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Abstract: Bryophytes contain a variety of bioactive metabolites, but studies about the anti-inflammatory
effect of bryophytes are meager. Therefore, the present study aimed to compare the anti-inflammatory
effect of methanol extract of Marchantia polymorpha L. (liverwort) and Racomitrium canescens (Racomitrium
moss) in lipopolysaccharide (LPS)-induced HaCaT cells. To evaluate the anti-inflammatory effect
of liverwort and Racomitrium moss, the levels of nitric oxide (NO) production and the mRNA
expression of inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2) and tumor necrosis
factor-α (TNF-α), and interleukin (IL)-6 and IL-1β in LPS-induced HaCaT cells were measured.
The methanol extract of liverwort and Racomitrium moss significantly decreased LPS-induced NO
production in HaCaT cells. When compared with Racomitrium moss extract, pre-treatment with
methanol extract of liverwort markedly inhibited the expression of iNOS, COX-2, IL-6, and IL-1β at
the concentration of 100 µg/mL with the exception of TNF-α. Further, liverwort extract markedly
attenuated the production of TNF-α, IL-6, and IL-1β in the culture medium. In addition, ethyl acetate
and butanol fractions obtained from the methanol extract of liverwort showed remarkable inhibitory
activity against the production of NO in LPS-stimulated HaCaT cells. The LC-MS data revealed the
presence of bisbibenzyl types of bioactive components in the methanol extract of liverwort. These
data demonstrate that liverwort extract exhibits effective inhibitory activity against the production
of inflammatory mediators in LPS-induced HaCaT cells and may be useful for the treatment of
inflammation-mediated diseases.

Keywords: liverwort; Marchantia polymorpha; Racomitrium canescens; anti-inflammatory; nitric oxide;
HaCaT cell

1. Introduction

The human epidermis, mainly comprised of keratinocytes (about 95%), is a principal
portion of the skin’s immune system. Keratinocytes provide the first line of defense against
various external harmful agents, such as microorganisms and toxic chemicals [1,2]. In the
inflamed skin, keratinocytes play an important role in the structural integrity of skin and
the inflammatory responses by producing various pro-inflammatory cytokines such as
interleukin-6 (IL-6), IL-1β, tumor necrosis factor-α (TNF-α), inducible nitric oxide syn-
thase (iNOS) derived nitric oxide (NO), and cyclooxygenase-2 (COX-2) prostaglandins [3].
Cytokines are the most important contributors in the regulation of the immune system.
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Although cytokines and other mediators contribute to normal homeostatic mechanisms in
the skin, overproduction of pro-inflammatory mediators may lead to various inflammatory
diseases [4]. Hence, the suppression of pro-inflammatory mediators may play a key role in
the treatment of inflammation-mediated skin diseases.

Many synthetic drugs have shown an appreciable anti-inflammatory effect but they
have certain side effects, including gastric bleeding and ulceration [5]. Therefore, there
is a growing trend to develop safer natural products for the treatment of inflammation-
mediated diseases. Lipopolysaccharides (LPS), the major component of the Gram-negative
bacterial cell wall, are one of the most powerful stimulators of the production of pro-
inflammatory cytokines [6]. The HaCaT cell line is routinely employed to confirm the
effects of drugs on epidermal inflammation. Hence, the inhibition of pro-inflammatory
mediator’s production in LPS-stimulated HaCaT cells is a potential way to screen the
anti-inflammatory effect of extracts/compounds.

In the plant kingdom, bryophytes are the second most diverse group of terres-
trial plants after angiosperms with about 25,000 species found throughout the world.
Bryophytes are classified into mosses, liverworts, and hornworts [7]. They contain a variety
of biologically active components such as fatty acids, terpenoids, flavonoids, and
polyphenols [7–9]. In traditional systems of medicine, bryophyte plants have been used
to cure various ailments in India, China, and North America, including burns, external
wounds, snake bites, pulmonary tuberculosis, cardiovascular diseases, bone fractures,
hepatic disorders, and skin diseases [10].

Mosses are the largest group of bryophytes, playing a significant role in the ecosystem
of terrestrial biodiversity. Traditionally, mosses have been used to treat wounds, burns, and
other diseases. In these, the genus Racomitrium (Grimmiaceae) is an important component
of various terrestrial ecosystems [11]. Racomitrium canescens (Hedw.) Brid. (Racomitrium
moss) is widely distributed from the northern temperate to arctic zones (Figure 1). How-
ever, only a few studies have been conducted on this genus, especially from a taxonomic
point of view [11]. Liverworts are the second important group of bryophytes, containing
about 6000 species, and are considered to be the oldest aquatic-terrestrial plants [12,13].
Liverworts mainly contain volatile components (terpenoids) in addition to a wide variety
of other bioactive components. In particular, some terpenoid compounds such as the
pinguisane group of sesquiterpenoids and the sacculatane group of diterpenoids are not
identified in other plant species [14]. Marchantia is one of the important genera in the
family of Marchantiaceae. The common liverwort Marchantia polymorpha L. (liverwort) is
mainly found in temperate regions (Figure 1) [15]. This plant has been traditionally used
to treat boils, fractures, poisonous snakebites, abscesses, wounds, and hepatic disorders.
Liverwort has also been used as a diuretic agent in European countries [10,16,17]. The
extracts and compounds isolated from liverwort exhibited various biological activities
such as antimicrobial [17,18], antioxidant [19], anti-inflammatory [20] activities, and cyto-
toxic potential against cancer cell lines [21]. However, there has been no study in relation
to the anti-inflammatory potential of liverwort and Racomitrium moss in LPS-induced
HaCaT cells.

Based on the highly acclaimed properties of liverwort and Racomitrium moss, we in-
vestigated the anti-inflammatory effects of methanol extract of liverwort and Racomitrium
moss by measuring its ability to inhibit NO production and mRNA expression of iNOS,
COX-2, TNF-α, IL-6, and IL-1β in LPS-stimulated HaCaT cells.
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Figure 1. Morphology of liverwort and Racomitrium moss.

2. Results and Discussion
2.1. The Effect of Extract on the Viability of HaCaT Cells

Keratinocytes, a major part of epidermal cells, play an important role in the patho-
genesis of inflammatory skin lesions by producing pro-inflammatory mediators [22,23].
First, we determined the viability of HaCaT cells in the presence of methanol extracts of
liverwort and Racomitrium moss for 24 h to evaluate their possible cytotoxic effect. For this
purpose, the HaCaT cells were incubated with different concentrations of methanol extracts
of liverwort and Racomitrium moss. After the treatment, the survival of HaCaT cells was
not significantly affected by 24 h incubation with up to 100 µg/mL concentration of both
the extracts (cell viability > 90%) (Figure 2). Therefore, non-toxic concentrations of liverwort
and Racomitrium moss extracts up to 100 µg/mL were used for further experiments.
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Figure 2. The effect of methanol extract of liverwort and Racomitrium moss on the cell viability
of HaCaT cells. Values are mean of three replicate determinations (n = 3) ± standard deviation.
* p < 0.05, *** p < 0.001 vs. 1% MeOH alone.

2.2. Inhibition of Nitric Oxide Production in LPS-Stimulated HaCaT Cells

It is well established that LPS can lead to the release of various pro-inflammatory
cytokines, including adhesion molecules such as nitric oxide (NO) [24]. Under normal
physiological conditions, NO regulates many biological functions such as host defense,
platelet aggregation, vasoregulation, and neurotransmission. However, excessive produc-
tion of NO and other inflammatory mediators is linked with the development of many
diseases [25]. Hence, we determined the inhibitory effect of the methanol extract of liv-
erwort and Racomitrium moss on NO production in LPS-induced HaCaT cells (Figure 3).
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To accomplish this experiment, HaCaT cells were activated by LPS, and the production
of NO was measured as nitrite concentration in the cell culture supernatant. The LPS treat-
ment (1 µg/mL) significantly increased NO production by HaCaT cells by accumulating
a higher level of nitrite (24.24 µM). To determine the effect of liverwort and Racomitrium
moss extracts on NO production, cells were simultaneously treated with 1 µg/mL LPS and
two different concentrations of extracts (30 and 100 µg/mL). When compared to the un-
treated control, the cells pre-treated with methanol extracts of liverwort and Racomitrium
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moss significantly (p < 0.001) decreased the production of NO in the medium to 6.99 and
11.61 µM, respectively, at the concentration of 100 µg/mL (Figure 3). The inhibitory effect
of liverwort and Racomitrium moss extracts on NO production was not owing to the
damage of cells (viability > 90%) as measured in the MTT cell viability assay. There has
been no study on the inhibitory effect of moss or liverworts on NO production in HaCaT
cells. However, these results were comparable with those previously obtained by other
researchers on RAW 264.7 cells. In LPS-induced RAW 264.7 cells, compounds isolated from
liverworts such as Mastigophora diclados [26], Porella densifolia [27], Lepidozia reptans [28],
and Jamesoniella autumnalis [29] showed a potent inhibitory effect on the production of NO.

2.3. The Effect of Extracts on mRNA Expression of iNOS, COX-2, TNF-α, IL-6, and IL-1β

We also analyzed the mRNA expression of iNOS, COX-2, TNF-α, IL-6, and IL-1β in
LPS-stimulated HaCaT cells using RT-PCR in order to confirm the inhibitory effects of
methanol extracts of liverwort and Racomitrium moss on pro-inflammatory mediators. Ha-
CaT cells were pre-treated with two different concentrations of extracts (30 and 100 µg/mL)
to determine the mRNA expression of pro-inflammatory mediators stimulated by LPS.
Treatment with LPS alone (1 µg/mL) significantly upregulated the mRNA expression of
iNOS, COX-2, TNF-α, IL-6, and IL-1β in HaCaT cells (Figures 4 and 5). On the other hand,
pre-treatment with methanol extract of liverwort (at 100 µg/mL) significantly (p < 0.001)
suppressed the mRNA expression of iNOS, COX-2, IL-6, and IL-1β in LPS-stimulated
HaCaT cells when compared to that of Racomitrium moss extract. However, there was
no significant downregulation of mRNA expression of TNF-α. Further, Racomitrium
moss extract did not show significant downregulation of mRNA expression of COX-2.
These data suggest that the methanol extract of liverwort and Racomitrium moss effec-
tively reduced the nitrite accumulation by downregulating the mRNA expression of these
pro-inflammatory mediators.

The iNOS and COX-2 and their reaction products are highly connected with inflam-
matory diseases [30]. Previous studies demonstrated that plant extracts/compounds can
selectively suppress the expression of iNOS and COX-2. In addition, a strong correla-
tion between NO production and iNOS expression was observed, as shown by other
authors [31,32]. The present study also proved that the methanol extract of liverwort
remarkably suppressed the expression of iNOS and COX-2 in LPS-stimulated HaCaT cells.
Similarly, dollabellane- and ent-kaurane-type diterpenoids isolated from Chinese liverwort,
Lepidozia reptans, effectively attenuated the mRNA expression of IL-6, IL-β, IL-α, TNF-α,
and COX-2 in LPS-stimulated RAW264.7 cells [28].

In LPS-stimulated cell lines, nuclear factor kappa B (NF-κB) is an important tran-
scription factor in the expression of iNOS and COX-2 genes [33,34]. In LPS-induced
human keratinocyte HaCaT cells, He et al. [35] found that feruloylserotonin suppressed
the toll-like receptor (TLR4)/NF-κB pathway and promoted the translocation of Nuclear
factor-erythroid 2 related factor 2 (Nrf2). The chloroform fraction of Carpinus tschonoskii
inhibited the protein and mRNA of chemokine in HaCaT cells by downregulating STAT1
in the IFN-γ signaling pathway [36]. Another study indicated that peat moss extracts
induced the sequestration of NF-κB in the cytoplasm by inhibiting the degradation of
IκBα in the LPS-stimulated RAW 264.7 cells. Further, peat moss extracts suppressed the
activation of MAPKs and facilitated the activation of Nrf2, and enhanced heme oxygenase-1
(HO-1) expression [30]. A study indicated that miR-127 is involved in the inhibitory effect
of Schisandrin A on LPS-induced inflammation injury in HaCaT cells via inactivating
p38MAPK/ ERK and JNK signaling pathways [37]. It can be observed that downregulation
of the NF-κB and MAPK pathways play a crucial role in the regulation of pro-inflammatory
mediators. The suppression of NO production and the downregulation of mRNA expres-
sion of various pro-inflammatory mediators are effective therapeutic approaches to block
the potentially harmful production of pro-inflammatory mediators by keratinocytes [38].
Moreover, the results of the present study throw some light on the inhibitory effect of
liverworts on the production of pro-inflammatory mediators in HaCaT cells.
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2.4. The Effect of Extracts on the Production of TNF-α, IL-16, and IL-1β

As shown in Figure 6, the production of TNF-α (4528 pg/mL), IL-6 (808 pg/mL),
and IL-1β (306 pg/mL) were enhanced by the LPS treatment. However, LPS-induced
production of TNF-α (1867 pg/mL), IL-6 (29 pg/mL), and IL-1β (40 pg/mL) in HaCaT
cells were effectively suppressed upon the treatment of methanol extract of liverwort (at
100 µg/mL) than Racomitrium moss extract. Further, Racomitrium moss extract did not
show any significant effect on the production of TNF-α. These data indicated that methanol
extracts of liverwort and Racomitrium moss could protect HaCaT cells against LPS-induced
cell injury.
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2.5. The Effect of Fractions of Liverwort on Nitric Oxide Production

In the cell viability assay, butanol fraction obtained from the methanol extract of
liverwort exhibited no cytotoxicity effect against HaCaT cells at 100 µg/mL. Moreover,
ethyl acetate fraction showed a low cytotoxic effect at 100 µg/mL. However, hexane,
chloroform, and water fractions significantly reduced the cell viability (absorbance < 0.7)
at the concentration of 100 µg/mL (Figure 7). Hence, ethyl acetate and butanol fractions
were selected for further NO production assay. The cells pretreated with ethyl acetate and
butanol fractions significantly (p < 0.001) inhibited the production of NO in a concentration-
dependent manner by reducing the level of nitrite in the medium (Figure 8). Further
studies in connection with the isolation of bioactive components from these fractions are
under progress.
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2.6. Liquid Chromatography-Mass Spectrometry (LC-MS) Analysis of Methanol Extracts

It was reported that liverworts are an exceptionally rich source of terpenoids, particu-
larly sesqui- and diterpenoids [39]. Tosun et al. [13] also stated that the sesquiterpene-group
components are partially responsible for the anti-inflammatory and antinociceptive prop-
erties of different liverworts. However, bryophytes contain a variety of other secondary
metabolites with potent biological properties. The methanol extracts of liverwort and
Racomitrium moss were subjected to LC-MS analysis (Figures 9 and 10). The molecular
mass and fragments of the identified compounds in the methanol extracts of liverwort and
Racomitrium moss are presented in Table 1. Eleven components were identified from the
methanol extract of liverwort and four components were identified from the methanol
extract of Racomitrium moss. In positive mode ionization, the mass data show a similar
fragmentation profile with m/z at 543, 527, and 381, which is correlated to pinoresinol-di-O-
β-D-glucopyranoside (Figure 11) [40]. Pinoresinol-di-O-β-D-glucopyranoside exhibited
remarkable inhibitory activity against the production of PGE2 in LPS-induced RAW264.7
cells [41]. In methanol extract of liverwort, peak 9 shows m/z at 439, 331, and 226; this com-
pound could be identified as marchantin G [42]. The peak 3 at m/z at 423, 411, and 213 and
the peak 8 m/z at 479, 239, and 211 represent unidentified bisbibenzyls (Figure 11) [43,44].
In addition, peak 2 from Racomitrium moss shows m/z at 931, 767, and 753 corresponding
to dioscoreside A [45].

The LC-MS data indicated that the methanol extract of liverwort mainly contains the
bisbibenzyl group of components. They are aromatic compounds and have one or two
diaryl ether or biphenyl bonds mainly found in liverworts, including Riccardia, Marchan-
tia, Plagiochila, etc. [46]. Previously, seven confirmed bisbibenzyls and twelve uncon-
firmed bisbibenzyl components were detected in the ethanol extract of M. polymorpha [44].
Sabovljević et al. [42] studied the comparison of LC-MS analysis of methanol extracts from
natural and cultured liverwort. The results indicated the presence of marchantin A in both
natural and cultured liverwort. On the other hand, marchantin E, G, and/or C, and de-
hydromarchantin A were found only in the cultured liverwort. Harinantenaina et al. [46]
investigated the inhibitory effect of nineteen bisbibenzyls on NO production in LPS-
stimulated RAW 264.7 cells. Among the tested components, marchantin A exhibited
strong inhibitory activity against NO production and mRNA expression of iNOS. Previous
studies demonstrate that the presence of bisbibenzyl-type components in the methanol
extract of liverwort may be responsible for its anti-inflammatory activity.
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Table 1. Identification of chemical constituents from methanol extracts of liverwort and Racomitrium moss by LC-MS.

Peak Tentative Identification Retention Time (min) Molecular Mass (Da) Fragments (m/z) References

Liverwort

1 Pinoresinol-di-O-β-D-
glucopyranoside 1.59 705 707, 543, 527, 381, 365 [40]

2 Unknown 1.78 517 826, 625, 517, 381, 204 -
3 Unconfirmed bisbibenzyl 15.05 421 463, 423, 411, 309, 213 [43]
4 Unknown 16.90 447 621, 447, 271, 145 -
5 Unknown 19.90 674 970, 806, 772, 674, 597 -
6 Unknown 21.46 565 903, 858, 565, 431, 322, -
7 Unknown 22.68 658 917, 833, 658, 483, 158 -
8 Unconfirmed bisbibenzyl 25.03 424 479, 452, 417, 239, 142 [44]
9 Marchantin G 27.13 454 493, 439, 331, 313, 226 [42]

10 Unconfirmed bisbibenzyl 28.22 454 463, 458, 333, 224, 197 [44]
11 Unknown 36.88 599 975, 907, 599, 256, 157 -
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Table 1. Cont.

Peak Tentative Identification Retention Time (min) Molecular Mass (Da) Fragments (m/z) References

Racomitrium moss

1 Pinoresinol-di-O-β-D-
glucopyranoside 1.58 705 707, 543, 527, 381, 365 [40]

2 Dioscoreside A 7.94 784 931, 793, 767, 753, 268 [45]
3 Unknown 25.75 748 748, 657, 603, 505, 411 -
4 Unknown 33.09 518 518, 497, 263, 215, 205 -
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3. Materials and Methods
3.1. Sample Collection

M. polymorpha and R. canescens samples were collected from Songjung-ri, Jinbu-Myeon,
Pyeongchang, in Korea during October 2020 (Figure 1). Collected samples were kept in
a 4 ◦C freezer and transported to the laboratory. The soil and plant debris in the samples
was removed by washing in running tap water. The samples were authenticated and
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deposited in the Herbarium, National Institute of Biological Resources (NIBR), Korea, with
voucher numbers NIBRMS 0000107499 and NIBRMS 0000107500, respectively.

3.2. Preparation of Methanol Extract

Plant samples were dried at room temperature, pulverized using a grinder (HANIL
HMF-3260S, Hanil Electric Co., Seoul, Korea) up to 0.6 mm. One kilogram of powdered
leaves was extracted twice with 4-L of methanol per extraction for 2 days and filtered. The
combined filtrates were concentrated using a rotary vacuum evaporator at 40 ◦C (EYELA
NE-1101, Tokyo Rikakikai Co., Ltd., Tokyo, Japan) and the concentrate was dissolved with
50 mL of distilled water. Then the extract was dried using a freeze dryer (FD5505, ILSHIN
BIOBASE, Dongduchon, Korea). The obtained extracts of liverwort and Racomitrium moss
were dissolved and diluted to 10 mg/mL in methanol as a stock solution.

3.3. Cell Culture

HaCaT cells (human epidermal fibroblast) were provided by the Food Chemistry
laboratory at Kangwon National University (Prof. Lee). Cell culture medium was used
in Dulbecco’s Modified Eagle’s Medium (DMEM) with 100 units/milliliter penicillin-
streptomycin (P/S) and 10% fetal bovine serum (FBS) [47]. Thereafter, the cells were
cultured at 37 ◦C and 5% CO2, followed by subculture every three days, respectively.

3.4. Cell Viability Analysis

Cell viability was estimated for cytotoxicity of methanol extract of liverwort and
Racomitrium moss using the MTT assay. Cultured cells were treated with methanol extract
of liverwort and Racomitrium moss at 12.5–100 µg/mL for 24 h. After incubation with MTT
solution diluted 10:1 (5 mg/mL in PBS) at 37 ◦C for 4 h, purple formazan was formed in
the cells. The solution in each well was completely removed and then the purple formazan
crystals were dissolved in DMSO and isopropyl alcohol at 1:1 (100 µL/well). The optical
density was measured at 540 nm using a SpectraMax 190 Microplate Reader (Molecular
Devices, San Jose, CA, USA).

3.5. Measurement of Nitric Oxide

HaCaT cells were pre-treated with methanol extract of liverwort and Racomitrium
moss at 30 and 100 µg/mL for 1 h, followed by stimulation with LPS (1 µg/mL) for
24 h. Nitrite accumulation in the culture medium as an indicator of NO production was
measured using Griess reagent [48]. The culture supernatant (100 µL) was mixed with
100 µL of Griess reagent (equal volumes of 1% (w/v) sulfanilamide in 0.1% (w/v) naphthyl
ethylenediamine-HCl and 5% (v/v) phosphoric acid) for 10 min [47]. The optical density
was measured at 540 nm using a SpectraMax 190 Microplate Reader (Molecular Devices,
San Jose, CA, USA). The amount of nitrite in the medium was determined with reference
to a sodium nitrite (NaNO2) standard curve.

3.6. RNA Isolation and Real Time-Polymerase Chain Reaction (RT-PCR)

RT-PCR was used to estimate the mRNA expression of iNOS, COX-2, TNF-α, IL-6, and
IL-1β. Total RNA was extracted from HaCaT cells using RNAiso PLUS. Total RNA (1 µg)
was used to generate cDNA by reverse transcription using All-in-One First-Strand cDNA
Synthesis SuperMix [49]. The synthesized cDNA was used as a template for qRT-PCR
using QuantStudio 3 (Applied Biosystems, Foster City, CA, USA) system with FG POWER
SYBR Green PCR master mix and gene-specific primers (Table 2) [47]. A dissociation curve
analysis of iNOS, COX-2, TNF-α, IL-6, IL-1β, and β-actin showed a single peak. Expression
levels of target genes were quantified from duplicate measurements and normalized with
the 2−∆∆CT method relative to β-actin.
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Table 2. Primer sequences used for quantitative real-time PCR analysis.

Target Gene Primer Sequence

iNOS
Forward 5′-CATTGATCTCCGTGACAGCC-3′

Reverse 5′-CATGCTACTGGAGGTGGGTG-3′

COX-2
Forward 5′-GCAGCCATTTCCTTCTCTCC-3′

Reverse 5′-TGCTGTACAAGCAGTGGCAA-3′

TNF-α
Forward 5′-CTG ATG AGA GGG AGG CCA TT-3′

Reverse 5′- AGC ACA GAA AGC ATG ATC CG-3′

IL-6
Forward 5′-AAGTGCATCATCGTTGTTCATACA-3′

Reverse 5′-GAGGATACCACTCCCAACAGACC-3′

IL-1β
Forward 5′-TCGTTGCTTGGTTCTCCTTG-3′

Reverse 5′-ACCTGCTGGTGTGTGACGTT-3′

β-actin
Forward 5′-TCAGCAATGCCTGGGTACAT-3′

Reverse 5′-ATCACTATTGGCAACGAGCG-3′

3.7. Enzyme-Linked Immunosorbent Assay (ELISA)

HaCaT cells were pre-treated with methanol extract of liverwort and Racomitrium
moss at 30 and 100 µg/mL for 4 h and then treated with LPS (1 µg/mL) for an ad-
ditional 20 h. The supernatants were collected and analyzed for the levels of TNF-α,
IL-6, and IL-1β (Invitrogen, Carlsbad, CA, USA) using ELISA kits according to the
manufacturer’s protocol.

3.8. Fractionation of Methanol Extract of Liver Wort and Nitric Oxide Measurement

The methanol extract of liverwort was prepared as mentioned in Section 2.2. The
crude methanol extract was suspended in deionized water and the aqueous solution was
sequentially partitioned with hexane, chloroform (CHCl3), ethyl acetate (EA), butanol
(BuOH). The obtained fractions, in addition to the aqueous solution, that remained after
the extraction were filtered and concentrated and dried under vacuum. The crude fractions
were used for the assessment of cell viability and nitric oxide production assay using
HaCaT cells.

3.9. Liquid Chromatography-Mass Spectrometry (LCMS) Analysis of Methanol Extracts

The chemical profile of methanol extracts from liverwort and Racomitrium moss was
identified by LC-MS method using the instrument Waters auto-purification system with
Waters 3100 single mass system (Waters, USA). The LC system was connected to 3100 single
mass (100–1000 m/z) and 2998 Photodiode Array Detector (230–600 nm). Analyte separa-
tion was performed on a SunFire C18 (150 mm × 4.6 mm × 5 mm) with a gradient mobile
phase consisting of 0.1% trifluoroacetic acid in water (solvent A) and acetonitrile (solvent
B). The compositions of mobile phases consisted of the following multistep linear gradient:
0–10 min, 10% B and 90% A; 10–20 min, 20% B and 80% A; 20–30 min, 30% B and 70%
A; 30–40 min, 50 % B and 50% A; 40–50 min, 70% B and 30% A. The flow rate was set at
1 mL/min. The sample injection volume was 10 µL. All chromatographic procedures were
performed at ambient temperature and the corresponding peaks from the LC-MS analysis
of all the samples were identified by comparison with the literature.

3.10. Statistical Analysis

All data analyses were done using GraphPad Prism Version 8.0 (GraphPad, La Jolla,
CA, USA). The values expressed were means of three replicate determinations ± SD. All
results were analyzed using the Student–Newman–Keuls test for multiple comparisons
after analyzed with a one-way analysis of variance (ANOVA). Statistical significance was
set at p < 0.05.
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4. Conclusions

The data of the present study demonstrate that the methanol extract of liverwort effec-
tively inhibited the mRNA expression (except TNF-α) and production of pro-inflammatory
mediators in LPS-stimulated HaCaT cells when compared with Racomitrium moss extract.
It could be concluded that the methanol extract of liverwort is a potential candidate for the
development of an anti-inflammatory drug against inflammation-mediated skin diseases.
Further isolation of biologically active metabolites from ethyl acetate and butanol fractions
and elucidation of their anti-inflammatory mechanism(s) are required to facilitate the
development of therapeutic agents for inflammation-mediated skin diseases.

Author Contributions: Conceptualization, S.K.; methodology, S.J.P., M.H., T.-H.K.; formal analysis,
S.-Y.K. and M.H.; investigation, S.-Y.K., T.-H.K. and M.H.; resources, K.Y.L. and S.H.H.; data curation,
M.H., S.-Y.K.; writing—original draft preparation, K.S.; writing—review and editing, S.K. and K.S.;
supervision, S.K. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data presented in this study are available within the article.

Acknowledgments: The authors would like to express thanks to Min Ha Kim and Jin Seok Kim at
the National Institute of Biological Resources, Korea, for authenticating the bryophyte samples. This
work was supported by the Korean Ministry of Environment (Grant no. 2018002270002).

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Kim, H.; Han, T.H.; Lee, S.G. Anti-inflammatory activity of a water extract of Acorus calamus L. leaves on keratinocytes HaCaT

cells. J. Ethnopharmacol. 2009, 122, 129–156. [CrossRef] [PubMed]
2. Cho, S.H.; Kim, H.S.; Lee, W.; Han, E.J.; Kim, S.Y.; Fernando, I.P.S.; Ahn, G.; Kim, K.N. Eckol from Ecklonia cava ameliorates

TNF-α/IFN-γ-induced inflammatory responses via regulating MAPKs and NF-κB signaling pathway in HaCaT cells. Int.
Immunopharmacol. 2020, 82, 106146. [CrossRef] [PubMed]
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