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Abstract

‘The banded basslet, Lipogramma evides Robins & Colin, 1979, is shown to comprise two species: L. evides,
which inhabits depths of 133-302 m, and a new species described here as Lipogramma levinsoni, which in-
habits depths of 108—154 m and previously was considered to represent the juvenile of L. evides. A second
new species of banded basslet, described here as Lipogramma haberi, inhabits depths of 152-233 m and
was previously not reported in the literature. Morphologically, the three species differ in color patterns and
modal numbers of gill rakers, whereas various other morphological features distinguish L. levinsonsi from
L. evides and L. haberi. DNA barcode data and multilocus, coalescent-based, species-delimitation analysis
support the recognition of the three species. Phylogenetic analysis of mitochondrial and nuclear genetic
data supports a sister-group relationship between the two deepest-living of the three species, L. evides and
L. haberi, and suggests that the shallower L. levinsoni is more closely related to L. anabantoides Bohlke
1960, which inhabits depths < 120 m. Evolutionary relationships within Lipogramma thus appear to be
correlated with species depth ranges, an eco-evolutionary pattern that has been observed in other Carib-
bean marine teleosts and that warrants further investigation. The new species represent the eleventh and
twelfth new fish species described in recent years from exploratory submersible diving in the Caribbean
in the globally poorly studied depth zone of 50-300 m. This study suggests that there are at least two ad-
ditional cryptic species of Lipogramma, which are being analyzed in ongoing investigations of Caribbean
deep-reef ecosystems.

Copyright Carole C. Baldwin et al. This is an open access article distributed under the terms of the Creative Commons Attribution License (CC
BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
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Introduction

The western Atlantic family Grammatidae comprises small, usually brightly colored
fishes in two genera, Gramma with four species and Lipogramma with eight (Robertson
and Van Tassell 2015). Among other characters, the two genera are distinguished by
the absence of a lateral line and presence of thickened, spinous, outer procurrent rays
in Lipogramma (Mooi & Gill, 2002). The Banded Basslet, Lipogramma evides Robins
& Colin, 1979, was described based on six specimens collected from Barbuda, Jamaica,
Mexico, and Nicaragua. The original description also included observations of the spe-
cies from Belize by Colin (1974). Subsequently, six additional specimens from the
Bahamas were reported by Gilmore and Jones (1988). Robins and Colin (1979) noted
differences in pigment pattern between adults and what they thought was a juvenile
L. evides (Fig. 1A, B), in particular the presence of broader and more intense dark
bands on the juvenile that completely encircle the body. Gilmore and Jones (1988)
further commented on the presumed color differentiation between ontogenetic stages
and noted that heavily banded “juveniles” (Fig. 1C) inhabit shallower waters (< 200 m)
than adults (as deep as 250 m).

Exploratory submersible diving to 300 m in the southern and eastern Caribbe-
an over the past several years by the Smithsonian Institution’s Deep Reef Observa-
tion Project (DROP) has resulted in the collection of over 50 specimens of “banded
basslets” assignable to Lipogramma based on the absence of a lateral line and presence
of spinous procurrent caudal-fin rays. That material includes individuals with both
pigment patterns observed by previous authors and a third pigment pattern not previ-
ously described. Genetic and morphological analyses of individuals with those three
pigment patterns suggested three distinct species and show that the heavily banded
pattern is not an ontogenetic feature but diagnostic of a separate species. That species
reaches a smaller maximum size than L. evides and has a shallower depth range. The
other new species is similar in size and depth of occurrence to L. evides. Here we de-
scribe those two new species of Lipogramma, morphologically and genetically compare
them with L. evides, and discuss depth distributions and evolutionary relationships of
species of the genus.

Methods and materials

Collecting and morphology. Basslets were collected using Substation Curagao’s
manned submersible Curasub (htep://www.substation-curacao.com). The sub has two
flexible, hydraulic arms, one of which is equipped with a quinaldine/ethanol-ejection
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Figure |. Previously published images of A Lipogramma evides, 34.4 mm SL, ANSP 134329, holotype,
from Robins and Colin (1979: fig. 1) B Lipogramma levinsoni sp. n., 12.6 mm SL, ANSP 134332, as
juvenile paratype of L. evides in Robins and Colin (1979: fig. 2) € Lipagramma levinsoni sp. n., 14.1 mm
SL, IRCZM 107: 07660, as juvenile of L. evides in Gilmore and Jones (1988: fig. 3). Images reproduced

with permission from Bulletin of Marine Science.
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system and the other with a suction hose. Anesthetized fish specimens were captured
with the suction hose, which empties into a vented plexiglass cylinder attached to the
outside of the sub. At the surface, the specimens were photographed, tissue sampled,
and fixed in 10% formalin. Measurements were made weeks to months after fixa-
tion and subsequent preservation in 75% ethanol and were taken to the nearest 0.1
mm with dial calipers or an ocular micrometer fitted into a Wild stereomicroscope.
Selected preserved specimens were later photographed to document preserved pig-
ment pattern and X-rayed with a digital radiography system. Images of supraorbital
pores and tooth-like structures on gill rakers were made using a Zeiss Axiocam on a
Zeiss Discovery V12 SteREO microscope. Counts and measurements follow Hubbs
and Lagler (1947). Specimens were cleared and stained following the protocol of
Dingerkus and Uhler (1977). Symbolism for configuration of supraneural bones,
anterior neural spines, and anterior dorsal pterygiophores follows Ahlstrom et al.
(1976). USNM = Smithsonian Institution, National Museum of Natural History;
ANSP = Academy of Natural Sciences, Philadelphia; IRCZM = Indian River Coastal
Zone Museum, Harbor Branch Foundation, Fort Pierce, Florida; UF = University
of Florida, Gainesville.

Molecular analyses. Tissue samples for 97 specimens assignable to eight species
of Lipogramma were used for molecular analyses (Appendix 1). Tissues of L. rosea
Gilbert, 1979 (in Robins and Colin 1979), L. regia Robins & Colin, 1979, and L.
Sflavescens Gilmore & Jones, 1988 were not available. Tissues were stored in saturated
sale-DMSO (dimethyl sulfoxide) buffer (Seutin et al. 1991). DNA extraction and cy-
tochrome ¢ oxidase subunit I (COI) DNA barcoding were performed for 96 specimens
(i.e., for all available specimens except one L. anabantoides — Appendix 1) as outlined
by Weigt et al. (2012). Four nuclear markers were amplified and sequenced—TMO-
4C4, Ragl, Rhodopsin, and Histone H3—for 18 specimens of Lipogramma, and one
or more of those genes was sequenced for an additional three specimens (Appendix
1). Primers and PCR conditions for the nuclear markers followed Lin and Hastings
(2011, 2013). Sequences were assembled and aligned using Geneious v. 9 (Biomatters,
Ltd., Aukland). A neighbor-joining (NJ) network was generated for the COI data
using the K2P substitution model (Kimura 1980) in the tree-builder application in
Geneious. Mean within- and between-species K2P genetic distances were calculated
from the COI data in MEGA v. 7 (Kumar et al. 2015). Genetic distances were con-
sidered as corroborating morphology-based species delineation if the distances be-
tween species were ten or more times the intraspecific differences (Hebert et al. 2004).
The alignments of COI and nuclear genes were concatenated and phylogeny was
inferred using Bayesian Inference (BI) and Maximum Likelihood (ML), partitioning
by gene. For the Bayesian analysis, substitution models and partitioning scheme were
chosen using PartitionFinder (Lanfear et al. 2012) according to Bayesian Informa-
tion Criterion scores. The chosen scheme had the following partitions and models:
COlI, HKY+I+G; Histone H3 plus Rhodospin, HKY+G; TMO-4C4, K80+G; Ragl,
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K80+G. All partitions in the ML analysis received a GTR-GAMMA substitution
model. The BI phylogeny was inferred in the program MrBayes v. 3.2 (Ronquist
et al. 2012) using two Metropolis-coupled Markov Chain Monte Carlo (MCMC)
runs, each with four chains. The analysis ran for 10 million generations sampling
trees and parameters every 1000 generations. Burn-in, convergence and mixing were
assessed using Tracer (Rambaut and Drummond 2007) and by visually inspecting
consensus trees from both runs. The ML analysis was done in the program RAxML
v.8.2.9 (Stamatakis, 2014), using 20 initial random searches, and topological support
was assessed using 1000 bootstrap replicates. Outgroups for the phylogenetic analysis
included two species of Gramma and several other genera from the Ovalentaria sezsu
Wainwright et al. (2012): Acanthemblemaria (Labrisomidae), Helcogramma (Trip-
terygiidae), Blenniella (Blenniidae), and Tomicodon (Gobiesocidae).

To corroborate the morphologically diagnosed species using our molecular data,
we conducted a coalescent-based, Bayesian species-delimitation analysis (Yang and
Rannala 2010, 2014). We used the computer program BP&P ver. 3.2 (Bayesian Phy-
logenetics and Phylogeography — Yang and Rannala [2010], Yang [2015]), which ana-
lyzes multi-locus DNA sequence alignments under the multispecies coalescent model
(Rannala and Yang 2003). We used the five DNA alignments for the 21 Lipogramma
specimens in BP&P, with each sequence in the alignments being assigned to one of
eight groups a priori, based on the diagnostic morphological and coloration charac-
ters discussed in the ‘Morphological Comparisons’ section below. BP&P was then
used to jointly infer a species tree and calculate posterior probabilities of different
species-delimitation models containing either eight species, fewer than eight species
(i.e. lumping multiple ‘morphological species’), or more than eight species (i.e. split-
ting ‘morphological species’ into multiple cryptic species).

Depth distributions. To evaluate depth distributions we searched FishNet2
(www.fishnet2.net) for all Lipogramma specimens that were identified to species and
that included data on the depth of capture. For some specimens, capture depth was
given as a range of possible depths, and in instances where this range was 50 m or nar-
rower, we took the mean depth as a proxy for a point estimate of the exact depth of
capture. Broader depth ranges of capture were excluded. Depth records for L. evides
were only included for specimens whose identifications we confirmed to avoid possible
confusion with one of the two new species described here. When combined with depth
data from specimens from DROP collections, this search resulted in depth records for
278 identified specimens of Lipogramma. We also included depth records from 83
visual observations from DROP submersible dives, excluding those observations where
there was uncertainty regarding identification of the three morphologically similar spe-
cies (L. evides and the two species described here).

Accession numbers. GenSeq nomenclature (Chakrabarty et al. 2013) and Gen-
Bank accession numbers for DNA sequences derived in this study are presented along
with museum catalog numbers for voucher specimens in Appendix 1.
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Taxonomy

Hourglass Basslet

Lipogramma levinsoni Baldwin, Nonaka & Robertson, sp. n.
http://zoobank.org/C12172C1—B3BF—48B8—B267—61D845EDCC63
Figure 2

Lipogramma evides Robins & Colin, 1979: 43, fig. 2, table 1, ANSP 134332, paratype
from Jamaica (photograph, counts, measurements).

Lipogramma evides Robins & Colin, 1979, fig. 3 in Gilmore and Jones (1988: 441),
IRCZM 107:07660 from San Salvador, Bahama Islands (illustration, habitat in-
formation).

Type locality. Curagao, southern Caribbean.

Holotype. USNM 406139, 28.3 mm SL, tissue no. CUR11139, Curasub submers-
ible, sta. CURASUB11-02, Curacao, off Substation Curacao, 12.083197 N, 68.899058
W, 137-146 m depth, 23 May 2011, C. Baldwin, D. Robertson & B. Van Bebber.

Paratypes. BONAIRE: USNM 426784, 24.2 mm SL, tissue no. CUR13183, Cu-
rasub submersible, Bonaire, Bonaire City Dock, Kralendijk, Dive 2, 12.15 N, 68.2829
W, 121-137 m depth, 30 May 2013, B. Van Bebber, A. Schrier, C. Baldwin, T. Chris-
tiaan; CURACAO: ANSP 201863, 24.0 mm SL, Curasub submersible, Curagao, off
Substation Curagao, 12.083197 N, 68.899058 W, no depth data available; UF 238589,
25.0 mm SL, tissue no. CUR11018, Curasub submersible, sta. CURASUB11-22,
Curagao, off of Substation Curagao downline, 12.083197 N, 68.899058 W, no depth
data available, 27 February 2011, C. Baldwin & L. Weigt; USNM 406393, 25.7 mm
SL, tissue no. CUR11393, Curasub submersible, sta. CURASUB11-06, Curacao, 132
m depth, 31 May 2011, C. Baldwin, A. Driskell, A. Schrier & B. Van Bebber; USNM
414877, 25.3 mm SL, cleared and stained, tissue no. CUR12159, Curasub submers-
ible, sta. CURASUB12-15, Curagao, off of Substation Curagao downline, 12.083197
N, 68.899058 W, 128 m depth, 10 August 2012, A. Schrier, B. Brandt, C. Baldwin,
A. Driskell & P. Mace; USNM 440229, 12.7 mm SL, Curasub submersible, sta. CU-
RASUB14-07, Curacao, in between Porto Marie and Daaibooi beaches, 12.202842
N, 69.089507 W, 123 m depth, 21 March 2014, C. Baldwin et al.; USNM 440230,
13.4 mm SL, Curasub submersible, sta. CUR13-18, Curagao, Playa Forti, Westpoint,
12.3679 N, 69.1553 W, 127 m, 15 August 2013, C. Baldwin, B. Brandt, A. Schrier,
K. Johnson & C. DeForest; USNM 406140, 19.5 mm SL, tissue no. CUR11140, Cu-
rasub submersible, sta. CURASUB11-02, Curacao, 137-146 m depth, 23 May 2011,
C. Baldwin, D. Robertson & B. Van Bebber. DOMINICA: USNM 440231, 17.0
mm SL, tissue no. DOM16229, Curasub submersible, off northwest Dominica, no
specific collection data available, March 2016, R/V Chapman Crew.

Non-type specimens. BONAIRE: USNM 426754, 21.2 mm SL, tissue no.
CUR13184, Curasub submersible, Bonaire, Bonaire City Dock, Kralendijk, Dive 2,
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to preservation, photo by D. R. Robertson and C. C. Baldwin B USNM 406394, 22.2 mm SL , photo-
graphed prior to preservation, photo by D. R. Robertson and C. C. Baldwin € and D Aquarium photos,

Curagao Sea Aquarium, photos by D. Ross Robertson.

12.15N, 68.2829 W, 121-137 m depth, 30 May 2013, B. Van Bebber, A. Schrier, C.
Baldwin, T. Christiaan; USNM 426802, 9.4 and 18.3 mm SL, Curasub submersible,
Bonaire, Bonaire City Dock, Kralendijk, 12.15 N, 68.2829 W, 114-137 m depth, 30
May 2013, B. Van Bebber, A. Schrier, C. Baldwin, T. Christiaan. CURACAO: USNM
426774, 17.6 mm SL, tissue no. CUR13267, Curasub submersible, sta. CURAS-
UB13-18, Curagao, Playa Forti, Westpoint, 12.3679 N, 69.1553 W, 118 m depth, 15
August 2013, C. Baldwin, B. Brandt, A. Schrier, K. Johnson & C. DeForest; USNM
426730, 12.3 mm SL, tissue no. CUR13268, Curasub submersible, sta. CURAS-
UB13-18, Curagao, Playa Forti, Westpoint, 12.3679 N, 69.1553 W, 118 m depth, 15
August 2013, C. Baldwin, B. Brandt, A. Schrier, K. Johnson & C. DeForest; USNM
406011, 20.9 mm SL, tissue no. CUR11011, Curasub submersible, sta. CURAS-
UB11-22, Curagao, off of Substation Curacao downline, 12.083197 N, 68.899058 W/,
no depth data available, 27 February 2011, C. Baldwin & L. Weigt; USNM 406012,
18.0 mm SL, tissue no. CUR11012, Curasub submersible, sta. CURASUB11-22,
Curagao, off of Substation Curagao downline, 12.083197 N, 68.899058 W, no depth
data available, 27 February 2011, C. Baldwin & L. Weigt; USNM 406019, 14.0 mm
SL, tissue no. CUR11019, Curasub submersible, sta. CURASUB11-22, Curacao, off
of Substation Curagao downline, 12.083197 N, 68.899058 W, no depth data avail-
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able, 27 February 2011, C. Baldwin & L. Weigt; USNM 406394, 22.2 mm SL, tissue
no. CUR11394, Curasub submersible, sta. CURASUB11-06, Curagao, 132 m depth,
31 May 2011, C. Baldwin, A. Driskell, A. Schrier & B. Van Bebber. DOMINICA:
USNM 438703, 19.0 mm SL, tissue no. DOM16052, Curasub submersible, sta. CU-
RASUB16-07, Toucari Bay, Toucari, Dominica, NW corner of island, 15.608047 N,
61.471788 W, no depth data available, 2 March 2016, A. Schrier, R. Bakmeijer, B.
Van Bebber & F. van der Hoeven; JAMAICA: ANSP 134332, 12.6 mm SL, Nekton
Gamma dive 141, collection 151-2, Jamaica, Discovery Bay, 145 m depth, 15 August
1972, L. Land & S. Hastings.

Diagnosis. A species of Lipogramma distinguishable from congeners by the fol-
lowing combination of characters: pectoral-fin rays 16-18 (modally 17), gill rakers
17-20 (modally 19); three supraorbital pores present along dorsal margin of orbit,
no pore present between pore at mid orbit and one at posterodorsal corner of orbit;
caudal fin truncate, tips of lobes rounded; body with three broad blackish bars (one
on head, two on trunk) on white background, width of bar on head sufficient to en-
compass entire eye, width just ventral to eye averaging 26.4% head length; trunk bars
sometimes hourglass shaped, with narrower and less intensely colored central regions;
anterior trunk bar covering pectoral-fin base; posterior trunk bar extending onto dorsal
and anal fins as large oval blotches bordered in part by white or blue pigment to form
partial ocelli; dorsal and anal fins with thin orange sub-marginal stripe. The new spe-
cies is further differentiated from congeners for which molecular data are available in
mitochondrial COI and nuclear Histone 3, Rhodopsin, TMO-4C4, and RAGI1.

Description. Counts and measurements of type specimens given in Table 1.
Frequency distributions of pectoral-fin rays and gill rakers on the first arch are given
in Table 2. Twenty specimens examined, 9.4 to 28.3 mm SL. Dorsal-fin rays XII, 9
(last ray composite); anal-fin rays III, 8 (last ray composite); pectoral-fin rays 16-18,
modally 17, 17 on both sides in holotype; pelvic-fin rays I,5; total caudal-fin rays 25
(13 +12), principal rays 17 (9 + 8), spinous procurrent rays 6 (III + III), and 2 addi-
tional rays (i + i) between principal and procurrent rays that are neither spinous nor
typically segmented; vertebrae 25 (10 + 15); pattern of supraneural bones, anterior
dorsal-fin pterygiophores and dorsal-fin spines 0/0/0+2/1+1/1/; ribs on vertebrae
3—10; epineural bones present on vertebrae 1-16 in holotype and cleared and stained
paratype (difficult to assess in radiographs of most other specimens); gill rakers on
first arch 17-20 (5-6 + 12-14), modally 19 (6 + 13), 19 (6 + 13) in holotype; up-
permost four and lowermost one or two rakers very small or present only as nubs, all
other gill rakers elongate and slender with tooth-like secondary rakers as in L. evides
(Fig. 3); pseudobranchial filaments 5-7 (7 in holotype), filaments fat and fluffy;
branchiostegals 6.

Spinous and soft dorsal fins confluent, several soft rays at rear of fin forming el-
evated lobe that extends posteriorly beyond base of caudal fin. Pelvic fin, when de-
pressed, extending posteriorly to point between anterior base of anal fin and beyond
base of caudal fin, elongate first pelvic-fin ray broken in most preserved specimens.
Dorsal profile from snout to origin of dorsal fin convex. Diameter of eye of holotype
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Table 2. Frequency distributions of gill rakers on first arch and left and right pectoral-fin rays in Lipo-
gramma levinsoni sp. n., L. evides, and L. haberi sp. n. Counts for the holotype and three paratypes of L.
evides are included from Robins and Colins (1979). Counts of gill rakers and pectoral-fin rays for a fourth
paratype of L. evides, ANSP 134330, were not given in the original description. The fifth and smallest
paratype, ANSP 134332, is a specimen of L. levinsoni, and counts of that specimen made in this study are
included. An asterisk indicates count of gill rakers or left pectoral-fin rays in holotype.

Gill Rakers Pectoral-fin Rays
15 16 17 18 19 20 21 22 15 16 17 18 19
L. levinsoni 1 5 9* 1 5 | 26| 3
L. evides 3 14* | 11 1 1 45* | 9
L. haberi 1* 2 1 5*

Figure 3. Tooth-like, secondary rakers on the first gill arch in Lipogramma evides, USNM 34771, cleared
and stained paratype. Photo by L. Tornabene.

contained 2.8 times in head length. Pupil slightly tear shaped, with small aphakic space
anteriorly. Scales extending anteriorly onto posterior portion of head, ending short of
coronal pore. Scales present on cheeks, opercle, preopercle, interopercle, and isthmus.
Scales lacking on top of head, snout, jaws, and branchiostegals. Scales large and de-
ciduous, too many scales missing in most specimens to make accurate scale counts. In
holotype, approximately 23 lateral scales between shoulder and base of caudal fin, ap-
proximately 4 scale rows on cheek, and approximately 9 scale rows across body above
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Figure 4. Supraorbital pore patterns in Lipogramma evides, UF 238591, 34.5 mm SL (left) and L. levin-
soni sp. n., UF 238589, 25.0 mm SL (right). Arrows point to pores, which have been outlined with tiny

dots for emphasis. PN — posterior nostril.

anal-fin origin. Scales on head and nape without cteni, scales on rest of body ctenoid.
Fins naked except small scales present at bases of soft dorsal and anal fins.

Margins of bones of opercular series smooth, opercle without spines. Single row of
teeth on premaxilla posteriorly, broadening to 2-3 rows anteriorly, teeth in innermost
row smallest, some teeth in outer row enlarged into small canines. Dentary similar,
holotype with 3 enlarged teeth in outer row near symphysis. Vomer with chevron-
shaped patch of teeth, palatine with long series of small teeth. Several canals and pores
visible on head, but most pores inconspicuous. Conspicuous pores present in infraor-
bital canal (2 pores) and portion of supraorbital canal bordering dorsal portion of
orbit (3); less conspicuous pores present on top of head (1 median coronal pore), pre-
opercle (7), and lateral-line canal in the posttemporal region (3). Anteriormost of the
3 supraorbital pores situated at anterodorsal corner of orbit, middle supraorbital pore
situated above mid orbit, and posteriormost supraorbital pore situated at posterodorsal
corner of orbit (Fig. 4). This pore with fleshy rim in holotype, and mid-orbit supraor-
bital pore with smaller fleshy rim. Posterior nostril situated just ventral to anteriormost
supraorbital pore, nostril a single large opening with ventral portion of rim slightly
elevated. Anterior nostril in tube with anterior flap and situated just posterior to upper
lip. No lateral line present on body.

Coloration: In life (Fig. 2), ground color of head and trunk white to tan dorsally
grading to white below. Head: dark brown to black bar encompassing orbit and extend-
ing ventrally to ventral midline; above orbit, bar narrowing across dorsal midline; eye
with dark brown outer ring, yellowish to bluish iris. Trunk: two broad, dark brown to
blackish bars present beneath dorsal fin, bars sometimes hourglass shaped, with nar-
rower and less intensely colored central regions (central regions losing almost all dark
color in some freshly dead specimens); anterior bar extending ventrally from anterior
third of spinous dorsal fin to ventral midline, its anterior border extending forward to
encompass base of pectoral fin; posterior bar extending ventrally from base of soft dorsal
fin to posterior half of anal fin. Dorsal fin: dark trunk bars extending onto base of fin
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as two blotches, anterior blotch short, low, less conspicuous (than posterior blotch) and
sometimes with faint orange upper border. Posterior blotch an intense, dark, longitudi-
nal oval spanning lower half of soft dorsal and bordered posteriorly by white to bluish-
white pigment. Base of fin between trunk bars whitish, central portion of fin brown to
grey, and distal third of fin with bluish tint and thin, orange, submarginal stripe; this
stripe breaking into spots along the rear third of fin. Anal fin: posterior trunk bar ex-
tending onto proximal portion of posterior half of fin as a strong, horizontally elongate,
black blotch edged distally with bluish white line; base of fin with thin, white stripe, fin
color grading into blackish to bluish-black distally. A thin, orange, sub-marginal stripe
breaks into spots along posterior portion of fin. Caudal fin: basal half translucent pale
orange, grading into translucent bluish distally, sometimes with indistinct, very narrow,
submarginal orange band around entire edge. Pectoral fins: base blackish, fin trans-
lucent, rays translucent or tinted with orange. Pelvic fins: translucent white to bluish
white, with orange tint medially on basal half of fin. In preservative (Fig. 5A), barred
color pattern retained, but orange, yellow, and bluish pigments absent.

Distribution. Known from specimens collected from the Bahamas, Bonaire,
Curagao, Dominica, and Jamaica. This species was also clearly observed in October
2016 by DRR and LT from the mini-submarine “Idabel” at 140 m depth adjacent to
Half Moon Bay, Roatan, Honduras.

Habitat. Lives in or hovers above small rocky rubble on gradual slopes at depths
of 108-154 m. When approached by the submersible, L. levinsoni disappears into the
rubble. We observed them often in pairs.

Etymology. Named Lipogramma levinsoni in recognition of the generous, contin-
uing support of research on neotropical biology at the Smithsonian Tropical Research
Institute (Panamd) made by Frank Levinson.

Common name. We propose “Hourglass basslet” (Cabrilleta hierba-horaria as the
Spanish equivalent) to differentiate this species from the Banded Basslet, Lipogramma
evides, and the Yellow-banded Basslet, L. haberi (see description below), both of which
have narrower, straight-sided bars on the trunk.

Genetic comparisons. Table 3 shows average inter- and intraspecific divergences
in COI among species of Lipogramma analyzed genetically in this study. With the
exception of a single substitution in one specimen, the 15 specimens of Lipogramma
levinsoni exhibit no intraspecific genetic variation at this locus and differ from other
Lipogramma species by 15.4-26.0%. Lipogramma levinsoni differs from L. evides by
17.1% and L. haberi by 19.0%.

Comments. The smallest paratype of L. evides, ANSP 134332 (Fig. 1B), 12.6 mm
SL, is a specimen of L. levinsoni. Although Robins and Colin (1979) indicated 15 pec-
toral-fin rays on both sides of this specimen, we count 17 on the right and find the left
side too bent to make an accurate count. Lipogramma levinsoni typically has 17-18 pec-
toral-fin rays, modally 17. The gill-raker count of 19 given by Robins and Colin (1979)
was confirmed by our examination, and is the typical count for L. levinsoni. Counts of
pectoral-fin rays (15-16, usually 16) and gill rakers on the first arch (19-21, usually
20 or 21) given by Robins and Colin (1979) for the remaining paratypes of L. evides
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Figure 5. Preserved specimens of A Lipogramma levinsoni sp. n., holotype, USNM 406139, 28.3 mm
SL B Lipogramma haberi sp. n., holotype, USNM 422679, 40.1 mm SL C L. evides, paratype, ANSP
134330, 30.5 mm SL Photos A and B by Sandra Raredon, € by Mark Saba;j.

support their identification as specimens of L. evides. As noted, previous authors have
mistakenly identified the broad-banded L. levinsoni as the juvenile form of the more
narrow-banded L. evides. Our material includes juvenile specimens of both L. levinsoni
and L. evides, which in each case have the adult configuration of dark bands (Fig. 6).
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Figure 6. Comparison of juveniles of A Lipogramma levinsoni sp. n., USNM 440230, paratype, 13.4 mm
SL and B L. evides, USNM 431410, 12.7 mm SL.

Table 3. Average Kimura two-parameter distance summary for species of Lipogramma based on cy-
tochrome c oxidase I (COI) sequences analyzed in this study. Intraspecific averages are in bold.

E E .'.g
I N N N N
§ § § ° 3 S )
¢ ¢ = = ] ] = Ny
“vobinsil” (n=6) 0.003
“Yobinsi2” (n=7) 0.119 0.002
levinsoni (n=15) 0.162 0.169 0
haberi (n=3) 0.111 0.132 0.19 0.002
anabantoides (n=2) 0.195 0.184 0.154 0.202 | 0.005
trilineata (n=12) 0.217 0.251 0.227 0.236 0.258 0.005
klayi (n=21) 0.266 0.259 0.26 0.279 0.246 0.242 0.003
evides (n=30) 0.103 0.128 0.171 0.11 0.22 0.249 0.263 0.001
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Yellow-banded Basslet

Lipogramma haberi Baldwin, Nonaka & Robertson, sp. n.
http://zoobank.org/4A8447E9-205C-4639-9209-428 D8DCDACIF

Figure 7

Type locality. Curagao, southern Caribbean

Holotype. USNM 422679, 40.1 mm SL, tissue no. CUR13171, Curasub sub-
mersible, sta. CURASUB13-09, Curacao, southwest tip of Klein Curacao, 11.975783
N, 68.646192 W, 152 m depth, 27 May 2013, M. Harasewych, L. Weigt, B. Van
Bebber & A. Schrier.

Paratypes. USNM 434772, 26.4 mm SL, tissue no. CUR15092, Curasub sub-
mersible, sta. CURASUBI15-12, northwest corner of Klein Curacao, 11.998453 N,
68.651308 W, 187 m depth, 27 August 2015, B. Brandt, A. Schrier, S. Haber &
T. Haber; USNM 422670, 23.0 mm SL, tissue no. CUR13158, Curasub submers-
ible, sta. CURASUB13-08, Curagao, southwest tip of Klein Curagao, 11.975783 N,
68.646192 W, 233 m depth, 27 May 2013, C. Baldwin, D. Robertson, B. Brandt, A.
Schrier & L. Weigt.

Diagnosis. A species of Lipogramma distinguishable from congeners by the fol-
lowing combination of characters: pectoral-fin rays 15-16 (modally 16), gill rakers
15-16 (modally 16); four supraorbital pores along dorsal portion of orbit, a pore pre-
sent between pore at mid orbit and one at posterodorsal corner or orbit; caudal fin
truncate, tips of lobes rounded; body with three dusky bars (one on head, two on
trunk) on yellow/white background; width of bar on head sufficient to encompass pu-
pil but not entire eye, width just ventral to eye averaging 17.6% head length; anterior
trunk bar narrow and not extending forward to cover pectoral-fin base, bar lighter and
less conspicuous ventrally; posterior trunk bar a broad, yellow/tan triangle that is wider
dorsally than ventrally; this triangle extending onto soft dorsal fin as large, round, well-
defined ocellus; posterior trunk bar not extending onto anal fin; dorsal fin with thin
yellow sub-marginal stripe; no yellow submarginal stripe on anal fin; dorsal, anal, and
caudal fins with numerous yellow spots. The new species is further differentiated from
congeners for which molecular data are available in COI and RAG1.

Description. Counts and measurements of type specimens given in Table 4. Fre-
quency distributions of pectoral-fin rays and gill rakers on the first arch are given in
Table 2. Three specimens examined, 23.0-40.1 mm SL. Dorsal-fin rays XII, 9 (last ray
composite); anal-fin rays III, 8 (last ray composite); pectoral-fin rays 15-16, modally
16, 16 on both sides in holotype; pelvic-fin rays I,5; total caudal-fin rays 25 (13 + 12),
principal rays 17 (9 + 8), spinous procurrent rays 6 (III + III), and 2 additional rays
(i + i) between principal and procurrent rays that are neither spinous nor typically
segmented; vertebrae 25 (10 + 15); pattern of supraneural bones, anterior dorsal-fin
pterygiophores and dorsal-fin spines 0/0/0+2/1+1/1/; ribs on vertebrae 3-10; epineural
bones present on vertebrae 1-15 in one paratype, difficult to assess in other specimens;
gill rakers on first arch 15-16 (4-5 + 11), 15 (4 + 11) in holotype, both paratypes with
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Figure 7. Lipogramma haberi sp. n., USNM 422679, holotype, 40.1 mm SL, photographed prior to

preservation against white (top) and black (bottom) backgrounds. Photos by D. R. Robertson and C. C.
Baldwin.

16 (5 + 11); lowermost two rakers very small, all other gill rakers elongate and slender
with tooth-like secondary rakers as in L. evides (Fig. 3); pseudobranchial filaments 6,
filaments fat and fluffy; branchiostegals 6.
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Table 4. Counts and measurements of type specimens of Lipogramma haberi sp. n. Measurements are
in percent SL except width of bar ventral to eye, which is in percent head length. CP = caudal peduncle;
PFO = pelvic-fin origin; P1 = pectoral fin; P2 = pelvic fin; DXII = twelfth dorsal-fin spine. “Other Caudal”

@

rays include “i” — a slender, flexible, non-spinous, and typically non-segmented ray and “I” — a spinous

procurrent ray.

USNM 422679 USNM 434772 USNM 422670
Holotype Paratype Paratype

SL 40.1 26.4 23.0
Dorsal-fin Rays XIL, 9 XII, 9 XII, 9
Anal-fin Rays 111, 8 111, 8 11, 8
Principal Caudal 9+8 9+8 Broken
Other Caudal ITi+il1I ITi+iI1I Broken
Pectoral-fin Rays 16, 16 16, 15 16, 16
Gill Rakers 15 16 16
Head Length 35.2 39.0 34.8
Eye Diameter 11.2 14.0 13.0
Snout Length 6.7 5.7 6.1
Depth at CP 18.7 20.1 17.8
Depth at PFO 32.4 34.1 27.0
Length P1 Fin 22.2 27.7 24.3
Length P2 Fin 62.3 54.5 46.1
Length DXII 22.4 23.1 17.4
Width of Bar Ventral to Eye 14.9 20.4 17.5

Spinous and soft dorsal fins confluent, several soft rays in posterior portion of fin
forming elevated lobe that extends posteriorly beyond base of caudal fin. Pelvic fin
extending posteriorly to anterior third of caudal peduncle in holotype when depressed,
longest pelvic-fin rays broken in preserved specimens. Dorsal profile from snout to
origin of dorsal fin convex. Diameter of eye of holotype contained 2.7 times in head
length. Pupil slightly tear shaped, with small aphakic space anteriorly. Scales extending
anteriorly onto top of head, ending short of coronal pore. Scales present on cheeks,
opercle, preopercle, interopercle, and isthmus. Scales lacking on frontal region, snout,
jaws, and branchiostegals. Scales large and deciduous, too many missing in paratypes
to make counts, holotype with approximately 24 lateral scales between shoulder and
base of caudal fin, 5 cheek rows, and 11 rows across body above anal-fin origin. Scales
on head and nape without cteni, scales on rest of body ctenoid. Fins naked except
small scales present at bases of soft dorsal and anal fins.

Margins of bones of opercular series smooth, opercle without spines. Premaxilla
with band of small conical teeth, band widest at symphysis, outer row with largest
teeth, 3 or 4 near symphysis enlarged into canines. Dentary similar except 4-6 anterior
teeth enlarged into canines. Vomer with chevron-shaped patch of teeth, palatine with
long series of small teeth. Several canals and pores visible on head, but most pores
inconspicuous. Conspicuous pores present in infraorbital canal (2) and in supraorbital
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canal bordering dorsal portion of orbit (4); less conspicuous pores present on top of
head (1 median coronal pore), preopercle (8), and lateral-line canal in posttemporal
region (3). An additional 4 tiny pores present beneath orbit in holotype in infraorbital
canal. Supraorbital pore pattern as in L. evides (Fig. 4): anteriormost of 4 supraorbital
pores situated at anterodorsal corner of orbit, second supraorbital pore situated above
mid orbit, and posteriormost supraorbital pore situated at posterodorsal corner of or-
bit. Between second and posteriormost supraorbital pores, another pore present and
situated closer to latter. Posterior nostril situated just ventral to anteriormost supraor-
bital pore, nostril a single large opening with ventral portion of rim slightly elevated.
Anterior nostril in tube with anterior flap and situated just posterior to upper lip. No
lateral line present on body.

Coloration: In life, ground color of head and trunk pale yellow to tan dorsally,
white ventrally. Head: mostly pale yellow-tan with white blotch on operculum; a
brown to black C-shaped bar with yellow-brown edges originating on top of head,
widening ventrally above orbit to width of pupil and passing over orbit at that width,
then narrowing ventrally and continuing as dark line along lower edge of operculum;
iris dark brown above and below where bar passes through, yellowish-white anteriorly
and posteriorly, a thin gold ring circling pupil. Trunk: two dark bars beneath dorsal
fin, anterior one brown to blackish (edged with yellow-brown) originating below
anterior dorsal spines and descending obliquely behind pectoral-fin base to ventral
midline; bar fading below pectoral-fin base; posterior bar much broader than anterior
bar but paler and less conspicuous, bar spanning dorsal and ventral body margins and
covering anterior half of caudal peduncle; bar narrowing ventrally. Dorsal fin: grey
with a bluish tint (when photographed against black background — Fig. 7, bottom),
with thin, submarginal yellow stripe; spinous dorsal fin with row of round to oblong
yellow spots along base, 1-2 rows of obliquely oriented, oval, yellow spots above that;
soft dorsal with large, conspicuous, circular, black ocellus covering lower half of fin
and extending onto dorsal portion of trunk; thin, white, outer ring surrounding ocel-
lus on both fin and trunk complete in holotype (Fig. 7), absent along underside of
ocellus in both paratypes; above ocellus, soft dorsal fin with approximately three rows
of rounded yellow spots; grey spaces between yellow spots appearing as well-defined
grey to blue spots posteriorly. Anal fin: grey with bluish tint (when photographed
against black background), each ray with 3-6 elongate yellow spots from base to fin
edge; grey spaces between yellow spots appearing as well-defined grey to blue spots
posteriorly. Caudal fin: base of fin mostly yellow, remainder of fin with rows of yel-
low spots along fin rays; grey spaces between yellow spots appearing as well-defined
grey or blue spots. Pectoral fins: base yellowish with black dots, fin translucent.
Pelvic fins: bright white, inner 2-3 rays with series of small yellow-brown dots. In
preservative (Fig. 5B), barred color pattern retained, posterior trunk bar faint, and
yellow and bluish pigments absent.

Distribution. Known only from Klein Curacao, a 1.7 km? island 11 km southeast
of Curacao.

Habitat. No specific habitat information recorded.
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Etymology. Named in honor of Spencer and Tomoko Haber, who funded and
participated in a submersible dive by the Smithsonian’s Deep Reef Observation Project
(DROP) that resulted in the collection of USNM 434772, a paratype of the new species.

Common name. We propose “Yellow Banded Basslet” (“Cabrilleta cinta-amaril-
la” as the spanish equivalent) to distinguish L. haberi from L. evides and L. levinsoni.
Although L. evides has a submarginal yellow stripe along the dorsal and anal fins, it
lacks the overall yellow body color of L. haberi.

Genetic comparisons. Table 3 shows average inter- and intraspecific divergences in
COI among species of Lipogramma analyzed genetically in this study. Lipogramma ha-
beri exhibits 0.2% intraspecific genetic variation and 11.0-27.9% divergence from other
Lipogramma species. It differs from L. evides by 11.0% and from levinsoni by 19.0%.

Comments. Relative to L. levinsoni and L. evides, which are known from multiple
localities within the Caribbean Sea, L. haberi is an uncommon species on deep reefs
and may have a more restricted geographic distribution. Although both L. levinsoni
and L. evides are frequently observed and collected off the southern coast of Curagao,
in more than one hundred submersible dives there we have not collected L. haberi.
Rather, we have only collected L. haberi on infrequent trips to Klein Curagao, a small
island, as noted above, 11 km southeast of Curacao.

Discussion

Comments on Lipogramma evides. The type series of L. evides includes the holotype
and five paratypes (Robins and Colin 1979). We examined specimens or photographs
of specimens of the type series from ANSP and FMNH and conclude that all except
one, ANSP 134332, 12.6 mm SL, represent L. evides. We also examined 31 specimens
of Lipogramma evides that we recently collected at Curagao and that range in size from
12.7-45.4 mm SL. Frequency distributions of pectoral-fin rays and gill rakers on the
first arch are given in Table 2, an illustration of the holotype that was included in the
original description of the species is shown in Fig. 1A, color patterns of live and recent-
ly deceased individuals are shown in Fig. 8, a photographed of a preserved paratype
(ANSP 134330) is provided in Fig. 5C, secondary spines on gill rakers of the first arch
are shown in Fig. 3, supraorbital pore pattern is shown in Fig. 4, and a photograph of
a preserved juvenile is featured in Fig. 6.

The illustration of the holotype (Fig. 1A) shows a triangular-shaped bar on the
posterior portion of the trunk that more closely resembles the shape of that bar in
L. haberi (Fig. 7) than L. evides (Fig. 8). The pigment is too faded in the preserved
holotype now to determine the shape of that bar, but we note that in specimens or
photographs of the four paratypes of the type series that are actually specimens of L.
evides, the posterior trunk bar is narrow (e.g., Fig. 5C). This suggests that the shape
of the posterior trunk bar illustrated in the holotype of L. evides is either incorrectly
drawn or represents an anomaly for the species. Lipogramma evides and L. haberi are
easily distinguished by numbers of gill rakers on the first arch—15 or 16 in L. haberi,
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19-22 (modally 20) in L. evides (Table 2). Our examination of the holotype confirms
the count by Robins and Colin (1979) of 20 gill rakers in the holotype of L. evides.
Furthermore, the triangular-shaped posterior trunk bar in L. haberi is very pale rela-
tive to the anterior trunk and head bars. Robins and Colin’s (1979) illustration of the
holotype shows three body bars of equal intensity.

Colin’s (1974) observation of “Lipogramma sp.” at Glover’s Reef, Belize, was cited
as L. evides by Robins and Colin (1979), and based on the recorded depths of observa-
tions, 165-180 m, we tentatively agree with this identification, as Belize is between
Arrowsmith Bank and Nicaragua, where L. evides does occur. Lipogramma evides in-
habits depths of 133-302 m, whereas L. levinsoni occurs from 103 to 154 m. However,
Colin’s (1974) observed fish could have been L. haberi, which occurs from 152—-233
m. Polanco et al. (2012) recorded several specimens of L. evides from the Coralinos Ar-
chipelago off Colombia, and based on the stated counts of 15-16 pectoral-fin rays and
20-21 gill rakers, those specimens are correctly identified. In addition to Colombia
and the tentative Belize location, L. evides is known definitively from the type locality
of Arrowsmith Bank in the Yucatan Peninsula, Nicaragua, southeast of Barbuda, and
Curagao (including Klein Curagao). It was also observed but not collected in October
2016 by DRR and LT from the mini-submarine “Idabel” at 232-250 m depth adja-
cent to Half Moon Bay, Roatan, Honduras. It was not collected or observed on DROP
submersible dives at Bonaire or Dominica. A list of L. evides material examined in this
study is given in Appendix 2.

Morphological comparisons. Lipogramma levinsoni, L. evides, and L. haberi can
be readily distinguished from all congeners in having three dark bars (one on the head,
two on the trunk) on a white background vs. a brown body with a reddish head in L.
anabantoides; a yellow body with one black bar on the head in L. flavescens; a purple
head and yellow trunk in L. 4layi Randall, 1963; a brown body with one broad white
bar and multiple narrow orange bars in L. regia; a brownish body with about 12 thin
dark bars in L. robinsi Gilmore, 1997; a pink head and trunk with a yellow stripe along
the dorsal profile of the head in L. rosea; and a yellow head and trunk with three long
iridescent blue stripes on the head in L. #rilineata Randall, 1963. The major differences
among L. levinsoni, L. evides, and L. haberi are summarized in Table 5. Lipogramma
evides and L. haberi are morphologically similar and reach a similar maximum size (45.5
and 40.1 in our material, respectively). They are easy to distinguish from one another on
the basis of number of gill rakers on the first arch (usually 20-21 in L. evides, 15-16 in L.
haberi — Table 2) and by live and preserved color pattern (Figs 5, 7, 8). In life, L. haberi
has a considerable amount of yellow as ground color and associated with the dark bars,
whereas the ground color of L. evides is mostly white. In fresh and preserved specimens,
the posterior trunk bar in L. aberi is broad and much wider at the top than the bottom,
whereas in L. evides it is narrower and of uniform width. There is also a difference in
the shape of the caudal fin of the two species, with L. haberi having a truncate fin with
rounded lobe tips and L. evides having a slightly emarginate fin with pointed lobe tips.

Lipogramma levinsoni reaches a smaller maximum size than L. haberi and L. evides
(largest specimen examined 28.3 mm SL) and differs in modal numbers of gill rakers
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Figure 8. Lipogramma evides A Aquarium photograph by Barry Brown, Substation Curacao B USNM
276560, 45.3 mm SL, illustration by Grant Gilmore in Gilmore and Jones (1988: fig. 1) C and D USNM
414885, 24.4 mm SL, photos by D. R. Robertson and C. C. Baldwin against black (C) and white (D)
backgrounds.

on first arch and pectoral-fin rays (Table 2), supraorbital pore pattern (Fig. 4), and
numerous aspects of color pattern (Figs 2, 5, 7, 8). In life, L. levinsoni is easily distin-
guished from L. haberi and L. evides by having an orange submarginal stripe on the
dorsal fin (vs. yellow) and an orange submarginal stripe on the anal fin (vs. no stripe in
L. haberi, a yellow submarginal stripe in L. evides). In preservative, L. levinsoni is easily
distinguished from L. haberi and L. evides by the shape, size, and configuration of the
dark body bars (Table 5).

Species delimitation and phylogeny. The neighbor-joining network (Suppl. ma-
terial 1) shows eight distinct genetic lineages with an average within-lineage genetic
distance of 0.002 substitutions/site and an average between-lineage genetic distance
of 0.20 substitutions/site (Table 3). Considering between-lineage distances that are
10 or more times greater than within-lineage distances as indicative of distinct species
(Hebert et al. 2014), genetic distances corroborate the recognition of the L. levinsoni
and L. haberi lineages as species. Average between-lineage divergence for L. levinsoni
is 19% (18% between L. levinsoni and the other two banded basslets, L. haberi and
L. evides), whereas average within-lineage divergence is 0%. For L. haberi, average
between-lineage divergence is 18% (11% between L. haberi and L. levinsonil L. evides),
whereas average within-lineage divergence is 0.2%.
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Table 5. Comparisons among Lipogramma levinsoni sp. n., L. haberi sp. n., and L. evides.

L. levinsoni L. haberi L. evides
Standard length (mm) 9.4-28.3 23.0-40.1 13.7-45.5
Gill rakers on 1% arch Usually 19 15-16 Usually 20-21
Pectoral-fin rays Usually 17 Usually 16 Usually 16
Supraorbital pores/pore
present between pore a mid 3/Absent 4/Present 4/Present
orbit and one at posterodorsal
corner of orbit (Fig. 4)
Ground color White, grey on nape & Yellow above, white below White

snout

Black; relatively wide,
widens to encompasses

Brown, edged with yellow;
relatively narrow, widens to

Black; relatively narrow,

Dark bar on head entireeye encompass pupil widens to encompass pu.pll
No rearward extension . |Narrow rearward extension
Narrow rearward extension
along lower edge of along lower edge of opercle
along lower edge of opercle
opercle
Width of dark bar on head

(measured immediately
ventral to eye) in % HL)

21.5-34.8 (% = 26.4)

14.9-20.4 (% = 17.6)

8.7-19.4 (x = 14.7)

Anterior trunk bar

Black, wide, vertical,
center often narrower
& paler
Covers pectoral base
Extension onto dorsal fin
large, intense

Brown, edged with yellow;
narrow, slightly oblique,
uniform width, paler on

belly
Behind pectoral base
No extension onto dorsal fin

Black; narrow, slightly
oblique, uniform width,
paler on belly
Behind pectoral base
Extension onto dorsal fin
small, weak

Posterior trunk bar

Same form and color as
anterior bar
Extension onto dorsal fin
= oval partial ocellus
Extension onto anal fin =
clongate, partial ocellus

Yellow-brown; broad
dorsally, thinning ventrally,
triangular in shape
Extension onto dorsal fin =
round, well defined ocellus
No extension onto anal fin

Same form and color as
anterior bar but usually
paler than anterior bar
Extension onto dorsal fin =
round, well defined ocellus
Extension onto anal fin
absent or a small,

weak smudge

Dorsal-fin pigment

Submarginal stripe
orange
Remainder of fin without
pale spots

Submarginal stripe yellow
Remainder of fin with 2-3
rows of yellow spots

Submarginal stripe yellow
Remainder of fin with 1-2
rows of yellow spots

Anal-fin pigment

Submarginal stripe
orange
No pale spots on
remainder of fin

No pale submarginal stripe
Remainder of fin with 1-6

rows of yellow spots

Submarginal stripe yellow
Remainder of fin with
1-3 rows of yellow spots
near base

Caudal-fin shape

Truncate, lobe tips

Truncate, lobe tips rounded

Slightly emarginate, lobe

rounded tips pointed
Depth range (m) 108-154 152-233 133-302
Barbuda,
Bahamas, Bonaire, Belize(?),Colombia,
Geographical distribution Curagao, Dominica, and Klein Curagao Curagao, Klein Curagao,

Jamaica

Mexico (Caribbean), and
Nicaragua
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The ML and BI analyses resulted in identical topologies, with most relationships sup-
ported by 1.0 posterior probability and 100% bootstrap support (Fig. 9). The BP&P anal-
ysis inferred a coalescent-based species-tree that was identical in topology to the ML and
BI trees. In addition, the BP&P analysis provided overwhelming support for the presence
of eight species of Liprogramma in our phylogeny (posterior probability 0.99981), includ-
ing three distinct species of banded basslets (L. evides, L. haberi and L. levinsoni), indicat-
ing perfect congruence between molecular and morphology-based species delimitation
criteria. Lipogramma trilineata and L. klayi, which have two of the shallowest depth ranges
among Lipogramma species (Fig. 10), were recovered as sister species. This pair is sister to
a larger clade comprising L. anabantoides + L. levinsoni (as sister species) and L. evides + L.
haberi + two putative new species superficially resembling L. robinsi. Not surprising given
their morphological similarity, L. evides, and L. haberi resolve as sister species. There is
strong support for a clade comprising the four deepest-known species in our phylogeny—
L. evides, L. haberi, and the two “L. robinsi” species (Figs 9, 10). Baldwin and Robertson
(2014) found a similar evolutionary grouping of deep-water species in the serranid genus
Liopropoma, and Tornabene et al. (2016a) found repeated invasions of deep-reef depths in
the family Gobiidae with subsequent species radiations entirely within the deep-reef zone.
Lipogramma flavescens, which also inhabits deep water (200-300 m, Fig. 10), may be part
of this clade. A dark ocellus on the base of the soft dorsal fin appears to be a synapomor-
phy of the clade comprising L. anabantoides, L. levinsoni, L. evides, L. haberi, and the two
“L. robinsi” species. Presence of this ocellus in L. flavescens and L. regia suggests that they
may also belong to this group, but genetic samples of both are needed for phylogenetic
analysis. Lipogramma flavescens may be closely related to L. haberi, as they share a narrow
dark bar through the eye, yellow coloration, and low gill-raker count (15-16), and they
inhabit similar deep-reef depths (152-233 m for L. haberi, 200-300 m for L. flavescens). If
the evolutionary relationships of Lipogramma species are correlated with depth as our data
suggest, and if Lipogramma regia, which is known only from depths < 100 m is a mem-
ber of the clade diagnosed by a dark ocellus on the soft dorsal fin, it may be most closely
related to L. anabantoides and L. levinsoni, which are known only from depths < 120 m
(L. anabantoides) and < 154 m (L. levinsoni). Those three are the only known Lipogramma
species with a modal pectoral-fin count of 17 (Gilmore and Jones 1988: Table 2, this
study). We note that the addition to our molecular phylogeny of the four known species
of Lipogramma that are currently unavailable for analysis (L. flavescens, L. regia, L. rosea,
and L. robinsi) could change our hypotheses of relationships within the genus.

The two “L. robinsi” included here (Table 3, Figs 9, 10) are genetically distinct and
superficially different from one another and from L. robinsi Gilmore, 1997. A more
thorough investigation of those three taxa is in progress, after which a key to all Lipo-
gramma species will be constructed.

Lipogramma is currently classified along with Gramma in the family Grammatidae
based on a single synapomorphy in the arrangement of cheek musculature (Gill and Mooi
1993). Molecular data have failed to corroborate the monophyly of the Grammatidae
(Betancur-R et al. 2013, Mirande 2016); rather, those data suggest that Lipogramma and
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Figure 9. Bayesian Inference molecular phylogeny of Lipogramma based on combined mitochondrial
and nuclear genes. Numbers of individuals analyzed for each species are given in Appendix 1, along
with the genes sequenced for each individual. Topology is identical to that from Maximum Likelihood
analysis. Support values are Bayesian posterior probabilities (above) and bootstrap values (below). Nodes
without labels have 1.0 posterior probability and 100 bootstrap values. Photos or illustrations by C. C.
Baldwin, D. R. Robertson, R. G. Gilmore, and C. R. Robins.
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Figure I 1. Items from stomachs of deep-reef Lipogramma: A Planktonic foraminiferan, possibly Glob-
orotalia manardii, from L. evides, USNM 434771, collected at 174 m B Diatom, possibly Coscinodiscus
eccentricus, from L. levinsoni sp. n., USNM 406140, collected between 137 and 146 m C Parasitic Nema-
toda from same specimen as B. Photos by A. Nonaka and L. Tornabene.

Gramma are each related to different taxa within the diverse Ovalentaria. Relationships
within the Ovalentaria have proven difficult to resolve with traditional molecular markers
(Betancur-R etal. 2013), molecular markers plus some morphological characters (Mirande
2016), and phylogenomic data (Eytan et al. 2015). Potential close relatives of Lipogramma
based on molecular data include blennioids, cichlids, plesiopids, pseudochromids, and
Pholidichthys. Some of these groups have been previously linked to either Lipogramma,
Gramma, or both, based on shared morphological characters, but the homologies of many
of these characters have been questioned (Gill and Mooi 1993). At present, the phyloge-
netic position of Lipogramma is unresolved.

Ecology and life history. Little is known about community structure on deep reefs,
including food networks. Although an analysis of the diet of banded basslets based on
stomach contents is beyond the scope of this study, the gastrointestinal tract of the cleared
and stained L. evides (USNM 434771) contained numerous individuals of a planktonic
foraminiferan that was tentatively identified by Smithsonian Curator of Planktic Fo-
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raminifera Brian Huber as Globorotalia manardii (d’ Orbigny) — Fig. 11A. Two items
found in the gastrointestinal tract of L. levinsoni (USNM 406140) appear to be a dia-
tom (possibly Coscinodiscus eccentricus Ehrenberg, Huber pers. comm, Fig. 11B) and a
parasitic nematode (identification by Smithsonian Curator of Invertebrate Zoology Jon
Norenberg and Assistant Professor of Biology at Virginia Military Institute Ashleigh
Smythe, Fig. 11C). Future investigations of diets of deep-reef fish species are planned.

The broad Caribbean distributions of L. levinsoni and L. evides (Table 5) suggest a
pelagic larval stage capable of dispersal, so it is perplexing that there are no records of
Lipogramma or Gramma larvae from plankton tows (Asoh and Yoshikawa 1996, Hardy
2006). Thresher (1980) noted that L. #ilineata constructs nests within algae in aquaria
settings, and Asoh and Yoshikawa (1996) described similar nesting behavior in Gramma
loreto Poey, 1868. The apparent restricted geographic distribution of L. haberi (Table 5)
could indicate that some species have limited dispersal capabilities; however, the paucity
of faunal investigations of deep-reef ecosystems may mask a larger geographic distribu-
tion for that species. Interestingly, Leis et al. (2012) calculated swimming speed for
reared G. loreto larvae and found that the actual and relative critical speed (Ucrit) were so
low that for most of the pelagic larval duration their ability to influence their dispersal by
horizontal swimming would be much less than that of many other tropical fish species.
Further study of the early life history of Lipogramma is needed, including exploring the
possibility that planktonic dispersal in the genus may be limited.

Conclusions

Adults and juveniles of the banded basslet, L. evides, were previously recognized as differ-
ent ontogenetic color patterns of a single species. This study shows that the juvenile color
pattern belongs to a cryptic species, described here as L. levinsoni. This study also docu-
ments the first known juveniles of L. evides, which share the color pattern of adults. A
second new species that is morphologically similar to L. evides, L. haberi, is also described.
These three basslet species are confined to deep-reef depths, but they stratify such that
L. levinsoni occurs at shallower depths than L. evides and L. haberi. A molecular analy-
sis of evolutionary relationships among available Lipogramma species reveals correlations
between depth of occurrence and phylogeny, an eco-evolutionary pattern observed in
other deep-reef Caribbean fishes that warrants further investigation. The two new basslets
represent the eleventh and twelfth new fish species described in recent years from explora-
tory submersible diving by the Smithsonian’s Deep Reef Observation Project (DROP)
to Caribbean depths of 300 m (Baldwin and Robertson 2013, 2014, 2015; Baldwin and
Johnson 2014; Baldwin et al. 2016; Tornabene et al. 2016b, 2016¢). Numerous other
new fish and invertebrate species discovered by DROP await description, including the
two putative new species identified in this study as morphologically similar to but distinct
from L. robinsi. Considerably more effort is needed to adequately explore tropical deep
reefs, diverse but largely overlooked global ecosystems.
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Appendix 2.

Specimens of Lipogramma evides examined in this study.

ANSP 134329, holotype, 34.4 mm SL, R/V Pillsbury Sta. 581, Mexico, Arrowsmith
Bank, 21°05'N, 86°23'W, 146-265 m depth, 22 May 1967; ANSP 134330, n=2,
paratypes, 28.0-32.0 mm SL, R/V Pillsbury Sta. 581, Mexico, Arrowsmith Bank, 21
05'N, 86 23"W, 146-265 m depth, 22 May 1967; ANSP 134331, paratype, 17.2 mm
SL, R/V Pillsbury Sta. 969, southeast of Barbuda, 17°27.8'N, 61°41.1"W, 68-216 m
depth, 20 July 1969; FMNH 82583, paratype, 34.5 mm SL, Nicaragua, 12°32'N,
82°25 W, 155 m depth, 23 May 1692; USNM 426801 25.1 mm SL, Curasub sub-
mersible, sta. CURASUB13-18, Curagao, Playa Forti, Westpoint, 12.3679 N, 69.1553
W, no depth data, 15 August 2013, C. Baldwin, B. Brandt, A. Schrier, K. Johnson & C.
DeForest; USNM 431410, 12.7 mm SL , Curasub submersible, sta. CURASUB14-07,
Curagao, in between Porto Marie and Daaibooi beaches, 12.202842 N, 69.089507 W,
123 m depth, 21 March 2014, C. Baldwin et al.; USNM 426746, 45.4 mm SL, tissue
no. CUR13279, Curasub submersible, sta. CURASUB13-19, Curagao, Playa Forti,
Westpoint, 12.3679 N, 69.1553 W, 179 m depth, 15 August 2013, B. Van Bebber,
N. Knowlton, A. Schrier & R. Sant; USNM 431408, 35.5 mm SL, Curasub submers-
ible, sta. CURASUB14-02, Curacao, off Substation Curacao downline., 12.083197
N, 68.899058 W/, no depth data available, 17 March 2014, B. Brooks et al.; USNM
410992, 43.0 mm SL, Curasub submersible, sta. CURASUB13-33, Caracas Baii and
back to Substation Curagao downline, 12.068 N, 68.873367 W, 215 m depth, 5 No-
vember 2013, C. Baldwin, B. Brandt, A. Schrier & C. Castillo; UF 238591, 34.5 mm
SL, Curasub submersible, sta. CURASUB15-13, Northwest corner of Klein Curagao,
11.998453 N, 68.651308 W, 182 m depth, 28 August 2015, C. Baldwin & B. Van
Bebber; USNM 434771, 33.3 mm SL, cleared and stained, tissue no. CUR15091,
Curasub submersible, sta. CURASUB15-12, northwest corner of Klein Curagao,
11.998453 N, 68.651308 W, 174 m depth, 27 August 2015, B. Brandt & A. Schrier;
USNM 434783, 17.9 mm SL, tissue no. CUR15103, Curasub submersible, sta. CU-
RASUB15-13, Northwest corner of Klein Curagao, 11.998453 N, 68.651308 W, 171
m depth, 28 August 2015, C. Baldwin & B. Van Bebber; UF 238590, 27.7 mm SL,
tissue no. CUR15104, Curasub submersible, sta. CURASUB15-13, Northwest corner
of Klein Curagao, 11.998453 N, 68.651308 W, 172 m depth, 28 August 2015, C.
Baldwin & B. Van Bebber; USNM 431313, 39.2 mm SL, tissue no. T1K003, Curasub
submersible, sta. CURASUB14-03, Curagao, west of Substation Curacao downline,
12.083197 N, 68.899058 W, 177 m depth, 18 March 2014, C. Baldwin et al.; USNM
414886, 24.9 mm SL, tissue no. CUR12013, Curasub submersible, sta. CURAS-
UB12-01, Curacao, off of Substation Curacao downline, 12.083197 N, 68.899058
W, 171 m depth, 21 May 2012, C. Baldwin, A. Schrier & B. Brandt; USNM 414889,
31.3 mm SL, tissue no. CUR12031, Curasub submersible, Curacao, off of Substation
Curagao downline, 12.083197 N, 68.899058 W, no depth data available, 21 May
2012, C. Baldwin et al.; USNM 414883, 40.0 mm SL, tissue CUR12044, Curasub
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submersible, Curacao, off of Substation Curacao downline, 12.083197 N, 68.899058
W, no depth data available, 21 May 2012, C. Baldwin et al.; USNM 414884, 32.0
mm SL, tissue no. CUR12050, Curasub submersible, sta. CURASUB12-11, Curacao,
off of Substation Curagao downline, 12.083197 N, 68.899058 W, 164 m depth, 6
August 2012, B. Brandt, C. Baldwin, A. Schrier & A. Driskell; USNM 414887, 31.3
mm SL, tissue CUR12078, Curasub submersible, Curacao, off of Substation Curacao
downline, 12.083197 N, 68.899058 W, no depth data available, 21 May 2012, C.
Baldwin et al.; USNM 414890, 40.3 mm SL, tissue no. CUR12084, Curasub sub-
mersible, Curacao, off of Substation Curacao downline, 12.083197 N, 68.899058 W,
no depth data available, 21 May 2012, C. Baldwin et al.; USNM 414888, 39.8 mm
SL, tissue no. CUR12116, Curasub submersible, sta. CURASUB12-14, Curacao, east
of downline off Substation dock, 12.083197 N, 68.899058 W, 133 m depth, 9 August
2012, A. Schrier, B. Brandt, C. Castillo, A. Driskell & D. Robertson; USNM 414880,
29.0 mm SL, tissue no. CUR12117, Curasub submersible, sta. CURASUB12-14,
Curacao, east of downline off Substation dock, 12.083197 N, 68.899058 W/, 134 m
depth, 9 August 2012, A. Schrier, B. Brandt, C. Castillo, A. Driskell & D. Robertson;
USNM 414882, 20.1 mm SL, tissue CUR12118, Curasub submersible, sta. CURAS-
UB12-14, Curagao, east of downline off Substation dock, 12.083197 N, 68.899058
W, 134 m depth, 9 August 2012, A. Schrier, B. Brandt, C. Castillo, A. Driskell & D.
Robertson; USNM 414878, 24.1 mm SL, tissue no. CUR12276, Curasub submers-
ible, sta. CURASUB12-16, Curagao, west to Stella Maris and down, 154 m depth,
13 August 2012, A. Schrier, C. Baldwin & B. Van Bebber; USNM 414881, 21.1 mm
SL, tissue no. CUR12280, 21.2 mm SL, Curasub submersible, sta. CURASUB12-17,
Curacao, East of downline off Substation Curacao dock, 12.083197 N, 68.899058
W, 161 m depth, 13 August 2012, A. Schrier, B. Brandt, C. Castillo & D. Robertson;
USNM 414885, 24.4 mm SL, tissue no. CUR12281, Curasub submersible, sta. CU-
RASUB12-17, Curagao, East of downline off Substation Curagao dock, 12.083197 N,
68.899058 W, 161 m depth, 13 August 2012, A. Schrier, B. Brandt, C. Castillo & D.
Robertson; USNM 414879, 25.0 mm SL, tissue no. CUR12288, Curasub submers-
ible, sta. CURASUB12-16, Curagao, west to Stella Maris and down, 154 m depth,
13 August 2012, A. Schrier, C. Baldwin & B. Van Bebber; USNM 414876, 41.7
mm SL, tissue no. CUR12353, Curasub submersible, no station data, off Substation
Curagao dock, 12.083197 N, 68.899058 W, no depth data available, 2012, Substa-
tion Curacao crew; USNM 421602, 43.6 mm SL, tissue CUR13100, Curasub sub-
mersible, Curacao, off Substation Curagao, 12.083197 N, 68.899058 W, no depth
data available; USNM 426769, 19.0 mm SL, tissue CUR13233, Curasub submers-
ible, sta. CURASUB13-12, Curacao, off downline at Substation Curacao, 12.083197
N, 68.899058 W, 137-173 m depth, 7 August 2013, C. Baldwin, D. Robertson,
C. Castillo & B. Van Bebber; USNM 426770, 13.7 mm SL, tissue no. CUR13234,
Curasub submersible, sta. CURASUB13-12, Curacao, off downline at Substation
Curagao, 12.083197 N, 68.899058 W, 137-173 m depth, 7 August 2013, C. Bald-
win, D. Robertson, C. Castillo & B. Van Bebber; USNM 426771, 24.9 mm SL, tis-
sue CUR13265, Curasub submersible, sta. CURASUB13-18, Curagao, Playa Forti,
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westpoint, 12.3679 N, 69.1553 W, 137-164 m depth, 15 August 2013, C. Baldwin,
B. Brandt, A. Schrier, K. Johnson & C. DeForest; USNM 426737, 19.3 mm SL, tis-
sue CUR13266, Curasub submersible, sta. CURASUB13-18, Curagao, Playa Forti,
westpoint, 12.3679 N, 69.1553 W, 137-173 m depth, 15 August 2013, C. Baldwin,
B. Brandt, A. Schrier, K. Johnson & C. DeForest; USNM 426709, 40.2 mm SL, tissue
no. CUR13286, Curasub submersible, sta. CURASUB13-21, Curacao, off Substation
Curagao downline, 12.083197 N, 68.899058 W, 171-201 m depth, 17 August 2013,
C. Baldwin, A. Schrier, B. Brandt & A. Driskell; USNM 426722, 32.5 mm SL, tissue
no. CUR13294, Curasub submersible, sta. CURASUB13-21, Curacao, off Substation
Curagao downline, 12.083197 N, 68.899058 W, 171-201 m depth, 17 August 2013,
C. Baldwin, A. Schrier, B. Brandt & A. Driskell.
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Figure S1
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Data type: Tif image file

Explanation note: Neighbor-joining network based on COI sequences of Lipogramma
species investigated in this study. Scale-bar units are substitutions per site.
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