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Abstract: Air pollution is one of the main global environmental problems, where bryophytes, due to
their high capacity to retain metals and other pollutants, have been widely used in active air quality
monitoring studies in temperate and tropical zones. Thus, in this study, we analyzed for the first time
the concentrations of eight metals (cadmium, copper, nickel, aluminum, iron, manganese, lead and
zinc) in three species of transplanted mosses (Rhacocarpus purpurascens (Brid.) Paris, Sphagnum sp.
and Thuidium delicatulum (Hedw.) Schimp.) from Ecuador. Significant differences were found for the
three species in the concentrations of Al, Mn, Fe and Zn between urban and control areas, pointing to
the Central zone as the main source of contamination with the highest concentrations of Al, Fe, Mn
and Zn, related to vehicular traffic. Lead did not differ between zones for Rhacocarpus purpurascens
and Sphagnum sp.; however, Thuidium delicatulum accumulated different concentrations between
urban areas and the control areas. The three species of mosses provided valuable information on the
contamination of Al, Fe, Mn, Pb and Zn in the urban area of the city of Loja, and therefore can be
used in future air quality monitoring programs over time in tropical cities.

Keywords: active biomonitoring; metals; mosses; Rhacocarpus purpurascens; Sphagnum; Thuidium delicatulum

1. Introduction

Anthropogenic activities such as industrial discharges, agricultural practices, combus-
tion, vehicular traffic, and poor waste management are the main causes of environmental
pollution in urban areas [1,2], causing negative effects on people’s health [3–5]. Thus,
several countries are researching and implementing strategies aimed at improving environ-
mental quality [6,7].

Vehicular traffic is one of the most important sources of air pollution in urban areas [8]
including tropical zones [9]. For instance, previous studies have shown that traffic is a
major source of metals [9,10], carbon monoxide (CO) [11], sulfur oxides (SOx), nitrogen
oxides (NOx) and particulate matter [12].

In this context, one of the methods to assess air quality is biomonitoring based on
the use of biological species to detect air pollutants, allowing the establishment of an
environmental quality control program, including air [13]. Biomonitors allow the determi-
nation of the location of pollutant sources, distribution patterns and relative deposition
intensities [14]. Biomonitoring studies present great advantages in comparison with the
use of air filters or air samplers, related to a higher degree of accumulation of metals, and
reduce the cost of monitoring and controlling air quality [15,16]. The data collected by
active monitoring allow us to solve certain limitations of passive monitoring (native species
of an area); for instance, this monitoring can be applied in sites that lack native organisms,
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allowing the minimization of biological variability by using organisms collected from the
same population and facilitating the complete control of the exposure time [17].

Bryophytes take up essential elements directly from the air and have stronger ad-
sorption capacities for metals [18–20]; thus, they are suitable biomonitors for detecting air
pollutants in urban areas [21,22]. Species of mosses such as Ceratodon purpureus (Hedw.)
Brid. [23], Haplocladium microphyllum (Hedw.) Broth. [24], Hylocomium splendens (Hedw.)
Schimp. [25,26], Hypnum cupressiforme Hedw. [7,27], Pleurozium schreberi (Brid.) Mitt. [25],
Scleropodium purum (Hedw.) Limpr. [28], Sphagnum denticulatum Brid. [29], Sphagnum
girgensohnii Russow. [7,30], Thuidium delicatulum (Hedw.) Schimp. [31], and Thuidium
tamariscellum (Müll. Hal.) Bosch and Sande Lac. [32] have been widely used in active
monitoring studies of air pollutants. These studies affirm that urbanized localities are
highly affected by the presence of metals (e.g., zinc, cadmium and copper), related to
vehicular traffic [8], the coating and automotive industries, as well as the degradation of
construction metals and road surfacing materials [26,33,34]. However, most studies have
been carried out in temperate zones when compared to tropical zones.

In Ecuador, only one active biomonitoring study has been conducted using mosses as
indicators of air pollution in the city of Quito [35], where the authors found the presence
of lead and cadmium related to vehicular traffic, but the identification of the species used
was not realized. On the other hand, air quality monitoring studies have been carried out
in the city of Loja using lichens and bromeliads [36,37]. These studies have shown that
urban areas have lower species diversity and a higher accumulation of metals compared
to control zones. However, this is the first study to analyze air quality by transplanting
bryophytes, which allows the use of low-cost air pollution monitoring systems [15,38]. The
present study aims to determine the air quality of the city of Loja by transplanting three
species of mosses (Rhacocarpus purpurascens, Sphagnum sp. and Thuidium delicatulum) due to
the fact that urban areas of the city of Loja, Ecuador have high levels of air pollution (e.g.,
metals) related to vehicular traffic [36,37]. We hypothesized that increased urbanization
and vehicular traffic towards the center of the city will result in increased bioaccumulation
of heavy metals in transplanted mosses.

2. Materials and Methods
2.1. Study Area

The study was carried out in the city of Loja, located in the south of Ecuador at 2100 m
a.s.l. For monitoring purposes, the city of Loja was divided into three zones (North, Central
and South), with three locations in the North and South zones and four locations in the
Central zone (Figure 1). The design has been structured based on previous environmental
monitoring studies [37,39,40]. The study was conducted between March and May 2019.

The South zone (S) is characterized by a greater concentration of metals in the air and
by recent urban development. Here, Cd, Cu, Mn, Pb and Zn in the air reach values up to
30.83 mg g−1, 21.27 mg g−1, 53.49 mg g−1, 39.48 mg g−1, and 91.37 mg g−1, respectively.
The Central zone (C) is characterized by a high level of air pollution with metals and a
high degree of urbanization. In this area, levels of Cd, Cu, Mn, Pb and Zn in the air reach
values up to 34.66 mg g−1, 25.41 mg g−1, 20.03 mg g−1, 25.29 mg g−1, and 100.54 mg g−1,
respectively. Finally, the North zone (N) is an urban area with high levels of metals, but
the zone still has some recreational parks. In this area, levels of Cd, Cu, Mn, Pb and Zn in
the air reach values up to 27.99 mg g−1, 31.02 mg g−1, 56.81 mg g−1, 42.95 mg g−1, and
44.46 mg g−1, respectively [37].

Transplants were carried out using terrestrial mosses of the species Rhacocarpus pur-
purascens, Sphagnum sp. and Thuidium delicatulum. Samples were collected from an uncon-
taminated area in the buffer zone (Control zone: Ctr) of the Podocarpus National Park,
which is located on the outskirts of the city (3◦59′19” N, 79◦8′38” E). The moss vouchers
were deposited in Herbario de la Universidad Técnica Particular de Loja (HUTPL).
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Figure 1. Study area of city of Loja (Southern Ecuador), showing the location of the zones. South 
zone (orange circle), Central zone (violet circle), North zone (red circle), Control zone (green circle). 

Transplants were carried out using terrestrial mosses of the species Rhacocarpus pur-
purascens, Sphagnum sp. and Thuidium delicatulum. Samples were collected from an uncon-
taminated area in the buffer zone (Control zone: Ctr) of the Podocarpus National Park, 
which is located on the outskirts of the city (3°59′19″ N, 79°8′38″ E). The moss vouchers 
were deposited in Herbario de la Universidad Técnica Particular de Loja (HUTPL). 

Rhacocarpus purpurascens (Figure 2A) grows on soil and rocks, and is distributed in 
the Americas, Africa, Australia and New Zealand [41]. This species is characterized by a 
unique ultrastructure in the cell walls of its leaves, which makes them highly porous [42]. 
This species has been used in studies on the essential oil constituents of mosses [43], AB-
1300 (HUTPL). 

Sphagnum sp. (Figure 2B) is the most abundant genus of mosses and is widely dis-
tributed throughout the world, forming cushions on rocks, trunks and soils. Sphagnum sp. 
has been widely used as a bioindicator of air pollution [8,44–46] due to the high number 
of pores in the hyalocysts [47], which help to accumulate metals related to air pollution, 
AB-1301 (HUTPL). 

Thuidium delicatulum (Figure 3C) grows on rocks and trunks, in shady and dry zones, 
and it has an extensive branching that allows a large exposed area for ion exchange [48]. 
T. delicatulum has been used as a bioindicator of metal deposition [31,49], AB-1302 
(HUTPL). 

  

Figure 1. Study area of city of Loja (Southern Ecuador), showing the location of the zones. South
zone (orange circle), Central zone (violet circle), North zone (red circle), Control zone (green circle).

Rhacocarpus purpurascens (Figure 2A) grows on soil and rocks, and is distributed in
the Americas, Africa, Australia and New Zealand [41]. This species is characterized by a
unique ultrastructure in the cell walls of its leaves, which makes them highly porous [42].
This species has been used in studies on the essential oil constituents of mosses [43],
AB-1300 (HUTPL).
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Figure 2. Species used for active monitoring of air quality in city of Loja (Southern Ecuador). (A) Rhacocarpus purpurascens; 
(B) Sphagnum sp.; (C) Thuidium delicatulum. 

2.2. Design and Data Collection 
The collected terrestrial mosses were transported to the laboratory in order to man-

ually remove soil particles and plant debris, then left to dry in the open air, and the mate-
rial of each species was mixed separately by hand in order to obtain homogenized samples 
of each species. The bag material, the mesh size and the amount of plant material were 
selected according to the protocol of Ares et al. [38]. We took 0.5 g of moss, which was 
placed in 10 × 12 cm nylon net bags with a mesh size of 2 mm. A total of 15 moss bags for 
each species were controls (Ctr), which were treated in the same way as the transplants 
but were not exposed to air pollution. These samples were stored at room temperature 
under laboratory conditions as a control sample for the determination of initial contami-
nant concentrations [29]. At each locality, 15 bags (5 bags of each species) were attached 
perpendicular to a tree trunk, at a height of 2–3 m [38], thus obtaining a total of 180 bags 
throughout the city (Figure 3). The exposure of the bags lasted for 90 days (March to May 
2019), after which time they were removed for further analysis in the laboratory. 

Figure 2. Species used for active monitoring of air quality in city of Loja (Southern Ecuador). (A) Rhacocarpus purpurascens;
(B) Sphagnum sp.; (C) Thuidium delicatulum.
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Sphagnum sp. (Figure 2B) is the most abundant genus of mosses and is widely dis-
tributed throughout the world, forming cushions on rocks, trunks and soils. Sphagnum sp.
has been widely used as a bioindicator of air pollution [8,44–46] due to the high number
of pores in the hyalocysts [47], which help to accumulate metals related to air pollution,
AB-1301 (HUTPL).

Thuidium delicatulum (Figure 3C) grows on rocks and trunks, in shady and dry zones,
and it has an extensive branching that allows a large exposed area for ion exchange [48]. T.
delicatulum has been used as a bioindicator of metal deposition [31,49], AB-1302 (HUTPL).
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Figure 3. Transplanting of samples of the three species used for active monitoring in the city of Loja. (A) South zone,
(B) Central zone, and (C) North zone.

2.2. Design and Data Collection

The collected terrestrial mosses were transported to the laboratory in order to manually
remove soil particles and plant debris, then left to dry in the open air, and the material
of each species was mixed separately by hand in order to obtain homogenized samples
of each species. The bag material, the mesh size and the amount of plant material were
selected according to the protocol of Ares et al. [38]. We took 0.5 g of moss, which was
placed in 10 × 12 cm nylon net bags with a mesh size of 2 mm. A total of 15 moss
bags for each species were controls (Ctr), which were treated in the same way as the
transplants but were not exposed to air pollution. These samples were stored at room
temperature under laboratory conditions as a control sample for the determination of initial
contaminant concentrations [29]. At each locality, 15 bags (5 bags of each species) were
attached perpendicular to a tree trunk, at a height of 2–3 m [38], thus obtaining a total of
180 bags throughout the city (Figure 3). The exposure of the bags lasted for 90 days (March
to May 2019), after which time they were removed for further analysis in the laboratory.

We obtained traffic flow with punctual one-day sampling data related to the number
of vehicles for each zone, following the same protocol of Käffer et al. [50] and Hu et al. [8]
with few adaptations. Three different categories were considered: (LV) = light vehicles
(cars and small vans), (HV) = heavy vehicles (trucks and buses) and (MT) = motorbikes.

2.3. Elemental Bioccumulation

For the chemical analysis, the samples were sieved to remove the residues, and then
the samples were dried in a drying oven at 50 ◦C. The microwave digestion system MARS
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(Microwave Accelerated Reaction System) 6 by CEM Corporation was used [51]. The
digestion method requires the addition of 0.5 g of sample and 10 mL of HNO3 in the
digestion vessel [52]. After the digestion, the volume of each sample was adjusted to
100 mL using double deionized water. The content of cadmium (Cd), copper (Cu), nickel
(Ni), aluminum (Al), iron (Fe), manganese (Mn), lead (Pb) and zinc (Zn) in the samples
was analyzed using atomic absorption spectroscopy (AAnalyst 400; Perkin Elmer Sdn Bhd,
Selangor, Malaysia). Calibration curves were prepared with certified standards (Merck
KGaA, Darmstadt, Germany) for each of the metals analyzed.

2.4. Data Analysis

To evaluate the changes in the concentration of metals in each of the zones, parametric
and nonparametric statistical tests were performed based on the Shapiro–Wilk normality
test. Cadmium (Cd), copper (Cu) and nickel (Ni) showed values of zero for the control
samples and the samples transplanted in the city; thus, these metals were not considered in
the statistical analyses. For the three species, a one-way analysis of variance was performed
(ANOVA) for metals that met normality assumptions (Shapiro–Wilk, p-value > 0.05) and
the nonparametric Kruskal–Wallis test for those that did not have a normal distribution
(Shapiro–Wilk, p-value < 0.05). In addition, to identify significant differences in metal
accumulation between zones, the Tukey HSD post hoc multiple comparison test was
implemented as a parametric test, and Dunn’s non-parametric test with the Dunn test
package was used [53]. In order to identify correlation between vehicular traffic and metal
content in three moss species, Pearson correlation (normal distribution) and Spearman
correlation (no-normal distribution) analyses were applied. All analyses were performed
using the statistical software Rstudio version 1.1.453 [54].

3. Results

The mean concentration of most of the metals was higher in the urbanized areas
compared to the control samples for the three species (Table 1).

Table 1. Mean concentration, standard deviation and p-value (ANOVA and Kruskal–Wallis) of Al, Fe, Mn, Pb and Zn in
Rhacocarpus purpurascens, Sphagnum sp. and Thuidium delicatulum in the city of Loja (mg g−1). r = correlation coefficient
between vehicular traffic and metals for each species.

Species Metal Control South Central North p Value r p Value

Rhacocarpus
purpurascens

Al 2.783 ± 0.623 5.090 ± 2.339 3.876 ± 2.066 3.948 ± 1.902 0.041 0.246 0.115
Fe 1.228 ± 0.372 4.170 ± 3.674 3.064 ± 1.366 3.331 ± 0.867 0.0004 0.398 0.009
Mn 0.086 ± 0.010 0.173 ± 0.040 0.221 ± 0.030 0.223 ± 0.069 <0.0001 0.801 <0.0001
Pb 0.006 ± 0.007 0.005 ± 0.003 0.005 ± 0.002 0.005 ± 0.002 0.696 −0.160 0.309
Zn 0.042 ± 0.078 0.086 ± 0.026 0.131 ± 0.044 0.107 ± 0.023 0.0050 0.5652 <0.0001

Sphagnum sp.

Al 2.771 ±0.570 3.718 ± 2.109 4.545 ± 1.335 4.429 ± 1.5342 0.0124 0.485 0.002
Fe 1.368 ± 0.411 6.197 ± 2.553 5.396 ± 1.596 4.281 ± 1.5420 <0.0001 0.789 <0.0001
Mn 0.147 ± 0.023 0.186 ± 0.057 0.241 ± 0.168 0.188 ± 0.0527 0.012 0.343 0.041
Pb 0.004 ± 0.003 0.006 ± 0.003 0.006 ± 0.003 0.006 ± 0.0026 0.44 0.278 0.099
Zn 0.026 ± 0.010 0.110 ± 0.017 0.149 ± 0.047 0.130 ± 0.055 <0.0001 0.831 <0.0001

Thuidium
delicatulum

Al 0.151 ± 0.107 2.312 ± 1.048 2.750 ± 1.061 2.560 ± 1.027 <0.0001 0.803 <0.0001
Fe 0.309 ± 0.646 3.453 ± 5.558 2.238 ± 1.701 2.176 ± 1.11 <0.0001 0.368 0.022
Mn 0.132 ± 0.011 0.367 ± 0.239 0.441 ± 0.127 0.414 ± 0.148 <0.0001 0.687 <0.0001
Pb 0.001 ± 0.002 0.001 ± 0.002 0.002 ± 0.002 0.002 ± 0.002 0.0035 0.271 0.039
Zn 0.015 ± 0.018 0.075 ± 0.047 0.131 ± 0.035 0.105 ± 0.033 <0.0001 0.768 <0.0001

For Rhacocarpus purpurascens, values of Al, Fe, Mn and Zn were high for urban areas
in comparison with the control samples (Figure 4). On the other hand, Al and Fe presented
high values in the South zone, followed by the North and Central zones, but for zinc,
high values were registered in the Central zone. R. purpurascens showed that there was
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a significant positive correlation between Fe, Mn and Zn concentrations associated with
vehicular traffic (Table 1).
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Following the same pattern, for Sphagnum sp. Al, Fe, Mn and Zn had the highest values
in the urban areas compared to the control samples (Figure 5). Aluminum, manganese
and zinc presented high values in the Central zone, followed by North and South zones;
however, for iron, high values were registered in the South zone of the city, followed by
Central and North zones. The results for Sphagnum sp. showed that there was a significant
positive correlation between Al, Fe, Mn and Zn concentrations associated with vehicular
traffic (Table 1).
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In Thuidium delicatulum, aluminum, manganese and zinc presented high values in
the Central zone, followed by the North and South zones; however, for iron, the highest
values were recorded in the North zone of the city, followed by the Central and South
zones (Figure 6). The results for T. delicatulum showed that there was a significant positive
correlation between Al, Fe, Mn, Pb and Zn concentrations and vehicular traffic (Table 1).
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For the three moss species, there were significant differences in the concentrations
of aluminum (Al), manganese (Mn), iron (Fe) and zinc (Zn) between the urbanized areas
and the control samples. Lead (Pb) concentrations did not show significant differences
for the control samples for R. purpurascens and Sphagnum sp., while for T. delicatulum the
differences were significant (Table 1). On the other hand, the Tukey HSD test and Dunn
test performed on the species R. purpurascens showed significant differences between the
accumulation of metals in the control samples and urban areas studied (South, Central,
North) for Fe and Mn (Table 2).

Table 2. Post hoc Tukey’s test and Dunn’s test for metal accumulation in R. purpurascens according to the different study
areas; Est = statistic; p < 0.05 is considered significant; Ctr = Control, S = South, C = Central, N = North.

Tukey
Test Al Dunn

Test Fe Mn Pb Zn

Zone Est p-Value Zone Est p-Value Est p-Value Est p-Value Est p-Value

N-C 0.073 1.000 N-C −0.567 1 0.445 1 0.107 1 0.768 1
S-C 1.214 0.422 S-C 0.010 1 1.741 0.2452 0.248 1 1.537 0.371

Ctr-C −1.092 0.379 T-C 3.391 0.0021 5.137 < 0.0001 1.113 0.797 3.490 0.0015
S-N 1.142 0.593 S-N 0.523 1 1.108 0.8034 0.1181 1 0.639 1

Ctr-N −1.165 0.484 T-N 3.396 0.0021 3.823 0.0004 0.8176 1 2.126 0.101
Ctr-S −2.307 0.025 T-S 2.936 0.0100 2.700 0.0208 0.7160 1 1.413 0.421

In the species Sphagnum sp., the Tukey HSD test and the Dunn test showed significant
differences between the accumulation of metals in the control samples and the urban zones
(South, Central, North) for Al, Fe, Mn and Zn (Table 3).
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Table 3. Post hoc Tukey’s test and Dunn’s test for metal accumulation in Sphagnum sp. according to the different study
zones; Est = statistic; p < 0.05 is considered significant; Ctr = Control, S = South, C = Central, N = North.

Tukey
Test Al Fe Pb Dunn

Test Mn Zn

Zone Est p-Value Est p-Value Est p-Value Zone Est p-Value Est p-Value

N-C −0.117 1 −1.115 0.9650 −4.413 0.990 N-C −0.273 1 0.807 1
S-C −0.827 0.654 0.8008 0.3849 −4.689 0.990 S-C 0.483 1 1.348 0.5335

Ctr-C −1.774 0.023 −4.028 <0.0001 −1.917 0.462 T-C 2.539 0.033 4.284 0.0001
S-N −0.711 0.751 1.9125 0.1913 −2.767 0.999 S-N 0.736 1 0.601 1

Ctr-N −1.657 0.034 −2.912 <0.0001 −1.475 0.670 T-N 2.847 0.013 3.373 0.0022
Ctr-S −0.947 0.464 −4.829 0.0130 −1.448 0.742 T-S 1.772 0.229 2.399 0.049

In the species T. delicatulum, the Tukey HSD and Dunn test showed significant differ-
ences between the accumulation of Al, Fe, Mn, Pb, and Zn in the control samples and the
urban areas (Table 4).

Table 4. Post hoc Tukey’s test and Dunn’s test for metal accumulation in T. delicatulum according to the different study
zones; Est = statistic; p < 0.05 is considered significant; Ctr = Control, S = South, C = Central, N = North.

Dunn
Test Al Fe Mn Pb Tukey

Test Zn

Zone Est p-Value Est p-Value Est p-Value Est p-Value Zone Est p-Value

N-C 0.251 1 −0.183 1 0.554 1 −0.715 1 N-C −0.026 0.395
S-C 0.801 1 0.238 1 0.735 1 1.603 0.3441 S-C −0.056 0.005

Ctr-C 4.449 <0.0001 3.512 0.0013 3.890 0.0003 2.847 0.0145 T-C −0.115 <0.0001
S-N 0.484 1 0.385 1 0.143 1 2.107 0.1136 S-N −0.030 0.317

Ctr-N 3.649 0.0005 3.273 0.0032 2.852 0.0130 3.225 0.0043 T-N −0.089 <0.0001
Ctr-S 3.253 0.0034 2.974 0.0088 2.809 0.0149 0.972 0.9956 T-S −0.059 0.002

4. Discussion

For the three moss species, there were significant differences in the concentrations
of aluminum (Al), manganese (Mn), iron (Fe) and zinc (Zn) between the urban areas
(South, Central and North) and the control samples. Similar to our results, previous
studies have shown that the highest concentrations of these elements were observed in
areas characterized by the intense flow of public transportation [4,8,31,47,55]. For instance,
Capozzi et al. [10] and Hu et al. [8] showed that a high metal concentration (e.g., Zn) in
Hypnum cupressiforme and Sphagnum junghuhnianum is related to vehicular traffic.

In addition, corroborating this pattern, passive monitoring studies using lichens and
bromeliads in the city of Loja have identified urban areas with high levels of contaminants
such as zinc and manganese [36,37]. All three moss species point to the center area as a
focus of contamination for the metals aluminum, manganese, and zinc; thus, an increase in
these metals (Al, Mn, and Zn) is related to road dust resuspension, vehicle brake abrasion,
and tire wear [56–61]. On the other hand, the concentrations of lead (Pb) did not show
significant differences between control and urban areas for Rhacocarpus purpurascens and
Sphagnum sp., due to the fact that industrial areas report higher Pb concentration levels
than areas with high vehicular traffic [62]—as in our case, the city of Loja has a low level of
industrial development.

For Rhacocarpus purpurascens, significant differences were shown between the accumu-
lation of metals in the control samples and urban areas (South, Central, North) only for
two of the metals analyzed (Fe, Mn). This suggests that the species has a low capacity to
retain certain metals; this may be due to the structure of the cell walls of the leaves, which
are highly porous and thus water can easily penetrate the reticular layer, increasing the
likelihood that certain metals are leached [24,63]. In Sphagnum sp., significant differences
were found for Al, Fe, Mn and Zn between the control samples and the urban areas (South,
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Central, North). Sphagnum sp. has a high capacity to retain metals related to vehicular
traffic, as shown by previous studies that have observed positive results in terms of the
accumulation of Al, Fe, Mn, Pb and Zn in urban areas [8,18,45,61,64,65]. However, Pb
concentration in this study was not significant for two species. This result can be attributed
to external factors such as climatic conditions, the mineral composition of soil dust, the
natural element cycling process and the vegetation zone, which have a significant influence
on the efficiency of metal uptake in mosses [66–68].

On the other hand, for Thuidium delicatulum Al, Fe, Mn, Pb and Zn showed significant
differences between control samples and the urban areas. These results are in agreement
with Rodríguez-Quiel et al. [31] and Castello et al. [69], who showed that the method
of transplanting samples of T. delicatulum and Pseudoscleropodium purumis is effective for
determining the variation of Al, Fe, Pb and Zn as the main air pollutants. Likewise, our
results show that of the three mosses used in the study, T. delicatulum showed significant
differences for lead, which indicates that the physiology and morphology of mosses are
involved in the process of bioconcentration and absorption of pollutants [48,70].

5. Conclusions

The three urban zones of the city of Loja showed higher concentrations of Al, Fe,
Mn and Zn compared to the control samples for the three species of mosses (Rhacocarpus
purpurascens, Sphagnum sp., and Thuidium delicatulum) related to vehicular traffic. Sphagnum
sp. and T. delicatulum point to the Central zone as the main source of contamination, with
the highest concentrations of Al, Fe, Mn and Zn. Thus, this study might serve as a reference
for future investigations on the bioaccumulation of pollutants in Rhacocarpus purpurascens,
Sphagnum sp., and Thuidium delicatulum in similar urban tropical areas.
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