mosquitoes
than uninfected mice and healthy individuals in control groups. Nevertheless, close
derivatives of acetophenone (1), 4-ethylacetophenone (2), and 4-ethoxyacetophenone (3)
(Figure 1) had repellent effects on the malaria mosquito An. gambiae [18,21].

Moreover, acetophenone (1) and its para-ethyl analog 2 were found to exhibit sig-
nificant repellency for the male Asian tiger mosquito, Ae. albopictus, but only at a high
concentration (10−2) [22]. The latter metabolite has been described as a male-swarming ag-
gregation pheromone for Ae. aegypti mosquitoes [23], which increases female attraction and
mating success. However, none of the three acetophenone derivatives 1–3 were identified
among specific semiochemicals, i.e., acetoin (3-hydroxy-2-butanone), sulcatone (6-methyl-
5-hepten-2-one), octanal, nonanal, and decanal, released from the males of Anopheline
species—Anopheles arabiensis and An. gambiae [24]. Such pheromones can remarkably
manipulate these highly dangerous insects.

On the other hand, acetophenone (1) was found to be an effective repellent in field
experiments [25] for tsetse flies (Glossina spp.) infected by Glossina hytrosavirus, the primary
vector of African trypanosomes, which cause human African trypanosomosis (HAT or
sleeping sickness) and African animal trypanosomosis (AAT or nagana) [26]. Recently, it
was reported that acetophenone-containing Zebra skin odor repels the savannah tsetse
fly [27,28], confirming previous results from field experiments [25]. Therefore, the diametri-
cally opposite bioeffects of acetophenone (1) mentioned above could be used in the control
and prevention of heralded diseases. This volatile ketone could be a suitable biomarker
for detecting pathogens that actively manipulate host odors. However, the development
of these volatile-based diagnostics, which use the “signal” of disease and the background
“noise” of genetic and environmental variations, is still in its infancy [29,30]. On the other
hand, odor-bait technology as a surveillance and control tool for insect vectors, such as
tsetse flies or Aedes mosquitoes, has been promoted as a new and viable component of



Molecules 2023, 28, 370 4 of 17

the integrated vector management program [31–33]. In this context, some extracts and
essential oils from aromatic plants could be more advantageous in the biological control of
pest insects. Nonetheless, there is some skepticism over this aspect [34].

Another analog of acetophenone, i.e., 2-aminoacetophenone, secreted by Pseudomonas
aeruginosa, which is a ubiquitous opportunistic human pathogen, can facilitate attraction
to food for several fly species, including Musca domestica, Ceratitis capitata, and Drosophila
melanogaster [35].

4. Acetophenone Is a Prolific Semiochemical for Plant-Feeding Insects in Complex
Interspecific Communication

Investigations on the involvement of plant volatiles in the feeding attraction behavior
of mosquitoes were conducted before Chang’s work [11]. Mosquitoes visit flowers for
nectar and may, in turn, act as pollinators for plants [36]. Like animal skin microflora,
the composition of the inflorescence odor of plants can be an attractant or a repellent for
mosquitoes [37].

Gonzalez-Audino et al. demonstrated that freshly cut inflorescences of the peren-
nial herb “alyssum” Lobularia maritima (Cruciferae) stimulated a positive flight response
in both sexes of Ae. Aegypti [38]. Moreover, acetophenone and four other compounds
(1-octanol, 2-phenylethanol, benzyl cyanide, and benzyl isothiocyanate) were identified
from the headspace of Lobularia maritima (L. maritima) by direct comparison with analytical
standards. By testing the flight preference toward single synthetic compounds identified
in the headspace of L. maritima, the authors showed that acetophenone (1) was the first
plant-derived compound that elicited positive flight behavior in Ae. aegypti (Figure 2).
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Figure 2. Different chemostimuli of acetophenones 1 and 2 in L. maritima and Citrus sinensis; multi-
trophic interactions between plants, herbivores, and their natural enemies, in which acetophenones
act as attractant and repellent semiochemicals.

Note that this volatile compound is present in the whole plant, which is likewise
attractive to the female Diachasmimorpha longicaudata wasp, which is a solitary larval
endoparasitoid of Caribbean fruit flies (Anastrepha suspensa) and a major fruit pest that
occurs in the New World tropics and subtropics [39]; however, while the males of this
species can recognize ketone 1, it did not elicit a behavioral response [40]. Volatiles of
Alyssum selectively attract and enhance the performance of another larval parasitoid (Cotesia
vestalis) of the diamondback moth (Plutella xylostella), which is one of the most important
pests in cruciferous plants worldwide [41]. Therefore, this acetophenone-containing plant,
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rich in nectar, which is the main sugar source for mosquitoes, could be a good candidate
for use as a trap crop for these pest insects, achieving successful biological control.

Regarding coniferophagous bark beetles of the Dendroctonus genus, important dam-
aging insect pests of pines, acetophenone (1) was identified in the volatiles of females of
three species—Dendroctonus pseudotsugae (D. pseudotsugae), Dendroctonus ponderosae, and
Dendroctonus rufipennis. However, it was found that acetophenone reduced only the re-
sponse of female D. pseudotsugae to the attractive bait. This suggests that acetophenone (1)
could serve as a repellent kairomone during host selection [42]. Other species, Dendroc-
tonus frontalis [43] and Dendroctonus brevicomis [44–46], also produce ketone 1, described
by the authors as an antiattractant compound that inhibits the attraction of conspecifics.
Interestingly, these aggressive tree-killing bark beetles can rapidly colonize their host by
producing an aggregation pheromone, which can be regulated by acetophenone-based
multicomponent blends. It is interesting to note that other pest beetles are addicted to
acetophenone, which had a positive impact on the weight and multiplication of the red
flour beetle (Tribolium castaneum), a worldwide pest of stored products, and the tobacco
beetle (Lasioderma serricorne), one of the most widespread and damaging pests for the
tobacco industry, when they were treated with acetophenone-containing cultures that
deter the beetles from feeding well, which affected their growth, and thus, acetophenone
exhibits antifeedant properties in this case [47]. Acetophenone is also involved in complex
interactions between fungal symbionts of the ambrosia beetle Platypus cylindrus and the
cork oak (Quercus suber), an interesting plant that is the primary source of cork for wine
bottle stoppers. These interactions are linked to the cork oak decline process. It was found
recently that strains of fungal associates of P. cylindrus, which is a major cork oak pest in
Portugal, induced an increase in volatiles known for mediating ambrosia beetle behavior
(mainly acetophenone, sulcatone, and nonanal) in response to fungal inoculation. This
may help to elucidate the mutualistic or pathogenic aspects of these complex symbiotic
interactions and develop new control strategies for P. cylindrus [48].

The floral scent of Antirrhinum majus pseudomajus (A. majus pseudomajus), a wild
subspecies of snapdragon, also contains acetophenone as the main component, contributing
over 69% of the absolute emissions of this plant. Suchet et al. showed that bumblebees
(Bombus terrestris), flower visitors in the Antirrhinum genus, innately avoided A. majus
pseudomajus, taking care of their fragile existence. Therefore, acetophenone (1) again turned
out to be a repellent compound [49]. It seems that 4-ethylacetophenone (2), present as a
minor constituent in the peels of navel oranges (Citrus sinensis), could also be involved
in complex interrelationships with the Mediterranean fruit fly, Ceratitis capitata, eliciting a
significant voltage spike in females but not in males (Figure 2) [50].

Moreover, acetophenone is the major component (51%) of the volatile oil of Pogostemon
heyneanus (Indian patchouli) leaves [51], which could be useful for odor-bait technology.
This oil also showed antibiofilm and antivirulence effects against Streptococcus pyogenes,
an important human pathogen that causes several superficial infections and invasive
diseases [52].

5. Biogenesis: How Can Acetophenone Be Formed In Vivo?

Acetophenone is one of the secondary metabolites and could be classified as a phe-
nolic C6–C2 metabolite according to its basic skeleton. As mentioned previously in the
Historical Background section, acetophenone is a volatile organic compound and a po-
lar, lipophilic liquid (ε = 17.40; µ = 3.05 D; logP = 1.58) with a low molecular weight
(MW = 120.15 g·mol−1) [53,54]. Its physical properties allow acetophenone to freely cross
cellular membranes and be released into the surrounding environment.

Phenolic compounds are ubiquitously present in the plant kingdom but are less
common in bacteria, fungi, and algae [55]. Generally, plant phenolics are believed to
act as defense compounds against herbivores, microbes, viruses, and compelling plants
or as signal compounds to attract pollinating or repel seed-dispersing animals, mainly
insects. They are mainly synthesized via the shikimate pathway [56,57], which is present in
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bacteria, fungi, and plants but is absent in animals. It provides phenylalanine (Phe) and
tyrosine (Tyr), precursors of the corresponding cinnamic derivatives. In particular, Phe is
obtained from the conversion of phosphoenolpyruvate (PEP) via the glycolysis pathway
and erythrose 4-phosphate (E4-P) via the pentose phosphate pathway into chorismite via
3-deoxy-D-arabino-heptulosonate-7-phosphate (DAHP) through DAHP synthase (DAHPS;
EC 2.5.1.54). Furthermore, the well-known and widely distributed enzyme L-phenylalanine
ammonia lyase (PAL; EC 4.3.1.5) deaminates Phe to trans-cinnamic acid (CA) [58] (Figure 3).
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Figure 3. Simplified shikimate pathway of L-Phe from PEP and E4-P, and the β-oxidative pathway of
acetophenone (1) from CA in flowers of tea plants and fungus Bjerkandera adusta.

Notably, Phe biosynthesis occurs in plastids, and its further conversion to volatile com-
pounds, such as acetophenone, occurs outside this organelle, especially in the peroxisome,
a small membrane-enclosed oxidative vesicle. The detailed bio-origins of acetophenone
are still unclear [56–58]. It is known that trans-CA can subsequently be hydroxylated
to β-hydroxy-phenyl propionic acid (HPPA) and then to β-oxo-phenyl propionic acid
(OPPA), which can be degraded into acetophenone. This biosynthetic pathway, called
the β-oxidative pathway [59], was proposed for the fungus Bjerkandera adusta by Lapa-
datescu et al. [60] and explored by Dong et al. in the flowers of tea plants (C. sinensis) [61].
Notably, although the enzymes involved in these reactions have not yet been identified,
this natural route to acetophenone is a very significant model to follow and could help
develop new industrial methods for this valuable ketone based on nonpetrol sources.

6. Industrial Production of Acetophenone: So Many Possibilities, but None Are Ideal
and Sustainable

Contrary to the biogenic process, industrial methods for producing acetophenone are
based on petroleum derivatives, an exhaustible resource. Almost 50 years ago, Sanders et al. [6]
appropriately analyzed eight possible syntheses of acetophenone (1) that could attain
commercial status. Among them, the acid-catalyzed Friedel–Crafts acetylation of benzene
(4) with acetic anhydride or acetyl chloride (method A) [62], the oxidation process of
cumene (5), known as the Hock process (for phenol and acetone production), based on
the decomposition of cumene hydroperoxide (6) under acid catalysis conditions [63–65]
(method B), and the catalytic liquid-phase oxidation of ethylbenzene (7) with oxygen
from air [66], giving the required acetophenone as the main product (together with 1-
phenylethanol) through ethylbenzene hydroperoxide (8) (method C), are still the main
procedures in the modern acetophenone industry (Figure 4).
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First, using the Hock process, acetophenone is formed as a byproduct, and it occurs
after the neutralization (using NaOH) of excess acid. Second, the ethylbenzene oxidation
reaction can be conducted industrially under catalyst- and solvent-free conditions at high
temperatures (141–148 ◦C) and 3 atm pressure [67,68]. Finally, during the aerobic oxidation
reaction, ethylbenzene conversion is maintained at ~12 wt% [69].

The Hock process (method B) dominates the synthesis of acetophenone, with over 90%
acetophenone formed by this process, although acetophenone is formed as a byproduct
in this process. The acid-catalyzed Friedel–Crafts acetylation of benzene (method A) and
the oxidation of ethylbenzene (method C) make up the rest. Notably, the global market for
this ketone was valued at USD 219 million in 2021, and by 2022, the market is projected to
be valued at USD 225 million [70,71]. At first glance, the modern acetophenone industry
is a model of success and triumph. However, the urgent need for new, effective, and
sustainable methods is clearly seen because all current methods suffer from numerous
serious shortcomings, mainly the use of excess AlCl3, which causes the severe corrosion
of equipment and the contamination of products, resulting in acidic wastewater after the
additional cleaning process [6,72] (methods A–C).

Other disadvantages include polyethylbenzene formation, i.e., the transalkylation
process; low selectivity for forming acetophenone; working under high-pressure conditions;
complicated reactions due to used catalysts; complicated handling; and the corrosive and
environmentally unfriendly nature of H2SO4 (method C). However, the latter process is
considered to be a more promising route to acetophenone, and thus, it is the object of
intensive studies for efficient, environmentally friendly, and low-cost heterogeneous routes
for acetophenone production [73,74].

Additionally, the homogeneous liquid-phase Mn(OAc)2-CoBr2 (MC-system)-catalyzed
oxidation of ethylbenzene in the presence of air and AcOH to acetophenone in a continuous
flow mode has been developed [75]. Notably, the 1-phenylethanol byproduct is also
oxidized to acetophenone under reaction conditions, allowing an acetophenone selectivity
of ~74% at an ethylbenezene conversion rate of ~96% after 150 min at 80 ◦C. This continuous
processing of acetophenone is clearly advantageous from economic and environmental
perspectives because it reduces reaction times, increases volume productivity, and avoids
byproduct formation.

7. Natural and Synthetic Closely Related Acetophenone Cousins as Promising
Agrochemicals

Both plant metabolism and chemical synthesis provide us with the molecular ace-
tophenone family, an interesting group of alkyl-phenylketones that have an aromatic ho-
momonocyclic framework. Owing to its chemical nature and reactivity, acetophenone, the
parent of this family, is one of the most useful precursors in heterocyclic synthesis [76–78]
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and the ideal synthon for multicomponent reactions based on simple aldol condensations
or the α-functionalization strategy [79], allowing the preparation of various natural product
analogs and pharmaceuticals with important biological properties.

On the contrary, biogenetic acetophenones are pervasive in the vegetal world and are
catabolized by microorganisms [60,80]. As discussed above, some plants (both angiosperms
and gymnosperms) produce acetophenone derivatives (e.g., hydroxy acetophenones) to
protect themselves from insects, which are conjugated to glucose (hydroxy acetophenone
glucosides) and cleaved upon insect attack [81,82], which shows that acetophenones are
inherently involved in biological systems. Among endless, structurally different acetophe-
none derivatives of natural or synthetic origin, our attention was drawn to the selected
group of mono-, di-, or trisubstituted acetophenone molecules with general formula A
(Figure 5). These derivatives are usually commercially or/and synthetically available inex-
pensive reagents and generally show low toxicity in eukaryotic cells (e.g., the oral LD50 for
acetophenone in the rat varies from 900 to 3200 mg/kg [83]).
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Based on these facts, it can be assumed that acetophenones are interesting and promis-
ing models in agricultural and pharmacological research. As agricultural crops are facing
enormous losses due to pest attacks, diseases, and weed damage, which result in direct eco-
nomic losses, including a decrease in grain yield and quality, the research and development
of new pesticides is an ongoing and important task in spite of negative public opinions on
pesticide use, which are due to the present hazards of pesticides (health, environmental,
and resistance problems) [84]. Thus, there is clear evidence that pesticides will continue to
be a vital product in a diverse range of technologies that can maintain and improve living
standards for people globally [85,86]. Notably, without the use of pesticides, there would be
a 78% loss in fruit production, a 54% loss in vegetable production, and a 32% loss in cereal
production [87]. However, current studies on pesticides are focused on reexamining natural
products, e.g., for the structural development of secondary metabolites, as an eco-friendly
possible alternative to synthetic pesticides.
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The usage of so-called biopesticides has become increasingly popular in recent years,
and they are considered safer than conventional pesticides [88]. In this context, simple
acetophenone derivative A as a potential pesticide could be a useful model for new biopesti-
cides, considering that acetophenone is the second most abundant component of Ridomil®,
which is a very common fungicide formulation used in horticulture and vineyards [89].
Hydroxy-substituted acetophenones 9–17 (Figure 5) exhibit considerable antifungal activity
against important fungal plant pathogens of the genera Colletotrichum, Botrytis, Alternaria,
and Fusarium and could be useful models for controlling these agricultural diseases [90–94].

Among synthetic acetophenone ethers 9–11, compound 10 bearing a prop-2-ynyloxy
group was found to be active against seven phytopathogenic fungi, i.e., Colletotrichum
gloeosporioides, Botrytis cinerea, Alternaria solani, Fusarium oxysporum f. sp. vasinfectum,
F. oxysporum f. sp. niveum, F. solani var. coeruleum, and F. graminearum, exhibiting good
inhibitory concentration (IC50) values ranging from 37 to 87 µg/mL [90]. In contrast,
natural hydroxy-acetophenone allelochemicals 12–15 displayed poor activity against Cy-
tospora sp., Glomerella cingulata Schr, Pyricularia oryzaecar, Botrytis cinerea Pers et Tris,
and Alternaria solani. A simple replacement of the acetyl group with the iso-butyryl
fragment in the phenyl ring of 15 considerably improved antiphytopathogenic activity;
1-(2,4-dihydroxy-5-methylphenyl)-2-methylpropan-1-one (16) exhibited substantial activity
(IC50 = 17–37 µg/mL) [92], and its C-4-methoxy analog 17 was one of the most active
acetophenone derivatives (IC50 = 0.9–19.5 µg/mL) [93] and might be a very promising
candidate for developing new antifungal agrochemicals. Compounds 14 and 15 can act
as inhibitors of class II fructose-1,6-bisphosphate aldolase, an enzyme critical for bacterial,
fungal, and protozoan glycolysis/gluconeogenesis [94].

Plant diseases are caused not only by fungal and bacterial pathogens but also by numer-
ous insects and endoparasitic animals, especially, plant-parasitic nematodes. The latter can
be categorized as helminths (small, microscopic roundworms). Among them, root-knot ne-
matodes (especially Meloidogyne spp.) are one of the major pests of economic importance in
vegetable crop production globally [95]. Halogen (nitro)-substituted acetophenones 18–25
(Figure 5) were found to be very potent in inducing the paralysis and death of the root-knot
nematode M. incognita [96,97] in susceptible tomato plants (Solanum lycopersicum L.; cv. Rut-
gers) after 24 h (EC50 = 2.5 and 54.8 mg/L) as well as after 72 h (EC50 = 2.3 and 65.6 mg/L).
Among these, 2,4-dichloroacetophenone (20) was found to be the best nematicidal agent,
exhibiting good inhibition concentration parameters (EC50/24h = 2.5 ± 13.7 mg/L and
EC50/72h = 2.3 ± 5.5 mg/L), and thus could be used for developing new commercial
ingredients [96]. On the contrary, it should be noted that 2,4-dihydroxyacetophenone (13)
from the hydroxy-substituted acetophenone series showed good nematicidal activity in
second-stage juveniles (J2) of M. incognita in vitro, increasing the following lethal concentra-
tion of J2 to 50% [(LC50) = 210 µg/mL] compared with that of carbofuran (150 µg/mL) [98],
one of the most toxic carbamate pesticides. Thus, this acetophenone derivative could also
be used to formulate new commercial ingredients.

Finally, herbicides are the most widely used type of pesticide, as weeds are a major
constraint that limits yield in many crops. Herbicides represent ~50% of all crop protec-
tion chemicals used globally, compared to insecticides and fungicides, which are ~17%
each [87]. Several studies have found that ketones, including substituted acetophenones
26–29 (Figure 5), are good herbicides. Methyl phenyl ketone allelochemicals from plants,
such as xanthoxyline (26) [99,100] and acetosyringone (27) [101] (Figure 5), are suitable
models for developing potential herbicides. Both acetophenone derivatives displayed
potent inhibitory effects on the shoot growth of barnyard grass (Echinochloa crus-galli (L.)
Beauv.) under laboratory conditions.

Furthermore, xanthoxyline showed a significant inhibitory effect on seed germina-
tion (15%) and inhibited the root growth (63%) of this annual grassy weed. However,
acetophenone (1) and most of its para-monosubstituted derivatives 12 and 18–24 showed
weak activity at a concentration of 400 µM on barnyard grass and Chinese amaranth (Ama-
ranthus tricolor L.) [102]. Regarding the ortho-monosubstituted acetophenone series, there is
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little information on its biological properties; however, the remarkable and specific seed
germination inhibition effect (~75%, Chinese amaranth) of o-nitroacetophenone (25) allows
us to consider it for the molecular design of new acetophenones that are active against
weeds. Notably, molecular docking on the 4-hydroxyphenylpyruvate dioxygenase (HPPD)
enzyme indicated that these acetophenone derivatives may be involved in key interactions
of HPPD inhibitors [102]. This finding is useful for developing small ketone herbicides.

8. Acetophenone Skeleton for Developing Pharmacological Agents/Drugs

Acetophenone, with an LD50 value of 815 mg/kg (oral, rats), is classified as a group D
carcinogen (which means it is not a human carcinogen) and is also used in the pharmaceu-
tical industry for several purposes. First, some of the developed pharmacological agents
containing the acetophenone moiety have been proposed for practical use in the treatment
of different diseases, for example, α-aminoketone drugs, the antidepressant medication
bupropion (30) [103], the anorectic drug amfepramone (diethylpropion, 31) [104], and the
neuropsychiatric agent pyrovalerone (32) [105] (Figure 6). Both so-called synthetic cathi-
nones, amfepramone and pyrovalerone, which are chemically similar to amphetamines,
have been proposed as appetite suppressants, although they are not currently in clinical use.

Molecules 2023, 28, 370 10 of 17 
 

 

for developing potential herbicides. Both acetophenone derivatives displayed potent in-
hibitory effects on the shoot growth of barnyard grass (Echinochloa crus-galli (L.) Beauv.) 
under laboratory conditions. 

Furthermore, xanthoxyline showed a significant inhibitory effect on seed germina-
tion (15%) and inhibited the root growth (63%) of this annual grassy weed. However, ace-
tophenone (1) and most of its para-monosubstituted derivatives 12 and 18–24 showed 
weak activity at a concentration of 400 μM on barnyard grass and Chinese amaranth (Am-
aranthus tricolor L.) [102]. Regarding the ortho-monosubstituted acetophenone series, there 
is little information on its biological properties; however, the remarkable and specific seed 
germination inhibition effect (~75%, Chinese amaranth) of o-nitroacetophenone (25) al-
lows us to consider it for the molecular design of new acetophenones that are active 
against weeds. Notably, molecular docking on the 4-hydroxyphenylpyruvate dioxygen-
ase (HPPD) enzyme indicated that these acetophenone derivatives may be involved in 
key interactions of HPPD inhibitors [102]. This finding is useful for developing small ke-
tone herbicides. 

8. Acetophenone Skeleton for Developing Pharmacological Agents/Drugs 
Acetophenone, with an LD50 value of 815 mg/kg (oral, rats), is classified as a group D 

carcinogen (which means it is not a human carcinogen) and is also used in the pharma-
ceutical industry for several purposes. First, some of the developed pharmacological 
agents containing the acetophenone moiety have been proposed for practical use in the 
treatment of different diseases, for example, α-aminoketone drugs, the antidepressant 
medication bupropion (30) [103], the anorectic drug amfepramone (diethylpropion, 31) 
[104], and the neuropsychiatric agent pyrovalerone (32) [105] (Figure 6). Both so-called 
synthetic cathinones, amfepramone and pyrovalerone, which are chemically similar to 
amphetamines, have been proposed as appetite suppressants, although they are not cur-
rently in clinical use. 

 
Figure 6. Structures of α-aminoacetophenone drugs: bupropion (30), amfepramone (31), and pyro-
valerone (32) and selected drugs zolpidem (33), cinacalcet (34), and oxiconazole (35), which are pre-
pared using simple acetophenone derivatives as starting materials and the combination of both hy-
droxyacetophenone isomers (APPA, 14/36). 

Second, acetophenone derivatives are also one of the most valuable precursors in 
drug synthesis. The hypnotic–sedative agent zolpidem (33) [106], the calcimimetic agent 

Figure 6. Structures of α-aminoacetophenone drugs: bupropion (30), amfepramone (31), and py-
rovalerone (32) and selected drugs zolpidem (33), cinacalcet (34), and oxiconazole (35), which are
prepared using simple acetophenone derivatives as starting materials and the combination of both
hydroxyacetophenone isomers (APPA, 14/36).

Second, acetophenone derivatives are also one of the most valuable precursors in
drug synthesis. The hypnotic–sedative agent zolpidem (33) [106], the calcimimetic agent
cinacalcet (34) [107], and the topical antifungal agent oxiconazole (35) [108] (Figure 6) are
some examples of the drugs synthesized using acetophenone derivatives.

Finally, simple, natural, and synthetically substituted acetophenones can be an ideal
model or prototype in drug research and development, for example, hydroxy acetophe-
nones such as paeonol (2-hydroxy-4-methoxyacetophenone, PA, 36) and apocynin (AP),
also known as acetovanillone (4-hydroxy-3-methoxyacetophenone, 14). Both are plant-
derived compounds displaying anti-inflammatory properties without any side effects, even
after long-term administration. The former is a major constituent of Cortex Moutan [109],
known as tree peony root bark (Paeonia suffruticosa), and has been used in traditional Chi-
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nese medicine for more than 1000 years. It is also present in Dioscorea japonica [110], known
as the East Asian mountain yam, and Paeonia clusii [111].

Besides its anti-inflammatory properties [112], PA exhibits several interesting biologi-
cal properties, such as analgesic, antioxidant, anticancer, neuroprotective, cardioprotective,
and antidiabetic properties, among others [113,114]. PA’s interesting and promising part-
ner, AP, was first identified as a biologically active substance in the roots of Apocynum
cannabinum (Canadian hemp), an herbaceous plant [115,116], later in the roots of Picrorhiza
kurroa Royle ex Benth, a perennial plant growing in the alpine Himalaya [117,118], and
then in Ziziphora clinopodioides, which is used in traditional Uighur medicine for many
purposes [119,120].

More specifically, AP acts as a strong inhibitor of the production of reactive oxy-
gen species (ROS) by activating human polymorphonuclear neutrophils (PMNs). Be-
cause PMNs and ROS play a central role in the innate host defense against invading
microorganisms, the activity of AP could be vital for treating diseases with neutrophils
as (pro)inflammatory mediators and might be useful for treating the neuroinflammatory
component of neurodegenerative diseases [121,122]. PA can trigger the innate immune
system by affecting Toll-like receptor 4 (TLR4), which majorly influences the inflammatory
signaling pathways of the intestinal tract; inhibits the release of proinflammatory cytokines
induced by the nuclear factor (NF-κB) mitogen-activated protein kinase (MAPK); and sup-
presses the expression of inducible nitric oxide synthase (iNOS), a key enzyme generating
nitric oxide from L-arginine [123–125].

Therefore, the combination of both hydroxyacetophenone isomers (APPA, 14/36) can
have additional beneficial effects on inflammatory diseases, such as rheumatoid arthri-
tis [126] or osteoarthritis [127], in which neutrophils and TNFα signaling are important for
pathologies. Indeed, in animal models, APPA treatment has demonstrated improvements
in pain and function during the management of osteoarthritis in dogs, with comparable
effects to nonsteroidal anti-inflammatory drugs (NSAIDs) such as meloxicam [128], and
APPA is now being developed by AKL Research and Development as a medication for
treating osteoarthritis [129,130].

However, similar to hydroxy acetophenones 14 and 36, APPA has poor solubility
and bioavailability, which hinders its development as a pharmaceutical product. Thus,
the development of a sure-fire delivery system for the APPA combination with enhanced
efficacy and bioavailability still needs further research [114].

Trihydroxyacetophene derivatives show also various interesting pharmacological
activities and serve as excellent precursors for bioactive substituted chalcones. Among
them, 2,4,6-trihydroxy-3-geranyl acetophenone isolated from the medicinal plant Melicope
ptelefolia [131] demonstrated significant pharmacological activities against inflammation,
endothelial and epithelial barrier dysfunctions, asthma, allergies, and cancer through its
modulatory actions on specific molecular targets, being safe for consumption and easily
available to be prepared synthetically [132,133]. Therefore, all of this also positions it as a
drug lead in the current pharmaceutical industry, like APPA.

9. Conclusions

Secondary metabolites such as acetophenone and its simple analogs not only perform
survival functions for the organisms synthesizing them but also provide us with tips for
improving our lives. Our task is to better understand the complex intra- and interspecific
interactions in which these molecules participate. When we succeed, we can create new,
versatile, and effective models based on acetophenones that can be used for different human
activities without damaging our surroundings and the organisms that generate them.

Acetophenone is one of the most exciting players in skin microbiota manipulation
by vector-borne parasites from animal-feeding insects. Acting as an allelochemical agent,
acetophenone and its simple derivatives can be an attractant or a repellent for blood-sucking
insects, i.e., mosquitoes, flies, and ticks, vectors of dangerous tropical infectious diseases,
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including malaria, sleeping sickness, Chagas disease, chikungunya, dengue, and Zika virus.
Both properties can be used to our benefit to safeguard human lives.

Like animal skin microflora, the composition of the inflorescence odor of nectar-rich
acetophenone-containing plants can be attractive and repellent for insects, which are the
most important pests of economically important crops. Therefore, these plants could be
good candidates for use as trap crops for these pest insects, achieving successful biological
control. Some simple acetophenones serve well as an inspiration for novel agrochemicals.
There are different types of pesticides, such as fungicides, insecticides, and herbicides. With
the appropriate combination of acetophenone derivatives, it is possible to formulate new
commercial ingredients for sustainable agrochemicals.

The development of pharmacological agents/drugs should also be considered.
Acetophenone-based prototypes inspired by traditional medicines are very suitable and
promising in drug research. The inspiring example of APPA development teaches us that
the lessons of nature must be analyzed in detail. We hope this example will not be the last.
There are many models in nature that are yet to be discovered. A caring attitude toward
nature as a teacher will give us the opportunity to grow without destroying it.

We hope that the information provided in this article will encourage future research
on single secondary metabolites, such as acetophenone, from a multi-focus point of view.
Only in this way can we uncover the true meaning of each metabolite.
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