
marine drugs 

Review

Natural Products of Marine Macroalgae from South
Eastern Australia, with Emphasis on the Port Phillip
Bay and Heads Regions of Victoria
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Abstract: Marine macroalgae occurring in the south eastern region of Victoria, Australia, consisting
of Port Phillip Bay and the heads entering the bay, is the focus of this review. This area is home
to approximately 200 different species of macroalgae, representing the three major phyla of the
green algae (Chlorophyta), brown algae (Ochrophyta) and the red algae (Rhodophyta), respectively.
Over almost 50 years, the species of macroalgae associated and occurring within this area have
resulted in the identification of a number of different types of secondary metabolites including
terpenoids, sterols/steroids, phenolic acids, phenols, lipids/polyenes, pheromones, xanthophylls and
phloroglucinols. Many of these compounds have subsequently displayed a variety of bioactivities.
A systematic description of the compound classes and their associated bioactivities from marine
macroalgae found within this region is presented.
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1. Introduction

The pharmaceutical industry has evolved as a result of research conducted in the areas of
both synthetic organic chemistry and natural products extraction. During the period 1981–2014,
approximately 42% of all U.S Food and Drug Administration (FDA) new drug approvals were based
on either natural products or derivatives of a natural product pharmacophore [1]. Additionally, 49% of
all anti-cancer drugs produced since the 1940s have been derived from a natural product source, or
have been inspired by a natural product, and synthesized as a ‘natural product mimic’ [1].

Given the reduced effectiveness of traditional antibiotics to fight more resistant forms of bacterial
infection in humans, together with the need for antibiotics in agriculture, there has been an increasing
need to source new antibiotic drugs. Akin to this is the unabated need for bioactive compounds that
show cytotoxic activity towards tumor cells for the effective treatment of cancers. This has provided
much of the impetus for the research conducted within the field of natural product drug discovery, both
from terrestrial and marine sources. While numerous drugs have been derived from terrestrial plants,
there is still a huge untapped reserve of marine organisms that have been comparatively understudied.
Terrestrial natural products (TNPs) have been exploited for their biological potency for many hundreds
of years, whilst it is only recently, due to the increased use of SCUBA, that we have had access to
the array of ocean-dwelling species, and this has led to an increase in the study of Marine Natural
Products (MNPs). In fact, between 2014 and 2016, 203 new natural products were discovered from
the study of macro algae (Green, Red and Brown) [2,3]. Many of these compounds displayed very
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promising biological activity, making them serious contenders as anti-cancer and anti-bacterial drugs
or drug leads. A recent cheminformatics study has highlighted the potential of MNPs to produce
drug-like chemical compounds [4]. Despite this, MNPs remain less studied than TNPs, mostly due
to the relative ease with which TNP specimens can be obtained and cultivated. Currently, there are
10 FDA-approved marine-derived pharmaceutical drugs, together with 30 potential candidates for
application in a number of disease areas that are in different stages of clinical trials (Phase I, II and III)
Figure 1 [5].
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A number of reviews have also detailed the biologically active natural products that are sourced
from marine organisms [6–10], highlighting marine organisms as an important resource for the
production of new and unique compounds with potential medicinal value. Many of the compounds
represented in Figure 1 have been isolated from sponges, ascidians and cyanobacteria. Marine
macroalgae are underrepresented in the pharmaceutical pipeline despite the number of biologically
active compounds. Marine algae have also been used in a number of other important areas including
the food industry [11], agriculture [12] and as a source of third-generation bioplastics [13]. Compounds
from marine algae have been shown to exhibit a number of biologically active properties such as
anti-microbial [6,7,14], anti-cancer [15], anti-leishmanial [16], anti-inflammatory [17], anti-fouling [18]
and anti-protozoal [19] activities. Historically, Australia has been an excellent source of novel marine
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invertebrate chemistry. Australia has the largest Exclusive Economic Zone (EEZ) on the planet, which
is made up of several diverse marine ecoregions. As a source of novel chemistry, Australia’s EEZ has
been prolific, with its contribution representing the third largest of newly discovered MNPs during
the period 1965–2012, only behind Japan and China, respectively. Of interest is the marine ecoregion
of Port Phillip Bay, located on the south eastern coast of Australia in the state of Victoria. During
the period 1995–2012, this marine ecoregion has been the dominant source of unreported natural
products located within Australia’s EEZ [20]. The primary reason for this being the large amount of
habitat variety that is present in this Bay, such as intertidal sandy beaches, mangroves and rocky shores
along with tidal habitats like sand beds, seagrass beds and rocky reefs. Port Phillip Bay, located on
the southern shore of Victoria (Figure 2), has an area of approximately 2000 square kilometers and
an average depth of 13 m. It represents a unique habitat, being shallow enough to be in the photic
zone throughout and is known for the cleansing activities of the microphyto- and zoo-benthos and
continues to be a region of Australia that yields new species. It is home to approximately 200 different
species of macroalgae, a figure which is subject to change due to introduced species that originate from
shipping within the Port) and is represented by all three major phyla, namely the brown (Ochrophyta),
red (Rhodophyta) and the green algae (Chlorophyta).
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Figure 2. Geographical location of Port Phillip Bay in relation to Australia.

In order to explore the potential of the Port Phillip Bay region as a continuing source for bioactive
marine natural products, it is important to review and document the natural products that have been
studied and the bioactivities that have been discovered for the marine algae occurring in this region.
The methodology adopted to compile this review required that a species list for Port Phillip Bay macroalgae
to be created using the Victorian Biodiversity Atlas in conjunction with the Melbourne Museum listings
for algae species found within the Port Phillip Bay area [21–23]. Table 1 displays the listings of the species
of Port Phillip Bay algae that this review focuses upon. A number of these species are not endemic to
Port Phillip Bay, and have been sampled worldwide. Thus, this review will not be limited to natural
products derived only from marine algae sampled from Port Phillip Bay, but will focus on the global study
of natural products from each marine algae species that exists within the Port Phillip Bay region.

The purpose of this review is to provide a compilation of the natural products found in the
marine macroalgae of Port Phillip Bay and discuss the associated trends in their biological activities.
Emphasis has been placed on the three major phyla of algae, namely the green (Chlorophyta), the
brown (Ochrophyta) and the red algae (Rhodophyta) and the study of their secondary metabolites
between 1971 and early 2019. This review provides listings of compounds that are categorized under
the following structure classes: terpenoids, sterols/steroids, phenolic acids, phenols, lipids/polyenes,
pheromones, xanthophylls and phloroglucinols. Compound classes that include carbohydrates/sugars
(polysaccharides, agars and carrageenans), tannins, tannic acids, phlorotannins and fatty acids have
been excluded from this review, owing to their ubiquitous nature.
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Table 1. Reported marine algae species of the Port Phillip Bay region [21,22].

CHLOROPHYTA �Carpoglossum confluens �Sargassum fallax �Dasyphloea insignis �Plocamium angustum

NApjohnia laetevirens �Chlanidophora microphylla �Sargassopsis heteromorphum NDelisea hypneoides �Plocamium cirrhosum
NBryopsis vestita �Cladostephus spongiosus �Sargassum linearifolium �Dictyomenia harveyana NPlocamium dilatatum
�Caulerpa alternans �Colpomenia sinuosa �Sargassum paradoxum �Dictyomenia tridens �Plocamium mertensii
�Caulerpa brownie �Cystophora brownii �Sargassum sonderi �Diplocladia patersonis NPlocamium patagiatum
�Caulerpa cactoides �Cystophora expansa �Sargassum spinuligerum NDudresnaya australis �Plocamium preissianum
NCaulerpa cliftonii �Cystophora grevillei �Sargassum vestitum �Echinothamnion hystrix �Pollexfenia lobata
�Caulerpa flexilis �Cystophora moniliformis �Scytosiphon lomentaria �Echinothamnion mallardiae �Pollexfenia pedicellata
�Caulerpa geminata �Cystophora monilifera �Seirococcus axillaris NErythroclonium sonderi �Polysiphonia decipiens
NCaulerpa longifolia �Cystophora platylobium �Sirophysalis trinodis NErythroclonium muelleri �Polyopes constrictus
�Caulerpa obscura �Cystophora retorta �Suringariella harveyana NGelidium australe �Pterocladia lucida
NCaulerpa papillosa �Cystophora retroflexa �Undaria pinnatifida �Gelidium asperum �Rhodoglossum gigartinoides
NCaulerpa remotifolia NCystophora siliquosa �Xiphophora chondrophylla �Gelinaria ulvoidea �Rhodymenia leptophylla
�Caulerpa scalpelliformis �Cystophora subfarcinata �Zonaria angustata NGigartina sonderi NRhodymenia novaehollandica
�Caulerpa sedoides �Cystophora torulosa �Zonaria crenata �Gracilaria cliftonii �Rhodymenia obtusa

�Caulerpa simpliciuscula �Caulocystis uvifera �Zonaria spiralis �Grateloupia filicina NRhodymenia prolificans
NCaulerpa trifaria �Dictyota dichotoma NZonaria turneriana �Halopeltis australis �Sarcothalia crassifolia

�Caulerpa vesiculifera �Dictyota furcellata RHODOPHYTA NHalymenia plana �Sonderophycus capensis

�Chaetomorpha coliformis �Dictyota gunniana �Acrosorium ciliolatum �Hemineura frondosa �Sonderophycus coriaceus
�Chaetomorpha linum NDictyota paniculata �Acrotylus australis �Heterosiphonia gunniana �Stenogramma interruptum
�Chaetomorpha valida �Dictyopteris acrostichoides �Agarophyton chilense �Heterosiphonia muelleri �Thuretia quercifolia
�Chlorodesmis baculifera �Dictyopteris muelleri �Ahnfeltiopsis fastigiata �Hypnea ramentacea �Wrangelia nobilis
�Cladophora prolifera NDistromium flabellatum �Areschougia congesta �Jania rosea �Wrangelia plumosa

NCladophora rhizoclonioidea �Durvillaea potatorum �Ballia callitricha �Jania sagittata
NCodium australicum �Ecklonia radiata NBotryocladia sonderi �Laurencia botryoides
NCodium duthieae �Exallosorus olsenii �Callophycus laxus �Laurencia elata
�Codium fragile �Halopteris pseudospicata �Callophyllis rangiferina �Laurencia filiformis
�Codium galeatum �Homoeostrichus sinclairii �Callophyllis lambertii NLenormandia marginata
NCodium harveyi �Hormosira banksii �Camontagnea oxyclada �Lenormandia muelleri
�Codium lucasii �Leathesia marina NCapreolia implexa �Lophurella periclados
NCodium pomoides �Lobospira bicuspidata �Centroceras clavulatum �Martensia australis
NDictyosphaeria sericea �Lobophora variegata �Cephalocystis furcellata �Melanthalia obtusata
�Ulva australis �Macrocystis pyrifera �Champia viridis �Meredithia nana
�Ulva compressa NNotheia anomala �Chrysymenia brownii �Metagoniolithon radiatum
�Ulva lactuca �Padina fraseri �Corallina officinale �Metamastophora flabellata
�Ulva linza �Perithalia caudata �Corynecladia clavata �Nizymenia australis
�Ulva rigida �Petalonia fascia �Crassiphycus secundatus �Pachymenia orbicularis
�Ulva taeniata �Phyllospora comosa NCryptonemia undulata �Palisada tumida

OCHROPHYTA �Phyllotricha decipiens �Curdiea angustata �Perbella minuta

�Acrocarpia paniculata �Phyllotricha varians �Dasya ceramioides NPhacelocarpus alatus
NBellotia eriophorum �Phyllotricha verruculosa �Dasya naccarioides NPhacelocarpus complanatus

�Caulocystis cephalornithos �Sargassum decipiens �Dasya wilsonis �Phacelocarpus peperocarpos

� Currently unaccepted name but is mentioned in the literature frequently; see Supporting Information S1 for new name. � Species that are the currently accepted name and have other
names that are synonyms. N Species that are the currently accepted name and have no synonyms.
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2. Chlorophyta (Green Algae)

The phylum Chlorophyta are found to be distinctively green in color due to the presence of
chlorophyll a and b occurring in high concentrations. Green algae proliferate within the euphotic
zone of the ocean, or where there is sufficient sunlight to perform effective photosynthesis, usually
growing within the intertidal zone up to depths of 50 meters. The most common and frequently studied
species of green algae found in Port Phillip Bay are within the genera Caulerpa, Codium and Ulva.
Many of the species that comprise the three mentioned genera can also be found in various tropical,
sub-tropical and temperate marine climates around the world and are thus not exclusive to Port Phillip
Bay. Common types of secondary metabolite classes found within the phylum Chlorophyta include
diterpenes, sesquiterpenes, sterols and lipids. This review reports a total of 64 secondary metabolites
distributed among 12 species of common green algae of Port Phillip Bay within the period 1971 to
early 2019.

2.1. Terpenoids

2.1.1. Diterpenes

Algae from the genus Caulerpa would appear to have yielded the majority of diterpene compounds,
comprised of both cyclic and acyclic C-20 diterpenes (1–20) (see Supporting Information Figure S2).
Many of the cyclic diterpenoid compounds found within Caulerpa show a variety of biological activities.
Compound 7, extracted and characterized in 1985 from C. brownii, was shown to exhibit anti-bacterial
activity towards Staphylococcus aureus, Bacillus subtilus, Escherichia coli and Vibrio anguillarum utilizing
the disc diffusion methodology at 100 µg/disc [24]. Metabolites (5 and 9) derived from Caulerpa trifaria
displayed moderate cytotoxic behavior when tested using the brine shrimp assay [25]. Caulerpol
(2) appears to be found in most species of the genus Caulerpa, usually as the dominant constituent
of the crude extract. The isolation of caulerpol was of particular importance as it was the first
compound with a retinol carbon skeleton isolated from a plant source and was later shown to be easily
synthesized from (S)-(−)-α-cyclogeraniol [26]. A number of terpenoid esters (2a–2f) were also found
with R groups representing the fatty acids arachidonic, eicosapentanoic, oleic, linoleic, linolenic and
hexadecatrienenoic acids [27]. The acyclic diterpenes of the genus Caulerpa exhibit both acetoxy and
aldehyde functionalities, much the same as the cyclic diterpenes. A good example being the natural
product trifarin (17) from C. trifaria which contains two acetoxy groups. The usual scenario for these
diterpenes is to contain acetoxy groups or both aldehyde and acetoxy groups, but it is rare to observe
diterpenes from green algae with two aldehyde functional groups, as seen in compounds 5 (C. brownii
and C. trifaria) and 20 (C. brownii) [27]. Diterpenes are also found outside the genus Caulerpa, but only
within the species Codium fragile. Non-polar fractions of C. fragile have been shown to yield saturated
terpenoid compounds such as trans-phytol (13) and its two derivatives, phytyl acetate (14) and phytyl
palmitate (15) [28].

2.1.2. Sesquiterpenes

Sesquiterpenes (C-15) are found in a smaller number of Caulerpa species as diterpenes but have only
been found within the genus Caulerpa for the reported green algae of Port Phillip Bay. Sesquiterpenes,
with acetoxy and aldehyde functionalities (21–24), Figure 3, have been shown to be potent feeding
deterrents and in some cases cytotoxic towards predatory species of herbivorous fish [29]. It has
been suggested that caulerpenyne (24), an acyclic acetylenic sesquiterpene found in C. trifaria, as a
minor secondary metabolite and in C. taxifolia, as a major secondary metabolite, is a key player in the
cytotoxicity of Caulerpa algae towards herbivores [30].

This sesquiterpene appears to contribute to the invasiveness of the genus Caulerpa by means of its
inhibition of the key organic anion transporters, Oatp1d1 and Oct1. These transporters play a role in
the toxicity defense of a herbivorous predator of the genus Caulerpa, the zebra fish (Danio rerio) [30].
Although this particular mechanism of action has only been demonstrated towards zebrafish, it appears
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to provide some reasoning behind the apparent success of Caulerpa as an invasive species of algae [30].
Compound (23) was shown to display moderate anti-microbial activity against B. subtilis and the
marine fungus Dreschleria haloides. Furthermore, this compound inhibited the cell division of fertilized
sea urchin eggs, demonstrating its antipredatory attributes [31].Mar. Drugs 2020, 18, 142 6 of 39 
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2.1.3. Cyclic geranylacetone

All cyclic geranylacetone compounds (25–29), Figure 4, that have been characterized were isolated
from the ethyl acetate fraction of the green alga Ulva lactuca. Compounds of a similar structure
type, namely, the apocarotenoids, have been studied for their potential germination and growth
inhibition qualities [32,33]. Many similar types of C13 nor isoprenoids have been found largely in
wine, particularly Rieslings. Many of these compounds have been isolated and studied for their floral
aromas [34,35]. A distribution of the terpene compounds reported in this review by species and locality
is shown in Table 2.

Table 2. Distribution of compounds 1 to 29.

No. Compound Type Species Origin Ref

1, 2 Diterpene C. brownii Spring Beach, East Tasmania [27]

2a–f Diterpene C. brownii Spring Beach, East Tasmania [27]

3, 4 Diterpene C. trifaria Taroona Beach, Hobart, Tasmania [25]

5 Diterpene C. trifaria Taroona Beach, Hobart, Tasmania [25,27]
C. brownii Spring Beach, East Tasmania

6 Diterpene C. brownii Spring Beach, East Tasmania [27]

7 Diterpene C. brownii Flinders Reef, Victoria [27]

8 Diterpene C. brownii Spring Beach, East Tasmania [27]

9 Diterpene C. trifaria Taroona Beach, Hobart, Tasmania [25]

10 Diterpene C. brownii Spring Beach, East Tasmania [27]

11 Diterpene C. trifaria Taroona Beach, Hobart, Tasmania [25]

12 Diterpene C. brownii Spring Beach, East Tasmania [27]

13–15 Diterpene C. fragile Qingdao Coastline, Shangdong, China [28]

16 Diterpene C. brownii Spring Beach, East Tasmania [27]

17 Diterpene C. trifaria Taroona Beach, Hobart, Tasmania [25,36]
C. flexilis Cosy corner, Western Australia

18 Diterpene C. trifaria Taroona Beach, Hobart, Tasmania [25,27]
C. brownii Spring Beach, East Tasmania

19, 20 Diterpene C. brownii Spring Beach, East Tasmania [27]

21, 22 Sesquiterpene C. flexilis Cosy corner, Western Australia [36]

23 Sesquiterpene C. flexilis Cosy corner, Western Australia [36,37]
C. trifaria -

24 Sesquiterpene C. trifaria Taroona Beach, Hobart, Tasmania [25]

25–29 Cyclic
geranylacetone U. lactuca BoHai Coastline, China [38]
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2.2. Steroids/Sterols

The sterols (see supporting information Figure S5) of U. lactuca (30–36, 40, 47) and U. australis
(40, 41, 42, 44–46) have been studied extensively [39–43]. Many of the sterols found in the green
algae of Port Phillip Bay appear to have a C-19 core skeleton with differing functionalities of the side
chain. Of note, are compounds 41 and 42 derived from U. lactuca, which exhibit a keto group within
the C-19 skeleton. Also of interest are the sterols 38, 47 and 48, which all appear to be variants of
clerosterol, with 47 and 48 having attained a glycosidic moiety, whereas 38 has a long-chain ester
attached. Acetylation of sterol fractions appears to be a tactic employed for easier isolation of these
compounds, which was evident in the reported isolation of acetylated codisterol (37) from the alga
Codium fragile [44]. Interestingly, compounds 37–39 and 48 were all isolated and characterized from
the alga C. fragile and following this study, it was suggested that sterol compounds may prove to be
useful biomarkers for this genus allowing for easier taxonomic distinction between other members of
the Codiaceae family [44,45]. Much of the literature available for the genus Ulva involves biological
activity studies on polysaccharides [46–49], many of the sterols found within this genus have shown
promising in vitro bioactivity. In particular, the glycosidic sterol (47) from U. lactuca has been shown
to be an effective anti-bacterial, anti-fungal and anti-inflammatory agent in vitro [41]. Compound 46,
displaying an epoxide side chain functionality, appeared to display moderate recombinant aldose
reductase inhibition when assayed at 3 µg/mL [39]. This compound outperformed all other sterols in
this assay (41–45) of which, compounds 41, 42, 44 and 45 possess a hydroxyl vinyl moiety in place
of the epoxide. This suggests that the epoxide side chain moiety must play a significant role in the
inhibition shown by compound 46.

2.3. Miscellaneous

Within the reported green algae of Port Phillip Bay, a number of miscellaneous compounds
were found that include some lipids (49–52), bromophenolics (54–58) and a pigment (53), Figure 5.
The di-indolo pigment caulerpin (53) was found exclusively within algae of the genus Caulerpa (trifaria,
brownii, flexilis, racemosa and peltata), perhaps offering a useful chemotaxonomic marker for this
genus [50]. The unprecedented bicyclic lipid dictyosphaerin (49) was isolated from the endemic
Australian alga Dictyosphaeria sericea. This appears to be the only natural product reported in the
literature for this species and is the only genus of reported Port Phillip Bay green algae outside of
Caulerpa and Ulva that has shown the presence of lipidic compounds.

It should be noted that this compound was only partially characterized, as neither its relative nor
absolute configuration have been described [51]. Compounds 50–52 were derived from the petroleum
ether fraction of a methanolic extraction of U. lactuca along with isofucosterol and some fatty acid
compounds [52]. In 1999 a profiling study of Eastern Australian marine algae, which included various
green algae (Caulerpa cactoides, C. fragile, Codium galeatum, Codium lucasii and U. lactuca) [53], resulted
in the identification of simple low molecular weight bromophenolic compounds 54–58 that were
confirmed to be present in varying amounts. A distribution of the sterol, lipids and miscellaneous
compounds reported in this review by species and locality is shown in Table 3. A summary of the
biological activities is provided in the Supporting Information (Table S7).
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Table 3. Distribution of compounds 30 to 58.

No. Compound Type Species Origin Ref

30–36 Steroid/Sterol U. lactuca Bay of Kotor, Southern Adriatic Sea [40]

37 Steroid/Sterol C. fragile - [45]

38, 39 Steroid/Sterol C. fragile Qingdao Coastline, Shangdong, China [28]

40 Steroid/Sterol U. lactuca
Abu Qir Bay, Alexandria, Egypt [40,52]

Bay of Kotor, Southern Adriatic Sea

41–46 Steroid/Sterol U. australis Dalian Coast, China [39]

47 Steroid/Sterol U. lactuca Abu Qir Bay, Alexandria, Egypt [41]

48 Steroid/Sterol C. fragile Qingdao Coastline, Shangdong, China [28]

49 Lipid D. sericea Cape Schank and Point Lonsdale, Victoria [51]

50–52 Lipid U. lactuca Abu Qir Bay, Alexandria, Egypt [41]

53 Di indolo pigment

C. trifaria Point Peron, WA

[50]
C. brownii Augusta, WA
C. flexilis Augusta, WA
C. peltata Big Nook Island, WA

C. racemosa Big Nook Island, WA

54 Bromophenolic

U. lactuca Bateau Bay, NSW

[54]C. lucasii Bateau Bay, NSW
C. galeatum Bateau Bay, NSW
C. cactoides Bateau Bay, NSW

55 Bromophenolic

U. lactuca Bateau Bay, NSW

[54]C. lucasii Bateau Bay, NSW
C. galeatum Bateau Bay, NSW
C. cactoides Bateau Bay, NSW

56 Bromophenolic

U. lactuca Bateau Bay, NSW

[54]
C. lucasii Bateau Bay, NSW

C. galeatum Bateau Bay, NSW
C fragile Bateau Bay, NSW

C. cactoides Bateau Bay, NSW

57 Bromophenolic

U. lactuca Bateau Bay, NSW

[54]
C. lucasii Bateau Bay, NSW

C. galeatum Bateau Bay, NSW
C. fragile Bateau Bay, NSW

C. cactoides Bateau Bay, NSW

58 Bromophenolic

U. lactuca Bateau Bay, NSW

[54]
C. lucasii Bateau Bay, NSW

C. galeatum Bateau Bay, NSW
C fragile Bateau Bay, NSW

C. cactoides Bateau Bay, NSW

3. Ochrophyta (Brown Algae)

The Ocrophyta phylum has been the most studied phylum of algae in Port Phillip Bay to date and
has yielded the largest number and variety of natural products. Caulocystis cephalornithos, Dictyota
dichotoma and Notheia anomala represent the species of brown algae that have yielded the greatest
number of secondary metabolites. Each of these species has shown the presence of an extensive range
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of phenolic compounds, diterpenoids, sesquiterpenoids and long-chain unsaturated lipids. Reported
herein is a total of 281 secondary metabolites isolated from 37 species of brown algae within the
period 1971 to early 2019, representing several terpenoid classes, steroids/sterols, lipids and other
miscellaneous compound classes.

3.1. Terpenoids

3.1.1. Tocotrienols

A part of the vitamin E family, the tocotrienols are a class of terpenoids that are characterized
by their unsaturated farnesyl tails attached to a chromane ring, with variations between the types
being expressed through substitutions on the aromatic ring or methylation of the hydroxyl group.
There are four variations of the tocotrienol (α, β, γ and δ), two of the variants, γ (59) and δ (60), are
reported herein. Two methylated variants of the tocotrienol compound class (61 and 62), Figure 6,
were also reported here but the identity of compound 62 was not confirmed, as the location of the
methyl groups on the chromane ring was unclear. This could mean that the structure of 62 could be
either β-tocotrienol or γ-tocotrienol [55]. All tocotrienols were found within the genus Cystophora,
δ-tocotrienol (60) appeared to be the most prolific type being isolated as a secondary metabolite in
Cystophora subfarcinata, Cystophora platylobium, Cystophora monilifera, Cystophora siliquosa and Cystophora
retorta [55–58]. Both γ-tocotrienol and δ-tocotrienol have been reported to display a broad range
anti-cancer activity including against colon carcinoma and lung cancer [57].
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3.1.2. Monoterpenes

Only five monoterpenes (C-10) were isolated from the brown algae listed in this review; in
this instance, compounds 63–67, Figure 7, were all derived from the edible alga Undaria pinnatifida.
All monoterpenes are in the form of loliolide derivatives, differing only in the stereochemistry of a
tertiary alcohol and methyl group along with the degree of unsaturation. Loliolide monoterpenes
have been well studied for their biological activities [59]. Compound 65, (+)-epiloliolide, was isolated
from the brown alga Sargassum naozhouense and showed moderate antioxidant activity scavenging 1,
1-diphenyl-2-picrylhydrazyl (DPPH) free radicals. Further, epiloliolide proved to have anti-microbial
properties as well as displaying resistance to the fungus Candida albicans and the two bacterial strains
Escherichia coli and the methicillin-resistant Staphylococcus aureus (MRSA) [60]. More recently, loliolide
(67) was reported to display allelopathic influence on the germination of surrounding plant seeds,
which could be a contributor to the relative competitiveness of the brown alga U. pinnatifida [61].
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3.1.3. Prenylated Phenols

Prenylated phenols (68–80) (see Supporting Information Figure S10) are a significant group of
compounds found in brown algae. They are identified from their terpenoid tails, of varying length,
which are attached to a phenolic head group which is sometimes further cyclized as in compound
74. Prenylated phenols were discovered across three different genera and five different species of
brown algae. To date, the Sargassum genus has yielded the greatest amount of prenylated phenols
with compounds 68–71 and 77 derived from Sargassum paradoxum, and its relative Sargassum fallax only
boasting two of the same phenols in 68 and 69 [62,63]. Of note was the moderate anti-tumor activity
of compound 69 (sargahydroquinoic acid) against P388 (Murine Leukaemia cells) achieving an IC50

value of 14 µM, when tested at 1 mg/mL [63]. The dichloromethane (DCM) extract of S. paradoxum
was assayed against a series of bacteria (S. aureus, MRSA and S. pyogenes) showing weak to moderate
resistance. This was supported by compounds 68–71, isolated from the DCM extract, displaying a
similar degree of anti-bacterial activity [62]. Compounds 75 and 76, isolated from C. brownii, are
unique in this class and are of particular interest with respect to the molecular phylogeny of the
Cystophora genus. These compounds display further complexity compared to their counterparts due to
the incorporation of a furan ring in their terpenoid tails. Due to this fact, it is theorized that C. brownii
is perhaps more phylogenically advanced than its Cystophora relatives. C. torulosa, on the other hand,
appears to display only prenylated phenols with lower molecular weight and less relative complexity,
such as compounds 78 and 79, perhaps suggesting that this Cystophora species is less phylogenically
developed than C. brownii [56]. The study of Perithalia caudata from the family Sporochnaceae resulted
in a number of simple prenylated phenols (72–74 and 80) being isolated with promising anti-bacterial
assays [64–67]. It should be noted here that it was unclear if 74 was indeed a true natural product of
P. caudata or perhaps an artefact of the isolation process formed by a ring closure of 72. Compound 72
was reported to show Minimum Inhibitory Concentrations (MICs) of 3.1 µg/mL for assays against both
C. albicans and Cryptococcus neoformans and an MIC of 6.2 µg/mL against B. subtilus [65]. A distribution
of the tocotrienols, monoterpenes and prenylated phenol compounds reported in this review by species
and locality is shown in Table 4.

Table 4. Distribution of compounds 59 to 80.

No. Compound Type Species Origin Ref

59 Tocotrienols C. monilifera Governor Reef, Indented Head, Victoria [57]

60 Tocotrienols

C. subfarcinata Queenscliffe, Victoria

[55–58]
C. platylobium -
C. monilifera Governor Reef, Indented Head, Victoria
C. siliquosa Sorrento Back Beach, Victoria
C. retorta Cowaramup Bay, WA

61, 62 Tocotrienols C. torulosa Torquay, Victoria [55]

63–66 Monoterpenes U. pinnatifida Miura Peninsula, Japan [59]

67 Monoterpenes
U. pinnatifida Miura Peninsula, Japan

[59,68,69]C. moniliformis -
C. spongiosus Tipaza, Algerian Mediterranean Coast

68, 69 Prenylated Phenols S. paradoxum Governor Reef, Indented Head, Victoria [62,63]
S. fallax Governor Reef, Indented Head, Victoria

70, 71 Prenylated Phenols S. paradoxum Governor Reef, Indented Head, Victoria [57]

72 Prenylated Phenols P. caudata Flinders Reef, Victoria [66]

73 Prenylated Phenols P. caudata Ninepin point, D’Entrecasteaux Channel, Tasmania [67]

74 Prenylated Phenols P. caudata Flinders Reef, Victoria [66]

75, 76 Prenylated Phenols C. brownii Victor Harbour, SA [56]

77 Prenylated Phenols S. paradoxum Governor Reef, Indented Head, Victoria [57]

78, 79 Prenylated Phenols C. torulosa Cook Straight, Wellington, New Zealand [58]

80 Prenylated Phenols P. caudata Flinders Reef, Victoria [66]
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3.1.4. Meroditerpenoids

As with prenylated phenols, the meroditerpenoids are primarily found in the genus Sargassum with
all but compound 81 being natural products of either S. paradoxum or S. fallax. The meroditerpenoids
82–88 and 90, Figure 8, isolated from S. paradoxum all displayed some level of anti-bacterial activity.
Compounds 82, 84, 85, 87 and 88 displayed weak anti-bacterial activity against the Gram-positive
bacterium S. pyogenes, whilst compound 86 outperformed the standard antibiotic ampicillin against the
Gram-negative bacterium P. aeruginosa [57]. S. fallax yielded compounds 86–89 and 91, with compound
87 displaying moderate cytotoxicity towards P388 cancer cells (IC50: 17 µM at 1 mg/mL). In contrast
compounds 86 and 91 only had IC50 values of 32 µM and >27–29 µM, respectively, when measured
under the same conditions. Compound 91 (fallachromenoic acid) is also of chemotaxonomic interest,
as this is the first chlorinated meroditerpene isolated from S. fallax [63].
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Interestingly, compounds 89–91 appear to all be derivatives of δ-tocotrienol with carboxylic acid,
aldehyde or halogen functionalities. Compound 81, technically a meromonoterpene, was isolated from
the acetone extract of the plant Cystophora torulosa via Sephadex LH-20 size exclusion chromatography.
As this is the first meromonoterpenoid isolated from C. torulosa, it was suggested that it be a candidate
for assessing phylogenic relationships of the Cystophora genus [58].

3.1.5. Sesquiterpenes and Monoterpenes

Terpenoids that populate this class are both acyclic and cyclic and are identified by terminal ketone
or aldehyde functional groups, followed by C-15 or C-20 terpenoid tails. There are multiple varieties
of mono- and sesquiterpenes including farnesylacetone epoxides (92–94), cyclic farnesylacetones
(102–110), farnesylacetones (95–97, 101), geranylacetones (100) and geranylgeranal epoxides (98, 99)
(see Supporting Information Figure S12). All compounds in this class were isolated and characterised
from the alga Cystophora moniliformis [58,68,70–72]. Taxonomically, this class of compounds is reported
to consist of good indicators of the developmental progress of species within the genus Cystophora [68].
As these compounds are suspected to be derived from the ubiquitous tocotrienols, the higher abundance
of them within C. moniliformis provides support to the claim that this alga is the most developed species
of Cystophora. Many of these compounds have been shown to have weak or no anti-microbial activity,
but an anti-tumor assay of a mixture of (107) and (110) present in a 3:1 ratio, respectively, showed it
to possess moderate anti-cancer activity (IC50: 45 µM at 1 mg/mL). Furthermore, this same mixture
showed moderate anti-fungal ability via the disc diffusion assay against Trichophyton mentagrophytes [72].
Crude extracts of C. moniliformis have been shown to have quite potent anti-tumor activity against
P388 cells, but no single compound has been isolated that appears to account for the high crude extract
activity. This supports the idea that the collective effects of monoterpenes and sesquiterpenes are
responsible for the anti-tumor activity observed in the crude extract [58,72]. A distribution of the
meroditerpene, monoterpene and sesquiterpene compounds that are reported in this review by species
and locality is shown in Table 5.
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Table 5. Distribution of compounds 81 to 111.

No. Compound Type Species Origin Ref

81 Meroditerpenoids C. torulosa Cook Straight, Wellington, New Zealand [58]

82 Meroditerpenoids S. paradoxum Governor Reef, Indented Head, Victoria [57]

83 Meroditerpenoids S. paradoxum Governor Reef, Indented Head, Victoria [57,63]
S. fallax Governor Reef, Indented Head, Victoria

84, 85 Meroditerpenoids S. paradoxum Governor Reef, Indented Head, Victoria [57]

86, 87 Meroditerpenoids S. paradoxum Governor Reef, Indented Head, Victoria [57,63]
S. fallax Governor Reef, Indented Head, Victoria

88 Meroditerpenoids S. paradoxum Governor Reef, Indented Head, Victoria [57]

89 Meroditerpenoids S. fallax Governor Reef, Indented Head, Victoria [63]

90 Meroditerpenoids S. paradoxum Governor Reef, Indented Head, Victoria [57]

91 Meroditerpenoids S. fallax Governor Reef, Indented Head, Victoria [63]

92–94 Farnesylacetone epoxide C. moniliformis Sarge Bay, Cape Leeuwin, WA [58]

95–97 Farnesylacetone C. moniliformis Port Phillip Bay, Victoria [72]

98–100 Geranylacetone,
Geranylgeranal epoxide C. moniliformis North East side of West Island, SA [70]

101 Farnesylacetone C. moniliformis - [71]

102, 103 Cyclic farnesylacetone C. moniliformis Port Phillip Bay, Victoria [72]

104, 105 Cyclic farnesylacetone C. moniliformis - [68]

106, 107 Cyclic farnesylacetone C. moniliformis Port Phillip Bay, Victoria [72]

108 Cyclic farnesylacetone C. moniliformis - [68]

109 Cyclic farnesylacetone C. moniliformis North East side of West Island, SA [70]

110 Cyclic farnesylacetone C. moniliformis Port Phillip Bay, Victoria [72]

111 Aromadendrene C. moniliformis - [68]

3.1.6. Diterpenoids

The diterpenes (C-20) from brown algae have been extensively studied and reviewed, and none
more so than the diterpenes derived from algae within the genus Dictyota [73]. The Dictyota genus is
within the family Dictyotaceae and consists of some 221 species. In this instance, only one diterpene
was found outside of the species D. dichotoma, a dolastane diterpene from the less studied D. furcellata
(143) [74]. All other diterpenes (112–142, 144–192) (see Supporting Information Figures S13–S15)
reported were from the species D. dichotoma which has been extensively studied. A recent review
of the diterpenes in question suggested a grouping of diterpenes based on biosynthetic origins and
also diterpene cyclization complexity [73]. The grouping separates the diterpenes into three groups,
Group I (112–134, 136–140), Group II (135, 141–175) and Group III (176–192). Group I diterpenes
are all compounds derived from the apparent first cyclization of the pre-cursor geranyl-geraniol
between positions C-1 and C-10. Group II involves the same cyclization of gernayl-geraniol pre-cursor
but between C-1 and C-11, while Group III involves cyclization between C-2 and C-10. Diterpenes
of all three groups are reported to exhibit significant anti-tumor, anti-viral and some anti-fouling
activities [73]. A distribution of the diterpene compounds reported in this review by species and
locality is shown in Table 6.
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Table 6. Distribution of compounds 112 to 192.

No. Compound Type Species Origin Ref

112 Diterpene D. dichotoma Northern Adriatic Sea [73]

113 Diterpene D. dichotoma Red Sea [73]

114 Diterpene D. dichotoma Saronicos Gulf, Greece [73]

115–117 Diterpene D. dichotoma Tyrrhenian Sea [73]

118 Diterpene D. dichotoma Puerto Madryn [73]

119 Diterpene D. dichotoma Red Sea [73]

120 Diterpene D. dichotoma Northern Adriatic Sea [73]

121 Diterpene D. dichotoma Tyrrhenian Sea [73]

122–124 Diterpene D. dichotoma Red Sea, Egypt [73]

125 Diterpene D. dichotoma Troitsa Bay, Russian Far East [73]

126–128 Diterpene D. dichotoma Red Sea, Egypt [73]

129 Diterpene D. dichotoma Japan [73]

130 Diterpene D. dichotoma Red Sea, Egypt [73]

131, 132 Diterpene D. dichotoma Patagonia [73]

133 Diterpene D. dichotoma Tyrrhenian Sea [73]

134 Diterpene D. dichotoma - [73]

135 Diterpene D. dichotoma Acicastello, Italy [73]

136, 137 Diterpene D. dichotoma Russian Far East [73]

138, 140 Diterpene D. dichotoma - [73]

141, 142 Diterpene D. dichotoma Acicastello, Italy [73]

143 Diterpene D. furcellata Cape Peron, Shark Bay, WA [73]

144–151 Diterpene D. dichotoma Indian Ocean [73]

152–157 Diterpene D. dichotoma Acicastello, Italy [73]

158–164 Diterpene D. dichotoma Indian Ocean [73]

165, 166 Diterpene D. dichotoma Red Sea [73]

167, 168 Diterpene D. dichotoma - [73]

169, 171 Diterpene D. dichotoma Karachi Coast, Arabian Sea [73]

172, 173 Diterpene D. dichotoma Red Sea [73]

174 Diterpene D. dichotoma Indian Ocean [73]

175 Diterpene D. dichotoma - [73]

176 Diterpene D. dichotoma Oshoro Bay, Hokkaido, Japan [73]

177–179 Diterpene D. dichotoma Yagachi, Okinawa, Japan [73]

180 Diterpene D. dichotoma - [73]

181–183 Diterpene D. dichotoma Oshoro Bay, Hokkaido, Japan [73]

184–186 Diterpene D. dichotoma - [73]

187 Diterpene D. dichotoma Yagachi, Okinawa, Japan [73]

188 Diterpene D. dichotoma - [73]

189 Diterpene D. dichotoma Nagahama Beach, Ehime, Japan [73]

190, 191 Diterpene D. dichotoma Troitsa Bay, Russian Far East [73]

192 Diterpene D. dichotoma - [73]

3.2. Steroids/Sterols

Brown algae are responsible for the production of several sterol compounds, but when compared
with green algae, there are some differences. Firstly, green algae produce a greater variety of sterolic
compounds, and secondly, some structural differences are apparent. Green algal derived sterols appear
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to have a higher inclination towards glycosidic moieties along with long lipid esters that branch from
the hydroxyl group on ring A of the steroid skeleton (38, 47, 48). Steroids derived from the brown algae
appear to have no glycosidic attachments but display more diversity in the lipidic chains sprouting
from the D ring (200–202). Furthermore, the brown algae C. brownii produces two new sterols (201,
202) which was of particular interest, as prior to this there had only been two other occasions where
polyoxygenated sterols had been isolated from brown algae. The steroid fucosterol (200) has been
found in a number of brown algae S. linearfolium, C. sinuosa, D. dichotoma and C. spongiosum [43,75,76].
This common steroid is of interest as it has been reported to be a potent acetylcholinesterase (AChE)
inhibitor for symptomatic treatment of Alzheimer’s disease [77]. Furthermore, fucosterol (200) has
been shown to be a potent anti-malarial agent displaying an IC50 value of 7.48 µg/mL [78]. Other
common sterols such as cholesterol (199), desmosterol (196) and campesterol (198) were also found
within C. sinuosa, Cladostephus spongiosus and C. brownii. Also found among the same algae including
the prolific D. dichotoma are the relatively common steroids Brassicasterol (193), dehydrocholesterol
(194), Poriferasterol (195) and Clionasterol (197). A summary of the isolated steroids/sterols is given in
the Supporting Information (Figure S16).

3.3. Lipids

Brown algae are known to produce large amounts of straight-chain fatty acids and saturated
or polyunsaturated lipids. Lipidic compounds were found to be highly abundant in the brown alga
C. cephalornithos, where they were present as saturated fats (210–214), unsaturated fats (215–219),
straight-chain ketones (203–209, 222) and diketones (223) as well as secondary alcohols (220, 221) [79]
(see Supporting Information Figure S17). A study that yielded the lipids reported herein from the
brown alga C. cephalornithos showed large variance in relative amounts of lipids based on collection
site and season. For example, a larger amount of the alkene 215 was present when the alga was
collected during September from sites around Tasmania (Spring). This was suggested to be due to an
increase in alkene production during rapid growth of the alga or potentially due to smaller alkene
losses in the Southern hemisphere winter [79]. The brown alga Lobophora variegata, commonly found in
the Canary Islands, was also shown to yield saturated and unsaturated ketones (225–227) [80]. This
particular species of algae has been reported to suffer extremely low levels of microbial infection and
has also been studied in an ecological perspective with particular interest in its role in absorbing heavy
metal ions [81]. A 2015 study examined the anti-bacterial properties of the compound lobophorone E
(227) against both Gram-negative and Gram-positive bacteria, but it was shown to be significantly
outperformed by the positive control ciprofloxacin [80].

3.3.1. Polyenes

The polyenes detailed in this review where distributed in the following algae: N. anomala
(228–231) [82], C. torulosa (228, 231) [55] and C. retorta (228, 231) [58] (see Supporting Information Figure
S17). It appears that the genus Cystophora exhibited the more highly unsaturated polyenes, whereas the
polyenes 229 and 230 were only found in the alga N. anomala. Compounds 228 and 231 were reported
to be potent lipoxygenase inhibitors, with this type of inhibition being important in the prevention of
psoriasis, asthma, rhinitis and arthritis, with IC50 values of 40 µM and 5.0 µM, respectively [83].

3.3.2. Oxy/Epoxy lipids

All Oxylipids and Epoxylipids were found in the brown alga N. anomala (see Supporting
Information Figure S18). Of interest are the Oxylipids 232 and 233 [84], which have been targets of
synthetic studies due to their interesting 2, 5-disubstituted-3-oxygenated tetrahydrofuranyl motif [85]
that appears to be responsible for the biological activity of both compounds. Compounds 232 and 233
have both shown potent nematocidal activity against the parasitic nematode species Trichostrongylus
colubriformis and Haemonchus contortus [84]. A possible biosynthetic pathway to Oxylipids (232, 233,
246–254) was suggested via C-18, C-20 and C-22 lipidic pre-cursors, showing a possible link to the
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epoxylipid structure also found in N. anomala (234–245) [86]. A distribution of the steroids, lipids,
polyenes and oxy/epoxy lipids compounds reported in this review by species and locality is shown in
Table 7.

Table 7. Distribution of compounds 193 to 254.

No. Compound Type Species Origin Ref

193–195 Steroids/Sterols C. sinuosa Cap Vert, Dakar [76]
D. dichotoma -

196 Steroids/Sterols
C. sinuosa Cap Vert, Dakar

[43,76]C. spongiosus Praia do quebrado, Portugal
D. dichotoma -

197 Steroids/Sterols C. sinuosa Cap Vert, Dakar [76]
D, dichotoma

198, 199 Steroids/Sterols

C. sinuosa Cap Vert, Dakar

[42,43,76]C. spongiosus Praia do quebrado, Portugal
L. variegata St Thomas, Virgin Islands

D. dichotoma Cap Vert, Dakar

200 Steroids/Sterols

S. linearfolium Bateau Bay, NSW

[43,75,76]C. sinuosa Cap Vert, Dakar
D. dichotoma Cap Vert, Dakar
C. spongiosus Praia do quebrado, Portugal

201 Steroids/Sterols C. brownii Victor Harbour, SA [56]

202 Steroids/Sterols C. brownii Victor Harbour, SA [56,76]
C. sinuosa Cap Vert, Dakar

203–221 Lipid C. cephalornithos Southern and South Eastern
Tasmania [79]

222 Lipid C. cephalornithos Victorian Coastline [87]

223 Lipid C. cephalornithos Southern and South Eastern
Tasmania [79]

224 Lipid C. cephalornithos Victorian Coastline [87]

225–227 Lipid L. variegata Tenerife, Canary Islands [80]

228 Polyene
N. anomala Bells Beach, Victoria

[55,58,86]C. torulosa Torquay, Victoria
C. retorta Cowaramup Bay, WA

229, 230 Polyene N. anomala Bells Beach, Victoria [86]

231 Polyene
N. anomala Bells Beach, Victoria

[58,86]
C. torulosa Cook Straight, Wellington,

New Zealand
C. retorta Cowaramup Bay, WA

232, 233 Oxylipid N. anomala Bells Beach, Victoria [84]

234 Epoxylipid N. anomala Torquay, Victoria [82]

235 Epoxylipid N. anomala Southern and South Eastern
Tasmania [88]

236–245 Epoxylipid N. anomala Bells Beach, Victoria [86,89]

246–254 Oxylipid N. anomala Bells Beach, Victoria [86,89]

3.4. Phenols

3.4.1. Phloroglucinols

Phloroglucinols appear to be one of the most widely spread classes of secondary metabolite
within the phylum Ochrophyta when considering the 13 species of brown algae that show the
presence of phloroglucinols. Although widely spread at the species level, this compound class was
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only found among two genera of algae, namely, Cystophora and Zonaria. It has been stated that the
phloroglucinols are of taxonomic importance to Cystophora algae providing an alternate means of
tracking evolutionary development of species within this genus [58]. However, this method of tracking
phylogeny has shown apparent deviations to the current theory of species evolution within this
genus [90]. The species C. subfarcinata (255, 256, 259–262, 265, 269–271), C. monilifera (255, 259, 261, 262,
265, 266, 269, 270, 272), C. retroflexa (255, 262, 263, 265, 269–271) and Z. spiralis (257, 258, 264, 273–275)
(see Supporting Information Figure S19) represent the brown algae that have produced the greatest
number of phloroglucinol compounds [57,58,91,92]. An interesting trend appears within the species
Z. spiralis, where it is observed that rather than yielding primarily monocyclic phloroglucinols, as in
the genus Cystophora, Z. spiralis appears to mainly produce bicyclic derivatives expressed as hemiketals
and chromones [93]. Other members of the Zonaria genus, including Z. turneriana, Z. crenata and
Z. angustata which also show monocyclic phloroglucinols as the major secondary metabolites [94].
Hemiketals and chromones (273–275) from Z. spiralis have shown inhibitory activity against prominent
neurodegenerative disease kinase targets and also anti-bacterial activity (257, 258, 273, 275) against
B. subtilus, with all compounds having IC50 values between 2.5 and 10.0 µM [93]. Other monocyclic
phloroglucinols from C. subfarcinata (252 and 267) and C. monilifera (255, 262, 266 and 270) have
displayed weak anti-bacterial activity against the Gram-positive bacteria Streptococcus pyogenes, only
showing minimal inhibition zones when tested using the disc diffusion assay at 1 mg/mL. Compound
256 showed equal activity against Gram-positive and Gram-negative bacteria, S. aureus and P. aeruginosa,
respectively, but once again, all compounds from C. monilifera were substantially outperformed by the
standard antibiotic ampicillin [57]. Compounds 265 and 268 both found within Cystophora and Zonaria
have each shown moderate anti-bacterial activity against S. aureus and B. subtilis [95].

3.4.2. Phenols/Phenolic acids/Resorcinols

Phenolic compounds are found throughout brown algae, primarily in the form of a phenolic,
phenolic acid or a benzopyranone head group attached to a lipidic tail. These types of phenols have
been found across four genera including the prolific Cystophora and Sargassum as well as Caulocystis,
Colpomenia and Lobophora. The benzopyranones (276, 277) were found in this instance only within
the species C. cephalornithos. These particular compounds, found also in the plant Ginkgo biloba L.,
have been shown to be biological derivatives of ginkgolic acids, which are themselves a form of the
anti-inflammatory agent salicylic acid [96]. In contrast to salicylic acid, these compounds, in the form
of ginkgolic acid or benzopyranone, are responsible for allergic contact dermatitis (ACD) [96]. C.
cephalornithos also yielded several resorcinols (285 and 286), phenolic acids (278–282), phenols (283 and
284) and dihydroxy phenolic acids (288, 289). Compounds similar to 285–287 and 290, 291 have been
studied previously for their anti-cancer properties. In particular they have been found to have strong
activity against human colon cancer cells (HCT-116 and HT-29) [97]. The resorcinol 286 was shown
to have the highest cytotoxicity with IC50 values of 31.45, 35.27 and 24.28 µg/mL against SMMC7721,
K562 and HeLa, respectively [98]. This class of lipidic resorcinol has also been shown to exhibit various
anti-tuberculosis activities [99]. Polar extracts of the alga C. peregrina yielded a number of common low
molecular weight aromatic acids such as compounds 292–295. These low molecular weight compounds
were identified on the basis of GC–MS experiments [100]. Compounds 296 and 297, isolated from the
brown alga L. variegata, were shown to exhibit small to moderate inhibition against the Gram-positive
bacteria S. aureus [80]. A summary of the phenols/phenolic acids/resorcinols is given in the Supporting
Information (Figure S20). A distribution of the phloroglucinols, benzopyranones, phenolic acids,
phenols and resorcinol compounds reported in this review by species and locality is shown in Table 8.
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Table 8. Distribution of compounds 255 to 297.

No. Compound Type Species Origin Ref

255 Phloroglucinol

C. subfarcinata Queenscliffe, Victoria

[57,58,91]C. monilifera Governor Reef, Indented Head, Victoria
C. retroflexa Governor Reef, Indented Head, Victoria

C. retorta Cowaramup Bay, WA

256 Phloroglucinol

C. torulosa Torquay, Victoria

[55,57,58]
C. subfarcinata Queenscliffe, Victoria

C. siliquosa Sorrento Back Beach
C. retorta Cowaramup Bay, WA

C. monilifera Governor Reef, Indented Head, Victoria

257, 258 Phloroglucinol Z. spiralis North Walkerville, Victoria [93]

259 Phloroglucinol C. subfarcinata Queenscliffe, Victoria [57]
C. monilifera Governor Reef, Indented Head, Victoria

260 Phloroglucinol C. subfarcinata Queenscliffe, Victoria [57]

261 Phloroglucinol C. subfarcinata North Eastern West Island, SA [58,92]
C. monilifera -

262 Phloroglucinol C. retroflexa Governor Reef, Indented Head, Victoria [57,91]
C. monilifera Governor Reef, Indented Head, Victoria

263 Phloroglucinol C. retroflexa Governor Reef, Indented Head, Victoria [91]

264 Phloroglucinol Z. spiralis North Walkerville, Victoria [93]

265 Phloroglucinol
C. subfarcinata Queenscliffe, Victoria

[57,91]C. monilifera Governor Reef, Indented Head, Victoria
C. retroflexa Governor Reef, Indented Head, Victoria

266 Phloroglucinol C. monilifera Governor Reef, Indented Head, Victoria [57]

267, 268 Phloroglucinol
Z. turneriana Tinderbox, Tasmania

[94]Z. crenata Tinderbox, Tasmania
Z angustata Sisters Beach, Tasmania

269, 270 Phloroglucinol
C. subfarcinata Queenscliffe, Victoria

[57,91]C. monilifera Governor Reef, Indented Head, Victoria
C. retroflexa Governor Reef, Indented Head, Victoria

271 Phloroglucinol C. subfarcinata Queenscliffe, Victoria [57,91]
C. retroflexa Governor Reef, Indented Head, Victoria

272 Phloroglucinol C. monilifera Governor Reef, Indented Head, Victoria [57]

273–275 Phloroglucinol Z. spiralis North Walkerville, Victoria [93]

276, 277 Benzopyranones C. cephalornithos Southern and South Eastern Tasmania [79]

278 Phenolic Acid
C. cephalornithos Southern and South Eastern Tasmania [79,91]

S. decipiens Governor Reef, Indented Head, Victoria

279 Phenolic Acid C. cephalornithos Southern and South Eastern Tasmania [79]

280 Phenolic Acid
C. cephalornithos Southern and South Eastern Tasmania [79,91]

S. decipiens Governor Reef, Indented Head, Victoria

281, 282 Phenolic Acid C. cephalornithos Southern and South Eastern Tasmania [79]

283 Phenol
C. cephalornithos Southern and South Eastern Tasmania [79,91]

S. decipiens Governor Reef, Indented Head, Victoria

284 Phenol C. cephalornithos Southern and South Eastern Tasmania [79]

285 Resorcinol
C. cephalornithos Southern and South Eastern Tasmania [79,91]

S. decipiens Governor Reef, Indented Head, Victoria

286 Resorcinol
C. cephalornithos Southern and South Eastern Tasmania [55,79]

C. torulosa Torquay, Victoria

287 Resorcinol C. torulosa Torquay, Victoria [55]

288, 289 Phenolic Acid C. cephalornithos Southern and South Eastern Tasmania [79]

290 Resorcinol C. torulosa Cook Straight, Wellington, New Zealand [58]

291 Resorcinol C. torulosa Torquay, Victoria [55]

292–295 Phenolic Acid C. peregrina Bulgarian Coast [100]

296, 297 Phenolic Acid L. variegata Tenerife, Canary Islands [80]

3.5. Miscellaneous

Several other secondary metabolite classes have been isolated and characterized from the brown
algae considered in this review. Classes include 1-deoxysphingoid bases, pheromones, bromophenolics
and xanthophylls. The 1-deoxysphingoid base 298 (3-epi-xestoaminol C) was isolated from the brown
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algae Xiphophora chondrophylla and was the first 1-deoxysphingoid that had been isolated from brown
algae [101]. Compound 298 had its absolute configuration determined using the Mosher method and
was subsequently reported to have quite remarkable multifaceted bioactivity [101]. Initial studies
demonstrated antitubercular activity with an IC50 value of 19.4 µM with inhibition against Myobacterium
tuberculosis (H37Ra). This was followed by confirmation of growth inhibition against both S. aureus
and S. cerevisiae with IC50 values 17.0 µM and 17.1 µM, respectively. 3-epi-xestoaminol C showed great
promise when assayed against human leukemia cells (HL-60) achieving an IC50 of 8.8 µM, which was
followed by an IC50 of 18.0 µM when assayed against human embryonic kidney cells (HEK) [101].

Brown algae have long been known to possess a variety of pheromone compounds with a number
of functions contributing to the reproductive cycle, which have been studied extensively across a
number of species. A study on the species Dictyopteris acrostichoides showed the largest number of
C-11 pheromones (299–305, 313, 316 and 317). These compounds were isolated from extracts of female
gametes of D. acrostichoides [102]. Many of these compounds are produced by the organism with
the primary function of attracting male gametes to complete sexual reproduction, but some have
also been shown to function as effective anti-predation agents, or may even be used to interfere with
other pheromone communication systems of competing alga [103,104]. Many species of brown algae
reported herein, including X. chondrophylla, Scytosiphon lomentaria and Hormosira banksii, have been
found to produce the sexual pheromone hormosirene (309), suggesting that this is a particularly
important pheromone for the phylum Ochrophyta [103,105]. The brown alga C. peregrina has been
found to exhibit the pheromone (304), which has long been suspected as a sperm attractant for this and
many other species [106]. A mixture of miscellaneous pheromone compounds has also been found
distributed across seven species of brown algae including D. acrostichoides (306, 313), X. chondrophylla
(307), S. lomentaria (307), H. banksii (308), P. caudata (310–312), C. spongiosus (313, 315), Macrocystis
pyrifera (314) and U. pinnatifida (314).

The simple low molecular weight bromophenolic compounds 318–322 were found to be present in
varying amounts in many Australian algae including C. spongiosus, C. sinuosa, E. radiata, Homoeostrichus
sinclairii, H. banksii and Phyllospora comosa, and this was confirmed by a bromophenolic distribution
study of many brown, red and green algae [54]. Interestingly, a rare bromophenolic of the C-6 C-4
C-6 arrangement was isolated from the brown alga Colpomenia sinuosa (323) via a bio-activity directed
isolation. This metabolite was found to be responsible for the cytotoxicity that the crude extracts of
this alga displayed [107].

Xanthophyll compounds such as fucoxanthin (329) have been found consistently throughout brown
algae and have been the topic of a number of review articles due to their potential anti-cancer/anti-tumor
applications [108,109]. Fucoxanthin has been found in a number of brown algae species (U. pinnatifida,
S. lomentaria, C. spongiosus, Halopteris pseudospicata, Sargassum vestitum) and has, among some studies,
largely contributed to the anti-cancer activity of crude extracts [109]. Due to the significant activity
and interest in fucoxanthin (329), some work has been undertaken to explore the metabolism of this
compound when consumed via edible brown algal species such as U. pinnatifida. The compounds
fucoxanthinol (328) and amarouciaxanthin A (327) are the natural metabolites of fucoxanthin (329)
and are thought to play a key role in the anti-cancer activity that has been associated with diets high
in fucoxanthin containing algae [108,110]. A number of studies have also described the isolation of
apo-carotenoids from the brown algae S. lomentaria (324–326), C. spongiosus (325, 326) and Z. spiralis
(326). These apo-carotenoids are known to be oxidized derivatives of fucoxanthin (329) and appear to
display some feeding deterrent activity (325, 326) [69,93,111].

Non-polar extracts of the brown alga A. paniculata were found to be a rich source of the furanic
esters 330 and 331. These compounds are closely related to the furan fatty acids obtained from the sap
of the rubber tree Hevea brasiliensis that plays a major role in the fabrication of latex [112]. The common
low molecular weight compounds picolinic acid (332) and trimethylamine (333) were identified in
trace quantities in the brown alga C. peregrina through use of GC–MS [100].
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An interesting polyketide macrolide was isolated from the brown alga L. variegata, with the
compound lobophorolide (334) being isolated as 1.2 × 10−4% of the algal dry mass. Lobophorolide
was assayed for both its anti-fungal and anti-tumor properties and found to exhibit good potency in
both assays [113]. Although this study noted that due to the shared structural motifs of lobophorolide
(334) with that of bacterial natural products, it was possible that this compound was derived from
a symbiont of L. variegata which was further substantiated by the relatively low isolation yield of
the natural product. In a 2015 study, several polyketides (335–339) were isolated from L. variegata of
which only 335 displayed any notable biological activity. When assayed against S. aureus, compound
335 displayed significant growth inhibition, but was relatively ineffective against both E. coli and
E. faecalis [80]. A summary of the miscellaneous compounds isolated from brown algae is given in
the Supporting Information (Figure S21). A distribution of the miscellaneous compounds reported
in this review by species and locality is shown in Table 9. A summary of the biological activities for
compounds isolated from brown algae is given in the Supporting Information (Figure S22).

Table 9. Distribution of compounds 298 to 339.

No. Compound Type Species Origin Ref

298 Xestoaminol X. chondrophylla Hen and Chicken Islands, New Zealand [101]

299–303 Pheromone D. acrostichoides Point Lonsdale and Sorrento, Victoria [102]

304, 305 Pheromone
D. acrostichoides Point Lonsdale and Sorrento, Victoria [102]

C. peregrina Flinders, Victoria [106]

306 Pheromone D. acrostichoides Point Lonsdale and Sorrento, Victoria [102]

307 Pheromone
X. chondrophylla - [105]

S. lomentaria -

308 Pheromone H. banksii Flinders Reef, Victoria [103]

309 Pheromone
X. chondrophylla - [105]

S. lomentaria -

310–312 Pheromone P. caudata - [114]

313 Pheromone
C. spongiosus Flinders Reef, Victoria [102,115]

D. acrostichoides Point Lonsdale and Sorrento, Victoria

314 Pheromone
M. pyrifera - [103]

U. pinnatifida -

315 Pheromone C. spongiosus Flinders Reef, Victoria [115]

316, 317 Pheromone D. acrostichoides Point Lonsdale and Sorrento, Victoria [102]

318–322 Bromophenolic

C. spongiosus Bateau Bay, NSW

[54]

C. sinuosa Bateau Bay, NSW
E. radiata Bateau Bay, NSW

H. sinclairii Bateau Bay, NSW
H. banksii Bateau Bay, NSW
P. comosa Bateau Bay, NSW

L. variegata Bateau Bay, NSW

323 Bromophenolic C. sinuosa Gulf of Eilat, Israel [107]

324 Xanthophyll S. lomentaria Aikappu, Akkeshi, Hokkaido [111]

325 Xanthophyll S. lomentaria Aikappu, Akkeshi, Hokkaido [69,111]
C. spongiosus Algerian Mediterranean Coast, Tipaza

326 Xanthophyll
S. lomentaria Aikappu, Akkeshi, Hokkaido

[69,93,111]C. spongiosus Algerian Mediterranean Coast, Tipaza
Z. spiralis North Walkerville, Victoria

327, 328 Xanthophyll U. pinnatifida - [108]

329 Xanthophyll

U. pinnatifida -

[69,91,108,111]
S. lomentaria Aikappu, Akkeshi, Hokkaido
C. spongiosus Algerian Mediterranean Coast, Tipaza

H. pseudospicata Queenscliffe, Victoria
S. vestitum Queenscliffe, Victoria

330, 331 Furans A. paniculata Port MacDonnell [116]

332 Pyridine C. peregrina Bulgarian Coast [100]

333 Amine C. peregrina Bulgarian Coast [100]

334 Polyketide Macrolide L. variegata Cay Lobos, Bahamas [113]

335–339 Polyketides L. variegata Tenerife, Canary Islands [80]
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4. Rhodophyta (Red Algae) of Port Phillip Bay

The red algae of Port Phillip Bay are the least studied phylum of algae, but appear to display the
most diverse chemistry, much of which has been reported to display significant biological activity. In
particular, the genera Laurencia and Plocamium have been the source of many of the natural products.
The red algae of Port Phillip Bay appear to display a number of terpenoid like compounds, but unlike
brown or green algae, many of the red algae contain highly halogenated terpenoids. This appears to
set them apart in terms of both structural diversity and biological activity. This review documents
163 natural products that have been derived from 22 species of red algae.

4.1. Terpenoids

4.1.1. Halogenated Monoterpenes

The halogenated monoterpenes of the phylum Rhodophyta have been found distributed across
the species Plocamium angustum (348–353), Plocamium mertensii (340–347), Plocamium costatum (351,
354–364) and Plocamium leptophyllum (365). P. mertensii was first reported to contain halogenated
monoterpenes in a 1977 study where compound 346 was reported to be a major metabolite of this
species [117]. This class of secondary metabolite has been notoriously difficult to secure the correct
structures for, primarily due to the high number of halogenated substituents. As a result, a number
of previously identified secondary metabolites have had structure re-assignments, many of which
were reported in a study of P. mertensii [118]. The natural product originally assigned structure 346
was subsequently corrected to 340 (mertensene), using both on-line and off-line methodologies to
achieve unequivocal structure characterization. This compound, together with compound 341, has
previously shown insecticidal and growth inhibition against some insect species [119]. Compounds
340–342 were all shown to be effective antifeedant agents against a range of pest insect species, all of
which displayed some toxicity towards at least one species of insect [120]. Compound 342 showed
moderate antitubercular activity and cytotoxicity as well as high potency anti-algal activity toward the
alga Chlorella fusca [121]. It should also be noted that 3:1 methanol:dichloromethane crude extracts
of the red alga P. mertensii displayed anti-tumor, anti-viral and anti-fungal activities [118]. In a more
recent study of the red alga P. angustum, the compounds plocamenone (352) and isoplocamenone (353)
were isolated and characterized. Plocamenone was subsequently tested for cytotoxicity against P388
tumour cells showing promising IC50 values of 157.5 ng/mL and >97.5 ng/mL when derived from two
separate samples. This same study assayed a mixture of plocamenone and isoplocamenone which
achieved an IC50 value of >97.5 ng/mL, but isoplocamenone was unable to be assayed individually due
to its instability [122]. The alga P. costatum was studied in a phytochemical capacity as early as 1976
when two separate papers were published wherein both independently reported the identification
of halogenated monoterpenes [123,124]. The non-polar extracts of P. costatum yielded the natural
products costatone (351), costatolide (354) and the acyclic costatol (355) which was achieved by means
of conventional isolation and characterization via single crystal X-ray diffraction [123,124]. In 2014
P. costatum was revisited and studied using HPLC–UV–MS–SPE–NMR analysis yielding, among others,
the natural products 357, 358, 361–364. All compounds from this study underwent anti-microbial
screening against C. albicans, M. smegmatis, S. aureus and E. coli, but were all found to be inactive [125].
The compound aplysiaterpenoid A (365) was isolated from the red alga P. leptophyllum in a bioassay
guided fractionation using antifeedant activity as the guiding factor in isolation. In this situation
aplysiaterpenoid A (365) demonstrated potent antifeedant activity against a number of gastropods and
other herbivores, achieving complete inhibition with only 40 µg of compound. Inhibited herbivorous
species included the gastropods; Omphalius pfeifferi and Turbo cornutus, the abalone Haliotis discus
and the sea urchin Strongylocentrotus intermedius [126]. A summary of the halogenated monoterpenes
isolated from red algae is given in Supporting Information (Figure S23).
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4.1.2. Parguerenes

Investigations of the parguerenes as secondary metabolites have revealed the presence of at least
two substructure classes; deoxyparguerenes (366–371) and parguerenes (372, 373) together with the
isolation of a potential biosynthetic intermediate to the parguerenes (374) [127,128]. All compounds
reported herein have been isolated from the red alga Laurencia filiformis, but this compound class
has also been found in the sea hare Aplysia dactylomela. The parguerenes have been reported to have
highly cytotoxic properties, and as a class have been studied on a structure activity basis. Studies
such as these have shown that the cytotoxicity of parguerene compounds is dependent upon the
presence of acetoxy groups at the C-2 position and bromine at the C-15 position. This is evident in
the high growth inhibition activity of 367 against P388 and HeLa cell types, achieving IC50 values
of 8.5 and 6.3 µg/mL, respectively [129]. In a separate study, this compound was also shown to act
as a potent feeding deterrent against the abalone Haliotis discus hannai and the young sea urchins
Strongylocentrotus nudus and Strongylocentrotus intermedius [130]. Compound 366, which contains the
C-2 acetoxy and C-15 bromine motif, also showed moderate cytotoxicity towards Ehrlich carcinoma.
More impressive though, was this compound’s ability to act as an anthelmintic agent, taking only
30 mins at a concentration of 10% w/v to achieve paralysis of the worm species Allolobophora caliginosa,
whereas the standard drug mebendazole takes 4 hours to achieve the same result [131]. Furthermore,
both compounds 366 and 367 have been studied for their ability to act as P-glycoprotein inhibitors,
indicating potentially significant applications in chemotherapeutic treatment, specifically against
multidrug resistant cancers [128]. A summary of the parguerenes isolated from red algae is given in
Supporting Information (Figure S23).

4.1.3. Chamigrenes

Algae of the genus Laurencia have been known to produce chamigrene-type compounds since the
1970s [132]. The two species that have been shown to produce a number of these chamigrene-type
compounds are Laurencia filiformis (377, 379–385) and Laurencia elata (375–378, 381) (see Supporting
Information Figure S24). The chamigrenes differ from other red algae derived terpenoids as they are
both polyhalogenated and contain spiro centres, providing a challenge for structure elucidation, as was
the case for pacifenol (377) [133]. Chamigrenes, as a class of compounds, have been reported to express
anthelmintic behavior and some cytotoxic properties have also been demonstrated [134,135]. By far
the most studied chamigrenes appear to be elatol (378) and pacifenol (377). Elatol exhibits a chloro
vinyl moiety and is the major constituent of the red alga L. elata (now reclassified as Corynecladia elata
see Supporting Information Table S1) [132]. This compound exhibits potent cytotoxicity against HeLa
and Hep-2 cells (IC50 1.3 µM and 2.0 µM, respectively) [134]. Elatol also appeared to have moderate to
high antibiofouling properties inhibiting the seaweed pathogens Alteromonas sp1., Alteromonas sp2.,
Proteus mirabilis, Proteus sp., Cytophaga-Flavobacterium, Vibrio sp. and also showing mild inhibition
towards the human pathogen S. aureus [136]. An interesting 2017 study also indicated that elatol (378)
appears to play a large role in the predation of red algae of the genus Laurencia by the sea hares Aplysia
with theories that this compound appears to be a useful foraging cue for Aplysia [137]. Compounds
379, 380 and 381 have shown moderate activity in the brine shrimp (Artemia salina) bioassay, but the
strongest activity was observed for pacifenol (377) where 90% mortality was observed at a concentration
of 23 µg/mL after 24 h [138]. A distribution of the Halogenated monoterpenes, parguerenes and
chamigrene compounds reported in this review by species and locality is shown in Table 10.
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Table 10. Distribution of compounds 340 to 385.

No. Compound Type Species Origin Ref

340–342 Halogenated
Monoterpene P. mertensii Queenscliffe, Victoria [118]

343 Halogenated
Monoterpene P. mertensii Carnac Island, WA [139]

344, 345 Halogenated
Monoterpene P. mertensii Queenscliffe, Victoria [118]

346 Halogenated
Monoterpene P. mertensii - [117]

347 Halogenated
Monoterpene P. mertensii Queenscliffe, Victoria [118]

348 Halogenated
Monoterpene P. angustum Cape Northumberland, SA [140]

349, 350 Halogenated
Monoterpene P. angustum Rocky Point, Torquay, Victoria [141]

351
Halogenated
Monoterpene

P. angustum Queenscliffe, Victoria [122,123]
P. costatum Robe, South Australia

352, 353 Halogenated
Monoterpene P. angustum Queenscliffe, Victoria [122]

354 Halogenated
Monoterpene P. costatum Robe, South Australia [123]

355 Halogenated
Monoterpene P. costatum Port MacDonnell, South Australia [124]

356 Halogenated
Monoterpene P. costatum Deep Glen Bay, Tasmania [142]

357 Halogenated
Monoterpene P. costatum Pandalowie Bay, South Australia [125]

358 Halogenated
Monoterpene P. costatum Pandalowie Bay, South Australia [125]

359, 360 Halogenated
Monoterpene P. costatum Deep Glen Bay, Tasmania [142]

361–364 Halogenated
Monoterpene P. costatum Pandalowie Bay, South Australia [125]

365 Halogenated
Monoterpene P. leptophyllum Toyama Bay, Japan [126]

366–374 Parguerene L. filiformis South Australia [127,128]

375, 376 Chamigrene L. elata St. Pauls Beach, Sorrento, Victoria [133]

377 Chamigrene L. filiformis Taroona Beach, Hobart, Tasmania [133,138]
L. elata St. Pauls Beach, Sorrento, Victoria

378 Chamigrene L. elata New South Wales Coast [132]

379, 380 Chamigrene L. filiformis Taroona Beach, Hobart, Tasmania [138]

381 Chamigrene L. filiformis Taroona Beach, Hobart, Tasmania [132,138]
L. elata New South Wales Coast

382–385 Chamigrene L. filiformis Stella Maris Beach, Salvador, Brazil [143]

4.1.4. Laurenes

Laurene (389) and its structurally related derivatives (see Supporting Information Figure S25)
are known to be prevalent throughout the genus Laurencia. These compounds are also thought to be
the source of sesquiterpenes found within the sea hares of the genus Aplysia as they are frequently
grazing on Laurencia algae [144]. All laurenes reported herein have been derived from the red alga
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L. filiformis (386–397) and are all variations of compound 389 (laurene) which is found throughout
this genus. Biosynthesis of these compounds has been postulated and discussed [145]. Compounds
386, 390, 393 and 397 showed cytotoxicity toward P388 cancer cells with IC50 values ranging from
>34–43 µM when tested at a concentration of 1 mg/mL, although it should be noted that compounds
390 and 397 were unstable and degraded during the course of the assays [146]. Compounds 387 and
390 were assayed for their anti-cancer activity and whilst compound 390 exhibited strong cytotoxicity
against the cancer cell line NSCLC-N6 (IC50 26.5 µM), compound 387 was found to possess only weak
cytotoxicity [147]. It was also found that compound 386 appeared to have significant anti-bacterial
activity against methicillin-resistant Staphylococcus aureus (2 × MIC of 6.25 µg/mL) and moderate
activity against vancomycin (VCM)-susceptible Enterococcus faecium [148]. In a separate study, this
particular compound exhibited inhibition of Mycobacterium tuberculosis [149].

4.1.5. Sesquiterpenes

All sesquiterpenes were isolated from the genus Laurencia, Figure 9. Heterocladol (400), isolated
from L. filiformis collected in both South Australia [145] and Victoria [146], first had its absolute
configuration determined in 1977 via crystallographic methods [145]. This was followed by the
discovery of austradiol acetate (398) and austradiol diacetate (399) in a separate study in 1982, thereby
cementing eudesmane sesquiterpenes as a prominent secondary metabolite of L. filiformis [150].
The compound aplysistatin (401) was isolated from L. filiformis in 1981, along with hydroxyaplysistatin
(402) [151].Mar. Drugs 2020, 18, 142 23 of 39 
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Aplysistatin (401) was subjected to a biological activity assessment in subsequent studies and
displayed anti-malarial, anti-inflammatory and selective enzymatic suppression activities, the results
of which were summarized in recent reviews [152–154]. As a result of both the interesting biological
activity of aplysistatin and also its relatively unique oxepane ring system, it has been extensively
studied in order to achieve a stereo selective synthesis [155]. The compound elatenyne was first isolated
and characterized from the non-polar extracts of the red alga L. elata [156], and initially assigned the
structure 403 [156], but was re-assigned the structure 404 in a later study [133]. In another study of the
same compound Gage-Including Atomic Orbital (GIAO) modelling calculations were used on 13C
NMR spectra in an attempt to solve the relative stereochemistry of this compound but was only able
to narrow down the relative stereochemistry to a small number of diastereoisomers [157]. Elatenyne
was further studied using the crystalline sponge methodology in 2016 as the absolute configuration
of 404 still remained unknown, and this method provided the unequivocal absolute configuration of
Elatenyne (404) [158]. Synthetic approaches to producing elatenyne were also investigated and yielded
a pair of diastereomers of elatenyne [159].

4.1.6. Lauroxocanes (C15 acetogenins)

In the context of Port Phillip Bay marine algae, lauroxocane compounds have been found in the
red algae L. filiformis (405, 406) and L. elata (407, 408), Figure 10 [133,150].

Lauroxocane type compounds have been the target of synthetic studies due to their complex
stereochemical nature. As a result, a viable synthetic pathway was established for these compounds in
2012 [160]. A number of compounds from the lauroxocane class, some of which are isomers of 407 and
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408, have been isolated from Laurencia obtusa and have been shown to have insecticidal activity against
the ant species Pheidole pallidula [161]. The lauroxocane 408 was tested for anti-cancer activity and
showed no appreciable activity [133], which was in accordance with many of the other lauroxocanes
that have been found to have poor cytotoxicity [162]. The compound cis-dihydrorhodophytin (405)
along with other lauroxocanes isolated from the sea hare Aplysia brasiliana displayed antifeedant activity.
This compound was applied to small beetle larvae and offered to swordtail fish (Xiphophorus helleri)
along with controls and it was observed that the beetle larvae with 405 applied were usually outright
rejected by the fish, whereas the controls were consumed without hesitation [163]. A distribution of the
laurene, sesquiterpenes and lauroxocane compounds reported in this review by species and locality is
shown in Table 11.
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Table 11. Distribution of compounds 386 to 408.

No. Compound Type Species Origin Ref

386 Laurene L. filiformis

Hamelin Bay, Perth, WA

[164]Shoalwater Bay, Perth, WA
Cottesloe Beach, Perth, WA

Lancelin, Perth, WA

387, 388 Laurene L. filiformis
Shoalwater Bay, Perth, WA

[164]Cottesloe Beach, Perth, WA
Lancelin, Perth, WA

389 Laurene L. filiformis South Australian Coast [144]

390 Laurene L. filiformis St. Pauls Beach, Sorrento, Victoria [146]

391 Laurene L. filiformis Shoalwater Bay, Perth, WA [164]

392 Laurene L. filiformis Port MacDonnell Beach, South Australia [145]

393, 394 Laurene L. filiformis Shoalwater Bay, Perth, WA [164]

395, 396 Laurene L. filiformis St. Pauls Beach, Sorrento, Australia [146]

397 Laurene L. filiformis Port MacDonnell Beach, South Australia [145]

398, 399 Sesquiterpenoids L. filiformis Western Australia [127,150]
South Australia

400 Sesquiterpenoids L. filiformis Port MacDonnell Beach, South Australia [145,146]
St. Pauls Beach, Sorrento, Australia

401, 402 Sesquiterpenoids L. filiformis Point Peron, WA [151]

403, 404 Sesquiterpenoids L. elata
Batemans Bay, New South Wales [133]

St. Pauls Beach, Sorrento, Australia

405, 406 Lauroxocane L. filiformis Western Australia [150]

407, 408 Lauroxocane L. filiformis St. Pauls Beach, Sorrento, Australia [133]

4.1.7. Polyhalogenated Indoles

All polyhalogenated indole compounds (see Supporting Information Figure S28) reported in this
review were isolated from Rhodophyllis membranacea (409–424), a red alga sampled from Moa Point [165]
and also Seal Reef [166], New Zealand. Isolation of the bromochloroiodoindoles 410–412 and 417 is of
note, as they contain three types of halogen which is observed very rarely in marine natural products
derived from algae. Compounds 409, 413, 415, 410, 421 and 424 were assayed against the HL-60 cell
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line and were found to have anti-cancer activity displaying IC50 values of 38, 78, 61, 49, 28 and 61
µM, respectively. It was determined, via re-extraction, that compound 422 was isolated as an artefact
of compound 424. This artefact is believed to have occurred through aldol condensation of the keto
moiety of 424 with acetone that was used during purification. This was verified after a re-extraction of
R. membranacea was performed in the absence of acetone. Compounds 409, 413, 415, 410, 421 and 424
were all found to have anti-fungal activity, compound 421 showed activity (IC50 23 µM) comparable to
the standard cycloheximide.

4.1.8. Polyhalogenated Hydrocarbons

This class of secondary metabolites has been reported to be particularly difficult to characterize
due to the number of substituted heteroatoms. A large amount of substituted bromines, non-aromatic
double bonds, hydroxyl groups and acetoxy functionalities make this class of compound distinct, but
also challenging to determine in terms of absolute structures. These compounds have been reported
in only two species within this review, Ptilonia australasica (425–430, 432, 433) [167,168] and Delisea
pulchra (427, 431, 434) [169,170] (see Supporting Information Figure S29). Most compounds reported
here were studied for their anti-microbial properties. Compound 427 only displayed moderate to
low activity against Gram-positive bacteria (M. luteus) inhibiting at 5 µg. Similarly, compounds 431
and 434 also showed low to moderate activity against the Gram-positive Bacteria M. luteus but was
also able to inhibit the growth of Gram-negative bacteria (E. coli). All three compounds displayed
moderate anti-fungal properties against the fungus Puccinia oxalis [171]. Interestingly, compound 431
also showed the ability to moderately inhibit the enzyme tyrosine kinase with a % Residual Enzyme
Activity (REA) of 31.7% being achieved at a concentration of 200 µg/mL [171]. Compound 425 isolated
from the alga P. australasica was assayed against PC3 cells where it demonstrated some promising
anti-cancer activity achieving an IC50 value of 0.44 µM. This compared favorably to the positive control,
doxorubicin, which was reported to have an IC50 value of 0.360 µM [168].

4.1.9. Halogenated Furanones

The red alga Delisea pulchra (435–466) has been a prolific source of halogenated furanones and
this species produces large amounts of this class of secondary metabolite. D. pulchra has been sampled
from the New South Wales Coast and as far south as Palmer station on the Antarctic Coast [171,172].
Samples of D. pulchra were found to contain large amounts of halogenated furanone compounds when
sampled from both locations. The furanones isolated vary in structure primarily by locality and the type
of halogen substitutions present. Regarding sampling locality, algae sampled from the Antarctic coast
(Palmer station) appear to exhibit different halogenated furanones to those sampled from the east coast of
Australia. For example, the novel compounds known as the pulchralides A–C 463–465 were found to be
present, along with monocyclic furanones, in samples obtained from the Antarctic Coast [172]. This is in
contrast to samples from the Australian coast where normally only the monocyclic furanones containing
the same type of lactone ring substituted with halogens are found [169,170]. All compounds in this class
have exhibited low to moderate anti-microbial activity. Compounds 441 and 436 were both found to be
very active against the bacterial strains E. coli, M. luteus and B. subtilis at a concentration of 1 µg [171].
Compounds 441 and 436, were also tested for their anti-fungal properties against P. oxalis where they
displayed inhibitions of 26 mm and 31 mm, respectively when tested at 5 µg [171]. A structure-activity
relationship study of the reported halogenated furanones has been performed against an array of cancer
cell lines. This study showed that compounds containing an exo-cyclic double bond substitution on the
lactone moiety, as is displayed in compounds 435, 436, 440 and 441, appear to be more active than those
without it (452–462) [171]. A large number of halogenated furanones were also tested for antiplasmodial
activity against P. falciparum clones in vitro, and compounds 445 and 446 had notable IC50 values of
2.8 and 2.2 µg/mL, respectively [171]. It was apparent in these assays that many of the halogenated
furanones that were tested displayed little or no antiplasmodial activity. For those that did demonstrate
small amounts of activity, the pattern appeared to follow that of the anti-cancer assays performed, where
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the active compounds have both an exocyclic double bond adjoining the lactone ring and also either a
hydroxyl or acetyl functionality. A summary of the halogenated furanones isolated from red algae has
been provided in the Supporting Information (Figure S30).

4.2. Steroids

All sterol compounds reported here were found in the red alga A. armata (467–473) (see Supporting
Information Figure S31). The sterol composition of this alga was studied quantitatively, and it was
found that the major sterol constituent was cholesterol (471) [43]. This agrees with the conventional idea
that cholesterol is generally present in algae of the phylum Rhodophyta as the major constituent of sterol
extracts [173]. Sterol constituents for this alga were extracted using dichloromethane and saponified
using potassium hydroxide and ethanol with a period of reflux in diethyl ether. Varieties of steroids
found in A. armata do not differ greatly from the steroid classes found in the algae of Chlorophyta and
Ochrophyta, but simply differ in the number of steroids that have been reporte [43]. A distribution of
the Polyhalogenated indoles, polyhalogenated hydrocarbons, polyhalogenated furanones and steroid
compounds reported in this review by species and locality is shown in Table 12.

Table 12. Distribution of compounds 409 to 473.

No. Compound Type Species Origin Ref

409–424 Polyhalogenated Indole R. membranacea Moa Point, New Zealand [165,166]

425–426 Polyhalogenated
Hydrocarbon P. australasica Pearsons Point, Tasmania [168]

427
Polyhalogenated

Hydrocarbon
D. pulchra Cape Banks, New South Wales [167,169,170]

P. australasica Tasmania

428–430 Polyhalogenated
Hydrocarbon P. australasica Tasmania [167]

431 Polyhalogenated
Hydrocarbon D. pulchra Cape Banks, New South Wales [169,170]

432 Polyhalogenated
Hydrocarbon P. australasica Pearsons Point, Tasmania [168]

433 Polyhalogenated
Hydrocarbon P. australasica Tasmania [167]

434 Polyhalogenated
Hydrocarbon D. pulchra Cape Banks, New South Wales [169]

435 Polyhalogenated Furanones D. pulchra Cape Banks, New South Wales [169]

436 Polyhalogenated Furanones D. pulchra Cape Banks, New South Wales [170,172]
Palmer Station, Antarctica

437, 438 Polyhalogenated Furanones D. pulchra Cape Banks, New South Wales [169,170]

439–442 Polyhalogenated Furanones D. pulchra Cape Banks, New South Wales [170,171]

443 Polyhalogenated Furanones D. pulchra Cape Banks, New South Wales [170–172]
Palmer Station, Antarctica

444–448 Polyhalogenated Furanones D. pulchra Cape Banks, New South Wales [170,171]

449 Polyhalogenated Furanones D. pulchra New South Wales [174]

450 Polyhalogenated Furanones D. pulchra Cape Banks, New South Wales [169]

451–462 Polyhalogenated Furanones D. pulchra Cape Banks, New South Wales [171,175]

463–465 Polyhalogenated Furanones D. pulchra Palmer Station, Antarctica [172]

466 Polyhalogenated Furanones D. pulchra Cape Banks, New South Wales [169]

467, 468 Steroid A. armata - [176]

469–472 Steroid A. armata Praia do Quebrado, Portugal [43]

473 Steroid A. armata Portugal [177]
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4.3. Miscellaneous

Simple bromophenolics were found to be present in a number of red algae species including
C. officinale (474–478), P. lucida (474–478), C. secundatus (474–478), A. anceps (474–478), J. sagittata
(474–478), D. pulchra (474–478) and S. robusta (474–478) and P. angustum (475–478) [54]. This was to
be expected with the large number of higher molecular weight brominated terpenoids and laurenes
that populate the algae of this phylum. As with brown algae, a number of red algae exhibited the
presence of xanthophyllic compounds such as fucoxanthin (479) and β, β-Carotene (484). These have
been studied in detail for their anti-cancer properties [108,109].

Xanthophyll compounds such as Fucoxanthin (479) and zeaxanthin (482) were isolated in
abundance from a number of red algae such as L. botryoides (480, 483, 484), M. abscissa (480, 484, 496,
498, 499), A. ciliolatum (481, 482, 484), C. clavulatum (481, 482, 484, 496, 498) and P. capillacea (481, 482,
484, 496).

Macrocyclic γ-Pyrones (486–488) were obtained from the red alga Phacelocarpus peperocarpos
collected in South Australia. This has been the only instance of secondary metabolite isolation from this
species, but many other varieties of γ- and α-pyrones have also been found within the alga Phacelocarpos
labillardieri, which is also considered to be synonymous with P. peperocarpos [178–180]. It has also been
suggested that biosynthesis of these compounds could occur through a pathway that utilizes a linear
diketo acid [179]. To date, macrocyclic enol pyrones of this type have not been found in other natural
sources, suggesting that this could potentially prove an important marker for this genus of red algae.
γ-Pyrones have also been found within the species Ptilonia australasica, with compounds (490–492)
representing the only halogenated γ-Pyrones reported in this review [167,168]. These compounds were
found to be more prevalent in the non-polar extracts of P. australasica. Compound 490 was assayed
against human prostate adenocarcinoma (PC3) cells displaying an IC50 value of 10.0 µM, however this
was outperformed by the positive control compounds of taxol and doxorubicin that achieved IC50

values of 0.002 µM and 0.360 µM, respectively [168].
The red alga L. filiformis was shown to have two miscellaneous metabolites, an aromadendrene (485)

and a lipid with an aldehyde functionality (489). A cyclic lipid was found to present in C. clavulatum
(497). The alga P. costatum was also shown to have a linear diterpene compound (500). G. filicina, a red
alga from the coast of Japan (now reclassified as G. subpectinata see Supporting Information Table S1),
was shown to contain both pyrogallol compounds (493, 494) and a cyclic ketone (495) [181,182] which
were examined for their biological activity. In a 2012 study a methylated derivative of compound
493 was isolated from the pacific oyster Crassostrea gigas. This compound was shown to be an
active antioxidant agent displaying potent activity in DPPH assays [183,184]. A summary of all the
miscellaneous classes of compounds isolated from red algae is given in the Supporting Information
Figure S32. A distribution of the miscellaneous compounds reported in this review by species and
locality is shown in Table 13. A summary of the biological activities for compounds isolated from red
algae is given in Supporting Information Figure S33.
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Table 13. Distribution of compounds 474 to 500.

No. Compound Type Species Origin Ref

474 Bromophenolic

C. officinale Bateau Bay, NSW

[54]

P. lucida Bateau Bay, NSW
G. secundada Batemans Bay, NSW

A. anceps Bateau Bay, NSW
J. sagittata Bateau Bay, NSW
D. pulchra Botany Bay, NSW
S. robusta Batemans Bay, NSW

475–478 Bromophenolic

C. officinale Bateau Bay, NSW

[54]

P. angustum Bateau Bay, NSW
P. lucida Batemans Bay, NSW

G. secundada Batemans Bay, NSW
A. anceps Bateau Bay, NSW
J. sagittata Bateau Bay, NSW
D. pulchra Botany Bay, NSW
S. robusta Batemans Bay, NSW

479 Xanthophyll L. filiformis Australia [185]
L. botryoides Australia

480 Xanthophyll L. botryoides Australia [185]
M. abscissa Leigh, New Zealand

481, 482 Xanthophyll
A. ciliolatum Ensenada, Baja, California

[186]C. clavulatum Ensenada, Baja, California
P. capillacea Ensenada, Baja, California

483 Xanthophyll L. botryoides Australia [185]

484 Xanthophyll

L. botryoides Australia

[186]
A. ciliolatum Ensenada, Baja, California
C. clavulatum Ensenada, Baja, California

M. abscissa Leigh, New Zealand
P. capillacea Ensenada, Baja, California

485 Aromadendrene L. filiformis South Australia [127]

486, 488 γ−Pyrones P. peperocarpos South Australia [178]

489 Lipid L. filiformis Taroona Beach, Hobart,
Tasmania [138]

490 γ−Pyrones P. australasica Pearsons Point, Tasmania [168]

491, 492 γ−Pyrones P. australasica - [167]

493, 494 Pyrogallols G. filicina Bay of Hiroshima, Japan [181]

495 Cyclic lipid G. filicina Bay of Hiroshima, Japan [182]

496 Xanthophyll
C. clavulatum Ensenada, Baja, California

[186]M. abscissa Leigh, New Zealand
P. capillacea Ensenada, Baja, California

497 Cyclic lipid C. clavulatum East Coast of Sicily, Italy [187]

498 Xanthophyll C. clavulatum Ensenada, Baja, California [186,188]
M. abscissa Leigh, New Zealand

499 Xanthophyll M. abscissa Leigh, New Zealand [188]

500 Diterpene P. costatum Deep Glen Bay, Tasmanina [142]
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5. Conclusions

This review describes the distribution of 508 natural products derived from algae that can be found
within the Port Phillip Bay region in Victoria, Australia. Of the 193 species of algae that are commonly
found within Port Phillip Bay, 71 species have been studied and documented for phytochemical
purposes and have yielded an array of natural products. Figure 11 displays the distribution of these
natural products among phyla and from how many species they were derived from. Figures 12–14
show the distribution of compound class amongst the species discussed in this review.

Brown algae have shown the largest number of natural products along with the largest number
of species that have been studied for biological activity, whether by crude extract or pure compound
evaluation. Green algae and red algae appear to be less studied, both in a natural product capacity,
and as a source of crude extract bioactivity, yielding 9 and 5 species that display crude extract or pure
compound bioactivity, respectively. Many studies have contributed to the isolation and identification of
the large number of compounds that have been chemically profiled and discovered utilising hyphenated
techniques such as HPLC–NMR and HPLC–MS [57,62,91,118,122,133,157,189]. This has expedited the
process of dereplication and allowed for a more efficient pathway to the isolation and characterization
of bioactive components present in crude extracts. As there can often be issues with the instability
of compounds isolated from marine sources, these techniques limit the amount of exposure to the
atmosphere or light that any purified sample would have by, promptly analyzing these samples after
separation. Further use of such techniques could see an increase in the total number of natural products
discovered, particularly from marine sources. Many studies included in this review appear to approach
the isolation and characterization of natural products from a chemical perspective rather than by means
of a bioassay guided fractionation. This provides an opportunity for utilizing these methodologies to
attempt a more targeted natural product isolation, with the aim of furnishing more information about
the bioactivity of crude extracts from marine organisms, and so increase the number of species studied.
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