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ABSTRACT
Background. Nitrogen (N) is an important macronutrient that controls the produc-
tivity of ecosystems and biological nitrogen fixation (BNF) is a major source of N in
terrestrial systems, particularly tropical forests. Bamboo dominates theses forests, but
our knowledge regarding the role of bamboo in ecosystem functioning remains in its
infancy. We investigated the importance of a native bamboo species to the N cycle of a
Neotropical forest.
Methods. We selected 100 sample units (100 m2 each) in a pristine montane Atlantic
Forest, in Brazil.We counted all the clumps and live culms ofMerostachys neesii bamboo
and calculated the specific and total leaf area, as well as litter production and respective
N content. Potential N input was estimated based on available data on BNF rates for
the same bamboo species, whose N input was then contextualized using information
on N cycling components in the study area.
Results. With 4,000 live culms ha−1, the native bamboo may contribute up to 11.7 kg
N ha−1 during summer (January to March) and 19.6 kg N ha−1 in winter (July to
September). When extrapolated for annual values, M. neesii could contribute more
than 60 kg N ha−1y−1.
Discussion. The bamboo species’ contribution to N input may be due to its abundance
(habitat availability formicrobial colonization) and the composition of the free-livingN
fixer community on its leaves (demonstrated in previous studies). Although some N is
lost during decomposition, this input could mitigate the N deficit in the Atlantic Forest
studied by at least 27%. Our findings suggest that M. neesii closely regulates N input
and may better explain the high diversity and carbon stocks in the area. This is the first
time that a study has investigated BNF using free-living N fixers on the phyllosphere of
bamboo.

Subjects Conservation Biology, Ecology, Biogeochemistry, Forestry
Keywords Merostachys neesii, Atlantic forest, Free-living biological nitrogen fixation, N cycling,
Neotropical bamboo

INTRODUCTION
Woody bamboos are typical plants in many tropical forests (Humboldt & Bonpland, 1907;
Judziewicz et al., 1999). Their rapid growth under intense levels of light (Cirtain, Franklin
& Pezeshki, 2009) and leaves with relatively low carbon cost and high photosynthesis rates
(Montti et al., 2014; Yang et al., 2014) result in the widespread occurrence of these plants
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in forests (Judziewicz et al., 1999). Bamboo density effects the dynamics and structure
of forests (Tabarelli & Mantovani, 2000; Griscom & Ashton, 2003; Giordano, Sánchez &
Austin, 2009; Rother, Rodrigues & Pizo, 2009; Lima et al., 2012), serving as a resource for
different animals (Reid et al., 2004; Areta, Bodrati & Cockle, 2009; Hilário & Ferrari, 2010;
Cestari & Bernardi, 2011). Although it is unclearwhether they influence ecosystem function,
studies in this regard have increased and demonstrate the role of bamboo in recovering soil
fertility (Christanty, Kimmins & Mailly, 1997), especially nitrogen (Singh & Singh, 1999;
Embaye et al., 2005; Fukuzawa et al., 2006; Watanabe & Fukuzawa, 2013; Shiau et al., 2017;
Borisade & Odiwe, 2018).

Nitrogen (N) controls the productivity and composition of plant species (Townsend
et al., 2011) and is a limiting factor in many tropical forests (Tanner, Vitousek & Cuevas,
1998), making N recycling via litter decomposition a key resource in these forests (Vitousek
& Sanford, 1986; Kuruvilla, Jijeesh & Seethalakshmi, 2014; Borisade & Odiwe, 2018). The
rapid growth of bamboo, its overabundance and biomass (Yang et al., 2014) contribute
to nutrient pumping, that is, nutrients leached into the soil are deposited at the surface
as bamboo litterfall (Christanty, Kimmins & Mailly, 1997). However, its intensity depends
primarily on the lignin:N (Tripathi et al., 2006) and silicate:N ratios of leaves (Watanabe &
Fukuzawa, 2013). In other words, the decomposition rate is greater when N content is high
and lignin or silicate levels are low (Tripathi et al., 2006;Watanabe & Fukuzawa, 2013).

In an agroforestry system in Indonesia, the N content in bamboo litterfall varied from
28.2 to 45.2 kg ha−1 (Mailly, Christanty & Kimmins, 1997), with concentrations of 5 to 57 kg
N ha−1 y−1 in other Asian ecosystems (Joshi, Sundriyal & Baluni, 1991; Mailly, Christanty
& Kimmins, 1997) and 33.2 (Kuruvilla, Jijeesh & Seethalakshmi, 2014; Kuruvilla, Jijeesh &
Seethalakshmi, 2016) to 79 kg N ha−1 in India (Singh & Singh, 1999). Nevertheless, these
figures pale in comparison to the 115 kg N ha−1recorded for Yushania alpina in Ethiopia
(Embaye et al., 2005). Although there are exceptions (Singh & Singh, 1999; Tripathi et al.,
2006), bamboo litter typically exhibits a high N concentration (Joshi, Sundriyal & Baluni,
1991; Embaye et al., 2005;Watanabe & Fukuzawa, 2013; Kuruvilla, Jijeesh & Seethalakshmi,
2014; Kuruvilla, Jijeesh & Seethalakshmi, 2016; Borisade & Odiwe, 2018), but may also
contain high lignin and silicate levels, meaning the N in its litter tends to be released
gradually over an extended period (Tripathi et al., 2006; Watanabe & Fukuzawa, 2013;
Borisade & Odiwe, 2018).

In addition to N recycling, biological nitrogen fixation (BNF) is an important pathway
for N input in ecosystems (Hedin et al., 2009). Studies have shown that free-living BNF
fixers in litter and those associated with the aerial parts of plants play a vital role in total N
inputs in tropical forests (Bentley, 1987; Benner et al., 2007; Reed, Cleveland & Townsend,
2011). The leaf surfaces (phyllosphere) in these forests harbor a wide range of bacteria
(Lambais et al., 2006; Fürnkranz et al., 2008; Lambais, Lucheta & Crowley, 2014), many of
which are N fixers and dictate the patterns of N fixation rates (Reed, Cleveland & Townsend,
2011; Rigonato et al., 2016).

In the Brazilian Atlantic Forest (AF), Gómez (2012) found a high level of bacterial
diversity in the phyllosphere of Merostachys neesii (Poaceae: Bambusoideae), including
groups of putative free-living diazotrophs that account for a significant amount of
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N fixation. Studying the same bamboo species, Rigonato et al. (2016) reported a high
abundance of cyanobacteria from the diazotrophic order Nostacales. In this AF area, unlike
several other studies (Tabarelli & Mantovani, 2000; Griscom & Ashton, 2003; Lima et al.,
2012), the presence of M. neesii in a pristine montane forest does not seem to alter the
overall forest structure and diversity (Padgurschi et al., 2011), carbon and nitrogen stocks
(Vieira et al., 2011) or tree biomass (283.2 Mg ha−1) (Alves et al., 2010). The presence ofM.
neesii, showing evidence of free-living diazotrophs on its leaves, suggests that these plants
have efficient mechanisms to cope with potential nutrient limitations in acidic dystrophic
soils (Martins et al., 2015).

However, disturbances resulting from land use changes may cause an unusual
overabundance of native plants (Pivello et al., 2018), including bamboos, which
may also respond positively to CO2 concentration and produce additional biomass
(Grombone-Guaratini et al., 2013). Moreover, human activities, such as urbanization and
industrialization, produce significant atmospheric N pollution (Souza et al., 2015). These
N additions can have a substantial effect on decomposition rates since they can indirectly
shift the microbial community (Agren, Bosatta & Magill, 2001). Thus, investigating the
influence of bamboo on N cycling is key to understanding and predicting ecosystem
responses to global changes.

The present paper sought to provide insights on the role of bamboo (M. neesii) in the
functioning of a Neotropical forest. The major objectives were: (i) to assess the abundance
of bamboo in an Atlantic Forest area; (ii) to understand the amount of N added to the
system by M. neesii via free-living diazotrophs in its phyllosphere; (iii) to calculate the
amount of N that returns to the system through M. neesii litter; and (iv) to contextualize
the N added by M. neesii using information about N cycling components in the
study area.

MATERIALS AND METHODS
Study area
The study was conducted in an Atlantic Forest region in northeastern São Paulo state,
Brazil, in the Serra do Mar State Park (PESM in Portuguese) (Fig. 1). We selected 100
sample units (100 m2 each) within previously established permanent plots (Joly et al.,
2012). The physiognomy is pristine montane Atlantic Forest (1,000 m a.s.l.), with a humid
subtropical climate (Cfa and Cfb), average annual temperature of 21 ◦C, average annual
rainfall of 2,180 mm, and no dry season (Salemi et al., 2013). A dense fog covers the region
almost daily, especially in winter. The soil order is Inceptisol (United States Department of
Agriculture taxonomy), with low pH (≈3.8) and fertility, and high aluminum saturation
(Martins et al., 2015). Both aboveground biomass (283.2 Mg ha−1) (Alves et al., 2010) and
floristic diversity (∼200 tree species ha−1) (Padgurschi et al., 2011) are high (Joly, Metzger
& Tabarelli, 2014). The most abundant families are Arecaceae, Myrtaceae, Lauraceae and
Sapotaceae (Padgurschi et al., 2011).
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Figure 1 Location of the study area in the context of the Brazilian Atlantic Forest Domain and Serra
doMar State Park (45◦W04′34′′23◦S17′24′′). Brazilian Atlantic Forest Domain (green) and Serra do Mar
State Park (red) (PESM in Portuguese). (A) South America with a focus on Brazil. In green: Atlantic For-
est Domain; (B) São Paulo State, SE Brazil. In red: PESM; (C) Study area (yellow star) in the context of
PESM.

Full-size DOI: 10.7717/peerj.6024/fig-1

Bamboo species: density, leaf area and litterfall
Merostachys neesii Rupr. (Poaceae: Bambusoideae), a native species of the Brazilian Atlantic
Forest (Fig. 2), prefers humid, high-altitude environments (Judziewicz et al., 1999). All the
clumps and live culms in the 100-sample units were counted (culm density) and culm
density was compared against the highest density species in the area (Euterpe edulis Mart.
Arecaceae—Padgurschi et al., 2011).

Habitat availability (bamboo leaf area) was estimated in order to determine N input
by free-living diazotrophs in the phyllosphere. We calculated the total bamboo leaf area
(LAt ) based on (i) culm density; (ii) leaf biomass per culm (Lb); and (iii) specific leaf area
(SLA). Lb was previously determined by MCG Padgurschi, TS Reis, LF Alves, SA Vieira,
CA Joly (2018, unpublished data) via destructive harvesting of 20 healthy culms around
the study area (Lb= 506 g; 95% bootstrap, confidence interval: 316.2 and 701.2 were the
lower/upper limits, respectively). For SLA, we randomly chose 50 bamboo leaves in the
field, dried at 65 ◦C until constant weight, weighed to obtain the dry weight, and the leaf
area was calculated using an LI-3100 area meter (LI-COR, Lincoln, Nebraska, USA). The
leaf dry weight and leaf area (n= 50) were then used to calculate SLA. Leaf area per culm
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Figure 2 Merostachys neesii Rupr. (Poaceae: Bambusoideae), a native woody bamboo in a pristine
montane forest (Atlantic Forest), Brazil. (A) Flowers at anthesis; (B) Detail of a clump in the study area;
(C) Detail of the culm leaf ofM. neesii, a characteristic of this species. Photos: MCG Padgurschi.

Full-size DOI: 10.7717/peerj.6024/fig-2

(LAc) was determined as follows:

LAc = Lb ∗SLA (1)

and total bamboo leaf area (LAt ) (m2 ha−1) by:

LAt =
LAc*n culms

10000
(2)

where ‘‘n culms’’ is the culm density within the sample units.
Among the 100 sample units, we randomly selected 40 to install circular litter traps

(0.22 m2 each). The traps were made of malleable plastic pipes with nylon mesh (2 mm)
and supported by PVC pipes about 1 m above the ground. The content of the traps was
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collected twice a month over a year, from April 2014 to April 2015, sufficient time to
capture this variable (Malhi, Doughty & Galbraith, 2011). For each collection, the bamboo
leaves were separated, dried (at 65 ◦C until constant weight) and weighed to obtain dry
weight. We calculated the production of bamboo litterfall in accordance with Sylvestre &
Rosa (2002):

LP=

(∑
MA∗10,000

CA

)
1000

(3)

where LP= annual litter production (kg ha−1y−1);MA= averagemonthly litter production
(kg ha−1); CA= litter collector area (m2). For N chemical analysis of the bamboo leaves, we
randomly selected three samples for each season (summer, fall, winter, spring) and ground
them to obtain a compound sample per season (results are expressed in kg N ha−1). The
analysis was performed at the Soil and Plant Laboratory (LAGRO), in São Paulo, Brazil,
using the Kjeldahl method of N determination. The study was performed with permits
COTEC/IF 010.323/2013, 002.766/2013 and 010.631/2013 and IBAMA/SISBIO #33217.

Estimating N input by free-living N fixers in the M. neesii
phyllosphere
To estimate N input by free-living diazotrophs on bamboo leaves, we used BNF rates
previously recorded in the M. neesii phyllosphere at the same site studied here (Gómez,
2012). Gómez (2012) estimated BNF rates by acetylene reduction activity (ARA) based on
a theoretical conversion ratio of 3:1 (reduction of three acetylene moles for each N mole
fixed) (Hardy et al., 1968). The BNF rate in the bamboo phyllosphere was 64.25 ng N cm−2

h−1in winter and 34.78 ng N cm−2 h−1 in summer and, given the significant difference
between these two values (Gómez, 2012), calculations for each season were performed
separately.

Since light and temperature are important variables that affectmicrobial activity (Bentley,
1987; Reed, Cleveland & Townsend, 2011), we also considered the differences in hours of
light during seasons. As such, based on available photosynthetically active radiation
(PAR) data provided by the Climate and Biosphere Laboratory/Dept. of Atmospheric
Sciences/University of São Paulo, bootstrapping (4,000 resamplings) was carried out to
obtain the median and lower/upper limits of PAR (Table 1). We used the number of
hours around the PAR median added to the lower/upper limits (828 ± 70 µmol m−2 s−1

in summer; 711.24 ± 55 µmol m−2 s−1 in winter; 95% confidence intervals) (Table 1).
Finally, N fixing potential was estimated (Nf expressed in kg N ha−1y−1) as follows:

Nf =
(BNF ∗LAt )∗Hl

1012
(4)

where Hl is the hours of light in summer or winter (Table 1).

N cycling
To contextualize the estimated N input mediated byM. neesii, data on the N cycling in the
Atlantic Forest were obtained from the literature. The two dominant N input pathways
(Hedin et al., 2009) considered were symbiotic BNF (Manarin, 2012) and total atmospheric
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Table 1 Meteorological data for the study area in 2010, the same year as the BNF rates data.Hours of light/day, hours with photosynthetically ac-
tive radiation (PAR) around the PAR median of the respective seasons months; PAR min. and PAR max., photosynthetically active radiation mini-
mum and maximum, respectively, recorded for that season; Median calculated from bootstrapping (4,000 resampling) with the 95% confidence in-
terval in parentheses.

Season Light
(hours/day)

PARmin.
(µmol m−2 s−1)

PARmax.
(µmol m−2 s−1)

Median
(µmol m−2 s−1)

Mean
temperature
(◦C)

Accumulated
rainfall
(mm)

Summer 9 4.47 2,670.3 828.0 (±70) 19.3 380.4
Fall 8 5.76 2,261.7 773.9 (±41) 13 417.4
Winter 8 3.78 2,064 711.2 (±55) 12.6 295.5
Spring 9 13.92 2640 602.6 (±40) 12.9 692

N deposition (Groppo, 2010), in addition to the free-living N fixers on bamboo leaves (this
study).

In terms of N required by the system (demand), we used litterfall to predict net primary
productivity (NPP). The NPP fraction allocated to leaves influences litterfall rates, making
it a good predictor of productivity in neotropical forests when the main components of
NPP cannot be measured (Malhi, Doughty & Galbraith, 2011). Based on this principle, we
used the literature data on ecosystem litter production (5.5 Mg ha−1 y−1—Sousa Neto et
al., 2011) and the N content of the litter (1.72%—Vieira et al., 2011), as well as bamboo
litter with its respective nitrogen concentration (see the ‘‘Bamboo species: density, leaf area
and litterfall’’ section for details). The N content of litter is equivalent to the minimum
amount required for tree and bamboo growth, since plants reallocate nutrients before leaf
abscission, meaning litter exhibits lower N levels when compared to live leaves (Chapin
III et al., 1987; Tripathi et al., 2006). The annual production of fine roots (<2 mm) was
considered representative of demand. These roots represent at least twice as much carbon
and nitrogen stock as that found aboveground in the AF (Vieira et al., 2011). Fine root
production of 10Mg ha−1 y−1 (Silva, 2015) and N content of 1.3% (Sousa Neto et al., 2011)
were used.

Finally, riverine transport and N2O and NO losses via soil emissions were included as
outputs (Groppo, 2010; Sousa Neto et al., 2011; Ghehi et al., 2013). The NO emission we
presented here is based on models developed for a tropical highland forest (Ghehi et al.,
2013) similar to the study area, as follows: (i) pristine montane forest (1,000 m a.s.l.); (ii)
2,000 mm y−1 of rainfall; (iii) presence of bamboo; (iv) pH 3.8 (Ghehi et al., 2013;Martins
et al., 2015). All analyses and graph were performed using R environment (R Core Team,
2014).

RESULTS
A total of 579 clumps ha−1 and 4,000 live culms ha−1 of M. neesii bamboo were counted.
The specific leaf area (SLA) was 204.4 cm2 g−1 (95% bootstrap confidence interval:
196.7/210.2 lower/upper limits, respectively) which, by applying equation one, resulted in
LAc = 10.3 m2 and 4.1 ×104 m2 ha−1 of total leaf area (LAt ) for microbial colonization.
These and other data are shown in Table 2.
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Table 2 Traits ofM. neesii and its contribution to nitrogen input in a pristine montane Atlantic For-
est, São Paulo State, Brazil. Values in parenthesis are lower/upper limits of 95% confidence intervals ob-
tained by bootstrapping (1,000 resampling).

Merostachys neesii Traits

Density (clumps ha−1) 579
Culms (ha−1) 4,000
(Lw) (g) 0.11 (0.10–0.12)
LA (cm2) 23.2 (21.5–25.2)
SLA (cm2 g−1) 204.4 (196.7–210.2)
LAc (m2) 10.3
LAt (m2 ha−1) 4.1× 104

N fixed (kg N ha−1)—summer 11.7
N fixed (kg N ha−1)—winter 19.6
N content in bamboo litterfall (%) 1.65

Notes.
Lw , Leaf dry weight; LA, Leaf area; SLA, Specific leaf area; LAc, Leaf area per culm (estimated from Eq. (1); LAt, Total bamboo
leaf area (estimated from Eq. (2); N fixed, Total nitrogen fixed on bamboo phyllosphere during summer (Jan., Feb., Mar) and
winter (Jul., Aug., Sep.); N content in bamboo litterfall, % of nitrogen in bamboo leaves from litter.

Table 3 Estimates of N inputs, demand and outputs in the Atlantic Forest studied. Except for NO soil emission, all the data were obtained from
the Atlantic Forest area studied.

Reference Biome Compartment Nitrogen
(kg N ha−1y −1)

Groppo (2010) Atlantic Forest, Brazil Ntotal(N-Ninorg+N-Norg) a 2.8
Manarin (2012) Atlantic Forest, Brazil BNF by legume trees 0.2
This study Atlantic Forest, Brazil free-living BNF (bamboo leaves) 62.6

Inputs

Total 65.6
Sousa Neto et al. (2011 ),
Vieira et al., 2011

Atlantic Forest, Brazil Tree growth 86.1

This study Atlantic Forest, Brazil Bamboo growth 8.9
Sousa Neto et al. (2011)
Silva (2015)

Atlantic Forest, Brazil Fine root (<2 mm) 130.0Demand

Total 225.0
Groppo (2010) Atlantic Forest, Brazil Riverine transport 0.6
Sousa Neto et al. (2011) Atlantic Forest, Brazil N2O soil emission 0.8
Ghehi et al. (2013) Tropical Highland Forest, Rwanda NO soil emission 2.0

Outputs

Total 3.4
Total −162.7

Notes.
aValue referring to the wet deposition of N in the study area. The value presented refers to the average for 2008 and 2009.

M. neesii can contribute up to 11.7 kg N ha−1 in summer (January to March), and 19.6
kg N ha−1 in winter (July to September), via free-living diazotrophs on its phyllosphere.
When these values were extrapolated on an annual basis, M. neesii contributed more than
60 kg N ha−1y−1, representing a decline of at least 27.8% in the N deficit of the AF we
studied (Table 3).
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Figure 3 Seasonal variation ofM.neesii’s litter production in the pristine montane Atlantic Forest,
Brazil. Significantly higher values are found during summer/spring when compared to fall/winter (p <

0.001).
Full-size DOI: 10.7717/peerj.6024/fig-3

Annual bamboo litter production was 540 kg ha−1y−1, with significantly higher values
in summer/spring when compared to fall/winter (p< 0.001) (Fig. 3). The N content in
this litter fraction was 1.65% (Table 2); as such, the minimum N requirement for bamboo
growth is 8.9 kg ha−1y−1 (Table 3).

DISCUSSION
Bamboo is important in the recovery of soil physiochemical properties (Christanty,
Kimmins & Mailly, 1997; Embaye et al., 2005; Shiau et al., 2017), soil redevelopment
(Singh & Singh, 1999) and soil nutrients, especially N (Fukuzawa et al., 2006; Watanabe
& Fukuzawa, 2013; Shiau et al., 2017; Borisade & Odiwe, 2018). Its rapid growth and
abundance (Yang et al., 2014) may contribute to nutrient pumping, whereby nutrients
leached deep into the soil are deposited at the surface as bamboo litterfall (Christanty,
Kimmins & Mailly, 1997).

Although the bamboo density observed here (Table 2) is lower than that found in India
(Joshi, Sundriyal & Baluni, 1991; Tripathi & Singh, 1994; Christanty, Kimmins & Mailly,
1997; Singh & Singh, 1999), China (Wang et al., 2006) and Ethiopia (Embaye et al., 2005), it
is similar to that reported in other bamboo forests in the Neotropics (Londoño & Peterson,
1991;Guilherme et al., 2004;Griscom & Ashton, 2006; Rockwell et al., 2014). The abundance
and biomass of M. neesii (MCG Padgurschi, TS Reis, LF Alves, SA Vieira, CA Joly, 2018,
unpublished data) provide a substantial habitat (leaf area) formicrobial colonization (Table
2) which, when combined with the composition of the free-living bacterial community on
its phyllosphere, may influence BNF rates (Benner et al., 2007;Reed, Cleveland & Townsend,
2011).
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M. neesii exhibits higher cyanobacteria abundance and a larger number of diazotrophs
affiliated to the orderNostocales (Rigonato et al., 2016) than E. edulis and other species from
the same area (Gómez, 2012). Its phyllosphere harbored high annual BNF rates (∼60 kg N
ha−1 y−1), almost equal to the rate reported for evergreen tropical forests (Reed, Cleveland &
Townsend, 2011), but significantly higher than those observed for Spathacanthus hoffmannii
(Acanthaceae), Chamaedorea tepejilote (Arecaceae), Brosimum utile (Moraceae), Caryocar
costaricense (Caryocaraceae), Staminodella manilkara (Sapotaceae), Qualea paraensis
(Vochysiaceae) and Schizolobium parahybum (Fabaceae) (between 0.035 and 5 kg N
ha−1y−1—Freiberg, 1998; Reed, Cleveland & Townsend, 2008).

N input by bamboo could mitigate the N deficit in the AF we studied by at least 27%
(Table 3), where, in addition to the low occurrence of tree legumes (Padgurschi et al., 2011),
the symbiotic BNF rate (0.2 kg N ha−1 y−1—Manarin, 2012) is lower than that reported for
the Amazon forest (Nardoto et al., 2014) and Costa Rica (Sullivan et al., 2014). Symbiotic
BNF in mature tropical forests may not be as important as previously believed (Sullivan
et al., 2014; Nardoto et al., 2014), making bamboo input particularly relevant, since the N
demand of trees, bamboos and fine roots is at least 225 kg N ha−1 y−1 (Table 3). This is a
minimum requirement, since only trees with diameter at breast high (DBH) ≥ 5 cm are
included, with other life forms (such as epiphytes and lianas) excluded from the inventory
data (Joly et al., 2012).

Despite the N input of bamboo, N demand is high in the system studied here (Table
3) and as a result, litterfall decomposition plays an important role in nutrition budgeting
(Vitousek & Sanford, 1986; Kuruvilla, Jijeesh & Seethalakshmi, 2014; Borisade & Odiwe,
2018). The annual litter production of M. neesii (540 kg ha−1y−1) is lower than that of
several tropical and subtropical bamboo species, except for Dendrocalamus strictus (580 kg
ha−1—Joshi, Sundriyal & Baluni, 1991) and Sasa senanensis (600 kg ha−1y−1—Watanabe
& Fukuzawa, 2013).

In an agroforestry system in Indonesia, the litterfall of different species of the genus
Gigantochloa ranged from 3 to 4.7 Mg ha−1 (Mailly, Christanty & Kimmins, 1997); in an
Ethiopian forest, the litterfall of Y. alpina was 8 Mg ha−1y−1 (Embaye et al., 2005); 1.2
and 1.9 Mg ha−1 were recorded in Japan for Sasa kurilensis (Tripathi et al., 2006), and
2.9 and 6.9 Mg ha−1 in India (Kuruvilla, Jijeesh & Seethalakshmi, 2014; Kuruvilla, Jijeesh
& Seethalakshmi, 2016) (Singh & Singh, 1999). However, since the N content of M. neesii
litter (1.6%) was similar to that reported in other studies (1.2% by Joshi, Sundriyal &
Baluni, 1991, 1.4% by Embaye et al., 2005, 1.4% by Watanabe & Fukuzawa, 2013, 1.5% by
Kuruvilla, Jijeesh & Seethalakshmi, 2014, 1.7% by Kuruvilla, Jijeesh & Seethalakshmi, 2016,
1.7% by Borisade & Odiwe, 2018, 0.7% by Singh & Singh, 1999, 0.9% by Mailly, Christanty
& Kimmins, 1997 and 1% by Tripathi et al., 2006), the final amount of N generated from
bamboo litter in each system depends on the annual amount of litter (a total of 8.9 kg N
ha−1y−1 was reported in this study) .

Finally, it is well known that high N levels and low lignin or silicate concentrations
in leaves increase the decomposition rate of leaf litter (Tripathi et al., 2006; Watanabe &
Fukuzawa, 2013). The leaf lignin content in different bamboo species ranges from 25%
(Borisade & Odiwe, 2018) tomore than 40% (Tripathi et al., 2006;Borisade & Odiwe, 2018),
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with the same observed for silicate (around 20%) (Watanabe & Fukuzawa, 2013). As such,
it is expected that the N in bamboo litter in the AF is released gradually (Tripathi et al.,
2006; Borisade & Odiwe, 2018) over a period of 3 years or more (Watanabe & Fukuzawa,
2013).

CONCLUSION
Our findings suggest that the N fixed by free-living BNF associated with M. neesii plays a
key role in the functioning of the neotropical forest. This may explain the high diversity
(Padgurschi et al., 2011), carbon and nitrogen stocks (Vieira et al., 2011) and biomass
(283.2 Mg ha−1) (Alves et al., 2010) found in the same AF area (Joly, Metzger & Tabarelli,
2014), contradicting previous studies (Lima et al., 2012; Grombone-Guaratini et al., 2014).
Nonetheless, disturbances resulting from human activities such as industrialization and
landuse changesmay increase bamboo abundance (Pivello et al., 2018;Grombone-Guaratini
et al., 2013). Thus, the role of bamboo in the overall N cycle in neotropical forests is vital
to understanding ecosystem responses to global change.
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