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Abstract: Mapping biodiversity is essential for assessing conservation and ecosystem services in
global terrestrial ecosystems. Compared with remotely sensed mapping of forest biodiversity, that of
grassland plant diversity has been less studied, because of the small size of individual grass species
and the inherent difficulty in identifying these species. The technological advances in unmanned
aerial vehicle (UAV)-based or proximal imaging spectroscopy with high spatial resolution provide
new approaches for mapping and assessing grassland plant diversity based on spectral diversity
and functional trait diversity. However, relatively few studies have explored the relationships
among spectral diversity, remote-sensing-estimated functional trait diversity, and species diversity
in grassland ecosystems. In this study, we examined the links among spectral diversity, functional
trait diversity, and species diversity in a semi-arid grassland monoculture experimental site. The
results showed that (1) different grassland plant species harbored different functional traits or trait
combinations (functional trait diversity), leading to different spectral patterns (spectral diversity).
(2) The spectral diversity of grassland plant species increased gradually from the visible (VIR,
400–700 nm) to the near-infrared (NIR, 700–1100 nm) region, and to the short-wave infrared (SWIR,
1100–2400 nm) region. (3) As the species richness increased, the functional traits and spectral
diversity increased in a nonlinear manner, finally tending to saturate. (4) Grassland plant species
diversity could be accurately predicted using hyperspectral data (R2 = 0.73, p < 0.001) and remotely
sensed functional traits (R2 = 0.66, p < 0.001) using cluster algorithms. This will enhance our
understanding of the effect of biodiversity on ecosystem functions and support regional grassland
biodiversity conservation.

Keywords: grassland; biodiversity; remote sensing; functional trait; spectral diversity; imaging
spectroscopy

1. Introduction

Grasslands, which cover a total area of 52.5 million km2 and account for approximately
40.5% of the terrestrial area excluding Greenland and Antarctica, are the largest terrestrial
ecosystems in the world [1]. However, serious losses in grassland plant diversity have
been observed in the past decades owing to the combined effects of climate change and
human activities, especially because of overgrazing, the conversion of grassland to crop
agriculture, and habitat fragmentation [2,3]. Grassland plant diversity monitoring is a key
issue for ecology and remote sensing sciences [4–6]. Traditional grassland plant diversity
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monitoring is largely based on the in situ surveying of sample plots [7]; however, this is
time-consuming, labor-intensive, and results in poor spatial representation and temporal
continuity for applications in regional assessments. Satellite remote sensing technology
has the advantages of a wide detection range and a short data acquisition cycle [8]. It
enables the environmental context and the climatic and anthropogenic drivers of large-scale
biodiversity loss to be rapidly tracked and elucidated, along with continuous, borderless,
and repeatable biodiversity observations [5]. Many innovative remote sensing methods
or tools have been proposed and developed to monitor plant biodiversity, especially for
forest ecosystems [9–11]. Compared to biodiversity monitoring in forests, few grassland
biodiversity monitoring exercises have been performed successfully using the remote
sensing approach [12–14].

To date, studies have focused mainly on the habitat/landscape-based classification of
grassland types [15,16] or C3/C4 functional types [17–19], and the direct regional mapping
of grass plant diversity [20,21]. Direct grass plant diversity mapping has tended to associate
habitat heterogeneity or spectral heterogeneity to alpha diversity using coarse-resolution
multispectral (e.g., MODIS, Landsat TM, or Sentinel-2) or hyperspectral satellites (e.g.,
EO-1 Hyperion hyperspectral sensor) [20,21] based on the spectral variability hypothesis
(SVH) [22,23]. The SVH relates the spectral heterogeneity of neighboring pixels in optical
remote sensing against the spatial ecosystem or environmental heterogeneity as surro-
gates for biodiversity, which is commonly used on coarse scales (several to hundreds of
meters) [13,24,25]. However, the accuracy of plant diversity predictions using the SVH is
highly scale-dependent [26], as high or low spectral variability could not still hold high or
low species richness, depending on the composition of the vegetation community, season,
and the extent of research [26]. Recent evidence indicates that both spectral and spatial
resolution can affect the spectral diversity–biodiversity relationship [14]. First, the appar-
ently homogeneous image pixels may conceal real heterogeneity at sub-pixel levels. The
small size of individual herbaceous species and highly mixed species occurrence increases
the difficulty of monitoring grassland biodiversity by means of remote sensing due to the
coarse resolution [27]. Second, the low number of bands for multispectral sensors fails to
adequately capture the biochemical or physiological traits that cause the spectral variability
of canopy species [28]. Airborne or UAV-based imaging spectrometers with high spatial
and spectral resolution provide continuous data across environmental gradients to monitor
grassland biodiversity efficiently [27].

Detecting grassland plant diversity could be directly linked to spectral diversity.
Spectral diversity can usually be expressed as information in content-based metrics derived
from the spectral space [29]. These metrics include variance or standard deviation [28],
the coefficient of variation (CV) [30], convex hull volume (CHV) [31], convex hull area
(CHA) [13], spectral information divergence (SID) [32], and the spectral angle mapper
(SAM) [33]. The estimated accuracy of grass biodiversity determined by the spectral
diversity depends, to some extent, on the spectral resolution, spectral region, and the
species richness within a given area [27,34]. In addition, the spectra of closely related
species may be too similar to be separated [19,35]. Spectrally similar species tend to be
classified into a single cluster as “spectral species” [36]. In contrast to the actual species,
spectral species can be regarded as taxonomic species with a similar evolution history or
phylogenetic relationship [14,37].

Plant functional traits may reflect the response of plants to changing climate and
environmental conditions individually or jointly and provide information on plant evo-
lution [38,39]. Considering that spectral absorption and scattering features of plants can
be controlled by many specific functional traits, widely used biochemical or physiologi-
cal traits, such as leaf mass per area (LMA), nitrogen (N), non-structural carbohydrates
(NSC), chlorophyll, carotenoids, leaf dry matter content (LDMC), and lignin, have been
successfully retrieved from hyperspectral data at the leaf or canopy level [7]. Empirical
multivariate methods such as partial least squares regression (PLSR) and gaussian process
regression (GPR) link the target variable with the full spectral information and these have
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been widely used in predicting functional traits in grassland ecosystems [40,41]. One ad-
vantage of plant functional trait mapping is the capturing of variation (volume, shape, and
boundaries) in functional trait space, which enables the detection of species diversity or
functional diversity without a priori species discrimination [10,34,35,42]. Analogously to
spectral species, some species often exhibit covarying structural and physiological traits,
driven by resource and environmental limitations based on the ‘functional convergence
hypothesis’ [43], and are therefore usually grouped or clustered as plant functional types
(PFTs) [35]. Compared to the classification of plant life/growth forms and actual species,
the capability of imaging spectroscopy to causally link biochemical and structural traits to
PFT with higher prediction accuracy and greater consistency has been validated in forest
ecosystems [41,42]. However, few studies have explored functional trait-based grassland
plant diversity monitoring [11].

The relationships among species diversity, spectral diversity, and functional trait
diversity (or biochemical diversity) have been explored in tropical forests (e.g., in the
Amazon and Hawaii) [42,44] and in the subtropical forest of Shennongjia [10,45]. However,
the suitability of these links for grassland ecosystems needs to be further determined. In
this study, we attempted to evaluate the relationships among species diversity, functional
trait diversity, and spectral diversity in a semi-arid grassland monoculture experimental
site with 17 grass species using in situ trait measurements and spectral monitoring from
field spectrometers, and UAV-based imaging spectrometers. Our specific objectives are
to: (1) test the spectral diversity between 17 grass species; (2) test the functional trait
diversity between 17 grass species; (3) explore the changes in functional trait diversity and
spectral diversity with an increase in species richness; (4) compare the performance of
spectral-based and functional trait-based grassland plant diversity measurements.

2. Materials and Methods
2.1. Study Site

The study site was selected at a semi-arid grassland monoculture experimental site
(Figure 1) at the Inner Mongolia Grassland Ecosystem Research Station (IMGERS, 116◦42′E,
43◦38′N), located in the Xilin River Basin, Inner Mongolia Autonomous Region, China.
This site is characterized by a semi-arid climate with an annual average precipitation
of 301 mm and an annual average temperature of 0.9 ◦C (2000–2016). The grassland
monoculture experimental site consists of 20 dominant and common grassland species
in a semi-arid steppe (see Table S1 for details). The 20 species include 1 perennial rhi-
zome grass (Leymus chinensis), 5 perennial bunch grasses (Stipa grandis, Agropyron crista-
tum, Achnatherum sibiricum, Cleistogenes squarrosa, and Koeleria cristata), 4 perennial forbs
(Carex korshinskyi, Allium ramosum, Allium chysanthum, Allium tenuissimum), 9 annual forbs
(Artemisia sieversiana, Artemisia scoparia, Axyris amaranthoides, Chenopodium acuminatum,
Chenopodium aristatum, Silene aprica, Salsola collina, Lappula myosotis, and Dontostemon
dentatus) and 1 biennial forb (Thalictrum petaloideum) (see Table S1 for details). Eighty exper-
imental plots of 1.2 m × 1.2 m with an interval of about 1 m, were established in June 2014,
and divided into four blocks (Figure 1). Each of the 20 species was randomly assigned to
one plot within each block, respectively. Seventeen species were finally selected because
the leaves of the other three species were withered.

2.2. Spectral and Funtional Trait Measurements

Our previous study in the grassland monoculture experimental site demonstrated that
10 leaf functional traits, namely, chlorophyll a (Chl_a), chlorophyll b (Chl_b), carotenoid
(Car), leaf mass per area (LMA), leaf dry matter content (LDMC), leaf total carbon (C),
leaf total nitrogen (N), leaf total phosphorus (P), lignin (Lig), and cellulose (Cel) content
could be retrieved from leaf spectra (R2 = 0.21–0.94 for 400–2450 nm) and canopy spectra
(R2 = 0.26–0.90 for 400–2450 nm) using the PLSR method [46]. Moreover, the area-based
functional traits could be better retrieved using leaf and canopy spectra rather than on a
mass basis, especially for the physiological traits. Therefore, these leaf functional traits
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were selected and measured as area-based content (µg cm−2). For each of the 17 species,
we selected 3 subplots of 0.3 m× 0.3 m with more than 20% cover from their corresponding
monoculture experimental plots for leaf spectral and functional trait measurements in
August, 2019.
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Figure 1. Visual images of species diversity, spectral diversity, and functional trait diversity in a
semi-arid grassland monoculture experimental site at the Inner Mongolia Grassland Ecosystem
Research Station (IMGERS, 116◦42′E, 43◦38′N). The false color image and trait composite images
were acquired by means of a UHD 185 imaging spectroscopy device and remotely sensed predicted
functional traits. LMA denotes leaf mass per area, Chl denotes leaf chlorophyll, and C denotes
leaf carbon. A total of 80 monoculture plots were divided into four blocks (dotted lines), in which
20 species were randomly assigned to one plot, respectively.
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2.2.1. Leaf-Level Spectroscopy

For each of the 17 species, we randomly collected 4, 3, and 3 fully matured leaves
from the top, middle, and bottom layer for individuals with height > 30 cm, respectively,
as well as 5 fully matured leaves from the top and middle canopy for individuals with
height ≤ 30 cm at their monoculture experimental plots. Within 4 h after collection, each
leaf spectrum, covering the 350–2500 nm region, was measured 10 times using a portable
ASD spectrometer (Analytical Spectral Devices, FieldSpec 4 Std-Res, Inc., Boulder, CO,
USA) attached to a leaf clip assembly with an inbuilt stable illuminator. The ASD spec-
trometer obtains spectral information with a spectral sampling interval of 1.4 nm in the
350–1000 nm region and 1.1 nm in the 1001–2500 nm region. For small leaves or leaflets,
we arranged multiple leaves or leaflets into the field of view (FOV) of a leaf clip, fully filled
without gaps or excessive overlap if necessary. The 350–400 nm and 2450–2500 nm spectral
regions were excluded because of unexpected noise. A moving Savitzky–Golay filter [47]
was finally applied to further smooth the spectra (Figure S1). In total, 298 leaf spectra for
17 species were measured. All measured leaf spectra for each selected subplot were also
averaged as one repeat of its representative species (n = 51).

2.2.2. Leaf Functional Trait Measurements

For each selected monoculture experimental subplot, we randomly collected 30–400
fully expanded leaves to store in a portable cooler box for transport to the nearest laboratory
within 1 km. Ten to fifty leaves were randomly selected for scanning to record leaf area
using a portable area meter (LI-3000C, Li-COR, Inc., Lincoln, NE, USA). These fresh leaf
samples were then stored in a −80 ◦C freezer until their pigments (Chl_a, Chl_b and Car)
were analyzed using the UV-VIS spectrophotometer (PerkinElmer Lambda 25, Waltham,
MA, USA). The average leaf area and fresh weight of the remaining samples were first
measured within 2 h after collection. These leaf samples were then oven-dried at 65 ◦C
for at least 72 h and weighed to obtain LMA (dry mass/fresh leaf area), specific leaf area
(SLA,1/LMA), and leaf water concentration ((fresh mass − dry mass)/dry mass). Based
on all samples of these dried leaves, leaf total C and N were measured using an elemental
analyzer (vario MACRO cube, Frankfurt, German), P using a Mo-Sb colorimetric method,
and Lig and Cel using standard spectrophotometric methods [48]. All measured leaf
functional traits for each selected subplot were averaged as one repeat of its representative
species (n = 51).

2.3. UAV-Based Hyperspectral Image Acquisition and Pre-Processing

Upscaling to the canopy scale, the Cubert UHD 185 hyperspectral spectrometer
(HySpex, Oslo, Norway) was mounted on a six-rotor unmanned helicopter (DJI M600
PRO, Dajiang, Shenzhen, China) to acquire the hyperspectral image over the grassland
monoculture experimental site between 11:30 and 12:00 on sunny and cloudless days in
August 2018. One hundred and twenty-five spectral bands from 450–950 nm with a 4-nm
sampling interval were recommended by the camera’s manufacturer [49]. The UAV flew
over 30 m above the ground with a side and front overlap rate of both 80%, yielding a
spatial resolution of about 0.03 m. Before take-off, the spectrometer was first field calibrated
based on a white reference panel and a black plastic lens cap for dark measurements [50].
Furthermore, the radiometric correction was performed to convert the resulting imagery
to apparent surface reflectance during the flight. All required hyperspectral imagery was
fused with corresponding panchromatic imagery using the Cubert-Pilot software (Cubert
GmbH, Ulm, Baden-Württemberg, Germany), and these were automatically mosaicked
into the entire image across the study site using Agisoft PhotoScan software (Agisoft, St.
Petersburg, Russia). To decrease the within-crown spectral variability and to match the size
of the subplots, the mosaicked image was resampled into 0.30 m using a nearest-neighbor
resampling method.
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2.4. Leaf Functional Trait Mapping

Our previous study in this field site also showed that canopy traits, including Chl_a,
Chl_b, Car, LMA, LDMC, C, N, and P, can be retrieved by the UAV-based UHD 185
hyperspectral spectrometer with acceptable accuracy (R2 = 0.34–0.89, p ≤ 0.001) [46].
Continuum removal was performed for the UAV-acquired hyperspectral image to improve
the prediction accuracy of Cel and Lig (R2 = 0.53, RMSE = 1.03 mg·cm–2 for Cel; R2 = 0.54,
RMSE = 0.92 mg·cm–2 for Lig; p ≤ 0.001, data not shown). These canopy traits were firstly
mapped and then downscaled to the leaf level by pixel values of each retrieved canopy
trait divided by the corresponding LAI (R2 = 0.87, RMSE = 0.34, p < 0.001).

2.5. Statistical Analysis

All the leaf functional traits or spectral values were standardized for subsequent
analysis based on the Z-score normalization method: (t − T)/SD, where t is the leaf
functional trait value or spectral reflectance, and T and SD are the mean value and standard
deviation for each of the 17 species.

To estimate the spectral diversity, the average coefficient of variation (CV) was calcu-
lated from the leaf spectral data set (n = 298) for each wavelength (n = 2000) with different
species richness (SR), which was simulated by randomly selecting different numbers
of species out of the 17 species 5000 times. To analyze the spectral diversity, principal
component analysis (PCA) and hierarchical cluster analysis with the Ward’s minimum
variance method were applied based on the average spectra of each species [45,51], respec-
tively. Through clustering, species with similar spectral signatures were grouped by visual
assessment into ‘spectral species’.

To determine the functional trait diversity, PCA was first performed to determine the
variation in leaf functional traits among the 17 species based on in situ average trait values.
The hyperspectrally retrieved functional traits were also analyzed to incorporate individual
variation for more sufficient observations of intraspecific and intraspecific differences
of functional traits. Hierarchical clustering analysis was then applied to determine the
PFT group. Furthermore, a phylogenetic tree of 17 grassland plant species was also built
based on evolution history using Phylomatic V3.0 (http://phylodiversity.net/phylomatic/,
access on 7 November 2020) for comparisons with the clustering results of leaf functional
traits or spectra.

To determine the relationships among the species diversity, functional trait diversity,
and spectral diversity, the Monte-Carlo technique was applied to simulate the average
variations in functional traits and spectral values with increasing species diversity [44,45].
Firstly, one species was randomly selected from the total population of 17 species (n = 51).
Different numbers of functional trait combinations (1–10) were then randomly selected
out of 10 traits, and their average trait variation (the maximum Euclidean distance of
multidimensional functional traits) between species was recorded, respectively. Other
species were next randomly selected to track the change in the functional diversity with
the combination of previously selected species, until all 17 species were populated. The
above simulation was carried out 1000 times. We also repeated the operation to analyze
the taxonomic variation in spectral diversity for different species richness.

To determine the prediction accuracy of grassland plant species diversity based on
the functional trait diversity or spectral diversity, the self-adaptive fuzzy C-means (FCM)
clustering algorithm was used to predict the species richness [10]. The optimal number
of clusters was regarded as the predicted species richness. Firstly, the UAV-based hyper-
spectral data and hyperspectrally retrieved leaf functional traits were filtered with the
normalized difference vegetation index (NDVI) > 0.2 [46] to obtain the pure vegetation
pixels (n = 1098 for 0.3 m × 0.3 m), respectively. We then randomly selected different
numbers of monoculture experimental plots out of all the 68 plots, covering the 17 species
included in the study. The species richness was next predicted based on the spectral or
functional trait data in the selected plots using the self-adaptive FCM clustering algorithm.
The simulation was carried out 1000 times until all monoculture plots were incorporated.

http://phylodiversity.net/phylomatic/
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Finally, a linear regression method was applied to validate the predicted species richness
with all the simulation results based on the actual species numbers (i.e., species richness).
The coefficient of determination (R2), the root mean squared error (RMSE), residual error
(Resid), and standard errors (SE) were calculated to assess the model fit and predictive
relationship strength.

3. Results
3.1. Spectral Diversity

Figure 2A shows the spectral ranges of all 17 species (green region) and the average
coefficient of variation (CV) for each wavelength with different species richness. The
spectral diversity increased gradually from the visible (VIR, 400–700 nm) to the near-
infrared (NIR, 700–1100 nm) region, and to the short-wave infrared (SWIR, 1100–2400 nm)
region. Moreover, the 10 local maxima of the CV (at 483, 541, 660, 767, 979, 1202, 1450, 1881,
2030, and 2366 nm) were closely related to the absorption wavelength of leaf functional
traits, e.g., chlorophylls and carotenoids (at 483, 541, 660, and 767 nm), water (at 979, 1202,
1450, and 1881 nm), cellulose and lignin content (at 2030 and 2366 nm). However, the
spectral diversity approach was limited by spectral convergence when the species richness
exceeded about 14. Both the PCA and hierarchical cluster analysis further showed that
species with similar spectral signatures were generally sorted into the same group, i.e.,
spectral species (Figure 2B). The cluster species mostly belonged to the same family or
genus, which was highly close to the phylogenetic tree (Figure 3).

3.2. Functional Trait Diversity

The results of the PCA indicate that different species harbored different trait com-
binations (Figure 4A, Figure S2), yet the large intraspecific variation in the functional
traits of some species confounded the functional trait diversity–biodiversity relationship
here (Figure S3). In parallel with spectral diversity, species with similar functional trait
combinations were mostly clustered in the same genera or families (Figure 4A), which was
identical to the spectral-based PCA analysis. The clustering analysis also showed a similar
result (Figure 4B). However, the functional trait-based clustering result was slightly inferior
to the spectral clusters compared to the phylogenetic tree.

The Monte-Carlo simulation results show that the functional trait and spectral diver-
sity increased in a nonlinear manner with increasing species diversity, finally tending to
saturation (Figure 5). The saturation point of functional trait diversity or spectral diversity
can be regarded as the maximum species richness recognized by the variations in the dif-
ferent numbers of combinations of functional traits or spectral bands. The more functional
traits involved, the greater the functional trait diversity, but with a smaller contribution
for distinguishing species (Figure 5). As expected, the spectral differences between species
were greater than the differences of all the different numbers of combinations of functional
traits, because of the greater number of leaf biochemical and structural properties involved
in the spectral information.

3.3. Species Richness Prediction Based on Cluster Algorithms

The results of the prediction of grassland plant species richness (Figure 6) show that
species richness can be accurately predicted using hyperspectral data (R2 = 0.73, p < 0.001)
and functional traits (R2 = 0.66, p < 0.001). Moreover, the former slightly outperformed the
latter. However, similarly to the Monte-Carlo simulation results (Figure 5), the predicted
richness tended towards saturation when the in situ species richness exceeded about 14.
Moreover, low species richness was easily overestimated, whereas high species richness
was easily underestimated.
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Figure 2. (A) Spectral profile, average coefficient of variation (CV) curves with different species
richness (SR = 2, 4, 6, 8, 10, 12, 14, and 17 species), and local maximum CV. The green region shows
the spectral ranges of all 17 species. The average CV curves for different species richness are shown as
the legend for each spectral band (n = 2000). (B) Spectral clustering (i.e., spectral species) determined
by means of hierarchical cluster analysis.
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(B) Phylogenetic tree, built based on evolution history using Phylomatic V3.0 (http://phylodiversity.
net/phylomatic/, accessed on 7 November 2020) based on 17 grassland plant species in a semi-
arid grassland monoculture experimental site at the Inner Mongolia Grassland Ecosystem Research
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4. Discussion
4.1. Spectral Diversity

Our study, conducted in a semi-arid grassland monoculture experimental site, in-
dicated that the different grassland plant species harbored different functional traits or
trait combinations (functional trait diversity), resulting in variations in spectral patterns
(spectral diversity). Moreover, the spectral diversity of grassland plant species increased
gradually from the visible region to the near-infrared region and to the short-wave in-
frared region. The local maxima of spectral diversity were mostly concentrated in the
absorption wavelengths of specific functional traits, e.g., chlorophylls, carotenoids, water,
cellulose, and lignin. However, previous studies of a prairie BioDIV experiment, con-
ducted at Cedar Creek Ecosystem Science Reserve in the USA [13,34], indicated that the
contribution of visible regions (~427–700 nm) was relatively greater than that of the near-
infrared (NIR, ~700–914 nm) region. This may be because the proximal canopy spectra or
biomass-weighted leaf spectra, with different levels of diversity at natural plots, involved
the canopy structural information, further concealing the real spectral dissimilarity among
species caused by leaf structure, especially in the NIR region.

Our study showed that the spectral dissimilarity between species exceeded the differ-
ences of all the functional trait combinations. The spectral differences between species not
only captured the functional differences in physiological functional traits, but also captured
morphological functional traits that influenced the spectral reflectance. The increase in
functional differences further increases the spectral dissimilarity. Spectral diversity shows
great potential for assessing biodiversity or functional diversity that involves intraspecific
and interspecific trait variations, even in the absence of phylogenetic, functional trait, or
abundance information [34].

Notably, our simulation results also show that spectral diversity may be limited by
spectral convergence when the species richness exceeds a certain number (e.g., 14), such as
in forest ecosystems [44,45], because the spectral features of the same genera or families
are often similar. Furthermore, spectral convergence resulted in underestimations in cases
of a high species richness, whereas overestimations in cases of a low species richness may
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have been a result of large intraspecific spectral variations. Significantly, the grassland
plant species richness prediction in our study did not take into account the effects of soil
background and complex species distribution patterns or environmental context.

In addition, the spectral diversity–grassland plant diversity relationship can be af-
fected by both spatial and spectral resolution or spectral range [14]. First, the spectral
diversity may be scale-dependent [27]. Fine-scale exploration in a prairie ecosystem exper-
iment indicated that the optimal spatial resolution for describing spectral diversity was
about the size of a leaf or of a single canopy [14]. Furthermore, the high spectral resolution
or spectral range succeeded in detecting more spectral variability among species, especially
for the absorption wavelengths of specific biochemical or physiological traits. In our study,
the UAV-based imaging spectrometer supported observations on a sufficiently fine scale of
30 cm, providing the possibility of direct grassland plant diversity monitoring. Several field
experiments have explored the direct monitoring of grassland plant species diversity based
mainly on spectral diversity using a field spectrometer and proximal or airborne imaging
spectroscopy over prairie grasslands and lowland native grassland communities in the
USA, Canada, and the Tasmanian Midlands in Australia [13,14,27,34,52,53]. In addition,
more attention should be paid to multi-temporal variations in spectral space, which will
help to improve spectral diversity and the resulting prediction accuracy of grass plant
species diversity [12].

4.2. Funtional Trait Diversity

Different types of plants or plant functional types (PFTs) may harbor different leaf
traits, canopy structures, growth density, and ecological niches, leading to different spectral
and texture patterns [28–31]. Functional trait-based species diversity monitoring frequently
assumes that interspecific trait variations generally exceed intraspecific trait variations [54].
However, intraspecific variation in functional traits for some species can be sufficiently
large as a result of different climatic, topographic, and edaphic conditions influencing
the true prediction of grassland plant diversity [14,55]. Similar to spectral clustering, our
study further demonstrates that different grass plant species occupy different functional
trait combinations, but are mostly grouped into the same genera, families, or PFTs. Conse-
quently, the PFT-based method has been applied globally by collapsing all the interesting
trait variations of a PFT into a single average value [56–59]. In addition, compared to
the prediction of species richness using the full spectra of the hyperspectral images, the
functional trait-based prediction accuracy is slightly reduced by only about 6% as shown
in our study, whereas its calculation speed would be faster, which may be more suitable for
satellite-based multi-spectral grassland plant species diversity mapping.

Trait-based methods have increasingly been used in theoretical and applied biodi-
versity research. To date, ecologists have identified hundreds of plant traits, and built
the largest global open source database (the TRY database; www.try-db.org), including
approximately 12 million trait records, covering 280,000 species, since its foundation in
2007. However, owing to the temporal and spatial limitations of in situ measurements,
as well as the cost expenditure, the key functional traits have only been measured in 2%
of globally known vascular plant species [7], and most of these data tend to be easily
measurable without taxonomic information. The regional and even global mapping of
these key functional traits using remote sensing could complement or aid in filling the gaps
and upscaling the field-measured data [60]. The commonly used physiological traits—for
example, pigment, LMA, N, water, lignin, and cellulose—have been successfully retrieved
from the leaf or canopy spectra based on the vegetation index, statistical method, and
physical model (e.g., radiative transfer models, RTMs) [7,44,45]. Focusing on three key
foliar traits related to photosynthesis and respiration, SLA, leaf N, and P, a global trait
map with a 0.5◦ spatial resolution was generated based on the TRY database and Bayesian
modelling [61]. Global remote sensing mapping of these leaf traits with additional leaf
dry matter content (LDMC) was then successfully performed at a higher spatial resolution
(500 m) using the combination of MODIS/Landsat and climate data [62]. In this study,
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10 key foliar physiological traits (Chl_b, Car, LMA, LDMC, C, N, P, Cel, and Lig), related
to photosynthesis, respiration, defense, and ecosystem productivity, were successfully
mapped with a high spatial resolution (30 cm). This would be conducive in linking inter-
and intra-specific trait variations to functional diversity, directly delivering biodiversity to
ecosystem functions and services [34,63].

Recently, functional diversity measurements have moved from taxonomy-based clas-
sifications of functional groups to taxonomy-independent multivariate functional diversity
(FD) indices, such as functional richness (FRic), functional divergence (FDiv), and functional
evenness (FEve) [64]. These indices have been spatially estimated using the pixel-based
method based on remotely sensed functional traits or specific vegetation indices in forest
ecosystems [9]. Considering intraspecific trait variations, as shown in our study, it may
be more accurate to calculate functional diversity by clustering individual species or PFTs
in advance for high spatial resolution on the leaf or individual canopy scale. The good
relationship between leaf or canopy spectra and functional traits also promotes the direct
spectral prediction of functional diversity using PLSR methods [65]. More importantly, the
degree of explanation of the functional diversity of the ecosystem in relation to the conse-
quences of biodiversity depends largely on the functional traits included. The functional
traits involved in the calculation of functional diversity can consider both the ecological
meaning (e.g., survival strategies and ecosystem processes or functioning) and the accuracy
of remotely sensed retrieval, which may reflect the quantified content of functional traits or
the corresponding vegetation indices and feature bands as surrogates [7,9]. The ‘worldwide
leaf economics spectrum’ indicates that the functional convergence of 2548 worldwide
species could be associated with six physiological and structural traits [38]. Global studies
suggest the coordination of only six viable functional trait combinations related to growth,
survival, and reproduction, as a trade off with the major worldwide variation in plant
form and function [66]. However, trait-based methods should consider which and how
many traits are optimal to mirror the major variations in ecological strategy or functions for
different numbers of species and composition types in various environmental gradients.

4.3. Future Outlook

In this study, we explored the relationships among species diversity, spectral diversity,
and functional trait diversity (or biochemical diversity) using in situ spectral monitoring
and trait measurements. As the technological development of high-resolution airborne-
based imaging spectroscopy or space-borne multispectral images (e.g., worldview 3/4)
supports the identification of small individual plants [67,68], direct species or diversity
mapping and functional diversity mapping in grassland will be possible in the near future.
Some supervised and unsupervised classification methods used in forest ecosystems, such
as artificial intelligence (machine- or deep-learning) algorithms, could be used for species
discrimination in grasslands based on SVH, or by directly estimating species diversity
with the fusion of fine-grained image textures and spectral information. Cluster-based
algorithms (e.g., k-means clustering) could also be used to distinguish the functional classes
or groups, or to directly predict functional diversity (e.g., FRic, FEve, and FDiv) based
on functional traits determined by remote sensing. However, high-resolution satellites
often sacrifice high temporal resolution, making it difficult to monitor changes in global
biodiversity because of the effects of cloud coverage. Fortunately, ecological studies have
proposed some well-documented hypotheses or EBVs, such as the habit amount hypothe-
sis, habitat heterogeneity hypothesis, species-area relationship hypothesis, productivity
hypothesis, and environmental parameters [16,69–73]. The progress of satellite remote
sensing and modeling methods will further improve the monitoring accuracy of habitat
quality, temperature, water, or energy variables, which will help to achieve large-scale and
multi-temporal diversity monitoring. Since 1990, biodiversity-ecosystem functioning (BEF)
relationships have been an ecological issue of increasingly global concern [74,75]. Positive
and saturated relationships of biodiversity and ecosystem productivity have been reported
on different time and space scales [76–78]. Furthermore, remotely sensed spectral diversity
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and single- and multi-trait functional diversity can be critical indicators of ecosystem
productivity [34,63]. Consequently, multi-scale modeling approaches would be feasible to
up-scale in situ or UAV-based biodiversity measurements to a regional or global scale by
combining these ecological knowledge and Earth observations (e.g., satellite or airborne
imagery) [79].

5. Conclusions

Here, we examined the links among spectral diversity, functional trait diversity, and
species diversity based on a semi-arid grassland monoculture experimental site, facilitating
an in-depth integration of ecological knowledge and remote sensing principles. We found
that different grassland plant species harbored different functional trait combinations
(functional trait diversity), and the involvement of more functional traits could increase the
functional trait diversity, but with a smaller contribution because of functional convergence.
Our leaf-spectra-based analysis also indicated that the spectral diversity of grassland plant
species increased gradually from the visible region to the near-infrared region and to the
short-wave infrared region. The Monte-Carlo simulation results also showed that as the
species richness increased, the leaf functional trait diversity and spectral diversity increased
nonlinearly but with a smaller contribution for distinguishing species. Upscaled to the UAV-
based canopy scale, grassland plant diversity can be directly predicted based on spectral
diversity and functional trait diversity, calculated via remotely sensed functional traits,
especially those with a species richness of less than 14. Our findings will provide a necessary
reference for the spatially continuous mapping of grassland biodiversity from a proximal
or UAV platform with accurate field measurements in natural grassland communities. This
will advance our understanding of the effects of biodiversity on ecosystem functioning
over different spatial scales and support science-driven biodiversity conservation and
ecosystem management.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
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covariation of 17 different species based on 0.3 m × 0.3 m pixels.
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